WorldWideScience

Sample records for specific applications-from energy

  1. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  2. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  3. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  4. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  5. Precision agriculture - from mapping to site-specific application

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Lind, Kim Martin Hjorth

    2017-01-01

    of each chapter in the book. Each chapter address a different topic starting with an overview of technologies that are currently available, followed by specific Variable-Rate Technologies such as VRT fertilizer application, VRT pesticide application, site-specific irrigation management, Auto...

  6. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2010-01-01

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode

  7. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  8. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  9. Carbon Nanofibrous Materials from Electrospinning: Preparation and Energy Applications

    Science.gov (United States)

    Aboagye, Alex

    Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique one-dimensional nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. The overall objective of this research was the design and production fiber based carbon nanomaterials, investigation of their structures and use in functional applications. Specifically, these carbon nanofibrous materials were employed as electrode material for energy storage and conversion devices such as dye sensitized solar cells and supercapacitors Morphology and structure of the carbon nanofibrous materials were investigated and their performance in corresponding applications were evaluated.

  10. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  11. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  12. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  13. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  14. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  15. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-08-01

    Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  16. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, Damien, E-mail: damien.barbes@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tabary, Joachim, E-mail: joachim.tabary@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Paulus, Caroline, E-mail: caroline.paulus@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hazemann, Jean-Louis, E-mail: jean-louis.hazemann@neel.cnrs.fr [Univ.Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Verger, Loïck, E-mail: loick.verger@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-03-11

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  17. Development and applications of energy-specific fluence monitor for field monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, D.N., E-mail: nkkumar@igcar.gov.i [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Somayaji, K.M.; Venkatesan, R.; Meenakshisundaram, V. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2011-07-15

    A portable energy-specific fluence monitor is developed for field monitoring as well as to serve as stand-alone data acquisition system to measure dose rate due to routine releases at various locations in and around Nuclear Power Reactors. The data from an array of such monitors deployed over a region of interest would help in evolving a methodology to arrive at the source term evaluation in the event of a postulated nuclear incident. The other method that exists for this purpose is by conducting tracer experiments using known release of a gas like SF{sub 6} into the atmosphere and monitoring their concentrations downwind. The above instrument enables one to use the routine release of {sup 41}Ar as a tracer gas. The Argon fluence monitor houses a CsI(Tl) detector and associated miniature electronics modules for conditioning the signal from the detector. Data logging and in-situ archival of the data are controlled by a powerful web enabled communication controller preloaded with Microsoft Windows Compact Edition (WIN CE). The application software is developed in Visual Basic.NET under Compact Framework and deployed in the module. The paper gives an outline of the design aspects of the instrument, associated electronics and calibration of the instrument, including the preliminary results obtained using the instrument. The utility of the system is established by carrying out field survey around Madras Atomic Power Station (MAPS), consisting of two Pressurized Heavy Water Reactors (PHWR), by mapping the {sup 41}Ar plume. Additional features such as enhancing the monitor capability with embedded GPS along with real-time linking using wireless networking techniques are also being incorporated.

  18. 78 FR 64207 - Application To Export Electric Energy; TEC Energy Inc.

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-388] Application To Export Electric Energy; TEC Energy Inc.... SUMMARY: TEC Energy Inc. (TEC) has applied for authority to transmit electric energy from the United... received an application from TEC for authority to transmit electric energy from the United States to Canada...

  19. Crystallization of glass-forming liquids: Specific surface energy

    International Nuclear Information System (INIS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  20. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    Science.gov (United States)

    Chandrasekharan, Nataraj

    especially if the application imposes a space/size constraint. Moreover, the bimorph with increased thickness will now require a larger mechanical force to deform the structure which can fall outside the input ambient excitation amplitude range. In contrast, the honeycomb core bimorph offers an advantage in terms of preserving the global geometric dimensions. The natural frequency of the honeycomb core bimorph can be altered by manipulating honeycomb cell design parameters, such as cell angle, cell wall thickness, vertical cell height and inclined cell length. This results in a change in the mass and stiffness properties of the substrate and hence the bimorph, thereby altering the natural frequency of the harvester. Design flexibility of honeycomb core bimorphs is demonstrated by varying honeycomb cell parameters to alter mass and stiffness properties for power harvesting. The influence of honeycomb cell parameters on power generation is examined to evaluate optimum design to attain highest specific power. In addition, the more compliant nature of a honeycomb core bimorph decreases susceptibility towards fatigue and can increase the operating lifetime of the harvester. The second component of this dissertation analyses an uncoupled equivalent circuit model for piezoelectric energy harvesting. Open circuit voltage developