WorldWideScience

Sample records for specific ion effects

  1. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  2. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.; Cassady, Harrison J.; Paul, Donald R.; Logan, Bruce E.; Hickner, Michael A.

    2014-01-01

    -ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity. This journal is

  3. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  4. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    Science.gov (United States)

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  5. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  6. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces.

    Science.gov (United States)

    Siretanu, Igor; Chapel, Jean-Paul; Bastos-González, Delfi; Drummond, Carlos

    2013-06-06

    The effect of surface charges on the ionic distribution in close proximity to an interface has been extensively studied. On the contrary, the influence of ions (from dissolved salts) on deformable interfaces has been barely investigated. Ions can adsorb from aqueous solutions on hydrophobic surfaces, generating forces that can induce long-lasting deformation of glassy polymer films, a process called ion-induced polymer nanostructuration, IPN. We have found that this process is ion-specific; larger surface modifications are observed in the presence of water ions and hydrophobic and amphiphilic ions. Surface structuration is also observed in the presence of certain salts of lithium. We have used streaming potential and atomic force microscopy to study the effect of dissolved ions on the surface properties of polystyrene films, finding a good correlation between ionic adsorption and IPN. Our results also suggest that the presence of strongly hydrated lithium promotes the interaction of anions with polystyrene surfaces and more generally with hydrophobic polymer surfaces, triggering then the IPN process.

  7. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    Science.gov (United States)

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion

  8. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  9. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications.

    Science.gov (United States)

    Petit, Tristan; Lange, Kathrin M; Conrad, Gerrit; Yamamoto, Kenji; Schwanke, Christoph; Hodeck, Kai F; Dantz, Marcus; Brandenburg, Tim; Suljoti, Edlira; Aziz, Emad F

    2014-05-01

    The effect of monovalent cations (Li(+), K(+), NH4 (+), Na(+)) on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS) of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  10. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications

    Directory of Open Access Journals (Sweden)

    Tristan Petit

    2014-05-01

    Full Text Available The effect of monovalent cations (Li+, K+, NH4+, Na+ on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS, X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  11. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  12. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-01-01

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  13. Urea decreases specific ion effects on the LCST of PMMA-block-PDMAEMA aggregates

    Directory of Open Access Journals (Sweden)

    João Carlos Perbone de Souza

    2014-12-01

    Full Text Available Urea is a well-known additive used as a mild protein denaturant. The effect of urea on proteins, micellar systems and other colloids is still under debate. In particular, urea has shown interesting effects on the ion binding in systems like charged micelles, vesicles or Langmuir-Blodgett films. The urea effect on polymeric aggregates in water is still an open field. For instance, the additive may affect properties such as cmc, LCST, UCST and others. In particular, LCST is a property that can be very convenient for designing smart systems that respond to temperature. Previous studies have indicated that the LCST of positive charged copolymers aggregates based on poly[N-dimethyl(ethylamine methacrylate], PDMAEMA, can be nicely modulated by anions in aqueous solution and such phenomenon depends on the nature of the anion present. In this work, it has been demonstrated that urea also affects the LCST of PMMA-block-PDMAEMA aggregates in aqueous solution. In addition, in the presence of high concentrations of the additive, the specific behavior of the anions is lost, supporting the general mechanism of urea reducing the differences on ion binding to surfaces in aqueous solutions. To the best of our knowledge, this is the first time those phenomena are shown in polymer micelles.

  14. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02691a Click here for additional data file.

    Science.gov (United States)

    Mazzini, Virginia

    2017-01-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion

  15. Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor

    Science.gov (United States)

    Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.

    2018-05-01

    Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.

  16. Ion specific correlations in bulk and at biointerfaces

    International Nuclear Information System (INIS)

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-01-01

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  17. Ion specific correlations in bulk and at biointerfaces.

    Science.gov (United States)

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-10-21

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  18. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Nishijima, Shigehiro; Hase, Yoshihiro; Sakamoto, Ayako; Tanaka, Atsushi; Shimizu, Kikuo

    2006-01-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene

  19. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints.

    Science.gov (United States)

    Niedz, Randall P

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses "Microsoft Excel" to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel's Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems- 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line.

  20. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints

    Science.gov (United States)

    Niedz, Randall P.

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses “Microsoft Excel” to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel’s Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems– 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line. PMID:27812202

  1. Ion-specific thermodynamical properties of aqueous proteins

    Directory of Open Access Journals (Sweden)

    Eduardo R.A. Lima

    2010-03-01

    Full Text Available Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann (PBequationandMonteCarlo(MCsimulations. PBequationspresentgoodresultsofionicconcentration profiles around a macroion, especially for salt solutions containing monovalent ions. These equations include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared results obtained from the modified PB equation with those from MC simulations and integral equations. Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects. In order to include the water structure and hydration effect, we have used an effective interaction obtained from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method has been proved to be efficient and suitable for describing phenomena where the water structure close to the interface plays an essential role. Important thermodynamic properties related to protein aggregation, essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.Interações íon-específicas (dependentes do tipo de íon presente em solução entre duas partículas coloidais são calculadas usando a equação de Poisson-Boltzmann (PB modificada e simulações de Monte Carlo (MC. As equações de PB apresentam bons resultados de perfis de concentração nas proximidades de um macro-íon, principalmente para soluções salinas contendo íons monovalentes. Estas equações incluem não só interações eletrostáticas, mas também potenciais de dispersão, que têm origem nas polarizabilidades de íons e proteínas, permitindo a predição de propriedades íon-específicas de

  2. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  3. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  4. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  5. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  6. A molecular-gap device for specific determination of mercury ions

    Science.gov (United States)

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-11-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

  7. Molecular Mechanisms of Ion-Specific Effects on Proteins

    Czech Academy of Sciences Publication Activity Database

    Rembert, K. B.; Paterová, Jana; Heyda, Jan; Hilty, Ch.; Jungwirth, Pavel; Cremer, P. S.

    2012-01-01

    Roč. 134, č. 24 (2012), s. 10039-10046 ISSN 0002-7863 R&D Projects: GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506 Keywords : ions * proteins * molecular dynamics * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 10.677, year: 2012

  8. Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges

    CERN Document Server

    Baba, Y H

    2003-01-01

    This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorption were observed when we tune the photon energy at the dipole-allowed 1s -> sigma sup * (3p sup *) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as 'spectator electrons') in the antibonding sigma sup * orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in...

  9. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    Science.gov (United States)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  10. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  11. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    OpenAIRE

    Alain Berinstain; Alan Scott; Matthew Bamsey; Michael Dixon; Cody Thompson; Thomas Graham

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenh...

  12. Analysis of movements of both specific activity of tritium and concentration of each ion in short-term precipitation at typhoons

    International Nuclear Information System (INIS)

    Yamada, Ryuta; Watanabe, Minami; Ying, Wang; Kataoka, Noriaki; Morita, Syogo; Imaizumi, Hiroshi; Kano, Naoki

    2015-01-01

    Both the specific activity of tritium and the concentration of several ions(Na + , K + , Mg 2+ , Ca 2+ , Cl - , NO 3 - , SO 4 2- ) in precipitation at typhoons in Niigata city, Japan were measured, and the following matters were found as to precipitation at typhoon. (1) Specific activities of tritium at typhoons were under the average of the activities in precipitation in the same month. (2) The specific activity of tritium depends on that whether the precipitation was sampled after the several days from the last rain, or not so long. (3) Movements of these ion concentrations in precipitation are similar to each other except nitrate ion. (4) Each ion concentration ratio in precipitation at a typhoon became to be similar to that in sea with time. (5) Using relative compositional ratio of sampled water to sea water defined in this research, the effect of sea water on precipitation can be revealed. (author)

  13. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide

    International Nuclear Information System (INIS)

    Ghalebani, Leila; Wahlström, Anna; Danielsson, Jens; Wärmländer, Sebastian K.T.S.; Gräslund, Astrid

    2012-01-01

    Highlights: ► Cu(II) and Zn(II) display pH-dependent binding to the Aβ(1–40) peptide. ► At pH 7.4 both metal ions display residue-specific binding to the Aβ peptide. ► At pH 5.5 the binding specificity is lost for Zn(II). ► Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer’s disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with 15 N- and 13 C, 15 N-labeled Aβ(1–40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.

  14. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  15. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  16. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  17. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    Science.gov (United States)

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  18. Specific ion effects on the hydrophobic interaction of benzene self-assembled monolayers

    DEFF Research Database (Denmark)

    Dobberschütz, Sören; Pedersen, Morten Rimmen; Hassenkam, Tue

    2015-01-01

    The interaction of aromatic compounds with various ions in aqueous solutions plays a role in a number of fields, as diverse as protein folding and enhanced oil recovery, among others. Therefore, we have investigated the effect of the four electrolytes, KCl, NaCl, MgCl2 and CaCl2, on the hydrophobic...... interaction of benzene self-assembled monolayers. Using the jump to contact phenomenon of an atomic force microscope (AFM) tip as an indicator of attractive forces between the surfaces of a sample and the tip, we discovered lower frequencies in the snap in as well as narrower distributions for the snap...

  19. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  20. Analysis of ion beam teletherapy patient-specific quality assurance.

    Science.gov (United States)

    Liu, Xiaoli; Deng, Yu; Schlegel, Nicki; Huang, Zhijie; Moyers, Michael F

    2018-02-27

    The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3 mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150 mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  2. Reversal of the Hofmeister Series: Specific Ion Effects on Peptides

    Czech Academy of Sciences Publication Activity Database

    Paterová, Jana; Rembert, K. B.; Heyda, J.; Kurra, Y.; Okur, H. I.; Liu, W. R.; Hilty, Ch.; Cremer, P. S.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 27 (2013), s. 8150-8158 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ions * peptide * NMR * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  3. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Denton, M. S.; Wilson, J.; Ahrendt, M.; Bostick, W. D.; DeSilva, F.; Meyers, P.

    2006-01-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  4. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  5. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexa-peptide

    International Nuclear Information System (INIS)

    Dejugnat, Ch.; Dufreche, J.F.; Zemb, Th.; Dejugnat, Ch.

    2011-01-01

    An amphiphilic hexa-peptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexa-peptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to 'Hofmeister' but different from volume and valency. (authors)

  6. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  7. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  8. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W; Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X; Brown, I G [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1994-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  9. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2012-10-01

    Full Text Available The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry’s demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  10. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  11. Effects of ion sputtering on semiconductor surfaces

    International Nuclear Information System (INIS)

    McGuire, G.E.

    1978-01-01

    Ion beam sputtering has been combined with Auger spectroscopy to study the effects of ion beams on semiconductor surfaces. Observations on the mass dependence of ion selective sputtering of two component systems are presented. The effects of ion implantation are explained in terms of atomic dilution. Experimental data are presented that illustrate the super-position of selective sputtering and implantation effects on the surface composition. Sample reduction from electron and ion beam interaction is illustrated. Apparent sample changes which one might observe from the effects of residual gas contamination and electric fields are also discussed. (Auth.)

  12. Effect of metal ions on de novo aggregation of full-length prion protein

    International Nuclear Information System (INIS)

    Giese, Armin; Levin, Johannes; Bertsch, Uwe; Kretzschmar, Hans

    2004-01-01

    It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu 2+ , Mn 2+ , Ni 2+ , Co 2+ , and Zn 2+ ) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn 2+ at low micromolar concentrations that could be blocked by nanomolar concentration of Cu 2+ . These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo

  13. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    International Nuclear Information System (INIS)

    Gruen, Rebecca Antonia

    2014-01-01

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  14. Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR

    OpenAIRE

    Luo, Zhi-Xiang; Xing, Yun-Zhao; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

    2015-01-01

    Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonanc...

  15. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  16. Effect of ion viscosity on neoclassical tearing mode

    International Nuclear Information System (INIS)

    Yoshida, Shigeki; Itoh, Sanae-I.; Yagi, Masatoshi; Azumi, Masafumi

    2004-01-01

    Linear stability analysis of neoclassical tearing mode (NTM) is performed on the basis of four-field reduced magnetohydrodynamic (MHD) model which takes account of fluctuating ion parallel flow and ion neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel compressibility is weak in the banana-plateau regime. It is found that not only ion neoclassical viscosity but also both ion and electron diamagnetic effects are important for the stabilization of NTM. (author)

  17. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project element is to increase the specific energy of Li-ion battery cells to 265 Wh/kg and the energy density to 500 Wh/L at 10oC while maintaining...

  18. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  19. Effect of finite ion-temperature on ion-acoustic solitary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Shivamoggi, B.K.

    1981-01-01

    The propagation of weakly nonlinear ion-acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion-acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave. (author)

  20. Ion effects in future circular and linear accelerators

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1995-05-01

    In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes

  1. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    International Nuclear Information System (INIS)

    Pogrebnjak, A D; Bratushka, S N; Beresnev, V M; Levintant-Zayonts, N

    2013-01-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references

  2. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  3. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  4. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  5. Ion feedback effect in the multi GEM structure

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Han, Sang Hyo; Ha, Jang Ho; Moon, Byung Soo; Chung, Chong Eun

    2003-01-01

    The feedback of positive ions in a gas electron multiplier (GEM) has to be suppressed to reduce the photocathode degradation in GEM photomultipliers and to prevent the field distortion in a time projection chamber (TPC). The ion feedback dependency on the drift electric field, the transfer field, the asymmetry in the voltages across the GEM, and the effective gain was carefully measured in various gases. The ion feedback is sensitive to the drift field and the effective gain. A model prediction of the ion feedback in a double GEM structure was compared with the measurement. Our systematic study of the ion feedback effect can lead to progress in gas detectors with GEMs.

  6. Cytological effect of nitrogen ion implantation into Stevia

    International Nuclear Information System (INIS)

    Shen Mei; Wang Cailian; Chen Qiufang; Lu Ting; Shu Shizhen

    1997-01-01

    Dry seeds of Stevia were implanted by 35∼150 keV nitrogen ion with various doses. The cytological effect on M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with the increased with the increase of ion beam energy and dose. However, there was no significant linear regression relationship between ion dose and aberration rate. The cytological effect of nitrogen ion implantation was lower than that of γ-rays

  7. Two-dimensional ion effects in relativistic diodes

    International Nuclear Information System (INIS)

    Poukey, J.W.

    1975-01-01

    In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)

  8. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  9. Mutagenic effects of ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Lu Ting; Shu Shizhen

    1998-01-01

    Dry seeds of Stevia were implanted by 75 keV nitrogen and carbon ions with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam dose. The rate of cells with chromosomal aberration was lower than that induced with γ-rays. Frequency of the mutation induced by implantation of N + and C + ions were higher than those induced by γ-rays. The rate of cell with chromosome aberration and in M 2 useful mutation induced by implantation of C + ion was higher than those induced by implantation of N + ion. Mutagenic effects Feng 1 x Riyuan and Riyuan x Feng 2 by implantation of N + and C + were higher than that of Jining and Feng 2

  10. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  11. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  12. Effects of ionizing radiation on modern ion exchange materials

    International Nuclear Information System (INIS)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included

  13. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  14. Biological effect of nitrogen ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Shu Shizhen

    1997-10-01

    Dry seed of stevia were implanted by 35∼150 keV nitrogen ions with various doses. The biological effect in M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam energy and dose added, but there was on significant linear regression relationship between ion dose and aberration rate. The results indicated the seedling height reduced with the increasing of dose for ion beam. The biological effect of nitrogen ion beam on M 1 stevia was lower than that of γ-rays. (6 refs., 1 fig., 4 tabs.)

  15. Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma

    International Nuclear Information System (INIS)

    Salahuddin, M.

    1990-01-01

    Using the reductive perturbation technique the Korteweg-de Vries (KdV) equation is derived for ion acoustic waves, in the presence of weak relativistic effects and warm ions, in a magnetized plasma. The influence of non ideal effects on the amplitude and width of the ion acoustic solitary waves is also discussed. The results are depicted in the figures. It is shown that the simultaneous presence of ion streaming and magnetic field stops the tendency of soliton breaking. (author)

  16. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Lu Ting; Shu Shizhen

    1998-06-01

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M 2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng 1 x Ri Yuan and of Ri Yuan x Feng 2 are higher than that of Ji Ning and Feng 2

  17. ION EFFECTS IN THE APS PARTICLE ACCUMULATOR RING

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Harkay, K.; Yao, CY.

    2017-06-25

    Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.

  18. Innovative Highly Selective Removal of Cesium and Strontium Utilizing a Newly Developed Class of Inorganic Ion Specific Media - 16221

    International Nuclear Information System (INIS)

    Denton, Mark S.; Kanatzidis, Mercouri G.

    2009-01-01

    readily to volume reduction (VR) by vitrification without the issues faced with organic resins. In fact, with a simple melting of the KMS-1 media at 650-670 deg. C (i.e., well below the volatilization temperature of Cs, Sr, Mn, Fe, Sb, etc.), a VR of 4:1 was achieved. With true pyrolysis at higher temperatures or by vitrification, this VR would be much higher. The introduction of this new family of highly specific ion-exchange agents has potential to both reduce the cost of waste processing, and enable improved waste-classification management in both nuclear power plants (for the separation of Class A from B/C wastes) and DOE tank farms [for the separation of low level waste (LLW) from high level waste (HLW)]. In conclusion, we demonstrate for the first time a novel inorganic ion-exchanger for the selective removal of Cesium and Strontium. These inorganic ion-exchangers are chemical, thermal and radiation stable. These inorganic ion-exchangers can be synthesized in a cost-effective way which makes them significantly more effective than organic ion-exchange resin and CST. Finally, new thermal options are afforded for their final volume reduction, storage and disposal. (authors)

  19. Impact parameter dependence of the specific entropy and the light particle yield in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1986-01-01

    The connection between the fragment yield and the associated specific entropy of particles produced in the course of a relativistic heavy ion collision is studied within the cascade approach. The essential impact parameter dependence of the fragment yield indicates that the specific entropy increases with impact parameter and that the critical density of the system decay is the larger the more central the collision process is. The results show that the thermodynamical equilibrium limit for the entropy production is not reached for such heavy systems as Nb+Nb at 400 MeV/nucleon and that the finite size effects and the dynamical freeze-out process are dominant factors in determining the cluster yield

  20. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    International Nuclear Information System (INIS)

    Sigmar, D.J.

    1986-07-01

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between α-power driven sawtoothing and ideal MHD stability, and direct α-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional α-transport including the ambipolar electric field are discussed

  1. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  2. Radiation effects on ion exchange materials used in waste management

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1982-01-01

    Radiation damage to process materials used in radioactive waste management has been a topic of little interest in the past. In recent years, as a result of the increasing number of accidents reported in the open literature, there has been some desire to examine the radiation decomposition of ion exchange materials and its consequences to the interim and long-term management of radioactive wastes. Extensive literature surveys and some confirmatory laboratory investigations conducted conclusively demonstrate that radiation damage to ion exchangers has the potential to cause problems of corrosion, elution of adsorbed ionic species, generation of flammable and explosive gaseous products and agglomeration of particulates to form rigid monoliths. This paper is an overview of present knowledge and a presentation of the results of our investigations of this phenomenon. The distinct lack of systematic studies to evaluate the problems of radiation damage to process materials used in the consolidation and isolation of high specific activity radionuclides still leaves considerable gaps in our knowledge of the processes and consequences of radiation effects on ion exchangers used in radioactive waste management

  3. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  4. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  5. Ion thermal and dispersion effects in Farley-Buneman instabilities

    International Nuclear Information System (INIS)

    Litt, S. K.; Smolyakov, A. I.; Hassan, E.; Horton, W.

    2015-01-01

    Farley-Buneman modes are an example of the collisional instability, which is thought to be the dominant mechanism for the irregularities in low ionosphere region. Despite high collisionality due to electron-neutral and ion-neutral collisions, the kinetic effects associated with finite temperature are important for determination of the mode frequencies and growth rate. This is especially important for ion component that is largely unmagnetized due to low ion cyclotron frequency. The ion thermal effects are strongly pronounced for shorter wavelengths and are crucial for the growth rate cut-off at high wavenumbers. We develop an extended fluid model for ion dynamics to incorporate the effects of ion thermal motion. The model is based on the extended MHD model that includes the evolution equations for higher order moments such as ion viscosity and ion heat flux. We also develop the generalized Chapman-Enskog closure model that provides exact linear closures based on the linearized kinetic equation. The results of these models are compared and tested against the linear kinetic model. The dispersion of Farley-Buneman modes and growth rate behavior are investigated in the short wavelength region

  6. Genetic effects of heavy ion irradiation in maize and soybean

    International Nuclear Information System (INIS)

    Yatou, Osamu; Amano, Etsuo; Takahashi, Tan.

    1992-01-01

    Somatic mutation on leaves of maize and soybean were observed to investigate genetic effects of heavy ion irradiation. Maize seeds were irradiated with N, Fe and U ions and soybean seeds were irradiated with N ions. This is a preliminary report of the experiment, 1) to examine the mutagenic effects of the heavy ion irradiation, and 2) to evaluate the genetic effects of cosmic ray exposure in a space ship outside the earth. (author)

  7. Importance of diffuse metal ion binding to RNA.

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  8. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  9. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  10. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  11. Space-charge effects in Penning ion traps

    Science.gov (United States)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  12. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    Science.gov (United States)

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  13. TBI server: a web server for predicting ion effects in RNA folding.

    Science.gov (United States)

    Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie

    2015-01-01

    Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects. The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects. By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  14. TBI server: a web server for predicting ion effects in RNA folding.

    Directory of Open Access Journals (Sweden)

    Yuhong Zhu

    Full Text Available Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects.The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects.By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  15. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    Science.gov (United States)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  16. Atmospheric ions and probable indirect biological effect of low-level radiation

    International Nuclear Information System (INIS)

    Spurny, Z.

    1984-01-01

    The problem is discussed of the health consequences of low radiation doses (of less than 0.01 Gy). Owing to natural radioactivity and cosmic radiation, ions are formed in the atmosphere which may thus indirectly mediate the effects of ionizing radiation on the organism. The rate of ion formation is approximately 6.1 ion pairs/cm 3 .s and their number will not exceed 10 3 ions/cm 3 . In an environment where artificial radioactive sources are used, the ion concentration may reach up to 10 5 ions/cm 3 . The effect of ions on man may be divided into several types: 1. effect on mental state (behaviour, fatigue, headaches); 2. effect on the cardiovascular system; 3. effect on the bronchial system;and 4. effect on physiological processes, e.g., secretion by endocrine glands. It is not yet known whether the biological effect of small (fast) ions is a function of their electric charge only or of their kinetic energy as well. The view is discussed that low radiation doses through indirect effects have favourable and beneficial influence on the human organism. (M.D.)

  17. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  18. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  19. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Fontheim, E.G.; Ong, R.S.B.

    1984-01-01

    An expression for the linear electromagnetic ion cyclotron convective growth rate has been derived, considering multiple ions in the energetic anisotropic component of the plasma (which provides the free energy for the instability) as well as in the cold component of the plasma. This represents a modification of recent treatments investigating electromagnetic ion cyclotron growth rates which have considered only hydrogen ions in the energetic component. Four major effects on the growth and propagation characteristics result from inclusion of heavy ions in the energetic component. Some wave growth occurs at low frequencies below the corresponding marginally unstable wave mode for each heavy ion. Enhanced quasi-monochronomatic peaks in the convective growth rate appear just below the O + and He + gyrofrequency and can be quite pronounced for certain plasma conditions. Stop bands, decreased group velocity and other effects normally attributed to cold heavy ions can be produced or enhanced by heavy ions in the energetic plasma component. Partial or complete suppression of wave growth at frequencies above the marginally unstable wave mode for a particular energetic heavy ion can greatly alter the growth rates that would occur in the absence of this energetic heavy ion. The expression for the linear electromagnetic ion cyclotron convective growth rate along with appropriate plasma parameters was used to investigate the nature of linear wave growth in the plasmapause region. The frequencies of peaks in the convective growth rate given by this model compare favorably with wave measurements in this region. It is conceivable that through wave-particle interactions, electromagnetic ion cyclotron waves could supply the energy source for various plasmapause region phenomena such as the O + torus, the plasma cloak and stable auroral red arcs

  20. Ion beam techniques for analyzing polymers irradiated by ions

    International Nuclear Information System (INIS)

    Rickards, J.; Zironi, E.P.; Andrade, E.; Dominguez, B.

    1992-01-01

    In the study of the effects of ion beam irradiation of polymers very large doses can be administered in short times. Thousands of MGy can be produced in a small volume of a sample in a few minutes by bombarding with typical ion beam currents. For instance, in an experiment done to observe the effects of 750 keV proton irradiation PVC, using a collimator of 1 mm diameter, 1 μC of charge integration deposits a dose of 50 MGy. The use of ion beams also opens up the possibility of using the same beam for irradiation and for analysis of the effects, using the well known ion beam analysis techniques. PIXE allows the measurement of chlorine in PVC. Polymers containing fluorine can be measured with the resonant nuclear reaction (RNR) technique, which is specific only to certain elements. The amount of hydrogen in the sample and its profile can be obtained using energy recoil detection analysis (ERDA); carbon, oxygen, and nitrogen can be measured and profiled using Rutherford backscattering (RBS) and also using the (d,p) and (d, α) nuclear reactions (NR). Loss of mass is one effect that can be studied using these techniques. It was studied in two different polymers, PVC and CR-39, in order to determine carbon buildup during ion irradiation. It was concluded that carbon builds up following different mechanisms in these two materials, due to the different possibilities of forming volatile compounds. It is also suggested that CR-39 should be a good material for ion beam lithography. (author)

  1. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions

    Czech Academy of Sciences Publication Activity Database

    Okur, H. I.; Hladílková, Jana; Rembert, K. B.; Cho, Y.; Heyda, J.; Dzubiella, J.; Cremer, P. S.; Jungwirth, Pavel

    2017-01-01

    Roč. 121, č. 9 (2017), s. 1997-2014 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : Hofmeister series * ions * proteins * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  2. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  3. Kinetic effects in the propagation of ion-acoustic negative solitons in plasmas with negative ions

    International Nuclear Information System (INIS)

    Roberto, M.

    1986-12-01

    The existence of ion-acoustic negative (rarefactive) solitons in plasmas was experimentally verified and explained by means of the Korteweg-de Vries equation, obtained from a fluid model. The experimental results obtained in a double-plasma machine of the Institute for Space Research, however, have provided values of Mach number larger than predicted by this simple model. In order to improve the analysis of the phenomenon, Kinetic effects resultant from the occurrence of reflected electrons and trapped ions in the soliton potential were considered, using the theory of Sagdeev potential. For the description of the negative ion dynamics the fluid model treatment was preserved. It was verified that the effects of the finite temperature and trapping of the positive ions modify the results predicted by the simple KdV model in such a way that the Mach number is reduced as the ion temperature increases. It was shown that reflection of electrons is consistent with the large experimental values of Mach number. (Author) [pt

  4. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  5. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  6. Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2010-01-01

    The quantum screening effects on the ion-ion collisions are investigated in strongly coupled semiclassical hydrogen plasmas. The method of stationary phase and effective interaction potential containing the quantum mechanical effect are employed to obtain the scattering phase shift and scattering cross section as functions of the impact parameter, collision energy, de Broglie wavelength, and Debye length. The result shows that the scattering phase and cross section decrease with increasing de Broglie wavelength. It is also shown that the scattering cross section increases with an increase of the Debye length. Hence, it is found that the quantum effect suppresses the scattering cross section. In addition, the quantum effect on the scattering cross section is found to be more important in small Debye length domains.

  7. MCTBI: a web server for predicting metal ion effects in RNA structures.

    Science.gov (United States)

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  9. Laser Giant Ion Source and the Prepulse Effects for Picosecond Interaction for High Gain Laser Fusion

    International Nuclear Information System (INIS)

    Hora, Heinrich; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Boody, F.P.; Hoepfl, R.; Jungwirth, K.; Ullschmied, J.; Kralikova, B.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Skala, J.; Perina, V.

    2003-01-01

    By studying laser driven ion sources which produce giant ion emission current densities exceeding the few mA/cm2 of classical ion sources (MEVVA or ECR) by more than six orders of magnitude, we unexpectedly measured an anomalous low ion energy with ps laser pulses.The emission is basically different from that with the fastest ion energies in the MeV to GeV range due to relativistic self focusing and from the second fastest ion group due to quiver-thermalization processes. We report on specifically designed experiments with gold targets where 0.5 ns laser pulses produce MeV Au-ions in accordance with relativistic self focusing in strong contrast to ps pulses where a 400 times higher intensity from TW pulses is needed to arrive at the same ion energies. These can be explained by a basically new model without self-focusing as a skin layer effect where the absence of a prepulse is essential. This has consequences for the application of laser driven ion sources and may improve the hitherto highest published laser fusion gains with 50 TW-ps laser pulses without the usual spherical precompression

  10. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  11. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    mechanism for activating or inhibiting enzymes and for the assembly of multiprotein complexes. Here, we describe a mass spectrometry-based phosphotyrosine-specific immonium ion scanning (PSI scanning) method for selective detection of tyrosine-phosphorylated peptides. Once the tyrosine....... Because of its simplicity and specificity, PSI scanning is likely to become an important tool in proteomic studies of pathways involving tyrosine phosphorylation....

  12. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  13. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    Song Andong; Chen Hongge; Zhang Shimin; Jia Cuiying

    2004-01-01

    The wild type apple wine yeast Y 02 was treated by ion implantation with the dose of 8 x 10 15 ion/cm 2 . As results, a special mutant strain, ION II -11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y 02 . After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  14. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  15. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Yu Zengliang

    1993-04-01

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  16. Differential effects of x-rays and high-energy 56Fe ions on human mesenchymal stem cells.

    Science.gov (United States)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li, Song; Wang, Daojing

    2009-03-01

    Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) (56)Fe ions on human mesenchymal stem cells (hMSC). A multi-functional comparison was carried out to investigate the differential effects of X-rays and (56)Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. X-rays and (56)Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and (56)Fe ions, with more significant effects from (56)Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy (56)Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. (56)Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation.

  17. Effects of pulsed dual-ion irradiation of microstructural development

    International Nuclear Information System (INIS)

    Packan, N.H.

    1981-01-01

    The effect of pulsed irradiation on the development of microstructure during Ni ion bombardment has been investigated in a simple austenitic alloy similar to type 316 stainless steel. Bombardment conditions were 10 dpa, 940 K, pulsing with equal on/off times of either 0.5 or 60 s, and the addition of 20 appM He/dpa to some specimens either by room temperature preimplantation or by dual-beam coimplantation. Particular care was taken to minimize thermal pulses from beam heating (to 0 C). The results show that pulsing has a subtle influence, and the effects on specific cavity parameters are complex. Pulsing produced a small increase in swelling in the helium-free case, but a slight decrease for helium-implanted specimens, and it seems to have counteracted the usual stimulative effects of helium on cavity nucleation

  18. Evaluation of a novel task specific ionic liquid for actinide ion extraction

    International Nuclear Information System (INIS)

    Paramanik, M.; Ghosh, S.K.; Raut, D.R.; Mohapatra, P.K.

    2016-01-01

    Separation of U and Pu from nuclear waste is of great relevance for a sustainable closed fuel cycle point of view. Spent fuel reprocessing by the well known PUREX process is done world wide for the recovery of U and Pu using TBP as the extractant. Room temperature ionic liquids (RTILs) have shown significantly higher extraction of metal ions, particularly at lower acidity as compared to the molecular diluents. Functionalization of ionic liquids has resulted in highly efficient task specific ionic liquids (TSILs) with superior extraction properties than the analogous extractants dissolved in ionic liquids. The present paper reports the evaluation of a novel task specific ionic liquid (TSIL) containing >P=O functional group for the extraction of actinides like U(VI) and Pu(IV)

  19. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.

    2005-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  20. Heavy-Ions induced SEE effects measurements for the STRURED ASIC

    International Nuclear Information System (INIS)

    De Robertis, G.; Ranieri, A.; Gabrielli, A.; Candelori, A.; Mattiazzo, S.; Pantano, D.; Tessaro, M.

    2011-01-01

    With the aim of developing a radiation-tolerant circuit, a digital test microelectronic device has been designed and fabricated by using a standard-cell library of a 130-nm CMOS technology, including three different architectures to correct circuit malfunctions induced by the occurrence of Single-Event Effects (SEE's). SEE's are one of the main reasons of failures affecting electronic circuits operating in harsh radiation environments, such as in experiments performed at High Energy Physics (HEP) colliders or in apparatus to be operated in Space. On the same digital circuit specifically designed, three redundant architectures added to a basic scheme have been implemented in order to evaluate their effectiveness to prevent SEE. This may give an indication on their usage in future digital circuits specifically designed for the above mentioned applications. We present the results of SEE cross section measurements performed on a test digital device exposed to a high energy heavy ion beam at the SIRAD irradiation facility of the INFN National Laboratories of Legnaro (Padova Italy).

  1. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  2. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  3. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  4. Gas and metal ion sources

    International Nuclear Information System (INIS)

    Oaks, E.; Yushkov, G.

    1996-01-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of ∼ 10 17 cm -2 in some tens of minutes. So the average ion current density at the surface under treatment should be over 10 -5 A/cm 2 . The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from ∼1 kV (for the ion source used for surface sputtering) to ∼100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation)

  5. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  6. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  7. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  8. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  9. Secondary partitioning isotope effects on solvolytic ion pair intermediates

    International Nuclear Information System (INIS)

    Abbey, K.J.

    1976-01-01

    The thermal decomposition of N-benzhydryl N-nitrosobenzamide (BNB) has been shown to produce an ion pair which either forms ester or reacts with the solvent. In ethanol, the fraction of ester produced, R, was much smaller than R values obtained from solvolysis or from the diphenyldiazomethane (DDM)-benzoic acid reaction, which was suggested to yield the same ion pair as solvolysis. This difference led to the conclusion that the ionic species for the nitrosamide decomposition is a nitrogen-separated ion pair. This study was initiated on the assumption that BNB led to solvolytic ion pairs, but that both the intimate and solvent-separated ion pairs were produced directly from the nitrosamide. The use of α-tritiated BNB for the study of partitioning isotope effects (PIE's) in this system led to activity ratios much lower than expected from other reported work. Results of studies of ''special'' salt effect were not consistent for all situations, but the results do suggest that the assumption that BNB leads to solvolytic ion pairs is probably valid. The investigation of the more stable p-methoxybenzhydryl benzoate system proved to be highly productive. The ester fraction produced, R, responded dramatically to the addition of common-ion as well as ''special'' salts. The functional relationship of R on salt concentration could be explained in terms of Winstein's solvolytic scheme where the intimate ion pair, the solvent-separated ion pair, and the dissociated ion were important. Tritium-labelled compounds were used for PIE studies on 3 different compounds, and three different methods of reaction are proposed

  10. Differential Effects of X-Rays and High-Energy 56Fe Ions on Human Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li Song; Wang Daojing

    2009-01-01

    Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) 56 Fe ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and 56 Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and 56 Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and 56 Fe ions, with more significant effects from 56 Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy 56 Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: 56 Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation

  11. High fluence effects on ion implantation stopping and range

    International Nuclear Information System (INIS)

    Selvi, S.; Tek, Z.; Oeztarhan, A.; Akbas, N.; Brown, I.G.

    2005-01-01

    We have developed a code STOPPO which can be used to modify the more-widely used ion implantation codes to more accurately predict the mean nuclear and electronic stopping power, preferential sputtering and range of heavy ions in monatomic target materials. In our simulations an effective atomic number and effective atomic mass are introduced into conveniently available analytical stopping cross-sections and a better fitting function for preferential sputtering yield is carefully evaluated for each ion implantation. The accuracy of the code confirmed experimentally by comparison with measured Rutherford backscattering spectrometry (RBS) concentration profiles for 130 keV Zr ions implanted into Be to fluences of 1 x 10 17 , 2 x 10 17 and 4 x 10 17 ions/cm 2 . We find a steady increase in the mean nuclear and electronic stopping powers of the target; the increase in nuclear stopping power is much greater than the increase in electronic stopping power

  12. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  13. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  14. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  15. Ion irradiation effects in structural and magnetic properties of Co/Cu multilayers

    International Nuclear Information System (INIS)

    Sakamoto, Isao; Okazaki, Satoshi; Koike, Masaki; Honda, Shigeo

    2012-01-01

    400 keV Ar ion (the Ar ion) and 50 keV He ion (the He ion) irradiations were performed in order to elucidate roles of Co/Cu interfacial structures in physical origins of giant magnetoresistance (GMR) in the [Co (2 nm)/Cu (2 nm)] 30 multilayers (MLs). The magnetoresistance (MR) ratio after the Ar ion irradiation decreases abruptly with increasing Ar ion fluence. On the other hand, the MR ratio after the He ion irradiation decreases slowly with increasing He ion fluence. The Ar ion irradiation induces the decrease in the difference (R max − R sat ) between the maximum resistance (R max ) and the saturated resistance (R sat ) under in-plane magnetic field and the increase in the R sat , although the effect of the He ion irradiation is not remarkable. The decrease in the (R max − R sat ) rather than the increase in the R sat seems to be effective for the decrease in the MR ratios after the Ar ion and the He ion irradiation. The increase in the R sat implies the mixing of Co atoms in Cu layers. The antiferromagnetic coupling fraction (AFF) estimated from the magnetization curves after the Ar ion and the He ion irradiation shows the similar behavior with the MR ratio as a function of ion fluence. Therefore, although the degrees of the irradiation effects by the Ar ion and the He ions are different, we suggest the relation between the GMR and the AFF affected by the ion-induced interfacial structures accompanied with the atomic mixing in the interfacial region.

  16. Long range implantation by MEVVA metal ion source

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature

  17. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  18. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  20. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  1. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  2. Effects of ion implantation on corrosion of zirconium and zirconium base alloys

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Petel'guzov, I.A.; Rekova, L.P.; Rodak, A.G.

    1989-01-01

    The influence of He and Ar ion bombardment on the corrosion of Zr and Zr-1%Nb and Zr-2.5%Nb alloys is investigated with the aims of finding the irradiation influence laws, obtaining the dependences of the effect of increasing the corrosiuon resistance on the type and dose of bombarding ions and of finding the conditions for the maximum effect. The prolonged corrosion test of specimens (3500 hours) have shown that the strongest effect is obtained for the irradiation with Ar ions up to the dose 1x10 16 ion/cm 2 . The kinetics of ion thermosorption after corrosion of irradiated materials is studied, the temperature threshold of implanted ion stability in zirconium and its alloys is found to be 400 deg C

  3. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Heyda, J.; Konvalinka, Jan

    2013-01-01

    Roč. 160, č. 1 (2013), s. 359-370 ISSN 1359-6640 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional support: RVO:61388963 Keywords : HIV -1 protease * ion-protein interaction * Hofmeister series * enzyme kinetics * molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2013

  4. Molecular effects in ion-electron emission from clean metal surfaces

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  5. Experiences with effects specifications

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten; Barlach, Anders

    2011-01-01

    We describe the effects-specification process from a project that was conducted during the fall 2010 and spring of 2011 in this chapter. The project configured and implemented an electronic patient record system at a maternity ward at a hospital located in a European region. The process comprised...... workshops with effects specification with management and end-users and an agile development process including prototypes configured from the effects specifications. We describe the project and the effects-specification process through which effects were related to the system design and instruments...... for measuring effects were designed. The project is analyzed and lessons learned are discussed....

  6. Heavy-Ions induced SEE effects measurements for the STRURED ASIC

    Energy Technology Data Exchange (ETDEWEB)

    De Robertis, G.; Ranieri, A. [INFN Bari, Via Orabona 4, 70126 Bari (Italy); Gabrielli, A. [Universita degli Studi di Bologna and INFN-Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Candelori, A.; Mattiazzo, S.; Pantano, D.; Tessaro, M. [INFN-Padova, Via Marzolo 8, 35131 Padova (Italy)

    2011-06-15

    With the aim of developing a radiation-tolerant circuit, a digital test microelectronic device has been designed and fabricated by using a standard-cell library of a 130-nm CMOS technology, including three different architectures to correct circuit malfunctions induced by the occurrence of Single-Event Effects (SEE's). SEE's are one of the main reasons of failures affecting electronic circuits operating in harsh radiation environments, such as in experiments performed at High Energy Physics (HEP) colliders or in apparatus to be operated in Space. On the same digital circuit specifically designed, three redundant architectures added to a basic scheme have been implemented in order to evaluate their effectiveness to prevent SEE. This may give an indication on their usage in future digital circuits specifically designed for the above mentioned applications. We present the results of SEE cross section measurements performed on a test digital device exposed to a high energy heavy ion beam at the SIRAD irradiation facility of the INFN National Laboratories of Legnaro (Padova Italy).

  7. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  8. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-01-01

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C 1 , C 2 , and C 4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  9. Specific activity measurement of 64Cu: A comparison of methods

    International Nuclear Information System (INIS)

    Mastren, Tara; Guthrie, James; Eisenbeis, Paul; Voller, Tom; Mebrahtu, Efrem; Robertson, J. David; Lapi, Suzanne E.

    2014-01-01

    Effective specific activity of 64 Cu (amount of radioactivity per µmol metal) is important in order to determine purity of a particular 64 Cu lot and to assist in optimization of the purification process. Metal impurities can affect effective specific activity and therefore it is important to have a simple method that can measure trace amounts of metals. This work shows that ion chromatography (IC) yields similar results to ICP mass spectrometry for copper, nickel and iron contaminants in 64 Cu production solutions. - Highlights: • Comparison of TETA titration, ICP mass spectrometry, and ion chromatography to measure specific activity. • Validates ion chromatography by using ICP mass spectrometry as the “gold standard”. • Shows different types and amounts of metal impurities present in 64 Cu

  10. Deformation effects in the heavy ion quarter-point angle

    International Nuclear Information System (INIS)

    Almeida, F.I.A. de; Hussein, M.S.

    1984-01-01

    The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point angle are discussed and analyzed in the sudden approximation. Simple expressions are derived within the Fresnel model and applications to several heavy-ion systems are presented. (Author) [pt

  11. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  12. Ion exchange process: History, evolution and applications

    International Nuclear Information System (INIS)

    Mazzoldi, P.; Carturan, S.; Sada, C.; Quaranta, A.; Sglavo, V.M.

    2013-01-01

    The aim of this paper is to present a review on some aspects and applications of ion exchange process in glasses, ferroelectric and polymers in the fields of optics, nanotechnology, gas sensors and chemical strengthening. The formation of nanoparticles in ion-exchanged glasses, as effect of ion or laser irradiation, is discussed. A discussion on the potentialities of ion exchange process in comparison to ion implantation in optical devices and nanotechnology is also introduced. Analytical techniques applied to the study of the ion exchange process are illustrated. The studies of ion exchange process in “Natural materials” constitute the content of a specific paragraph, for applications in water cleaning. Some initial considerations on the “old age” of this technique are introduced.

  13. Mutation effect of ion implantation on tomato breeding

    International Nuclear Information System (INIS)

    Wu Baoshan; Ling Haiqiu; Mao Peihong; Jin Xiang; Zeng Xianxian

    2003-01-01

    The mutation effects of N + ion implantation on cultivated tomato, Catchup type and Eatable type were studied. The result show that the mutation ranges of single-fruit weight and fruit number per plant were increased and their mutation frequencies were high, however the effect of ion implantation on germination rate of seed and quality of fruit was very weak. Using doses of 4 x 10 16 and 6 x 10 16 N + /cm 2 , the yield was greatly improved. The optimum mutation dosage was slightly different for seed of 2 tomato lines

  14. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  15. Using ion-selective electrode for determining iodine-131 preparation specific activity

    International Nuclear Information System (INIS)

    Melnik, M.I.; Nazirova, T.E.

    2002-01-01

    A pilot facility was developed in 2000 for the production of iodine-131. The parameters of the preparation are as follows: chemical form: sodium iodide solution (NaI-131) in a carbonate-bicarbonate buffer (or in 0.001M NaOH); specific activity: carrier free (> 5 Ci/mg); solution pH: 7-10; radionuclide purity: > 99.9%; radiochemical purity: > 97%; bulk activity: 0.15 Ci/ml. The experimental results of investigation aimed at the determination of the specific activity of the I-131 preparation using a iodine-selective electrode are described. The method enables the analytical concentration of iodide ions in the carbonate-bicarbonate buffer (pH = 8-11) and NaOH solution (0.01 mol/l, pH = 8-11) to be determined. A micro-cell has been developed for the analysis of the I-131 solution allowing the sample volume to be reduced to below 0.3 ml. The relative error of determination of the analytical concentration of iodide (10 -6 to 10 -1 mol/l) does not exceed 1%

  16. Specific Noncovalent Association of Chiral Large-Ring Hexaimines: Ion Mobility Mass Spectrometry and PM7 Study.

    Science.gov (United States)

    Troć, Anna; Gajewy, Jadwiga; Danikiewicz, Witold; Kwit, Marcin

    2016-09-05

    Ion mobility mass spectrometry and PM7 semiempirical calculations are effective complementary methods to study gas phase formation of noncovalent complexes from vaselike macrocycles. The specific association of large-ring chiral hexaimines, derived from enantiomerically pure trans-1,2-diaminocyclohexane and various isophthaldehydes, is driven mostly by CH-π and π-π stacking interactions. The isotrianglimine macrocycles are prone to form two types of aggregates: tail-to-tail and head-to-head (capsule) dimers. The stability of the tail-to-tail dimers is affected by the size and electronic properties of the substituents at the C-5 position of the aromatic ring. Electron-withdrawing groups stabilize the aggregate, whereas bulky or electron-donating groups destabilize the complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of Alkali and Counter Ions in Sn-Beta Catalyzed Carbohydrate Conversion

    DEFF Research Database (Denmark)

    Elliot, Samuel G.; Tolborg, Søren; Madsen, Robert

    2018-01-01

    Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are ......Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure...... and are herein addressed experimentally through kinetic experiments and isotope tracking. Alkali ions have a differential effect in competing reaction pathways: they promote the rate of carbon-carbon bond breakage of carbohydrate substrates, but decrease the rates of competing dehydration pathways. Further...... addition of alkali inhibits activity of Sn-Beta in all major reaction pathways. The alkali effects on product distributions and on rates of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect...

  18. Respective effects of sodium and chloride ion on physiological ...

    African Journals Online (AJOL)

    Respective effects of sodium and chloride ion on growth, cell morphological changes, membrane disorganization, ion homeostasis, exoenzyme activities and fermentation performance in Zymomonas mobilis232B cultures were presented. In batch cultures containing 0.15 M NaCl, Z. mobilis232B developed filaments, and ...

  19. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  20. Saturation of plastic deformation by swift heavy ion irradiation: Ion hammering vs. surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferhati, Redi; Dautel, Knut; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany); Fritzsche, Monika [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2012-07-01

    Swift heavy ion (SHI) induced plastic deformation is a subject of current research and scientific discussion. This *Ion Hammering* phenomenon was first observed 30 years ago in amorphous materials like metallic glasses. About 10 years ago, Feyh et al. have shown that stress generation and *Ion Hammering* result in self-organization of thin NiO-films on Si-wafers into a sub-micron lamellae-like structure under grazing angle irradiation. The growth of the lamellae was found to saturate as soon as they have reached a thickness of a few hundreds of nm. Here we show our latest results on the restructuring of pre-patterned thin oxide films by SHI under various irradiation conditions. The experiments were performed by employing (in-situ) scanning electron microscopy, and were complemented by (in-situ) energy dispersive x-ray analysis and atomic force microscopy. As we will show, the saturation behavior can be understood as a competition of *Ion Hammering* and surface energy effects, while the unexpected fact, that the initially crystalline films undergo *Ion Hammering* can possibly be attributed to oxygen loss and thus amorphization during irradiation.

  1. Intense Ion Pulses for Radiation Effects Research

    Science.gov (United States)

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  2. Stabilization of kinetic internal kink mode by ion diamagnetic effects

    International Nuclear Information System (INIS)

    Naitou, H.; Kuramoto, T.; Kobayashi, T.; Yagi, M.; Tokuda, S.; Matsumoto, T.

    2000-04-01

    Ion diamagnetic effects on the m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coordinates, GRM3F-CY. In the derivation of the gryo-reduced-MHD model including the ion diamagnetic effects, finite gyroradius effects of ions are added to the gyrokinetic Poisson equation (quasi-neutral condition) and the convection term of the conservation law of the ion density. It is found that the long wavelength approximation, ksub(perpendicular) ρ ti ti is the thermal ion gyroradius, fails to reproduce the correct dispersion relation; the formulation valid even for ksub(perpendicular) ρ ti >> 1 is necessary. The results of numerical calculation coincide with the theory for |ω *e |+|ω *i | 0 , where the growth rate reduces as the density gradient increases. Here ω *e and ω *i are electron and ion diamagnetic angular frequencies estimated at the rational surface of q=1 (q is a safety factor), respectively, and γ 0 is the growth rate for the uniform density. Very weak instability, however, is observed for |ω *e |+|ω *i | 0 , where the theory predicts the complete stabilization. This residual instability appears since the region with the density gradient is limited in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete. (author)

  3. Temperature effect on X-ray photoelectron spectra of 3d transition metal ions

    International Nuclear Information System (INIS)

    Kochur, A.G.; Kozakov, A.T.; Yavna, V.A.; Daniel, Ph.

    2014-01-01

    Highlights: • 2p XPS of 3d metal ions are calculated in an isolated ion approximation. • 2p XPS of Ti, V, Cr, Mn, Fe ions are temperature dependent even at room temperature. • Temperature effect on 3p XPS is slight. • No temperature effect on 3s XPS is discovered. - Abstract: Temperature effect on 2p- 3s- and 3p X-ray photoelectron spectra (XPS) of various ions of Ti, V, Cr, Mn and Fe is studied theoretically within an isolated ion approximation. It is shown that the 2p XPS of those ions are temperature dependent even at room temperature due to a very slight energy splitting between the ground-state-term total-momentum J-components which can be thermally populated. Most significant temperature effect is expected in the 2p-spectra of Ti 2+ (3d 2 ), V 2+ (3d 3 ), Cr 2+ (3d 4 ), Mn 3+ (3d 4 ), and Mn 3+ (3d 4 ) ions. The temperature effect on 3p XPS is slight. No temperature effect on 3s XPS is expected

  4. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  5. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming

    2006-01-01

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  6. Ion beam effects in organic molecular solids and polymers

    International Nuclear Information System (INIS)

    Venkatesan, T.; Calcagno, L.; Elman, B.S.; Foti, G.

    1987-01-01

    In general ion implantation leads to irreversible changes in organic films and hence it is important to understand the damage mechanisms in these solids. Most of the technology based on irradiation effects in organics must somehow make use of the fact that the chemistry of the organic films is easily changed. This chapter is organized to explore the various ion induced chemical changes in the organic films followed by a description of the optical and electrical property changes produced in the films due to the ion irradiation

  7. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.

    1976-01-01

    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  8. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  9. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  10. Electron cloud and ion effects

    CERN Document Server

    Arduini, Gianluigi

    2002-01-01

    The significant progress in the understanding and control of machine impedances has allowed obtaining beams with increasing brilliance. Dense positively charged beams generate electron clouds via gas ionization, photoemission and multipacting. The electron cloud in turn interacts with the beam and the surrounding environment originating fast coupled and single bunch instabilities, emittance blow-up, additional loads to vacuum and cryogenic systems, perturbation to beam diagnostics and feedbacks and it constitutes a serious limitation to machine performance. In a similar way high brilliance electron beams are mainly affected by positively charged ions produced by residual gas ionization. Recent observations of electron cloud build-up and its effects in present accelerators are reviewed and compared with theory and with the results of state-of-the-art computer simulations. Two-stream instabilities induced by the interaction between electron beams and ions are discussed. The implications for future accelerators ...

  11. Low pressure electrospray ionization system and process for effective transmission of ions

    Science.gov (United States)

    Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [Wet Richland, WA; Smith, Richard D [Richland, WA

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  12. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  13. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tao; Guo, Zhansheng

    2014-01-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected. (paper)

  14. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  15. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  16. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  17. Solar wind effects on the outer ion coma of Comet Halley

    International Nuclear Information System (INIS)

    Flammer, K.R.

    1987-01-01

    A simple two-dimensional model is developed to examine the composition of the cometary ion coma in the region outside the ionopause which is strongly affected by the solar wind. Two-dimensional ion distributions are obtained assuming a cylindrically symmetric ion coma which accounts for the dynamic effects of the mass-loaded solar wind flow around the cometary ionosphere. The results of this model are discussed in the context of analyzing the GIOTTO ion data

  18. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Directory of Open Access Journals (Sweden)

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  19. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  20. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  1. The effect of plasma parameter on the bootstrap current of fast ions in neutral beam injection

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Cao Jinjia; Yang Lei

    2014-01-01

    The effect of plasma parameters on the distribution of net current density of fast ions produced by neutral beam injection is investigated in a large-aspect-ratio Tokamak with circular cross-section under specific parameters. Numerical results show that the value of net current density increases with the temperature of plasma increasing and decreases with the density of plasma increasing. The value of net current density is weakly affected by the effective charge number, but the peak of net current density moves towards edge plasma with effective charge number increasing. (authors)

  2. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  3. Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type

    International Nuclear Information System (INIS)

    Gregg, Daniel J.; Karatchevtseva, Inna; Thorogood, Gordon J.; Davis, Joel; Bell, Benjamin D.C.; Jackson, Matthew; Dayal, Pranesh; Ionescu, Mihail; Triani, Gerry; Short, Ken; Lumpkin, Gregory R.; Vance, Eric R.

    2014-01-01

    Ceramics with the sodium zirconium phosphate or NZP type structure have potential as nuclear waste form and inert matrix materials. For both applications the material will be subjected to self-radiation damage from α-decay of the incorporated actinides. In this study, ion-beam irradiation using Au- and He-ions has been used to simulate the consequences of α-decay and the effects of irradiation on the structural and macroscopic properties (density and hardness) have been investigated. Irradiation by Au-ions resulted in a significant volume contraction of ∼7%, a reduction in hardness of ∼30% and a loss in long-range order at fluences above 10 14 Au-ions/cm 2 . In contrast, little effect on the material properties was noted for samples irradiated with He-ions up to a fluence of 10 17 ions/cm 2 . Thermal annealing was investigated for the highest fluence Au-ion irradiated sample and significant decomposition was observed

  4. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  5. Effects of high-energy (MeV) ion implantation of polyester films

    International Nuclear Information System (INIS)

    Ueno, Keiji; Matsumoto, Yasuyo; Nishimiya, Nobuyuki; Noshiro, Mitsuru; Satou, Mamoru

    1991-01-01

    The effects of high-energy ion beam irradiation on polyester (PET) films using a 3 MeV tandem-type ion beam accelerator were studied. O, Ni, Pt, and Au as ion species were irradiated at 10 14 -10 15 ions/cm 2 on 50 μm thick PET films. Physical properties and molecular structure changes were studied by the surface resistivity measurements and RBS. The surface resistivity decreases with an increase in irradiation dose. At 10 15 ions/cm 2 irradiation, the surface resistivity is 10 8 Ω/□. According to RBS and XPS analyses, some carbon and oxygen atoms in the PET are replaced by implanted ions and the -C=O bonds are destroyed easily by the ion beam. (orig.)

  6. Laser-cooling effects in few-ion clouds of Yb[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  7. Effect of resonant microwave power on a PIG ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 29 references, 2 figures

  8. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  9. Application of Titanium Compounds to Reduce Fluoride Ion in Water Resources with High Fluoride Ion Contents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2005-06-01

    Full Text Available The present work describes studies on the sorption of fluoride ions from water by titanium compounds used in water treatment to reduce fluoride content in water resources. There are different methods of reducing fluoride ion in water, each associated with specific problems such as secondary contamination, environmental contamination, high costs, or the need for primary and secondary treatment. In this study, application of titanium sulfate and Metatitanic acid produced from titanium ore concentrate (ileminite is investigated in the removal of fluoride ion and the possibility of complete purification of fluorine containing wastewater is examined to determine the optimal conditions. Metatitanic acid has a great sorption property for fluoride ion. Also titanium sulfate is a suitable and more effective material for this purpose. Efficiency of this material in reducing fluoride ion content is 99.9% and it is possible to refresh sorbet material for reuse without problems arising from Ti+4 ion contamination.

  10. Bystander effects on mammalian cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang Jufang; Zhao Jing; Ma Qiufeng; Chinese Academy of Sciences, Beijing; Li Weijian; Zhou Guangming; Dang Bingrong; Mao Limin; Feng Yan

    2004-01-01

    Bystander effects on unirradiated V79 cells were observed by irradiated conditioned medium (ICM) method and co-cultured with carbon-ion-irradiated V79 cells. The results showed that the colony formation efficiency of unirradiated cells is obviously decreased by ICM. After co-culture with carbon-ion-irradiated cells for some time, the colony formation efficiency of co-cultured cells was lower than expected results assuming no bystander effects. The micronucleus frequency and hprt gene mutation rate was almost the same as expected results. Cytotoxic factor(s), which was effective for cell growth but not for micronucleus and mutation on unirradiated cells, might be released by irradiated cells. (authors)

  11. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  12. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  13. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  14. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  15. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  16. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  17. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.

    2006-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  18. Ion sensing method

    Science.gov (United States)

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  19. Effect of ion beam bombardment on the carbide in M2 steel modified by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y.; Wang, F.J.; Wang, Y.K. (Dept. of Materials Engineering, Dalian Univ. of Technology (China)); Ma, T.C. (National Lab. of Materials Modification by Beam Three, Dalian (China))

    1991-10-30

    Transmission electron microscopy was used to study the effect of nitrogen ion bombardment with different doses on the carbides in M2 high speed steel as the nitrogen ions penetrated into the nitride films during ion-beam-assisted deposition. With different doses of nitrogen, alterations in the morphological characteristics of the carbide M6C at the interface were observed. With lower doses, knitting-like contrast within the carbide showed subboundary structure defects in M6C. With increasing dose, the substructure defects were broken up into small fragments owing to heavy bombardment. The microstructures of carbides at the interface damaged by nitrogen ions are discussed in detail. (orig.).

  20. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  1. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo

    2012-11-01

    Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier

  2. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  3. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  4. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  5. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-03-15

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  6. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-01-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  7. Performance and Lifetime Limiting Effects in Li-ion Batteries

    DEFF Research Database (Denmark)

    Scipioni, Roberto

    Lithium-ion batteries (LIBs) find widespread use for electricity storage, from portable devices such as smart phones to electric vehicles (EV), because of their high energy density and design flexibility. However, limited lifetime is still a challenge for several LIB materials. Specifically......, the detailed coupling between degradation mechanisms and battery usage is not fully understood, which impede lifetime improvements. To understand the degradation mechanisms and increase the performance of these materials, the development of improved characterization methods is crucial. This PhD thesis focuses...... on the thorough analysis of degradation mechanism in LIBs, trying to relate morphological and structural changes in Lithium-ion battery electrodes to performance degradation observed during electrode cycling. Degradation mechanisms in laboratory scale LFP cathodes were correlated with the degradation mechanisms...

  8. Effect of pre-sowing gamma irradiation on the ion uptake of bean plants

    International Nuclear Information System (INIS)

    Koeroesi, F.

    1979-01-01

    The electrolyte levels, pH and K + activity values of a modified Knopp solution with different ion strengths were studied in order to analyse the probable stimulating effect of gamma irradiation (750, 1000, 1500 rad) on bean plants. The results of this experiment are as follows. The conductivity of the modified Knopp solution, at the 2-3 leaf age of the bean plant (Seaway), was reduced most by 1000 rad combinations; this phenomenon is caused by the vigorous ion uptake. In the previously mentioned development stage the stimulation of the ion absorption can be observed in every combination. At the 3-4 leaf age of the bean the stimulation effect of the radiation levels used was altered by ion ratios. One of the possible explanations is that, parallel with the progress of the ontogenesis, the claim in individual ions is changing, thus the ion of the favoured role may bring about a stimulating effect by different irradiation doses. (author)

  9. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  10. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  11. Effect of swift heavy ion irradiation on ethylene–chlorotrifluoroethylene copolymer

    International Nuclear Information System (INIS)

    Singh, Lakhwant; Devgan, Kusum; Samra, Kawaljeet Singh

    2012-01-01

    The swift heavy irradiation induced changes taking place in ethylene–chlorotrifluoroethylene (E–CTFE) copolymer films were investigated in correlation with the applied doses. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×10 11 –3×10 12 ions cm −2 . Structural and thermal properties of the irradiated as well as pristine E–CTFE films were studied using FTIR, UV–visible, TGA, DSC and XRD techniques. Swift heavy ion irradiation was found to induce changes in E–CTFE depending upon the applied doses. - Highlights: ► Effect of swift heavy ion irradiation on E–CTFE films has been studied. ► Different structural changes in the original structure of E–CTFE are observed after irradiation with different ions. ► Swift heavy ion irradiation has made E–CTFE more prone to thermal degradation.

  12. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-01-01

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  13. Effect of the nuclear charge of a fast structural ion on its internal effective stopping in collisions with atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gusarevich, E. S., E-mail: gusarevich@gmail.com [Lomonosov Nothern (Arctic) Federal University (Russian Federation)

    2017-02-15

    The energy losses of fast structural ions in collisions with atoms have been considered in the eikonal approximation. The structural ions are ions consisting of a nucleus and a certain number of electrons bound to it. The effect of nuclear charge Z of the ion on its effective deceleration κ{sup (p)} (energy losses associated with excitation of only intrinsic ion shells) has been analyzed. It is shown that the allowance for the interaction of an atom with the ion nucleus for Z{sub a}Z/v > 1, where Z{sub a} is the charge of the atomic nucleus and v is the velocity of collisions in atomic units, considerably affects the value of κ{sup (p)}, which generally necessitates taking into account nonperturbatively the effect of both charges Z{sub a} and Z on κ{sup (p)}.

  14. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  15. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1997-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  16. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  17. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  18. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  19. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  20. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  1. Mutagenic effects of heavy ion irradiation on rice seeds

    International Nuclear Information System (INIS)

    Xu Xue; Liu Binmei; Zhang Lili; Wu Yuejin

    2012-01-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M 2 plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29–spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  2. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  3. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  4. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  5. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, P., E-mail: p.budzynski@pollub.pl

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 10{sup 17} ion/cm{sup 2}, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  6. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    Science.gov (United States)

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  7. Ion-selective field-effect transitors. A sensor for lithium and calcium

    International Nuclear Information System (INIS)

    Kharitonov, A.B.; Petrukhin, O.M.; Nad', V.Yh.; Ypivakov, B.Ya.; Myasoedov, B.F.; Otmakhova, O.A.; Tal'roze, R.V.; Plateh, N.A.

    1997-01-01

    An Li-sensitive sensor based on a field-effect transistor with a tantalum pentoxide gate and a poly(vinyl chloride) membrane based on diethylene glycol bis-o-2-diphenylphosphinylmethyl phenyl ether is developed. THis sensor exhibits analytical characteristics close to those of a lithium-selective electrode analogous in membrane composition; it is insensitive to the concentration of hydrogen ions in the pH range 4.5-8.5. The service life of the sensor is no shorter than four months, which is comparable to the service life of the corresponding ion-selective electrode. A bifunctional sensor for Ca and Li is prepared based on membranes used for preparing the corresponding monofunctional ion-selective field-effect transistors; this sensor exhibits analytical characteristics close to those of ion-selective electrodes and monofunctional sensors. 12 refs., 6 figs., 2 tabs

  8. Effects of the instability enhanced friction on relative ion densities in a two-ion species low-temperature plasma

    Science.gov (United States)

    Vukovic, Mirko

    2011-10-01

    The instability enhanced friction theory of Baalrud & Hegna (Phys. Plasmas 18, 023505 (2011)) predicts that for comparable ion densities the ions nearly reach a common velocity near the sheath edge in a low temperature plasma. The theory was experimentally confirmed by Yip, Hershkowitz, & Severn (Phys. Rev. Letters 104, 225003 (2010)). We will explore the effects of the theory on relative ion densities in a numerical simulation of an Ar/Xe plasma. Results for a 0D plasma model (Lieberman, Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2005) will be presented.

  9. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  10. Ion channels in the central regulation of energy and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Jong-Woo eSohn

    2013-05-01

    Full Text Available Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.

  11. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com; Jatisukamto, Gaguk, E-mail: gagukjtsk@yahoo.co.id [Mechanical and Industrial Engineering Department, Gadjah Mada University Jl. Grafika 2, Yogyakarta, 55281 (Indonesia)

    2016-03-29

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  12. Effect of the helically-trapped energetic-ion-driven resistive interchange modes on energetic ion confinement in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.

  13. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  14. Nonlinear effects in interactions of swift ions with solids

    International Nuclear Information System (INIS)

    Crawford, O.H.; Dorado, J.J.; Flores, F.

    1994-01-01

    The passage of a swift charged particle through a solid gives rise to a wake of induced electron density behind the particle. It is calculated for a proton penetrating an electron gas having the density of the valence electrons in gold, assuming linear response of the medium. The induced potential associated with the wake is responsible for the energy loss of the particle, and for many effects that have captured recent interest. These include, among others, vicinage effects on swift ion clusters, emission of electrons from bombarded solids, forces on swift ions near a surface, and energy shifts in electronic states of channeled ions. Furthermore, the wake has a determining influence on the spatial distribution, and character, of energy deposition in the medium. Previous theoretical studies of these phenomena have employed a linear wake, i.e., one that is proportional to the charge of the projectile, eZ. However, in most experiments that measure these effects, the conditions are such that the wake must include higher-order terms in Z. The purpose of this study is to analyze the nonlinear wake, to understand how the linear results must be revised

  15. Effect of energy selection on quantitative analysis in secondary ion microanalysis

    International Nuclear Information System (INIS)

    Steele, I.M.; Solberg, T.N.; Smith, J.V.; Clayton, R.N.; Hutcheon, I.D.

    1977-01-01

    Systematic change of voltage on the components of the secondary ion (SI) extraction system of our AEI-IM20 ion microprobe produced major changes of relative intensities of secondary ions passing through the mass spectrometer. The repeller, which bends the SI beam through about 60 0 , has the greatest effect, and can be used to plot the energy distribution. The extractor and the deflecting and focusing components have smaller but significant effects. Because low-energy secondary ions have a near-symmetrical distribution, whereas high-energy ones have an assymetric distribution favoring high energies, tuning of the acceptance band to higher energy reduces interference from low-energy ions, which tend to be unwanted molecular ions, at the expense of reduced transmission. Tuning to lower energy increases interference but gives higher transmission. The former condition is desirable for instruments restricted to low mass resolution, whereas both conditions are valuable for instruments adjustable for both high and low mass resolution. Other important factors are (a) sensitivity to surface irregularities which perturb SI energy collection, and (b) change in derived 'temperatures' from thermodynamic sputtering models merely from tuning the energy acceptance band. Careful attention to the above factors yielded reproducible SI ratios for the binary series of plagioclase feldspars. (Auth.)

  16. Effects on focused ion beam irradiation on MOS transistors

    International Nuclear Information System (INIS)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-01-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 μm minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga + focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated

  17. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    Science.gov (United States)

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  18. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  19. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  20. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-01-01

    Highlights: • Long-term memory effect in negative ion sources investigated for chlorine isotopes. • Interlaboratory comparison of four up-to date negative ion sources. • Ion source improvement at DREAMS for minimization of long-term memory effect. • Long-term memory effect is the limitation for precise AMS data of volatile elements. • Findings to be considered for samples with highly variable ratios of 36 Cl/Cl and 129 I/I. - Abstract: Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35 Cl/ 37 Cl-ratio and samples highly-enriched in 35 Cl ( 35 Cl/ 37 Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between

  1. Preliminary Tests of a Paul ion Trap as an Ion Source

    Science.gov (United States)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  2. Sperm motility in fishes. (II) Effects of ions and osmolality: a review.

    Science.gov (United States)

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2006-01-01

    The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.

  3. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  4. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  5. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  6. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  7. Method and apparatus for removing ions from soil

    Science.gov (United States)

    Bibler, Jane P.

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  8. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  9. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  10. The interaction of uranyl ions with inorganic pyrophosphatase from baker's yeast

    International Nuclear Information System (INIS)

    Bienwald, B.; Heitmann, P.

    1978-01-01

    The interaction of uranyl ions with inorganic pyrophosphatase from baker's yeast was investigated by measurement of their effect on the protein fluorescence. Fluorescence titrations of the native enzyme with uranyl nitrate show that there is a specific binding of uranyl ions to the enzyme. It was deduced that each subunit of the enzyme binds one uranyl ion. The binding constant was estimated to be in the order of 10 7 M -1 . The enzyme which contains a small number of chemically modified carboxyl groups was not able to bind uranyl ions specifically. The modification of carboxyl groups was carried out by use of a water soluble carbodiimide and the nucleophilic reagent N-(2,4-dinitro-phenyl)-hexamethylenediamine. The substrate analogue calcium pyrophosphate displaced the uranyl ions from their binding sites at the enzyme From the results it is concluded that carboxyl groups of the active site are the ligands for the binding of uranyl ions. (author)

  11. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, P. A. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Johnson, J. R. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Chaston, C. C. [Space Sciences Laboratory, University of California, Berkeley California USA; School of Physics, University of Sydney, Sydney New South Wales Australia

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  12. Effects of Energetic Ion Outflow on Magnetospheric Dynamics

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.

    2016-12-01

    There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.

  13. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of energy variations of ions influencing a target on implantation

    International Nuclear Information System (INIS)

    Astakhov, V.P.; Rubtsov, V.A.; Aranovich, R.M.; Pavlov, P.V.

    1981-01-01

    In cases of phosphorus and boron ion implantation into silicon the dependence of electrophysical properties of ion-doped layers and target material near the layer boundaries on energy variation conditions of influencing ions is observed. A physical model explaining the dependence is proposed. It is found that for the target, being at room temperature, after successive annealing the qualitative characteristics of conditions (i.e. energy increase and decrease) on implantation of phosphorus ions into p-silicon and boron ions into n-silicon, as well as the value of energy stages, define rhosub(l) ion-doped layer resistivity and tausub(mc) nonequilibrium minority carrier lifetime in the base of p-n transitions. The essence of the effects observed is that for equal sets of Esub(i) ion energy values and PHIsub(i) corresponding phases at maximum energy used exceeding 30 keV, successive energy increase during implantation, when E 1 2 1 mode), leads to smaller rhosub(e) values and greater tausub(mc) than in case of successive energy decrease, when E 1 >E 2 >...E(E 2 mode) for any fixed annealing temperature. In cases when the maximum energy does not exceed 30 KeV, the E 1 and E 2 modes lead to analogous rhosub(e) and tausub(mc) values. The E 2 mode leads to enrichment of the ion-implanted layer with associations and complexes on the basis of interstitial atoms in comparison with the E 1 mode. The associations and complexes on thermal treatment are reformed into the higher-temperature interstitial complexes increasing rhosub(e) and decreasing tausub(mc). Supposition about the effect of these complexes and processes of structural transformations on annealing, hampering-improvement of structural properties of the ion-implanted layer and a crystal region bordered on it [ru

  15. Effects of UV light and chromium ions on wood flavonoids

    International Nuclear Information System (INIS)

    Molnárné Hamvas, L.; Németh, K.; Stipta, J.

    2003-01-01

    The individual and simultaneous effect of UV light and chromium ions was investigated by spectrophotometric methods on inert surfaces impregnated with quercetin or robinetin. The UV-VIS spectra of the silica gel plates impregnated with these flavonoids were modified characteristically after irradiating ultraviolet light. Even a half an hour of irradiation has caused irreversible changes in the molecule structure. A certain chemical - presumably complexation - was concluded from the change of spectral bands assigned to flavonoids when impregnated with chromic ions. Hexavalent chromium caused more complex changes in the absorption spectra. The differences in the spectra could indicate either the oxidation and decomposition of flavonoids, or some kind of coordination process and the reduction of hexavalent chromium. The simultaneous application of UV light and chromium ions caused more pronounced effects. The complexation process between chromium(III) and flavonoid was completed

  16. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  17. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L.D.

    2014-01-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms

  18. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  19. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  20. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  1. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  2. Effects of ion irradiation on the mechanical properties of several polymers

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Kawanishi, Shunichi; Nishi, Masanobu; Seguchi, Tadao

    1991-01-01

    The effects of high-energy ion irradiation on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In the aromatic polymers, however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer). (author)

  3. Effects of neutron and gamma radiation on lithium-ion batteries

    Science.gov (United States)

    Qiu, Jie; He, Dandan; Sun, Mingzhai; Li, Shimeng; Wen, Cun; Hattrick-Simpers, Jason; Zheng, Yuan F.; Cao, Lei

    2015-02-01

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36-45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper.

  4. Effects of neutron and gamma radiation on lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jie; He, Dandan [Nuclear Engineering Program, Department of Mechanical and Aerospace, The Ohio State University, Columbus, OH 43210 (United States); Sun, Mingzhai [Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Li, Shimeng [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wen, Cun; Hattrick-Simpers, Jason [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Zheng, Yuan F. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace, The Ohio State University, Columbus, OH 43210 (United States)

    2015-02-15

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36–45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper.

  5. Effects of neutron and gamma radiation on lithium-ion batteries

    International Nuclear Information System (INIS)

    Qiu, Jie; He, Dandan; Sun, Mingzhai; Li, Shimeng; Wen, Cun; Hattrick-Simpers, Jason; Zheng, Yuan F.; Cao, Lei

    2015-01-01

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36–45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper

  6. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  7. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation.

    Science.gov (United States)

    Dong, Qing; Li, Xiangqian; Wang, Zhaoyu; Bi, Yanhong; Yang, Rongling; Zhang, Jinfeng; Luo, Hongzhen; Niu, Miaomiao; Qi, Bo; Lu, Chen

    2017-11-01

    The effect of iron(III) ion on microwave pyrolysis of moso bamboo was investigated. Hydrofluoric acid washing was used as a pilot process to demineralize moso bamboo in order to eliminate the influences of the other inorganics contained in moso bamboo itself. The results indicated that the addition of iron(III) ion increased the maximal reaction temperatures under microwave condition dependent on the amount of the added iron(III) ion. The production of the non-condensable gases was promoted by the addition of iron(III) ion mainly at the expense of liquid products. Iron(III) ion exhibited the positive effect for syngas production and inhibited the formation of CO 2 and CH 4 . The formation of Fe 2 O 3 and Fe 3 O 4 was found during microwave pyrolysis and the mechanism of the two metallic oxides formation was described in this work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  9. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, D.H.; Chen, H.C.; Lei, G.H.; Huang, H.F.; Zhang, W.; Wang, C.B. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, L., E-mail: yanlong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, D.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-15

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness. - Highlights: •Irradiation Swelling: The irradiation induced volumetric swelling increases with ion dose. •Irradiation Hardening: The irradiation hardening initiates below 1 dpa, then saturates with higher ion dose (1–10 dpa). •Irradiation Mechanism: The irradiation phenomena are ascribed to the microstructural evolution of the irradiation defects.

  10. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  11. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  12. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens

    Directory of Open Access Journals (Sweden)

    Jamil Anwar

    2015-01-01

    Full Text Available To understand the interactions of microwaves with dielectric materials and their conversion to thermal energy in aqueous systems, the effect of ionic concentration has been studied. Aqueous solutions of inorganic ions were exposed to microwaves (2.45 GHz in a modified oven under identical conditions. Difference in solution temperatures with reference to pure (deionized water was monitored in each case. A significant decrease in the temperature was observed with an increase in the quantity of ions. Experiments were repeated with several inorganic ions varying in size and charge. The information can be helpful in understanding the role of ions during dielectric heating.

  13. Finite ion velocity effects on the stability of Pierce-like diodes

    International Nuclear Information System (INIS)

    Kolinsky, H.; Schamel, H.

    1994-01-01

    The stability of Pierce-like plasma diodes is investigated for arbitrary ion injection velocities. A recently developed integral formalism that accounts for ion dynamical effects is applied to derive a generalized dispersion relation for electrostatic perturbations. Its evaluation exhibits several new features, such as the appearance of growing oscillatory modes, which become Pierce--Buneman modes in the limit of initially resting ions, and of weakly damped oscillatory modes, which become undamped ion plasma oscillations in this limit. The stability of this bounded plasma system is shown to be controlled by the new control parameter at signga=α(1+at signgm) 1/2 , where α is the Pierce parameter and at signgm≡m ev 2 e0 /m iv 2 i0 the ratio of electron and ion kinetic energy at the emitter

  14. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamarou, A.

    2006-11-07

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at {approx}80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy.

  15. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    International Nuclear Information System (INIS)

    Kamarou, A.

    2006-01-01

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at ∼80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy

  16. The effect of Ca doping on specific heat of YCoO{sub 3} cobaltate

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    We have investigated the thermodynamic properties of Y{sub 1-x}Ca{sub x}CoO{sub 3} (0.0≤x≤0.1) perovskites by means of a modified rigid ion model (MRIM). The variations of specific heat at wide temperatures 1 K ≤ T ≤ 1000 K are reported. Also, the effect of lattice distortions on the elastic and thermal properties of pure and Ca doped cobaltates has been studied by an atomistic approach. Besides, we have reported bulk modulus (B), cohesive energy (ϕ), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ{sub D}), Gruneisen parameter (γ) and specific heat (C). It is found that the present model has a promise to predict the thermodynamic properties of other perovskites as well.

  17. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Yang, L.; Wu, D. J.

    2011-01-01

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  18. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Science.gov (United States)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  19. Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas

    International Nuclear Information System (INIS)

    Baba, K.; Kaneko, T.; Hatakeyama, R.

    2007-01-01

    The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production

  20. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  1. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  2. Effect of ion composition on oblique magnetosonic waves

    International Nuclear Information System (INIS)

    Kondo, Yuichi; Toida, Mieko

    2011-01-01

    The effects of ion composition on oblique magnetosonic waves in a two-ion-species plasma are studied theoretically and numerically. First, it is analytically shown that the KdV equation for the low-frequency mode, the lower branch of magnetosonic waves, is valid for amplitudes ε max (l-) , where ε max (l-) is a measure of the upper limit of the amplitude of the rarefactive solitary pulse of the low-frequency mode and is given as a function of the propagation angle of the wave θ, the density ratio and cyclotron frequency ratio of two ion species. The value of ε max (l-) increases with decreasing θ. Next, with electromagnetic particle simulations, the nonlinear evolution of the low- and high-frequency modes is examined. It is demonstrated that shorter-wavelength low- and high-frequency-mode waves are generated from a long-wavelength low-frequency-mode pulse if its amplitude ε exceeds ε max (l-) . (author)

  3. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  4. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  5. Study on actinoid isolation by antimonide ion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masamichi [Tokyo Inst. of Tech. (Japan). Faculty of Science; Kubota, Masumitsu; Yamagishi, Isao

    1996-01-01

    To establish a containment of long-life nuclides and an effective reduction of waste volume is important to reduce the loadings on the natural environment. Chemical isolation of radioactive nuclides from wastes was attempted by using inorganic ion exchanger with high specificity and thermal stability. In this study, titanium antimonide was used as an ion exchanger to investigate the adsorption of trivalent metallic ions according to Kielland plot curves. When the ionic equivalent fraction (X-bar{sub M}) was around 0.005, Kielland plot curve of either of 3-valent metallic ions was bent, suggesting the exchanger had two different adsorption sites. The slope of the curve became smaller as an elevation of temperature. These results show that the ion radius was decreased resulting from partial elimination of the hydrated water of ion and thus, the steric conditions around the exchange site might be improved. (M.N.)

  6. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  7. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    International Nuclear Information System (INIS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-01-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  8. Effect of feedback and noise on fast ion instability

    International Nuclear Information System (INIS)

    Chao, A.W.; Stupakov, G.V.

    1997-07-01

    One can use a feedback system to suppress the fast ion instability. However, the feedback noise (and also other sources of noise in the machine) continuously excites the transient oscillations in the electron beam that are amplified through the electron interaction with the ions. We calculate the equilibrium level of these oscillations under the influence of the feedback and show how they grow exponentially from the head to the tail of the bunch train in a linear theory. Nonlinear saturation effects are assume negligible

  9. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

    Science.gov (United States)

    Madrakian, T.; Bagheri, H.; Afkhami, A.

    2015-05-01

    The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

  10. Radiative Auger effect in ion-atom collisions

    International Nuclear Information System (INIS)

    Richard, P.; Oltjen, J.; Jamison, K.A.; Kauffman, R.L.; Woods, C.W.; Hall, J.M.

    1975-01-01

    The radiative Auger effect, RAE, is observed for Al and Si bombarded by 1-2MeV H + . This is the first observation of the RAE X-ray edge using ion excitation. The K-L 23 L 23 RAE edge energy and the relative intensity are in agreement with the previously reported electron and photon induced spectra. (Auth.)

  11. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1980-02-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, beam ions become trapped in local magnetic wells near their banana tips due to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, near-perpendicular untrapped ions are captured (again near a banana tip) due to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced variable lingering period near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* identical with epsilon/sin theta/Nqdelta is of order unity or smaller

  12. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1981-01-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, ions become trapped in local magnetic wells near their banana tips owing to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, ions are captured (again near a banana tip) owing to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced 'variable lingering period' near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* is identical with epsilonsinthetaNqdelta is of order unity or smaller. (author)

  13. A study on mutagenic effects of antibiotic-producers by ion implantation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Zhou Ruiying; Zhang Peiling; Ying Hengfeng; Yang Guorong; Yang Guifang

    1995-01-01

    Mutagenic effects of Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus induced by N + and C + ion implantation with different doses have been investigated. The experimental results show that the death rates of antibiotic-producers increase with the increase of ion implantation dose, and the form mutation of the antibiotic-producers is rather obvious. After N + ion implantation, the titer units increase by 10%-25%, 5.2%-12.1% and 2.1%-12.75% for the above three strains respectively; while after C + ion implantation the titer units increase by 10%-16.9%, 1.05%-3.08% and 5%-20% respectively. The selected strains of Micromonospora echimospoora and Streptomyces kanamyceticus after N + ion implantation have been used in the factory. The increase of production is 20% and 12.5% respectively and marked economic benefits are obtained

  14. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    Science.gov (United States)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  15. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  16. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  17. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    Science.gov (United States)

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  18. The mass effect model of the survival rate's dose effect of organism irradiated with low energy ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Gui Qifu; Yu Zengliang

    1995-01-01

    The main characteristic of the low energy ions mutation is its mass deposition effect. Basing on the theory of 'double strand breaking' and the 'mass deposition effect', the authors suggests that the mass deposition products can repair or further damage the double strand breaking of DNA. According to this consideration the dose effect model of the survival rate of organism irradiated by low energy of N + ion beam is deduced as: S exp{-p[αφ + βφ 2 -Rφ 2 exp(-kφ)-Lφ 3 exp(-kφ)]}, which can be called 'mass effect model'. In the low energy ion beam mutation, the dose effects of many survival rates that can not be imitated by previous models are successfully imitated by this model. The suitable application fields of the model are also discussed

  19. The effects of heavy ion on human megakaryocytopoiesis and thrombopoiesis

    International Nuclear Information System (INIS)

    Kashiwakura, Ikuo; Takahashi, Kenji; Abe, Yoshinao; Kasai, Kiyomi

    2006-01-01

    The effects of recombinant human cytokines, including thrombopoietin (TPO), interleukin-3 (IL-3), Flt-3 ligand (FL) and stem cell factor (SCF) on heavy ion-irradiated megakaryocytic progenitor cells isolated from the human placental/umbilical cord blood was evaluated in liquid cultures. The CD34 + cells were exposed with carbon ion beam (linear energy transfer (LET)=50 KeV/μm). The differentiation to megakaryocytes (CD41 + ) and the release of platelets (CD42a + ) were analyzed by flow cytometry. A treatment with TPO and IL-3 potentially induced these population from CD34 + cells on 14 days after exposure of carbon ion beam at 2 Gy such as that of X-ray. The induction of γ-H2AX, a marker of DNA double-strand breaks (DSBs), by carbon ion beam irradiation in CD34 + cells was not enhanced by cytokine treatment such as that of X-ray. These results showed that the promotion of DSBs repair by cytokine was lesser in progenitors to carbon ion beam than X-ray. (author)

  20. Amorphization and the effect of implanted ions in SiC

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1994-01-01

    The effects of implanted ion chemistry and displacement damage on the amorphization threshold dose of SiC were studied using cross-section transmission electron microscopy. Room temperature as well as 200 and 400 C irradiations were carried out with 3.6 MeV Fe, 1.8 MeV Cl, 1 MeV He or 0.56 MeV Si ions. The room temperature amorphization threshold dose in irradiated regions well separated from the implanted ions was found to range from 0.3 to 0.5 dpa for the four different ion species. The threshold dose for amorphization in the He, Si and Fe ion-implanted regions was also ∼0.3 to 0.5 dpa. On the other hand, the amorphization threshold in the Cl-implanted region was only about 0.1 dpa. The volume change associated with amorphization was ∼17%. No evidence for amorphization was obtained in specimens irradiated at 200 or 400 C. An understanding of the microstructural evolution of SiC under irradiation is critical to the application of these materials in fusion energy systems

  1. Interlaboratory study of the ion source memory effect in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan, E-mail: s.pavetich@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Akhmadaliev, Shavkat [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Arnold, Maurice; Aumaître, Georges; Bourlès, Didier [Aix-Marseille Université, CEREGE CNRS-IRD, F-13545 Aix-en-Provence (France); Buchriegler, Josef [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Golser, Robin [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Keddadouche, Karim [Aix-Marseille Université, CEREGE CNRS-IRD, F-13545 Aix-en-Provence (France); Martschini, Martin [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Merchel, Silke; Rugel, Georg [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Steier, Peter [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria)

    2014-06-01

    Highlights: • Long-term memory effect in negative ion sources investigated for chlorine isotopes. • Interlaboratory comparison of four up-to date negative ion sources. • Ion source improvement at DREAMS for minimization of long-term memory effect. • Long-term memory effect is the limitation for precise AMS data of volatile elements. • Findings to be considered for samples with highly variable ratios of {sup 36}Cl/Cl and {sup 129}I/I. - Abstract: Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples highly-enriched in {sup 35}Cl ({sup 35}Cl/{sup 37}Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion

  2. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  3. Effects of cavitation on damage calculations in ion-irradiated P7 alloy

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Farrens, S.N.; Kulcinski, G.L.

    1985-01-01

    The purpose of this study is to investigate the effect of voids on the depth-dependent damage energy in ion-irradiated metals. Corrections to the dose at the swelling peak will be used to obtain the swelling rate of ion-irradiated 316-type stainless steels. Samples of the P7 alloy were ion-irradiated to four fluence levels up to a peak dose level of 100 dpa at 650 0 C. The depth-dependent void parameters extracted in cross section were used to model the effect of voids on the depth-dependent damage produced during 14 MeV nickel ion irradiation. An increase in the range of damage produced from the original foil surface for the target containing voids was modeled as a first-order correction to the damage profile. A second-order effect, void straggling, was shown to cause a time-dependent decrease in the damage rate at the peak swelling depth. Corrections applied to the dose at the peak swelling depth yield swelling rates approaching 0.7%/dpa

  4. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  5. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  6. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  7. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    Science.gov (United States)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of

  8. Ion-induced effects on metallic nanoparticles; Ioneninduzierte Effekte an metallischen Nanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Klimmer, Andreas

    2010-02-25

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1{sub 0} phase. (orig.)

  9. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  10. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  11. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-01-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  12. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    Science.gov (United States)

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    International Nuclear Information System (INIS)

    Rosenberg, M. J.; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.

    2015-01-01

    The significance and nature of ion kinetic effects in D 3 He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K ) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K  ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects

  14. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Amendt, P. A.; Wilks, S. C.; Pino, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy); Hoffman, N. M.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  15. Dynamical effects prior to heavy ion fusion

    International Nuclear Information System (INIS)

    Mikhajlova, T.I.; Mikhajlov, I.N.; Molodtsova, I.V.; Di Toro, M.

    2002-01-01

    Dynamical effects in the initial phase of fusion reactions are studied following the evolution of two colliding 100 Mo ions. The role of elastic forces associated with the Fermi-surface deformation is shown by comparing the results obtained with and without taking the memory effects into account. The Bass barrier separating fused and scattered configurations and the lower bound for the extra push energy are estimated. Examples of cases are shown in which the excitation energy and deformation dependence of the friction parameter are fictitious and simulate the effects of collective motion related with the Fermi-surface deformations

  16. Specific and non-specific match effects in negative priming.

    Science.gov (United States)

    Labossière, Danielle I; Leboe-McGowan, Jason P

    2018-01-01

    The negative priming effect occurs when withholding a response to a stimulus impairs generation of subsequent responding to a same or a related stimulus. Our goal was to use the negative priming procedure to obtain insights about the memory representations generated by ignoring vs. attending/responding to a prime stimulus. Across three experiments we observed that ignoring a prime stimulus tends to generate higher identity-independent, non-specific repetition effects, owing to an overlap in the coarse perceptual form of a prime distractor and a probe target. By contrast, attended repetition effects generate predominantly identity-specific sources of facilitation. We use these findings to advocate for using laboratory phenomena to illustrate general principles that can be of practical use to non-specialists. In the case of the negative priming procedure, we propose that the procedure provides a useful means for investigating attention/memory interactions, even if the specific cause (or causes) of negative priming effects remain unresolved. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  18. Influence of excess sodium ions on the specific surface area formation in a NiO-Al2O3 catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Lazić M.M.

    2008-01-01

    Full Text Available The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni, temperature of heat treatment (400, 700 and 1100oC and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA, X-ray diffraction (XRD and scanning electron microscopy (SEM were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.

  19. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae

    International Nuclear Information System (INIS)

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-01-01

    Highlights: ► We investigated the effects of different LET radiation in A. oryzae. ► Both γ-rays and ion beams induced base substitutions, frameshifts, deletions. ► Both γ-rays and ion beams induced genome-wide large-scale mutations in A. oryzae. ► Some differences in the types and frequencies of mutations were found. ► Our results provide new basic insights into the mutation breeding of A. oryzae. - Abstract: Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was 12 C 5+ ion beams with an LET of 121 keV/μm. The 12 C 5+ ion beams had a 3.6-times higher lethal effect than low-LET (0.2 keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. 12 C 6+ ion beams with an LET of 86 keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to 12 C 6+ ion beams increased with an increase in dose and reached 3.47 × 10 −3 at 700 Gy. In the dose range from 0 to 700 Gy, 12 C 5+ ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67 × 10 −3 ) at 400 Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between 12 C 5+ ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2 bp was generally low

  20. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe ++ , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  1. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    International Nuclear Information System (INIS)

    Lee, E.H.

    2001-01-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe 2 , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  2. Electron and ion magnetohydrodynamic effects in plasma opening switches

    International Nuclear Information System (INIS)

    Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.

    1993-01-01

    Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made

  3. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  4. Irradiation effect of different heavy ions and track section on the silkworm Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhenli E-mail: tu514@yahoo.co.jp; Kobayashi, Yasuhiko; Kiguchi, Kenji; Watanabe, Hiroshi

    2003-05-01

    In order to compare the irradiation effects of different ions, wandering larvae were whole-body exposed or locally irradiated with 50-MeV {sup 4}He{sup 2+}, 220-MeV {sup 12}C{sup 5+}, and 350-MeV {sup 20}Ne{sup 8+} ions, respectively. For the whole-body-exposed individuals, the survival rates at the cocooning, pupation, and emergence stages all decreased as dose increased, and a range-dependent difference was clearly observed. For local irradiation of ovaries, irradiation effects depend very strongly on the projectile range. In the case of local irradiation of dermal cells by different track sections of heavy ions, the closer the target was to the high-LET section of the track, the more pronounced were the radiation effects. These results indicated that by selectively using ion species and adjusting the irradiation depth to the target, heavy-ion radiosurgery on particular tissues or organs of small experimental animals can be performed more accurately.

  5. Irradiation effect of different heavy ions and track section on the silkworm Bombyx mori

    International Nuclear Information System (INIS)

    Tu Zhenli; Kobayashi, Yasuhiko; Kiguchi, Kenji; Watanabe, Hiroshi

    2003-01-01

    In order to compare the irradiation effects of different ions, wandering larvae were whole-body exposed or locally irradiated with 50-MeV 4 He 2+ , 220-MeV 12 C 5+ , and 350-MeV 20 Ne 8+ ions, respectively. For the whole-body-exposed individuals, the survival rates at the cocooning, pupation, and emergence stages all decreased as dose increased, and a range-dependent difference was clearly observed. For local irradiation of ovaries, irradiation effects depend very strongly on the projectile range. In the case of local irradiation of dermal cells by different track sections of heavy ions, the closer the target was to the high-LET section of the track, the more pronounced were the radiation effects. These results indicated that by selectively using ion species and adjusting the irradiation depth to the target, heavy-ion radiosurgery on particular tissues or organs of small experimental animals can be performed more accurately

  6. Dynamical processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-01-01

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy γ-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/μ. Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs

  7. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    Science.gov (United States)

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  8. Summary: Electron-cloud effects and fast-ion instability

    International Nuclear Information System (INIS)

    Furman, Miguel A.

    2000-01-01

    This is my summary of the talks on the electron-cloud effect and the fast-ion instability that were presented at the 8th ICFA Beam Dynamics Mini-Work shop on Two-Stream Instabilities in Particle Accelerators and Storage Rings,Santa Fe, NM, February 16--18, 2000

  9. Microvillar ion channels: cytoskeletal modulation of ion fluxes.

    Science.gov (United States)

    Lange, K

    2000-10-21

    movement of the system (electro-mechanical coupling). Because ionic transmission through linear polyelectrolytes is very slow compared with electronic conduction, only low-frequency electromagnetic fields can interact with the condensed counterion systems of linear polyelectrolytes. The delineated characteristics of microvillar ion conduction are strongly supported by the phenomenon of electro-mechanical coupling (reverse transduction) in microvilli of the audioreceptor (hair) cells and the recently reported dynamics of Ca(2+)signaling in microvilli of audio- and photoreceptor cells. Due to the cell-specific expression of different types and combinations of ion channels and transporters in the microvillar tip membrane of differentiated cells, the functional properties of this cell surface organelle are highly variable serving a multitude of different cellular functions including receptor-mediated effects such as Ca(2+)signaling, regulation of glucose and amino acid transport, as well as modulation of membrane potential. Even mechanical channel activation involved in cell volume regulation can be deduced from the systematic properties of the microvillar channel concept. In addition, the specific ion conduction properties of microfilaments combined with their proposed role in Ca(2+)signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields. Copyright 2000 Academic Press.

  10. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vardanyan, Zaruhi [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia); Trchounian, Armen, E-mail: trchounian@ysu.am [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  11. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  12. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  13. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  14. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    Science.gov (United States)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  15. Effect of co-doping Tm3+ ions on the emission properties of Dy3+ ions in tellurite glasses

    International Nuclear Information System (INIS)

    Sasikala, T.; Rama Moorthy, L.; Mohan Babu, A.; Srinivasa Rao, T.

    2013-01-01

    The present work reports the absorption, photoluminescence and decay properties of singly doped Dy 3+ and co-doped Dy 3+ /Tm 3+ ions in TeO 2 +ZnO+K 2 O+CaO (TZKC) glasses prepared by the melt quenching technique. The glassy nature of the host glass has been confirmed by X-ray diffraction analysis and the primary vibrational modes were determined from the Raman spectrum. Judd–Ofelt (JO) analysis has been used to calculate the radiative transition rates, branching ratios and radiative lifetime of the emitting 4 F 9/2 state. The effect of co-doping of different concentrations of Tm 3+ ions on the emission properties of Dy 3+ ions has been investigated. The decay profiles of the 4 F 9/2 level were fitted to double exponential as well as Inokuti–Hirayama (IH) model to determine the energy transfer rates between Dy 3+ and Tm 3+ ions. The energy transfer rates found to increase with the increase of Tm 3+ ions concentration. The chromaticity coordinates and color purity of the emitted light for all glasses were determined. - Graphical abstract: The graphical abstract shows the emission spectra of Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ co-doped TZKC glasses recorded by exciting at 355 nm wavelength. - Highlights: • Zinc tellurite glasses doped with Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ ions were prepared. • XRD, DTA and Raman spectral measurements were recorded to know the nature of host. • Energy transfer occurs from Dy 3+ ions to Tm 3+ ions. • The color purity of the emitted light was determined

  16. Polyamine replacement by magnesium ions in BHK-21/C13 cells

    Science.gov (United States)

    Melvin, Maureen A. L.; Keir, Hamish M.

    1979-01-01

    Cultures of BHK-21/C13 cells, whose growth was inhibited by deprivation of serum, were stimulated to grow by addition of serum to the culture medium. Addition of MgCl2 to the medium, to increase the concentration of Mg2+ ions by 15mm, 30min before addition of serum, had no effect on the stimulation of cell growth, but inhibited the accumulation of cellular spermidine, so that the spermidine/spermine molar ratio was lower in these cultures than in cultures that had received no additional cations. The increase in the activity of ornithine decarboxylase that occurs 4–5h after serum `step-up' was substantially diminished by increasing the concentration of Mg2+ ions, but not of Na+ or K+ ions, in the medium by 30mm, 30min before addition of serum, and this inhibition was maintained for at least 24h. Methylglyoxal bis(guanylhydrazone), added to serum-deprived cultures to a concentration of 20μm, 30min before addition of serum, severely inhibited the increase in cell growth. The inhibitory effects of the drug were prevented by simultaneous addition of spermidine to the medium (to 100μm), and were partly prevented by the simultaneous addition of Mg2+ ions (to 30mm). Mg2+ ions were particularly effective in overcoming the inhibitory effect of methylglyoxal bis(guanylhydrazone) on the synthesis of DNA. Thus although a certain lack of specificity for cations exists in BHK-21/C13 cells, in that Mg2+ ions can be substituted for polyamines, particularly spermidine, to some extent, there are cellular processes for which the requirement for polyamines as cations is specific. PMID:444220

  17. Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS)

    International Nuclear Information System (INIS)

    Matsufuji, Naruhiro; Nakai, Tatsuaki; Kanematsu, Nobuyuki

    2007-01-01

    The clinical dose distributions of therapeutic carbon beams, currently used at National Institute of Radiological Sciences (NIRS) Heavy Ion Medical Accelerator in Chiba (HIMAC), are based on in-vitro Human Salivary Gland (HSG) cell survival response and clinical experience from fast neutron radiotherapy. Moderate radiosensitivity of HSG cells is expected to be a typical response of tumours to carbon beams. At first, the biological dose distribution is designed so as to cause a flat biological effect on HSG cells in the spread-out Bragg peak (SOBP) region. Then, the entire biological dose distribution is evenly raised in order to attain a RBE (relative biological effectiveness)=3.0 at a depth where dose-averaged LET (linear energy transfer) is 80 keV/μm. At that point, biological experiments have shown that carbon ions can be expected to have a biological effect identical to fast neutrons, which showed a clinical RBE of 3.0 for fast neutron radiotherapy at NIRS. The resulting clinical dose distribution in this approximation is not dependent on dose level, tumour type or fractionation scheme and thus reduces the unknown parameters in the analysis of the clinical results. The width SOBP and the clinical/physical dose at the center of SOBP specify the dose distribution. The clinical results analyzed in terms of tumor control probability (TCP) were found to show good agreement with the expected RBE value at higher TCP levels. The TCP analysis method was applied for the prospective dose estimation of hypofractionation. (author)

  18. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  19. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  20. Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels

    International Nuclear Information System (INIS)

    Wood, Jeffery A; Benneker, Anne M; Lammertink, Rob G H

    2016-01-01

    A non-isothermal formulation of the Poisson–Nernst–Planck with Navier–Stokes equations is used to study the influence of heating effects in the form of Joule heating and viscous dissipation and imposed temperature gradients on a microchannel/nanochannel system. The system is solved numerically under various cases in order to determine the influence of temperature-related effects on ion-selectivity, flux and fluid flow profiles, as well as coupling between these phenomena. It is demonstrated that for a larger reservoir system, the effects of Joule heating and viscous dissipation only become relevant for higher salt concentrations and electric field strengths than are compatible with ion-selectivity due to Debye layer overlap. More interestingly, it is shown that using different temperature reservoirs can have a strong influence on ion-selectivity, as well as the induced electrohydrodynamic flows. (paper)

  1. Compare of N-ion implantation effects on Bacillus coagulans by use of two kinds of ion sources

    International Nuclear Information System (INIS)

    Yu Long; Sun Yang; Xie Fei; Liu Yang; An Xiao

    2007-01-01

    As a novel method of mutation breeding, the low energy ion beam implantation has been widely used. The biological effects of Bacillus coagulans implanted by Kaufman source and dual-Panning source have been compared. The results showed that with the same extraction voltage, the genetic stability of the third generation strain implanted by Kaufman source was 30% higher than that implanted by dual-Panning source, while the general mutation rate of the former was 2% lower than the latter. The appropriate ion source should be chosen to meet the requirement of mutation. (authors)

  2. Comparison of single-ion molecular dynamics in common solvents

    Science.gov (United States)

    Muralidharan, A.; Pratt, L. R.; Chaudhari, M. I.; Rempe, S. B.

    2018-06-01

    Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γ (t ), observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γ (t ). But the corresponding analysis of the solventberg Li+(H2O)4 does conform to the standard picture set by all the PF6- results.

  3. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    Science.gov (United States)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  4. Radiation effects in ion implanted β-Ga_2O_3

    International Nuclear Information System (INIS)

    Wendler, E.; Treiber, E.; Baldauf, J.; Wolf, S.; Ronning, C.; Kuramata, A.

    2015-01-01

    Ion implantation induced effects are studied in β-Ga_2O_3 at room temperature. The main technique applied is Rutherford backscattering spectrometry in channelling configuration (RBS) using He ions. Additionally, selected samples were investigated by optical spectroscopy and transmission electron microscopy (TEM). For the implanted P, Ar or Sn ions clear damage peaks are visible in the RBS spectra. The concentration of displaced lattice atoms in the maximum of the distribution (as deduced from the channelling spectra) increases almost continuously up to a saturation value of about 90% with increasing ion fluence. Once this level is reached in the maximum of the distribution, during further implantation a broadening of the distribution occurs with the concentration remaining at this level. RBS measurements performed with different energy of the analysing He ions reveal that the damage produced is characterized by randomly distributed lattice atoms. This indicates point defects, point defect complexes or amorphous zones. As the channelling spectra of the implanted layers do not reach the random level, complete amorphisation can be excluded. Furthermore, the applied optical techniques do not exhibit significant changes in comparison to the signal measured for the unimplanted sample even though these studies were performed for the highest ion fluences implanted. Cross sectional TEM confirms this result. The diffraction pattern shows clear spots as for the unimplanted material and extended defects are almost not visible. The β-Ga_2O_3 layers ion implanted at room temperature contain mainly point defects the strong influence of which on the dechannelling of the He ions in the RBS analysis is not yet understood. (authors)

  5. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  6. Preliminary study on mutagenic effects of heavy ions irradiation on maize inbred lines

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Xie Hongmei; Chen Xuejun; Chen Jing

    2010-01-01

    In order to study mutagenic effects of different heavy ions irradiation on maize inbred lines,corn seeds of Zheng58, Lu9801, Jinxiang4C-1, CSR24001, 308 and 478 were irradiated with 12 C 6+ and 36 Ar 18+ ions. The experimental results showed that the germination rate and planting percent were different after irradiation. The wettish seeds had higher sensibility to heavy ion irradiation. The leaf type of the plant appeared visible changes in M 1 generation. In M 2 generation, great changes had taken place in economic traits, many of which are beneficial mutation. Some beneficia1 mutation could be stably inherited in M 3 generation. From the above, it can be predicted that heavy ions irradiation is an effective means of genetic improvement of maize. (authors)

  7. Inhibitory effect of 12C6+ ion and X-ray on angiogenesis in HMEC-1

    International Nuclear Information System (INIS)

    Liu Yuanyuan; Zhang Hong; Liu Yang; Wu Zhenhua; Sun Chao; Li Hongyan

    2013-01-01

    The study aims to explore the effect of 12 C 6+ ion and X-ray on proliferation, migration, tube formation and MMPS of human microvascular endothelial cells (HMEC-1). Transwell migration experiment showed that the radiation could inhibit the migration of HMEC-1 in sub-lethal dose 24 h after irradiation. Furthermore, the inhibition ability of 12 C 6+ ion was stronger than that of X-ray. Matrigel experiment indicated that 12 C 6+ ion suppressed the tube formation of HMEC-1 spontaneously. However, the inhibitory effect of X-ray had no significance. Meanwhile, Gelatin Zymography showed the expression of MMP-2 was inhibited obviously by 12 C 6+ ion, while X-ray had little effect on the expression of MMP-2. In conclusion, 12 C 6+ ion is superior to X-ray in radiotherapy of tumor. (authors)

  8. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  9. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  10. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  11. Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

    Directory of Open Access Journals (Sweden)

    Chmelová Daniela

    2015-12-01

    Full Text Available The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+ but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+ slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

  12. Mutation effect of streptomyces kitasatoensis after exposure to heavy ions radiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Wang Shuyang; Li Wenjian

    2011-01-01

    To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in different doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment. (authors)

  13. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  14. Determination of Silver Ions Toxicity in Short-Term and Long-Term Experiments Using a Luminescent Recombinant Strain of E. coli

    Directory of Open Access Journals (Sweden)

    Tatiana P. Yudina

    2013-01-01

    Full Text Available The effects of silver ions on the luminescent recombinant strain of Escherichia coli carrying luxCDABE operon of Vibrio fischeri were investigated. The toxicity of silver ions was determined in 30 minutes and in chronic 24 hours experiments. Changes in the luminescence intensity and in the growth rate of bacteria were considered as a measure of silver ions toxicity within the range of concentrations applied. The effect of silver ions was demonstrated to be strongly dependent on the concentration of bacteria and on the medium composition. EC50 values were 0.018 mg/l after 30 min exposure and 0.014 mg/l after 10 hours of bacterial growth. Comparison of two modifications of the experiment showed that silver ions have a strong non-specific toxicity, as well as a specific effect on bacterial cells

  15. Charge transfer effects of ions at the liquid water/vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup −}, and I{sup −}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  16. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence

    International Nuclear Information System (INIS)

    Grissom, C.B.; Cleland, W.W.

    1988-01-01

    The role of the metal ion in the oxidative decarboxylation of malate by chicken liver NADP malic enzyme and details of the reaction mechanism have been investigated by 13 C isotope effects. With saturating NADP and the indicated metal ion at a total concentration 10-fold higher than its K/sub m/, the following primary 13 C kinetic isotope effects at C 4 of malate [ 13 (VK/sub mal/)] were observed at pH 8.0: Mg 2+ , 1.0336; Mn 2+ , 1.0365; Cd 2+ , 1.0366; Zn 2+ , 1.0337; Co 2+ , 1.0283; Ni 2+ , 1.025. Knowing the partitioning of the intermediate oxalacetate between decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation. For Mg 2+ as activator, this was 1.049 with NADP and 1.046 with 3-acetylpyridine adenine dinucleotide phosphate, although the intrinsic primary deuterium isotope effects on dehydrogenation were 5.6 and 4.2, and the partition ratios of the oxalacetate intermediate for decarboxylation as opposed to hydride transfer were 0.11 and 3.96. It was not possible to calculate reasonable intrinsic carbon isotope effects with the other metal ions by use of the partitioning ratio of oxalacetate because of decarboxylation by another mechanism. The variation of 13 (VK/sub mal/) with pH was used to dissect the total forward and external components. When the authors attempted to use the variation of 13 (VK/sub mal/) with solution viscosity to determine the internal and external commitments, incorrect values were obtained because of a specific effect of the viscosogen in decreasing the K/sub m/ for malate, so that VK/sub mal/ actually increased with viscosity instead of decreasing, as theory predicts

  17. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, Yoshiyuki, E-mail: toyoshima@yamasa.com [Soy Sauce Laboratory, Yamasa Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056 (Japan); Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo [Soy Sauce Laboratory, Yamasa Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056 (Japan); Hamada, Ryoko; Iwashita, Kazuhiro [Fundamental Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046 (Japan); Satoh, Katsuya; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-12-15

    Highlights: ► We investigated the effects of different LET radiation in A. oryzae. ► Both γ-rays and ion beams induced base substitutions, frameshifts, deletions. ► Both γ-rays and ion beams induced genome-wide large-scale mutations in A. oryzae. ► Some differences in the types and frequencies of mutations were found. ► Our results provide new basic insights into the mutation breeding of A. oryzae. - Abstract: Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was {sup 12}C{sup 5+} ion beams with an LET of 121 keV/μm. The {sup 12}C{sup 5+} ion beams had a 3.6-times higher lethal effect than low-LET (0.2 keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. {sup 12}C{sup 6+} ion beams with an LET of 86 keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to {sup 12}C{sup 6+} ion beams increased with an increase in dose and reached 3.47 × 10{sup −3} at 700 Gy. In the dose range from 0 to 700 Gy, {sup 12}C{sup 5+} ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67 × 10{sup −3}) at 400 Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between {sup 12}C{sup 5+} ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all

  18. Evaluation of sex specificity on oxidative stress induced in lungs of mice irradiated by 12C6+ ions

    International Nuclear Information System (INIS)

    Liu Yang; Zhang Hong; Zhang Luwei

    2008-01-01

    The aim of this work is to identify if there is sex specificity on 12 C 6+ ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P 12 C 6+ ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones. (authors)

  19. Substrate Specificity of Na+,Cl-(HCO3-)-ATPase.

    Science.gov (United States)

    Yurkiv, V A; Melikhov, V I; Shubin, V S

    2016-09-01

    We studied substrate specificity of Na + ,Cl - (HCO 3 - )-ATPase. In most cases, replacement of ATP for other phosphate-containing substances resulted in not only pronounced suppression of phosphohydrolase reactions, but also dramatic changes of their responsiveness to the stimulating effect of monovalent ions. The data showed that Na + ,Cl - (HCO 3 - )-ATPase is a highly specific enzyme for ATP.

  20. A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover

    International Nuclear Information System (INIS)

    Datta, Shuvo Jit; Moon, Won Kyung; Choi, Do Young; Hwang, In Chul; Yoon, Kyung Byung

    2014-01-01

    The effective removal of 137 Cs + ions from contaminated groundwater and seawater and from radioactive nuclear waste solutions is crucial for public health and for the continuous operation of nuclear power plants. Various 137 Cs + removers have been developed, but more effective 137 Cs + removers are still needed. A novel microporous vanadosilicate with mixed-valence vanadium (V 4+ and V 5+ ) ions is now reported, which shows an excellent ability for Cs + capture and immobilization from groundwater, seawater, and nuclear waste solutions. This material is superior to other known materials in terms of selectivity, capacity, and kinetics, and at very low Cs + concentrations, it was found to be the most effective material for the removal of radioactive Cs + ions under the test conditions. This novel vanadosilicate also contains hexadeca-coordinated Cs + ions, which corresponds to the highest coordination number ever described.

  1. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  2. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries.

    Science.gov (United States)

    Tepavcevic, Sanja; Liu, Yuzi; Zhou, Dehua; Lai, Barry; Maser, Jorg; Zuo, Xiaobing; Chan, Henry; Král, Petr; Johnson, Christopher S; Stamenkovic, Vojislav; Markovic, Nenad M; Rajh, Tijana

    2015-08-25

    Nanostructured bilayered V2O5 was electrochemically deposited within a carbon nanofoam conductive support. As-prepared electrochemically synthesized bilayered V2O5 incorporates structural water and hydroxyl groups, which effectively stabilizes the interlayers and provides coordinative preference to the Mg(2+) cation in reversible cycling. This open-framework electrode shows reversible intercalation/deintercalation of Mg(2+) ions in common electrolytes such as acetonitrile. Using a scanning transmission electron microscope we demonstrate that Mg(2+) ions can be effectively intercalated into the interlayer spacing of nanostructured V2O5, enabling electrochemical magnesiation against a Mg anode with a specific capacity of 240 mAh/g. We employ HRTEM and X-ray fluorescence (XRF) imaging to understand the role of environment in the intercalation processes. A rebuilt full cell was tested by employing a high-energy ball-milled Sn alloy anode in acetonitrile with Mg(ClO4)2 salt. XRF microscopy reveals effective insertion of Mg ions throughout the V2O5 structure during discharge and removal of Mg ions during electrode charging, in agreement with the electrode capacity. We show using XANES and XRF microscopy that reversible Mg intercalation is limited by the anode capacity.

  4. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    Science.gov (United States)

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published

  5. Effects of nonresonant hot ions with large orbits on Alfven cascades and on magnetohydrodynamic instabilities in tokamaks

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Mikhailovskii, A.B.; Huysmans, G.T.A.

    2004-01-01

    The effects of nonresonating hot ions on the spectrum of magnetohydrodynamic (MHD) waves and instabilities in tokamaks are studied in the limit when the width of the hot ion drift orbits is much larger than the radial scale length of the MHD perturbations. Due to the large magnetic drift velocities the hot ions cannot contribute to the MHD perturbations directly, but two main effects of the hot ions, the hot-ion density-dependent effect and the hot-ion pressure-dependent effect, influence the MHD perturbations indirectly. The physics of both effects is elucidated and it is shown that both these effects can be described in MHD approach. A new code, MISHKA-H (MISHKA including the hot-ion indirect effects), is developed as an extension of the ideal MHD code MISHKA-D [Huysmans et al., Phys. Plasmas 8, 4292 (2002)]. Analytical benchmarks for this code are given. Results of the MISHKA-H code on Alfven spectrum in a shear-reversed discharges with ion-cyclotron resonance frequency (ICRF) heating are presented. Modeling of Alfven cascades and their transition into toroidal Alfven eigenmodes in shear-reversed tokamak equilibrium is considered. The hot-ion effect on the unstable branch of the MHD spectrum is studied for the test case of an n=1 ideal MHD internal kink mode, which is relevant to short-period sawteeth in low-density plasmas observed in Joint European Torus (JET) [Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] experiments with high-power ICRF heating

  6. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  7. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  8. Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Zeng, J.; Yao, H.J.; Zhang, S.X.; Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Li, G.P.; Liu, J.

    2014-01-01

    Monolayer graphene and highly oriented pyrolytic graphite (HOPG) were irradiated by swift heavy ions ( 209 Bi and 112 Sn) with the fluence between 10 11 and 10 14 ions/cm 2 . Both pristine and irradiated samples were investigated by Raman spectroscopy. It was found that D and D′ peaks appear after irradiation, which indicated the ion irradiation introduced damage both in the graphene and graphite lattice. Due to the special single atomic layer structure of graphene, the irradiation fluence threshold Φ th of the D band of graphene is significantly lower ( 11 ions/cm 2 ) than that (2.5 × 10 12 ions/cm 2 ) of HOPG. The larger defect density in graphene than in HOPG indicates that the monolayer graphene is much easier to be damaged than bulk graphite by swift heavy ions. Moreover, different defect types in graphene and HOPG were detected by the different values of I D /I D′ . For the irradiation with the same electronic energy loss, the velocity effect was found in HOPG. However, in this experiment, the velocity effect was not observed in graphene samples irradiated by swift heavy ions

  9. Effects of copper ions on the characteristics of egg white gel induced by strong alkali.

    Science.gov (United States)

    Shao, Yaoyao; Zhao, Yan; Xu, Mingsheng; Chen, Zhangyi; Wang, Shuzhen; Tu, Yonggang

    2017-09-01

    This study investigated the effects of copper ions on egg white (EW) gel induced by strong alkali. Changes in gel characteristics were examined through texture profile analysis, scanning electron microscopy (SEM), and chemical methods. The value of gel strength reached its maximum when 0.1% copper ions was added. However, the lowest cohesiveness values were observed at 0.1%. The springiness of gel without copper ions was significantly greater than the gel with copper ions added. SEM results illustrated that the low concentration of copper ions contributes to a dense and uniform gel network, and an open matrix was formed at 0.4%. The free and total sulphhydryl group content in the egg white protein gel significantly decreased with the increased copper. The increase of copper ions left the contents of ionic and hydrogen bonds basically unchanged, hydrophobic interaction presented an increasing trend, and the disulfide bond exhibited a completely opposite change. The change of surface hydrophobicity proved that the main binding force of copper induced gel was hydrophobic interaction. However, copper ions had no effect on the protein component of the gels. Generally, a low level of copper ions facilitates protein-protein association, which is involved in the characteristics of gels. Instead, high ionic strength had a negative effect on gels induced by strong alkali. © 2017 Poultry Science Association Inc.

  10. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    Soukieh, Mohamad; Al-Mohamad, Ali

    1993-12-01

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe 3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  11. Air ions and respiratory function outcomes: a comprehensive review

    Science.gov (United States)

    2013-01-01

    Background From a mechanistic or physical perspective there is no basis to suspect that electric charges on clusters of air molecules (air ions) would have beneficial or deleterious effects on respiratory function. Yet, there is a large lay and scientific literature spanning 80 years that asserts exposure to air ions affects the respiratory system and has other biological effects. Aims This review evaluates the scientific evidence in published human experimental studies regarding the effects of exposure to air ions on respiratory performance and symptoms. Methods We identified 23 studies (published 1933–1993) that met our inclusion criteria. Relevant data pertaining to study population characteristics, study design, experimental methods, statistical techniques, and study results were assessed. Where relevant, random effects meta-analysis models were utilized to quantify similar exposure and outcome groupings. Results The included studies examined the therapeutic benefits of exposure to negative air ions on respiratory outcomes, such as ventilatory function and asthmatic symptoms. Study specific sample sizes ranged between 7 and 23, and studies varied considerably by subject characteristics (e.g., infants with asthma, adults with emphysema), experimental method, outcomes measured (e.g., subjective symptoms, sensitivity, clinical pulmonary function), analytical design, and statistical reporting. Conclusions Despite numerous experimental and analytical differences across studies, the literature does not clearly support a beneficial role in exposure to negative air ions and respiratory function or asthmatic symptom alleviation. Further, collectively, the human experimental studies do not indicate a significant detrimental effect of exposure to positive air ions on respiratory measures. Exposure to negative or positive air ions does not appear to play an appreciable role in respiratory function. PMID:24016271

  12. Dissociative electron attachment negative ion mass spectrometry: a chlorine-specific detector for gas chromatography

    Science.gov (United States)

    Curtis, Jonathan M.; Boyd, Robert K.

    1997-11-01

    This work describes the application of negative ion chemical ionization, optimized for dissociative electron attachment (DEA), to location of unknown trace chlorinated compounds in complex gas chromatograms by selected ion recording (SIR) of m / z 35 and 37. The DEA-SIR technique is compared with other GC detectors, including the electron capture detector, electrolytic conductivity detector, the atomic emission detector and the chemical reaction interface mass spectrometry method, with respect to selectivity for chlorine, sensitivity, linear dynamic range, and general robustness and ease of use. When applied to quantitative analysis of target analytes such as polychlorobiphenyls, the DEA-SIR method has potential problems arising from the possibility of suppression effects due to abundant co-eluting components, and possible alleviating measures are discussed. In addition to these practical investigations, literature information on the fundamental physical and chemical phenomena underlying the DEA process is summarized in order to guide future work on extension to other compound types and on general improvements to the technique.

  13. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores

    Science.gov (United States)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.

    1998-09-01

    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn 1/2 during the core formation epoch (densities principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  14. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  15. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  16. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    Ikeda, Shunsuke; Sekine, Megumi; Romanelli, Mark; Cinquegrani, David; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-01-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  17. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  18. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  19. Synthesis and characterization of templated ion exchange resins for the selective complexation of actinide ions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Murray, G.M.; Uy, O.M.

    1998-01-01

    'The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and body fluids). Selectivity for a specific actinide ion is obtained by providing polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The polymers will provide useful sequestering agents for removing actinide ions from wastes and will form the basis for a variety of analytical techniques for actinide determinations.'

  20. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  1. Experimental study of the organic ion intensity distribution in the ion imaging of coated polymer fibres with S-SIMS

    International Nuclear Information System (INIS)

    Vercammen, Yannick; Moons, Nicola; Van Nuffel, Sebastiaan; Beenaerts, Linda; Van Vaeck, Luc

    2013-01-01

    Time-of-Flight Static Secondary Ion Mass Spectrometry excels in probing the molecular composition of the outer monolayer of flat samples with a lateral resolution in the sub-μm range. However, the method faces significant methodological problems in the case of non-conducting samples with high topography or surface curvature, such as fibres, yarns or fabrics. Specifically, the useful secondary ion yield in a given spot on the fibre depends on the local incidence angle, the height above the earthed sample holder, the position relative to the axis of the mass analyser and the extent of the local surface charging. This study has focused on the empiric reduction of the useful ion yield variations observed in the ion images of fibres with diameter of 25 and 100 μm. Up to now, most literature data consider the analysis of fibres positioned along or perpendicular to the projection of the projectile beam in the plane of the sample surface because these specific geometries facilitate the interpretation of the ion images. However, it has been discovered that the diagonal orientation of the fibre in the field-of-view largely reduces the ion yield variations for fibres with a small diameter (25 μm). The situation is different for fibres with a diameter of 100 μm. In that case, the ion images contain no secondary ion counts for the pixels referring to a significant part of the fibre. In particular, the resulting lack of delineation between the shadow zone in the front of the fibre and the boundary of the fibre hampers the practical use of the ion images A fourfold decrease of the extraction voltage or a 20% increase of the distance between sample holder and extraction electrode is found to improve the detection of secondary ions from the part of the fibre facing towards the impinging primary ion beam. These observations have been tentatively related to the mass analyser acceptance and its dependence on the delicate balance between conflicting effects such as field strength

  2. Effects of ion concentration on thermally-chargeable double-layer supercapacitors

    Science.gov (United States)

    Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu

    2013-11-01

    The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.

  3. Effects of the safety factor on ion temperature gradient modes

    International Nuclear Information System (INIS)

    Wang, A.K.; Dong, J.Q.; Sanuki, H.; Itoh, K.

    2003-01-01

    A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii magnetohydrodynamic equations of ions. The safety factor q in a toroidal plasma is introduced into the model through the current density J parallel . The effects of q or J parallel on both the ITG instability in k perpendicular and k parallel spectra and the critical stability thresholds are studied. It is shown that the current density // J or the safety factor q plays an important role in stabilizing the ITG instability. (author)

  4. Is the anomalous effect an experimental evidence for the excitation of new exotic states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, R.; Topor Pop, V.

    1984-10-01

    Lower bound on the mean free path of the projectile fragments from the relativistic heavy ion collisions are drived using generalized Rarita-Schwed's theorems. These bounds are compared with the experimental data on the anomalous mean free path observed in recent experiments. The near saturation of these bounds provide a specific interpretation of the anomalous effects as an experimental evidence for the excitation of those extreme nuclear states which saturate the limits of the convetional nuclear physics. (authors)

  5. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  6. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  7. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  8. Magnetic composite beads for sorption of cesium ions from aqueous streams

    International Nuclear Information System (INIS)

    Shinde, Rakesh N.; Pandey, A.K.; Acharya, R.; Rajurkar, N.S.

    2014-01-01

    Magnetic separation of metal ions is one of the promising methods due to simple, fast, efficient and cost effective technology. Highly selective magnetic sorbents can be designed by immobilizing functional groups in magnetic carrier which binds to the target specific ions. In the present work chitosan-(3-aminopropyl) triethoxysilane (APTS)- copperferrocyanide (CFC) composite beads have been synthesized for sorption of 137 Cs ions from aqueous streams. Physical characterization of the best resulted polymer beads was carried out by SEM-EDX and VSM technique. Sorption of Cs ions in the various magnetic polymer beads were studied in different aqueous condition by 137 Cs (662 KeV) radiotracer assay

  9. Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal geometry with trapped ions have been studied by using a 1 2/2 d linearized gyro-kinetic particle simulation code in the electrostatic limit. The purpose of the investigation is to try to understand the physics of flat density discharges, in order to test the marginal stability hypothesis. Results giving threshold conditions of L Ti /R 0 , an upper bound on k χ , and linear growth rates and mode frequencies over all wavelengths for the collisionless ion temperature gradient driven modes are obtained. The behavior of ion temperature gradient driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is shown. A Monte Carlo scheme for the inclusion of ion-ion collisions, in which ions can undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave length limit of the ion modes is discussed. 44 refs., 12 figs

  10. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  11. Heavy ion irradiation effects of brannerite-type ceramics

    International Nuclear Information System (INIS)

    Lian, J.; Wang, L.M.; Lumpkin, G.R.; Ewing, R.C.

    2002-01-01

    Brannerite, UTi 2 O 6 , occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α-decay events of Pu, a 1 MeV Kr + irradiation on UTi 2 O 6 , ThTi 2 O 6 , CeTi 2 O 6 and a more complex material, composed of Ca-containing brannerite and pyrochlore, was performed over a temperature range of 25-1020 K. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi 2 O 6 ; 990 K, ThTi 2 O 6 ; 1020 K, CeTi 2 O 6 . The systematic increase in radiation resistance from Ce-, Th- to U-brannerite is related to the difference of mean atomic mass of A-site cation in the structure. As compared with the pyrochlore structure-type, brannerite phases are more susceptible to ion irradiation-induced amorphization. The effects of structure and chemical compositions on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed

  12. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  13. Electron inertia effects for an electron fluid model by the applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V; Levchenko, S V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    Numerical calculations within the framework of the one-dimensional vortex-like electron fluid model in applied-B ion diodes, taking account the electron inertia effects, are presented. The existence of the additional relation between the magnetic field and the electric potential offers an opportunity to reduce the ion diode problem to the system of the algebraic equations for the constants introduced. The ion current density in an ion diode is determined only by the magnetic flux cut out by the virtual cathode. As an illustration, the ion diode impedance for the KALIF device was calculated. (author). 2 figs., 6 refs.

  14. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Schaltz, Erik; Kær, Søren Knudsen

    2018-01-01

    This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid...... on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs) and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific...... and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact...

  15. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  16. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  17. An ion cooling and state characterization apparatus for studies of molecular ion dissociative interactions

    International Nuclear Information System (INIS)

    Deng, Shihu; Vane, C R; Bannister, M E; Havener, C C; Meyer, F W; Krause, H F; Hettich, R L; Goeringer, D E; Van Berkel, G J

    2009-01-01

    An experimental capability is being developed at the Oak Ridge National Laboratory Multi-Charged Ion Research Facility (ORNL MIRF) to enable stored cooling and state characterization of molecular ions of essentially any mass. Ions selected from a variety of available sources are injected from the side into a 1.5 meter long electrostatic mirror trap, where excited internal states are cooled by radiative cooling. An electron beam target located near the middle of the ion-trap region, coupled with neutral fragment imaging detector systems at each end of the trap, permits state-specific studies of electron-molecular ion dissociation.

  18. pH- and ion-sensitive polymers for drug delivery

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  19. pH- and ion-sensitive polymers for drug delivery.

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-11-01

    Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.

  20. Ion bombardment effects on the fatigue life of stainless steel under simulated fusion first wall conditions

    International Nuclear Information System (INIS)

    Kohse, G.; Harling, O.K.

    1983-01-01

    Pressurized tube specimens have been exposed to simultaneous multi-energy surface ion bombardment, fast neutron irradiation and stress and temperature cycling, in a simulation of a possible fusion reactor first wall environment. After ion bombardments equivalent to months-years of reactor operation and up to 30,000 cycles, no detrimental effects on post-irradiation fatigue life were found. The ion damage is found to enhance surface cracking, but this effect is limited to the several micron surface layer in which the ions are implanted

  1. Resistive effect on ion fishbone mode in tokamak plasma

    International Nuclear Information System (INIS)

    Shi Bingren; Vandam, J.W.; Carrera, R.; Zhang, Y.Z.

    1992-07-01

    A consistent theoretical description of the resistive internal mode is presented to discuss the effect of resistivity on fishbone mode for different parameter regime of bulk and hot components. It is found that the ideal fishbone mode theory ceases to be correct for the low frequency fishbone branch, the so-called ion fishbone mode, which has a real frequency very close to ω *i (the diamagnetic frequency) in marginal state. The stability domain analysis in β h , γ mhd ) space based on the resistive dispersion relation shows that the transition between the stable and unstable region is more complicated than predicted by the ideal limit theory. Another salient feature of the resistive fishbone mode is the existence of a weakly unstable regime. For high frequency fishbone with ω ∼ ω dm (the toroidal precession frequency of the hot ions) resistivity has negligible effect and the ideal theory is correct

  2. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    International Nuclear Information System (INIS)

    Wang, Huan; Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming; Huang, Yan

    2015-01-01

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  3. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan, E-mail: wanghuan7@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Huang, Yan, E-mail: aydhy@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China)

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  4. Effects of ion acoustic waves on diffusion in a magnetized plasma

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Akazaki, Masanori; Fujiyama, Hiroshi.

    1975-01-01

    This paper describes on the behavior of ion acoustic waves in magnetized plasma. The plasma was produced with a discharge tube placed in an air-core coil. The pressure of argon gas in the discharge tube was 1--10 mTorr. The plasma was entracted along the externally applied magnetic field through a nozzle into a measuring part. The condition of stabilization of drift waves was investigated. Four small glass tubes were placed in contact with the wall of the discharge tube, and the drift wave was remarkably suppressed. Then the ion acoustic waves can be observed. The magnetic field dependence of the frequency of ion acoustic waves was studied. The frequency depends on magnetic field and gas pressure. The magnetic field dependence of the frequency is caused by the variation of electron temperature. The Timofee's theory can explain the magnetic field of generating ion acoustic waves. The ion acoustic waves being excited naturally propagate to the direction of the diamagnetic drift of electrons, and their spectra are monochromatic. The dependence of Dsub(perpendicular), diffusion constant, on magnetic field is explained by two-pole diffusion, and the effect of the monochromatic ion acoustic waves on diffusion is small. (Kato, T.)

  5. The counter ion: expanding excipient functionality

    Directory of Open Access Journals (Sweden)

    Shireesh Apte

    2011-06-01

    Full Text Available Excipients have increasingly become 'enablers' of drug delivery and efficacy rather than passive bystanders. Advances in pharmaceutical technology have enabled the ability to deliver specific counter ions (in the form of the counter ion containing excipient and the API simultaneously to preselected targets in the body. This, coupled with a near universal mechanism of columbic interactions that determine the [API- counter ion] efficacy, can be harnessed to exploit this hitherto unavailable or unrecognized enabling mechanism. New excipients may be assembled by a near inexhaustible supply of different permutations of counter ions and their judicious use in specific situations could potentially drive a renaissance in excipient innovation (and drug delivery and efficacy despite regulatory stagnation.

  6. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  7. Defects induced magnetic transition in Co doped ZnS thin films: Effects of swift heavy ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shiv P., E-mail: shivpoojanbhola@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India); Pivin, J.C. [CSNSM, IN2P3-CNRS, Batiment 108, F-91405 Orsay Campus (France); Patel, M.K; Won, Jonghan [Materials Science and Technology Division, MST-8, P.O.Box 1663, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chandra, Ramesh [Nanoscience Laboratory, IIC, Indian Institute of Technology, Roorkee 247667 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Lokendra [Physics Department, University of Allahabad, Allahabad 211002 (India)

    2012-07-15

    The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 Degree-Sign C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1 Multiplication-Sign 10{sup 11} ions/cm{sup 2} and 1 Multiplication-Sign 10{sup 12} ions/cm{sup 2} for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron-phonon coupling. - Highlights: Black-Right-Pointing-Pointer Effect of swift heavy ions on magnetic ordering in Co doped ZnS thin films are presented. Black-Right-Pointing-Pointer Magnetization in the pristine films is composed of ferromagnetic and paramagnetic components. Black-Right-Pointing-Pointer The films become purely paramagnetic after swift heavy ions irradiation. Black-Right-Pointing-Pointer The magnetic transition is ascribed to the formation of ion track (or cylindrical defects) due to the thermal spikes.

  8. Heavy Ion Irradiation Effects in Zirconium Nitride

    International Nuclear Information System (INIS)

    Egeland, G.W.; Bond, G.M.; Valdez, J.A.; Swadener, J.G.; McClellan, K.J.; Maloy, S.A.; Sickafus, K.E.; Oliver, B.

    2004-01-01

    Polycrystalline zirconium nitride (ZrN) samples were irradiated with He + , Kr ++ , and Xe ++ ions to high (>1.10 16 ions/cm 2 ) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nano-indentation. Nano-indentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples. (authors)

  9. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  10. The effect of copper ions, aluminium ions and their mixtures on separation of pectin from the sugar beet juice

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2013-01-01

    Full Text Available In sugar industry there is a problem of the presence of undesirable macromolecules compounds such as pectin in sugar beet juice. The affinity of calcium ions commonly used in the sugar industry for the removal of pectin from the sugar beet juice is relatively small. Coagulation and precipitation of pectin can be performed by process of discharging that is chemically induced. Compounds with di- and trivalent cations such as pure CuSO4, Al2(SO43 or their mixtures can be applied for clarification of pectin colloidal systems. According to data from the order of pectin selectivity to divalent metal ions, Cu2+ ions are the first order of ion binding. Also, aluminum sulfate is commonly used in the waste water treatment. Two model solutions of pectin whose concentration corresponds to the concentration of these macromolecules in sugar beet juice (0.1% w/w are investigated. Using a method of measuring zeta potential, it was proven for both investigated pectin that fewer quantities of Cu2+ ions compared to the values of Al3+ ions are needed to reach zero zeta potential. In all the investigated coagulants and their mixtures, zeta potential has changed the sign. In experiments with mixtures has been shown that pure salts showed better coagulation properties. The reduced strength of binding of cations in the case of most of the applied mixture of Cu2+ and Al3+ ions, can be explained by the mutual competition of these ions for the adsorption site (COO- groups on the surface of macromolecules. Mixture with approximately equal shares of ions Cu2+ and Al3+ had the most unfavorable coagulation ability (ion antagonism. Mechanism of discharge as well as the model of double electric layer surrounding pectin macromolecules in the presence of mixtures of Cu2+ and Al3+ ions are suggested. However, due to possible undesirable effects of CuSO4 on food processing, Al2(SO43 is proposed instead of traditional coagulant CaO, not only because of lower consumptions of

  11. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  12. Full inelastic cross section, effective stopping and ranges of fast multiply charged ions

    International Nuclear Information System (INIS)

    Alimov, R.A.; Arslanbekov, T.U.; Matveev, B.I.; Rakhmatov, A.S.

    1994-01-01

    Inelastic processes taking place in collision of fast multiply charged ions with atoms are considered on the base of mechanism of sudden momentum transfer. The simple estimations are proposed of full inelastic cross sections, effective stopping and ion ranges in gaseous medium. (author). 10 refs

  13. Theory of mass-discrimination effects in ion extraction from a plasma of wide pressure range

    International Nuclear Information System (INIS)

    Chang, J.-S.; Kodera, K.

    1979-01-01

    Mass-discrimination effects in stagnation-point ion extraction are treated for a plasma with a wide range of Knudsen number, i.e. when the charged particle's mean free path 3 , ion Schmidt numbers, from 0 to 10 4 , the effective Knudsen number K from 0 to infinity, and the Debye ratio Rsub(p)/lambdasub(D) from 0 to 10 -1 . Numerical results show that: (1) for a non-flowing plasma, mass-discrimination effects increase with increasing effective Knudsen number (or gas pressure) and decreasing sampling potential; (2) for a non-flowing plasma, no significant effect of the Debye ratio on mass-discrimination was found; (3) for a flowing plasma, mass-discrimination effects decrease with increasing Reynolds number (or flow velocity) and ion Schmidt number, and with decreasing sampling potential and effective Knudsen number. (Auth.)

  14. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  15. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  16. Effects of radiation damage in ion-implanted thin films of metal-oxide superconductors

    International Nuclear Information System (INIS)

    Clark, G.J.; Marwick, A.D.; Koch, R.H.; Laibowitz, R.B.

    1987-01-01

    The effects of ion implantation into thin films of the superconductor YBa 2 Cu 3 O/sub x/ have been studied. Using oxygen and arsenic ions, the superconducting transition temperature T/sub c/, the change in room-temperature electrical properties from conducting to insulating, and the crystalline to amorphous structural transition in the films were studied as a function of ion dose. The deposited energy required to change T/sub c/ was found to be 0.2 eV/atom, while 1--2 eV/atom was required to affect the room-temperature conductivity, and 4 eV/atom to render the film amorphous. This hierarchy of effects is discussed in terms of the damage mechanisms involved

  17. Plasma effects for heavy ions in implanted silicon detectors

    International Nuclear Information System (INIS)

    Aiello, S.; Anzalone, A.; Campisi, M.G.; Cardella, G.; Cavallaro, Sl.; Filippo, E. De; Geraci, E.; Geraci, M.; Guazzoni, P.; Manno, M.C. Iacono; Lanzalone, G.; Lanzano, G.; Nigro, S. Lo; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.; Zetta, L.

    1999-01-01

    Plasma effects for heavy ions in implanted silicon detectors have been investigated for different detector characteristics as a function of type and energy of the detected particles. A new approach is presented and used to reproduce the effect of the plasma delay in the timing performances. The results are in good agreement with the present data and with previous measurements found in the literature

  18. Comparative study on ion-isotopic exchange reaction kinetics by application of tracer technique

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    2007-01-01

    The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reactions using industrial grade ion exchange resins Amberlite IRA-400. The experiments were performed to understand the effect of temperature and concentration of ionic solution on kinetics of exchange reactions. Both the exchange reactions were greatly influenced by rise in temperature, which result in higher percentage of ions exchanged. For bromide ion-isotopic exchange reactions, the calculated values of specific reaction rate/min -1 , and amount of ions exchanged/mmol were obtained higher than that for iodide ion-isotopic exchange reactions under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (orig.)

  19. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  20. The effect of work function changes on secondary ion energy spectra

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1983-01-01

    The effect of work function changes on experimental secondary ion energy spectra is discussed. In agreement with theory the measured ion intensities frequently exhibit an exponential work function dependence. However, the predicted velocity dependence is only observed at fairly high secondary ion energies. In the absence of a velocity dependence of the degree of ionization measured shifts of energy spectra reflect work function changes directly. Various instrumental problems are shown to aggravate a detailed comparison between experiment and theory. Significant artefacts must be expected if the extraction field is of the order of or less than the lateral field induced by a work function difference between the bombarded spot and the surrounding sample surface. (Auth.)

  1. Effects of site substitution and metal ion addition on doped manganites

    CERN Document Server

    Pradhan, A K; Roul, B K; Sahu, D R; Muralidhar, M

    2002-01-01

    We report transport, magnetization and transmission electron microscopy studies of the effects of A-and B-site substitution, and the addition of metal ions such as Pt, Ag and Sr, on doped ABO sub 3 perovskites, where A = La, Pr etc and B = Mn. Disorder induced by such substitution changes the behaviour of the charge-ordered (CO) state significantly. A-and B-site substitution suppresses the CO phase due to size mismatch and disorder produced by inhomogeneity. On the other hand, addition of metal ions such as Pt and Ag improves several colossal-magnetoresistance properties significantly due to microstructural effects and enhanced current percolation through grain boundaries.

  2. Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study

    Science.gov (United States)

    March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.

    1992-01-01

    Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken

  3. The ion polytropic coefficient in a collisionless sheath containing hot ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Binbin; Xiang, Nong, E-mail: xiangn@ipp.ac.cn; Ou, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-08-15

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  4. Effect of Nitrite Ions on Steel Corrosion Induced by Chloride or Sulfate Ions

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2013-01-01

    Full Text Available The influence of nitrite concentration on the corrosion of steel immersed in three simulated pH environments containing chloride ions or sulfate ions has been investigated by comparing and analyzing the change of half-cell potential, the change of threshold level of Cl- or SO42-, the change of threshold level of NO2-/Cl- or NO2-/SO42- mole ratio, and the changes of anodic/cathodic polarization curves and Stern-Geary constant B. The corrosivity of chloride ions against sulfate ions also has been discussed in pH 12.6, pH 10.3, and pH 8.1 environments containing 0, 0.053, and 0.2 mol/L NO2, respectively.

  5. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  6. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  7. Nanodevices produced with focussed ion beams

    International Nuclear Information System (INIS)

    Doetsch, U.; Wieck, A.D.

    1998-01-01

    In directly writing the 30 nm focus of a focussed Ga-ion beam (FIB) with an energy of 100 keV we define insulating lines in two-dimensional electronic layers in semiconductors. Ga ions act in GaAs and silicon as deep impurities or p-type doping, respectively. In this way the insulation by such written lines is due to lateral depletion within npn-like interfaces. In writing two FIB lines with a close spacing we define conducting channels between them. In applying a voltage of several Volts to the adjacent areas of the channel relative to it we can tune the effective width of the channel in the range of a few 100 nm to zero and obtain thus a one-dimensional field-effect-transistor-type structure. This transistor exhibits a pure lateral field effect and is thus topologically very different to current transistor concepts. Due to its particular geometry it is called in-plane-gate (IPG) transistor, since the gate and the channel are in the same plane. The fabrication of this type of transistor is thus completely maskless and does not require any alignment procedures since gate, source and drain are all written in the same writing process. Due to the computer-control of the beam deflection even more complex structures are just a question of software and do not need a set of specific masks or photoresist like in the classical lithography. The required line ion dose is of the order of 10 6 cm -1 which means that there are about 100 ions per μm implanted. For devices with maximum micron dimensions only a few hundred ions need thus to be implanted. (orig.)

  8. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  9. Correlated relativistic dynamics and nuclear effects in dielectronic and visible spectra of highly charged ions

    International Nuclear Information System (INIS)

    Harman, Z.; Artemyev, A.N.; Crespo Lopez-Urrutia, J.R.

    2008-01-01

    Dielectronic recombination and visible emission spectra are investigated theoretically and experimentally. Spectra of x-rays emitted from electron beam ion trap plasmas allow the study of correlation and quantum electrodynamic effects in relativistic few-body systems. In the visible range, exploring the forbidden M1 transitions in Be- and B-like argon ions provides one new insights into the relativistic modelling of isotope shift effects and extend the scope of bound-electron g factor measurements to few-electron ions. (author)

  10. Effect of irradiation spectrum on the microstructure of ion-irradiated Al2O3

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1994-01-01

    Polycrystalline samples of alpha-alumina have been irradiated with various ions ranging from 3.6 MeV Fe + to 1 MeV H + ions at 650 C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructure of the irradiated specimens. The microstructure following irradiation was observed to be dependent on the irradiation spectrum. In particular, defect cluster nucleation was effectively suppressed in specimens irradiated with light ions such as 1 MeV H + ions. On the other hand, light ion irradiation tended to accelerate the growth rate of dislocation loops. The microstructural observations are discussed in terms of ionization enhanced diffusion processes

  11. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  12. Effects of the Charge Ions Strength on the Swelling of Organic-Inorganic Nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qin; Lu, Xiangguo; Wang, Jing; Guo, Qi; Niu, Liwei [Northeast Petroleum University, Daqing (China)

    2016-07-15

    The swelling behavior and swelling mechanism of hydrogels can be greatly affected by the charge strength of ions in them. To investigate such effects, we prepared two gels: a carboxylic acid gel (CAG) and a poly (2-acrylamide–methyl propane sulfonic acid) gel (SAG) based on starchy polyacrylamide (PAM) nanocomposite gels, both with montmorillonite, which underwent in situ intercalation, and used them as probes in swelling experiments. The equilibrium swelling rates (ESRs) of the hydrogels in both salt water and acidic water strongly depended on the charge strength of the ions in the chains. SAG had a higher ESR than CAG at the same mole ratio of polymer/water, which is attributed to the greater electrostatic repulsion between the strong electrolyte ions of SAG. Both water salinity and hydrogen ion contact of the hydrogels weakened ESR with the enhancement of charge ionic strength. The downward trend of ESR with increasing concentration of salt or hydrogen ions became weaker in SAG compared to CAG, which is attributed to the shielding and deprotonation effects of the strong electrolyte ions. Regarding the swelling mechanism, the chain relaxation occurred in neutral and acidic solutions for SAG and in neutral and weak acidic solutions for CAG, but water diffusion dominated in strong acidic solutions for CAG, leading to different swelling behaviors.

  13. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  14. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3+ groups forming intermolecular ion pairs in protein–nucleic acid complexes

    International Nuclear Information System (INIS)

    Anderson, Kurtis M.; Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani; Gorenstein, David G.; Iwahara, Junji

    2015-01-01

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH 3 + groups forming the intermolecular ion pairs. A characteristic change in their 1 H and 15 N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15 N and DNA phosphorodithiaote 31 P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well

  15. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  16. Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion

    Science.gov (United States)

    Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth

    2000-01-17

    We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.

  17. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  18. Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size.

    Science.gov (United States)

    Mohan, C Raja; Sathya, R; Nithiananthi, P; Jayakumar, K

    2017-11-01

    In the present investigation, the effect of ion size on the thermodynamical properties such as ultrasonic velocity (U), adiabatic compressibility (β), acoustic impedance (Z), adiabatic bulk modulus (K s ), relaxation strength (r s ) have been obtained for the different salts of chitosan viz., formate (3.5Å), acetate (4.5Å), Succinate (5Å) and Adipate (6Å). To find the effect of ion size, the effect due to water has been removed by calculating the change in ultrasonic velocity (dU), change in adiabatic compressibility (dβ), in acoustic impedance (dZ), in adiabatic bulk modulus (dK s ), and in relaxation strength (dr s ). Space filling factor and polarizability has been obtained from the refractive index data through Lorentz-Lorentz relation. FTIR studies confirm the formation of different quaternary salts of chitosan and their size (mass) effects which has been verified with Hooke's law. All the said properties vary both with ion size and concentration of different salts of chitosan. This investigation may throw some light on better usage of chitosan in biomedical applications. The detailed results are presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation

    Directory of Open Access Journals (Sweden)

    Li-Zhen Sun

    2017-12-01

    Full Text Available The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.

  20. The Effects of Calcium Ions on the Flotation of Sillimanite Using Dodecylammonium Chloride

    Directory of Open Access Journals (Sweden)

    Zhijie Chen

    2017-02-01

    Full Text Available The effects of Ca2+ ions on the flotation of sillimanite using dodecylammonium chloride as a collector were investigated by micro-flotation tests, zeta potential measurements, solution chemistry analysis and molecular dynamics (MD simulation. The micro-flotation results indicated that Ca2+ ions remarkably inhibit the flotation of sillimanite in the pH range of 2.0–9.0. The point of zero charge (PZC of sillimanite changed from 5.4 to 6.1 with the addition of Ca2+ ions. Meanwhile, the calculated concentration of RNH3+ in the sillimanite interface layer decreased in the presence of Ca2+ ions. The results of MD simulation revealed that Ca2+ ions have strong binding energy with the sillimanite (010 surface, and the binding energy of RNH3+ with sillimanite (010 surface reduced in the presence of Ca2+ ions. The conclusions drawn from the computations are in good agreement with the experimental results.

  1. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.

    Science.gov (United States)

    Scheers, Johan; Niedzicki, Leszek; Zukowska, Grażyna Z; Johansson, Patrik; Wieczorek, Władysław; Jacobsson, Per

    2011-06-21

    Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI:acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li(+), however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.

  2. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  3. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  4. Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus aureus with High Specificity

    Science.gov (United States)

    Xie, Yuntao; Yang, Lihua

    2016-02-01

    Staphylococcus aureus (S. aureus) is notorious for its ability to acquire antibiotic-resistance, and antibiotic-resistant S. aureus has become a wide-spread cause of high mortality rate. Novel antimicrobials capable of eradicating S. aureus cells including antibiotic-resistant ones are thus highly desired. Membrane-active bactericides and species-specific antimicrobials are two promising sources of novel anti-infective agents for fighting against bacterial antibiotic-resistance. We herein show that Ca2+ and Mg2+, two alkaline-earth-metal ions physiologically essential for diverse living organisms, both disrupt model S. aureus membranes and kill stationary-phase S. aureus cells, indicative of membrane-activity. In contrast to S. aureus, Escherichia coli and Bacillus subtilis exhibit unaffected survival after similar treatment with these two cations, indicative of species-specific activity against S. aureus. Moreover, neither Ca2+ nor Mg2+ lyses mouse red blood cells, indicative of hemo-compatibility. This works suggests that Ca2+ and Mg2+ may have implications in targeted eradication of S. aureus pathogen including the antibiotic-resistant ones.

  5. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  6. Heavy ion induced DNA strand breaks and their repair in diploid cells of the epithelium of the lens

    International Nuclear Information System (INIS)

    Heilman, J.

    1987-11-01

    This diploma thesis investigates by means of alkaline unwinding and neutral elution the induction of DNA strand breaks and of rejoining processes as an effect of irradiation with very heavy, accelerated ions. It is found that: The effectiveness of very heavy ions (Z > 18) increases per particle with higher ordinal number, and with increasing velocities. The relative biological effectiveness increases with higher particle masses and lower velocities. The effects of very heavy ions are determined both by the LET and by the particle track extension (specific energy) of the various particles. Heavy ions are much more effective than X-rays with regard to inducing double strand breaks, as compared to DNA single strand breaks induced. Rejoining processes induced by heavy ions have been found to be delayed and incomplete, as compared to the X-ray effects. The number of rejoining processes decreases with rising ordinal number. The experiments indicate that the irradiation with lead or uranium ions most probably makes rejoining impossible. (orig./MG) [de

  7. Practical approach to determining charge collected in multi-junction structures due to the ion shunt effect

    International Nuclear Information System (INIS)

    Brown, A.O.; Bhuva, B.; Kerns, S.E.

    1993-01-01

    In order to design semiconductor devices so that they are resistant to single event upsets, a designer needs to know how much charge would be collected at various junctions in the semiconductor structure. For over a decade researchers have studied the physics of charge collection in semiconductor structures, focusing primarily on the charge collected between the p and n regions of a pn junction by drift and diffusion effects -- a process called funneling. However, when an energetic ion penetrates more than one pn junction, funneling is not the only charge collection mechanism. Simulations and experiments on multi-junction structures have shown dramatic change in the charge collected when an ion penetrates two pn junctions. This charge transport between two regions of like conductivity that are ''bridged'' together by the ion track is called the ion shunt effect -- an effect investigated and experimentally proven by Hauser, et al. and Knudson, et al. This paper will present the algorithms and results of a computer program used to determine the charge collected on silicon semiconductor transistors due to the ion shunt effect. The program is unique because it is quick and simple to use and because it uses a general algorithm to determine an accurate initial electron-hole pair distribution in the ion track

  8. Nitrogen ion implantation effect on friction coefficient of tool steel

    International Nuclear Information System (INIS)

    Velichko, N.I.; Udovenko, V.F.; Markus, A.M.; Presnyakova, G.N.; Gamulya, G.D.

    1988-01-01

    Effect of nitrogen molecular ion implantation into KhVSG steel on the friction coefficient in the air and vacuum is investigated. Irradiation is carried out by the N 2 + beam with energy 120 keV and flux density 5 μ/cm 2 at room temperature in vacuum 5x10 -4 Pa. The integral dose of irradiation is 10 17 particle/cm 2 . Nitrogen ion implantation is shown to provide the formation of the modified layer changing friction properties of steel. The friction coefficient can either increase or decrease depending on implantation and test conditions. 4 refs.; 2 figs

  9. Effects of beer administration in mice on acute toxicities induced by X rays and carbon ions

    International Nuclear Information System (INIS)

    Monobe, Manami

    2003-01-01

    We have investigated the tissue specificity of radioprotection by beer, which was previously found for human lymphocytes. C3H/He female mice, aged 14 weeks, received an oral administration of beer, ethanol or saline at a dose of 1 ml/mouse 30 min before whole-body irradiation with 137 Cs γ rays or 50 keV/μm carbon ions. The dicentrics of chromosome aberrations in spleen cells were significantly (p 0 (slope of a dose-survival curve) for γ rays and carbon ions as well. Beer administration significantly (p 50/30 (radiation dose required to kill 50% of mice within 30 days) for γ rays and carbon ions. Ethanol-administration also significantly (p 50/30 value for γ rays, but not for carbon ions. It is concluded that beer administration reduces the radiation injury caused by photons and carbon ions, depending on the tissue type. Radioprotection by beer administration is not solely due to OH radical-scavenging action by the ethanol contained in beer. (author)

  10. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Science.gov (United States)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  11. Effect of Heavy Metal Ions and Carbohydrates on the Activity of Cauliflower (Brassica oleracea Var. botrytis Myrosinase

    Directory of Open Access Journals (Sweden)

    Prakash, Om

    2013-04-01

    Full Text Available Myrosinase is an enzyme of cruciferous vegetables, hydrolyse glucosinolates. The breakdown products are involved in plant defence against insect and also have anti-fungal property. Myrosinase has been purified to apparent homogeneity from 5 days old germinated cauliflower seedlings having a specific activity of 12.71 units/mg proteins with 54.6 % recovery, using ammonium sulfate fractionation followed by gel filtration chromatography on Sephadex G-100. Effect of some metal ions and carbohydrates on the activity of partially purified cauliflower myrosinase was studied. Sr+2 at 4 mM concentration exhibited marked activating effect on the activity up to 2.7 fold while Fe+2 significantly inhibited. However, Sn+2 and Ba+2 increased the activity to a certain extent and then suppressed. On the other hand, some metal ions [Fe+2, Fe+3, Cu+2 and Zn+2] strongly inhibited the activity even at lower concentrations. Several carbohydrates viz., glucose, fructose, sucrose, maltose and sorbitol even at comparatively higher concentrations had little detectable inhibitory effects. Activation kinetics of myrosinase in presence of Sn+2 and Sr+2 were studied between 0- 20min. The rate of reaction was almost constant till 15 min and then slight deactivation was recorded at various concentrations used.

  12. Facilities for in situ ion beam studies in transmission electron microscopes

    International Nuclear Information System (INIS)

    Allen, C.W.; Ohnuki, S.; Takahashi, H.

    1993-08-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and electron diffraction from very small regions to be employed during ion-irradiation effects studies. At present there are ten such installations in Japan, one in France and one in the USA. General specifications of facilities which are operational in 1993 are summarized, and additional facilities which are planned or being proposed are briefly described

  13. Automated effect-specific mammographic pattern measures

    DEFF Research Database (Denmark)

    Raundahl, Jakob; Loog, Marco; Pettersen, Paola

    2008-01-01

    We investigate the possibility to develop methodologies for assessing effect specific structural changes of the breast tissue using a general statistical machine learning framework. We present an approach of obtaining objective mammographic pattern measures quantifying a specific biological effect......, such as hormone replacement therapy (HRT). We compare results using this approach to using standard density measures. We show that the proposed method can quantify both age related effects and effects caused by HRT. Age effects are significantly detected by our method where standard methodologies fail...

  14. Irradiation effects in polycarbonate induced by 2.1 GeV Kr ions

    International Nuclear Information System (INIS)

    Tian Huixian; Jin Yunfan; Zhu Zhiyong; Liu Changlong; Sun Youmei; Wang Zhiguang; Liu Jie; Chen Xiaoxi; Wang Yanbin; Hou Mingdong

    2002-01-01

    Polycarbonate films were irradiated with 2.1 GeV Kr ions at room temperature in vacuum and in atmosphere, respectively. The ion beam induced effects were studied by means of Fourier transform infrared (FTIR) and ultraviolet visible (UV/VIS) spectroscopies in reflective mode. FTIR measurements indicate that the main effects are bond breaking, chain scissions and bond rearrangement. The creation of alkyne is the result of bond breaking and bond rearrangement. UV/VIS measurements indicate that at wavelengths of 380, 450 and 500 nm, the normalized absorbances follow approximately a linear relationship with the energy deposited density

  15. Heavy-ion stopping powers and the low-velocity-projectile z3 effect

    International Nuclear Information System (INIS)

    Porter, L.E.

    1977-01-01

    Recent heavy-ion stopping-power measurements with elemental solid targets have been analyzed in order to ascertain the influence on effective ion charge of incorporating the low-velocity-projectile z 3 effect in Bethe-Bloch calculations. Shell corrections and the mean excitation energy of a given target were held fixed while searching for the best-fit value of a single charge-state parameter. In general, excellent fits to the stopping powers at projectile energies above 0.3 MeV/amu were achieved. Results of the present study compare very favorably with those from other extant methods of analysis

  16. Microbial Growth in the Magnesium- Chloride - Sodium- Sulphate Ion System: Implications for Habitability in Terrestrial and Extraterrestrial Salts

    Science.gov (United States)

    Loudon, C. M.; Aka, S.; Cockell, C. S.

    2017-12-01

    Icy moons in the outer solar system are key targets in the search for extra-terrestrial life as there is evidence that they harbour subsurface oceans. Observational evidence of icy moons such as Europa suggest that these likely brine oceans should be composed of chloride and sulphate salts. The effects of the ions that compose these salts on biology and how the interactions between them can create geochemical and geophysical barriers to life are poorly understood. Here we present an in depth study of four microorganisms grown in solutions with varying combinations of the magnesium- chloride- sodium- sulphate ions. We find that the ion composition of the brine solution can have a large effect on growth. Whilst the water activity must be permissible for growth we found that this alone could not predict the effects of the ions on growth, chaotropic effects and ion specific effects influenced by the specific physiology of organisms are also evident. For this reason we conclude that simply knowing which salts are present on icy moons is not sufficient information to determine their potential habitibility. A full sample of any brine ocean would need to be studied to fully determine the potential for biology on these outer solar system satellites.

  17. Effects on cuytoskeleton system in pollen tube of pinus thunbergii induced by ion beam implantation

    International Nuclear Information System (INIS)

    Huang Qunce; Liang Qiuxia; Li Guopin

    2008-01-01

    The damage of the cytoskeleton system in the pollen and the pollen tube of Pinus thunbergii induced by ion beam implantation were researched. The results showed that the disorganization of the micro-tubules in the pollen tube was produced by N + implantation. The abnormal states of the pollen tube in morphology were very correlative with the abnormality of the cytoskeleton system. N + implantation was responsible for morphological abnormalities in the pollen tubes. There was a distinct correlation between the damage effects and the ion implantation dose. The add of dose caused more obvious damage effects. Furthermore, the state of the cytoskeleton system in the pollen tube was influenced by the ion implantation. The impact grade depended also on the ion implantation dose. (authors)

  18. Effects of heavy ions on the development of male gonads in fetal rats

    International Nuclear Information System (INIS)

    Wang, Bing; Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Shang, Yi; Tanaka, Kaoru; Hayata, Isamu

    2004-01-01

    Effects of exposure to accelerated heavy ion beam on the development of rats in late organogenesis were studied both in utero and in vitro, with a special focus to the response of male gonads. Either rat fetuses in utero or the cultured fetal testes in vitro were irradiated with carbon or Ne ion beams at a dose range from 0.1 Gy to 2.5 Gy. In addition to the linear energy transfer (LET) value of 13 keV/μm of carbon ion beams and of 30 keV/m of Ne ion beams for the in utero irradiation, the LET values at 40, 60, and 80 keV/μm of carbon ion beams were also applied for the in vitro investigation. In the mean time, effects from X-irradiations estimated under the same biological endpoints were studied comparatively for the relative biological effectiveness (RBE) estimation of the accelerated heavy ion irradiations. Although the statistical analysis of results was not finished, certain tendencies were found as follows: For the in utero studies, pups from dams received the accelerated heavy ion irradiations showed higher incidences of prenatal death and preweaning mortality, markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to that exposed to X-irradiations at the same doses. Significantly reduced ratios of main organ weight to body weight including brain, heart, thymus, lung, liver, kidney and testis were also observed in the pups from dams received the accelerated heavy ion irradiations compared to that exposed to X-irradiations at the same doses at postnatal ages of 1, 2 and three months. In addition, testes obtained at these postnatal ages are being studied on testicular development including conditions of the seminiferous tubules, the numbers of germ cells and Sertoli cells. For the in vitro experiments, pathological analysis of apoptosis occurrence in the cultured testes after X-irradiation or exposure to accelerated heavy ion beam is also now under investigation. From the third year, we would like to

  19. Medium-energy ion reflection from solids

    CERN Document Server

    Mashkova, ES

    1985-01-01

    ``Medium-Energy Ion Reflection from Solids'' analyses the results of experimental, theoretical and computer investigations on the process of scattering of ions by solid surfaces. Surface scattering is a relatively young and rapidly developing branch of the physics of atomic collisions and the literature on this subject has rapidly grown.As the first monograph devoted specifically to surface scattering of ions, this book is directed at scientists involved in ion-solid interaction studies.

  20. The effects of anionic and cationic surfactants on the ion flotation of Cd2+

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    The ion flotation of Cd 2+ ions has been investigated from the surface chemical point of view in comparison with the case of Cu 2+ ions reported previously. The effects of the change in the pH, the anionic and cationic surfactants, and bentonite on the flotation rate have also been studied. Sodium α-sulfolaurate proved to be one of the best surfactants among the anionic surfactants used for removing Cd 2+ ions, showing as high as a 97% removal. About 97% of the Cd 2+ ions could be floated in the region of pH 11.3 when a cationic surfactant was used with bentonite, regardless of the exact surfactant used. The addition of bentonite reduced the foam formation and liquid hold-up, resulting in effective bubble flotation. This behavior was as a whole similar to that of Cu 2+ ions. However, in all the flotation systems tested, the flotation rate increased sharply at about pH 8, and the flotation rate vs. pH curve for Cd 2+ shifted towards a more alkaline region than that for Cu 2+ , because of the stronger basic nature of the former. Also, the flotation rate of Cd 2+ ions for the Cd 2+ -anionic surfactant systems attained a steady value after about 7 min, longer than the 2-min gas flow required in the case of Cu 2+ ion flotation. The adjustment of the pH using ammonia gave a lower rate of flotation than in the case of flotation using sodium hydroxide. (auth.)

  1. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    Science.gov (United States)

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  2. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  3. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    Science.gov (United States)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.

  4. Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LIU Yao-guang; HUANG Ning-kang

    2008-01-01

    Titanium carbide coatings are widely used as various wear-resistant material.The hydrogen erosion resistance of TiC-C films and the effect of hydrogen participation on TiC-C films were studied.Seventy-five percent TiC-C films are prepared on stainless steel surface by using ion mixing,where TiC-C films are deposited by rf magnetron sputtering followed by argon ion bombardment.The samples are then submitted to hydrogen ion implantation at 1.2×10-3 Pa.Characterization for the 75% TiC-C films was done with SIMS,XRD,AES,and XPS.Secondary ion mass spectroscopy (SIMS) was used to analyze hydrogen concentration variation with depth,X-Ray diffraction (XRD) was used to identify the phases,and Auger electron spectra (AES) as well as X-ray photoelectron spectra (XPS) were used to check the effects of hydrogen on shifts of chemical bonding states of C and Ti in the TiC-C films.It is found that TiC-C films on stainless steel surface can prevent hydrogen from entering stainless steel.

  5. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  6. Measurement of acetates in air using differential ion mobility spectrometer

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Zajiczek, Żaneta; Maziejuk, Mirosław

    2017-11-01

    Volatile organic compounds are one of the most important group of air pollutants. Potential health and environmental problems resulting from their emission prompted the requirement for monitoring these species. It motivates development of new measurement techniques which are fast, cost effective, reliable and field deployable. One of novel approaches is ion mobility spectrometry. It dwells on ion separation in electric field, based on differences in ion mobility. Many variants of this method are developed. In this wok, differential ion mobility spectrometry (DMS) was considered in respect of acetate measurements in air. It was demonstrated that DMS offers linear response to methyl, ethyl, propyl and butyl acetate in concentration range from 0.3 ppm to 7 ppm. Positive ions spectrum has to be utilised for this purpose. We showed that fragments of DMS spectrum which secure linearity are compound-specific. The obtained results are promising from the application point of view.

  7. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  8. Control of cluster ion sizes for efficient injection heating

    International Nuclear Information System (INIS)

    Enjoji, Hiroshi; Be, S.H.; Yano, Katsuki; Okamoto, Kosuke

    1976-01-01

    For heating of plasmas by injection of hydrogen cluster ions, the specific size (N/Z) approximately 10 2 molecules/charge is believed to be most desirable. A fundamental research to develop a practical method for tailoring large cluster ions into small suitable sizes has been carried out by using nitrogen cluster ions of the initial mean specific size (N/Z) 0 approximately 10 5 . The beam of neutral large clusters of total intensity 20 mAsub(eq) was led to an ionizer and then the large cluster ions are accelerated to 8.9 keV before entering the divider which disintegrates them into small fragments by multiple ionization. The mean specific size of disintegrated cluster ions (N/Z)' becomes smaller with increase in ionizing electron current of the divider. (N/Z)' becomes 10 3 approximately 10 4 at an electron current of 140 mA and an accelerating voltage of 680 V of the divider with its efficiency of 20 approximately 60%. Thus, the original large cluster ions are divided into small fragments of which the mean specific size is 1/20 approximately 1/100 of the initial value without much decrease in total intensity of the cluster ion beam

  9. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)

    2012-01-15

    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  11. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  12. Synthesis of Ni(OH)2 Nanoflakes Through a Novel Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Supercapacitive Properties

    International Nuclear Information System (INIS)

    Zhao, Jiangshan; Zhang, Qiang

    2015-01-01

    Highlights: • We synthesized β-Ni(OH) 2 nanoflakes through a novel ion diffusion method. • The possible formation mechanism of the Ni(OH) 2 nanoflakes was discussed. • The temperature influence on growth of Ni(OH) 2 nanocrystals and its subsequent effect on electrochemical supercapacitive properties were examined. • The β-Ni(OH) 2 nanoflakes prepared at 50 °C for 12 h exhibits the highest specific capacitance of 2102 F g −1 . - Abstract: A novel method, ion diffusion method controlled by ion exchange membrane was reported for the synthesis of Ni(OH) 2 nanomaterials in the absence of any template or organic surfactant. The structure and morphology of as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), BET specific surface area and pore size distribution analyzer. It can be observed that β-Ni(OH) 2 nanoflake-like structure was obtained, and the sheet size, thickness and pore size of as-prepared samples can be controlled by altering reaction time and reaction temperature. The BET specific surface area of Ni(OH) 2 nanomaterials obtained by this method can be up to 280.5 m 2 /g at 30 °C. The electrochemical supercapacitive properties of Ni(OH) 2 nanostructures have been investigated by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy techniques. All these Ni(OH) 2 samples exhibit good capacity for electrochemical supercapacitor in KOH electrolyte. The flake nanostructures synthesized at 50 °C for 12 h exhibit a highest specific capacitance of 2102 F g −1 at a current density of 20 mA cm −2 within the potential range of 0.5 V and the Ni(OH) 2 sample retains 85.1% of the initial capacitance even after 1000 continuous charge–discharge cycles. The results indicate that ion diffusion method controlled by ion exchange membrane is a useful method for synthesizing inorganic nanomaterials.

  13. Ion engine auxiliary propulsion applications and integration study

    Science.gov (United States)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  14. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  15. Effect of Neoclassical Transport Optimization on Energetic Ion Confinement in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Sasao, M.

    2004-01-01

    Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of ''advanced stellarators.'' The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems

  16. Re-entering fast ion effects on NBI heating power in high-beta plasmas of the Large Helical Device

    International Nuclear Information System (INIS)

    Seki, Ryosuke; Watanabe, Kiyomasa; Funaba, Hisamichi; Suzuki, Yasuhiro; Sakakibara, Satoru; Ohdachi, Satoshi; Matsumoto, Yutaka; Hamamatsu, Kiyotaka

    2011-10-01

    We calculate the heating power of the neutral beam injection (NBI) in the = 4.8% high-beta discharge achieved in the Large Helical Device (LHD). We investigate the difference of the heating efficiency and the heating power profile between with and without the re-entering fast ion effects. When the re-entering fast ion effects are taken into account, the heating efficiency in the co injection of the NBI (co-NBI case) is improved and it is about 1.8 times larger than that without the re-entering effects. In contrast, the heating efficiency with the re-entering effects in the counter injection of the NBI (ctr-NBI case) rarely differs from that without the re-entering ones. We also study the re-entering fast ion effects on the transport properties in the LHD high beta discharges. It is found that the tendency of the thermal conductivities on the beta value is not so much sensitive with and without the re-entering effects. In addition, we investigate the difference in the re-entering fast ion effects caused by the field strength and the magnetic configuration. In the co-NBI case, the re-entering fast ion effects on the heating efficiency increases with the decrease of the field strength. In the contrast, the re-entering fast ion effects in the ctr-NBI case rarely differs by changing the field strength. (author)

  17. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  18. Cathodoluminescence and ion beam analysis of ion-implanted combinatorial materials libraries on thermally grown SiO2

    International Nuclear Information System (INIS)

    Chen, C.-M.; Pan, H.C.; Zhu, D.Z.; Hu, J.; Li, M.Q.

    1999-01-01

    A method combining ion implantation and physical masking technique has been used to generate material libraries of various ion-implanted samples. Ion species of C, Ga, N, Pb, Sn, Y have been sequentially implanted to an SiO 2 film grown on a silicon wafer through combinatorial masks and consequently a library of 64 (2 6 ) samples is generated by 6 masking combinations. This approach offers rapid synthesis of samples with potential new compounds formed in the matrix, which may have specific luminescent properties. The depth-resolved cathodoluminescence (CL) measurements revealed some specific optical property in the samples correlated with implanted ion distributions. A marker-based technique is developed for the convenient location of sample site in the analysis of Rutherford backscattering spectrometry (RBS) and proton elastic scattering (PES), intended to characterize rapidly the ion implanted film libraries. These measurements demonstrate the power of nondestructively and rapidly characterizing composition and the inhomogeneity of the combinatorial film libraries, which may determine their physical properties

  19. Generation of H-, D- ions on composite surfaces with application to surface/plasma ion source systems

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.; Wimmer, E.; Freeman, A.J.; Chubb, S.R.

    1983-01-01

    We review some salient features of the experimental and theoretical data pertaining to hydrogen negative ion generation on minimum-work-function composite surfaces consisting of Cs/transition metal substrates. Cesium or hydrogen ion bombardment of a cesium-activated negatively-biased electrode exposed to a cesium-hydrogen discharge results in the release of hydrogen negative ions. These ions originate through desorbtion of hydrogen particles by incident cesium ions, desorbtion by incident hydrogen ions, and by backscattering of incident hydrogen. Each process is characterized by a specific energy and angular distribution. The calculation of ion formation in the crystal selvage region is discussed for different approximations to the surface potential. An ab initio, all-electron, local density functional model for the composite surface electronics is discussed

  20. Effect of argon ion etching on the magnetic properties of FeCoB films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Junwei; Zhou, Kan; Yang, Yi; Tang, Dongming; Zhang, Baoshan, E-mail: malab@nju.edu.cn; Lu, Mu; Lu, Huaixian

    2015-01-15

    In this paper, a new method to modify Ta underlayers by an argon ion etching technology is introduced. Surface roughness of Ta underlayers, as well as soft magnetic properties of post-deposited FeCoB films can be improved by applying a proper ion etching process. The reduction of magnetic coercivity of FeCoB films deposited on the modified Ta underlayers is attributed to the improvement of interfacial roughness, which can reduce magnetic ripples in magnetic films. The microwave damping linewidth of magnetic films is also found to be related to the interfacial roughness. Ta underlayers modified by the ion etching can reduce the influence of two-magnon scattering effect, and thus tune microwave properties of magnetic films. All the results prove that argon ion etching is an effective way to tailor magnetic properties of magnetic films. - Highlights: • We believe that our method to tune the magnetic film properties will be interesting for general readers of Journal of Magnetism and Magnetic Materials. • In the paper, argon ion etching is applied to the Ta underlayer before the FeCoB film is deposited on it. • The modified interface roughness has effectively improved the magnetic properties, including the static magnetic and microwave performance. • The method is valuable for other underlayer/magnetic film systems.

  1. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.

    Science.gov (United States)

    Li, Liang; Ma, Ying

    2014-10-01

    The effects of divalent metal ions (Ca(2+), Mg(2+), Fe(2+), and Cu(2+)) on the growth, β-oxidation system, and thioesterase activity of Lactococcus lactis were investigated. Different metal ions significantly influenced the growth of L. lactis: Ca(2+) and Fe(2+) accelerated growth, whereas Cu(2+) inhibited growth. Furthermore, Mg(2+) inhibited growth of L. lactis at a low concentration but stimulated growth of L. lactis at a high concentration. The divalent metal ions had significant effects on activity of the 4 key enzymes of the β-oxidation system (acyl-CoA dehydrogenase, enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and thiolase) and thioesterase of L. lactis. The activity of acyl-CoA dehydrogenases increased markedly in the presence of Ca(2+) and Mg(2+), whereas it decreased with 1 mmol/L Fe(2+) or 12 mmol/L Mg(2+). All the metal ions could induce activity of enoyl-CoA hydratase. In addition, 12 mmol/L Mg(2+) significantly stimulated activity of L-3-hydroxyacyl-CoA dehydrogenase, and all metal ions could induce activity of thiolase, although thiolase activity decreased significantly when 0.05 mmol/L Cu(2+) was added into M17 broth. Inhibition of thioesterase activity by all 4 metal ions could be reversed by 2 mmol/L Ca(2+). These results help us understand the effect of metal ions on the β-oxidation system and thioesterase activity of Lactococcus lactis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effect of ion beam irradiation on morphological and flowering characteristics of chrysanthemum

    International Nuclear Information System (INIS)

    Shakinah Salleh; Zaiton Ahmad; Affrida Abu Hassan; Thohiroh Lee Abdullah

    2012-01-01

    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture industry and the lack of new local owned varieties led to this mutation breeding research. The objective of this study was to compare the effectiveness of ion beam irradiation in generating mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. Reagan Red. Ion beams has become a new physical mutagens for mutation breeding. The ray florets and nodal explants were irradiated with ion beam at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy. The 50 % of in vitro shoot regeneration (RD 50 ) for ray florets explants was 2.0 Gy and for nodal explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0 times higher than the nodal explants. The regenerated plant lets were planted in the greenhouse at MARDI, Cameron Highlands for morphological screening. Overall performance of survival plant lets derived from in vitro nodal and ray florets explants was recorded. The characters studied include plant morphology and flowering characteristic. The ray florets explants were found to be more sensitive to ion beam irradiation and generated more mutations as compared to nodal explants. (author)

  4. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  5. Effect of ion beam irradiation of fresh-keeping of strawberry

    International Nuclear Information System (INIS)

    Lei Qing; Huang Min; Wu Ling; Mo Yan; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; Kang Ju

    2011-01-01

    Effects of ion beam irradiation on strawberry quality were studied, in this study and microbial biomass, decay index, weight loss and biological index were detected. Irradiation dosage were 1.0, 2.0 and 3.0 kGy. The results showed that the irradiation decreased the number of microorganism in the strawberry and delayed the rotten speed. The soluble solide, Vc and total acid content of irradiated strawberry reduced slower than that of control. It indicated that the irradiation dosage did not affect the quality of strawberry in this study . Therefore, 2.0 ∼ 3.0 kGy of ion beam irradiation were an excellent irradiation dosage for strawberry preservation. (authors)

  6. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  7. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  8. The effects of ion implantation on the beaks of orthodontic pliers

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, E.; Cleaton-Jones, P.E.; Luyckz, S.; Fatti, L.P. (University of the Witwatersrand (South Africa))

    1991-06-01

    The surface of stainless steel may be hardened by bombarding the material with a stream of nitrogen ions generated by a nuclear accelerator. In the present study this technique was used to determine the hardening effect of ion implantation on the beaks of stainless steel orthodontic pliers. Ten orthodontic pliers (Dentarum 003 094) were divided into two equal groups, designated control and experimental. The beaks of the experimental pliers were subjected to ion implantation, after which the tips of the beaks of all the pliers were stressed in an apparatus attached to an Instron testing machine. A cyclical load of 500 N was applied to the handles of the pliers, while a 0.9 mm (0.036 inch) round, stainless steel wire was held between the tips of the beaks. The effect of the stress was assessed by measurement with a traveling microscope of the gap produced between the tips of the beaks. Measurements were taken before loading and after 20, 40, 60, and 80 cycles. Statistical analysis of variance and the two-sample t tests indicated that there was a significant increase in the size of the gap as the pliers were stressed from 0 to 80 cycles (p less than 0.001). Furthermore, the mean gap was significantly greater in the control group than in the experimental group (p less than 0.001). This study suggests that ion implantation increases the hardness of the tips of the beaks of orthodontic pliers.

  9. The effects of ion implantation on the beaks of orthodontic pliers

    International Nuclear Information System (INIS)

    Mizrahi, E.; Cleaton-Jones, P.E.; Luyckz, S.; Fatti, L.P.

    1991-01-01

    The surface of stainless steel may be hardened by bombarding the material with a stream of nitrogen ions generated by a nuclear accelerator. In the present study this technique was used to determine the hardening effect of ion implantation on the beaks of stainless steel orthodontic pliers. Ten orthodontic pliers (Dentarum 003 094) were divided into two equal groups, designated control and experimental. The beaks of the experimental pliers were subjected to ion implantation, after which the tips of the beaks of all the pliers were stressed in an apparatus attached to an Instron testing machine. A cyclical load of 500 N was applied to the handles of the pliers, while a 0.9 mm (0.036 inch) round, stainless steel wire was held between the tips of the beaks. The effect of the stress was assessed by measurement with a traveling microscope of the gap produced between the tips of the beaks. Measurements were taken before loading and after 20, 40, 60, and 80 cycles. Statistical analysis of variance and the two-sample t tests indicated that there was a significant increase in the size of the gap as the pliers were stressed from 0 to 80 cycles (p less than 0.001). Furthermore, the mean gap was significantly greater in the control group than in the experimental group (p less than 0.001). This study suggests that ion implantation increases the hardness of the tips of the beaks of orthodontic pliers

  10. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  11. Fractionated exposure of high energy iron ions has a sparing effect in vivo

    Science.gov (United States)

    Chang, P. Y.; Bakke, J.; Puey, A.

    The radiation environment in deep space is complex and includes a broad spectrum of charged and highly energetic particle radiations. Exposure to these types of radiations may pose potential health risks in manned space missions. The detection of particle radiation-induced genomic alterations in vivo, particularly in slow or non-dividing tissues, is therefore important to provide relevant information in estimating risks. We are using a plasmid-based lacZ transgenic mouse model system to rapidly measure, in a statistically reliable way, the mutagenic potential of charged particle radiations relevant in the space environment. The lacZ transgenic mouse has been constructed so that every cell of the animal contains multiple copies of an integrated target reporter gene, allowing us to measure tissue-specific radiation-induced changes as a function of dosing regime. The nature of these mutations can also be characterized by restriction fragment length polymorphisms (RFLP). To examine the impact of dose protraction, animals were exposed to a single dose or daily fractions of 1 GeV/n iron ions. Cytotoxicity in the peripheral blood was measured by enumerating the frequency of circulating micronucleated reticulocytes (fMN-RET) in a time course from 24 h up to 1 week after completion of the radiation protocol. Brain and spleen tissues were harvested at 8 weeks after exposure and mutant frequencies (MF) in the transgene in these tissues were measured. Results from the fractionated protocol were compared to the responses obtained after the animals were exposed to the single dose treatment. We noted significantly lower levels of micronucleated reticulocytes in peripheral blood at 48 h after fractionated doses of iron ions when compared to the same total dose delivered in a single exposure demonstrating that protracted exposures of particle radiation resulted in an overall sparing effect in cytogenetic toxicity in the hematopoietic system in animals. Transgene mutation analysis

  12. Wound healing effect of bioactive ion released from Mg-smectite.

    Science.gov (United States)

    Sasaki, Yu; Sathi, Gulsan Ara; Yamamoto, Osamu

    2017-08-01

    Bioactive ions like Mg 2+ and Si 4+ have been known as promotion factors of tissue regeneration. In the present work, Mg-smectite, consisting of Mg 2+ and Si 4+ ions, was synthesized by a solution process, and evaluated for the efficiency of the powder on wound healing in rats. White precipitates were obtained by mixing a magnesium chloride hexahydrate solution and a sodium silicate hexahydrate solution at room temperature. The precipitates mixed with a NaOH aqueous solution were subjected to hydrothermal reaction, and finally crystalline Mg-smectite powder was obtained. The crystal and molecular structure of Mg-smectite was identified by X-ray diffractometry (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The synthesized material was determined to be crystalline Mg-smectite. The amount of Mg 2+ and Si 4+ ions released from Mg-smectite in physiological saline was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). The total amount of Si 4+ ion released from Mg-smectite was greater than that of Mg 2+ ion. To evaluate the wound healing effect of Mg-smectite, Mg-smectite powder was applied to a full-thickness surgical wound reaching the subcutaneous tissue in the rat's abdomen. At 1 and 2weeks, skin tissue was collected and subjected to histological analysis. The results for skin regeneration showed no significant difference in wound size between the control and Mg-smectite group. However, it was found that the neovascularization, collagen deposition, and maturation were notedly accelerated by applying Mg-smectite powder in comparison with the control. Mg-smectite can then be hypothesized to stimulate the regeneration of skin tissue by releasing Mg 2+ and Si 4+ ions. These results suggested that Mg-smectite could offer great potential as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  14. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2016-05-01

    Full Text Available In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

  15. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  16. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  17. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  18. Effects of heavy-ion radiosurgery on the hemopoietic function of the silkworm Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhen-Li; Kobayashi, Yasuhiko; Watanabe, Hiroshi; Yamamoto, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kiguchi, Kenji [SHINSHU Univ., Ueda, Nagano (Japan). Faculty of Textile Science and Technology

    2002-09-01

    To study the effects of heavy-ion radiosurgery on the hemopoietic function of a silkworm, hemopoietic organs of larvae were locally irradiated with carbon-ion beams, and the changes in the hemocyte density and in the hemocyte function were investigated. When the larvae were irradiated by 50 Gy to 300 Gy carbon ions on the 3rd day of the 4th instar, the hemocyte densities did not change for a while, though they gradually increased at a later stage, but were finally still significantly lower than those of unirradiated controls. The hemocyte densities of the larvae irradiated at different developmental stages showed suppressed increments, and carbon-ion irradiation given to larvae at early stages compared to the later stages had a significant suppressive effect on the hemocyte densities. On unilateral irradiated larvae a hemocyte intermediate increment between those of bilateral irradiated larvae and unirradiated controls was observed. The percentage of dead hemocytes was obviously higher for irradiated larvae than unirradiated controls during the later 5th instar. Thus, it is evident that carbon-ion radiosurgery on hemopoietic organs of silkworm induced not only a quantitative change, but also a qualitative change in the hemocytes. (author)

  19. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...

  20. Effect of heavy ion irradiation on C 60

    Science.gov (United States)

    Lotha, S.; Ingale, A.; Avasthi, D. K.; Mittal, V. K.; Mishra, S.; Rustagi, K. C.; Gupta, A.; Kulkarni, V. N.; Khathing, D. T.

    1999-06-01

    Thin films of C 60 were subjected to swift heavy ion irradiation spanning the region from 2 to 11 keV/nm of electronic excitation. Studies of the irradiated films by Raman spectroscopy indicated polymerization and damage of the film with an ion fluence. The ion track radii are estimated for various ions using the Raman data. Photoluminescence spectroscopy of the irradiated film indicated a decrease in the C 60 phase with a dose, and an increase in the intensity at the 590 nm wavelength, which is attributed to an increase in the oxygen content.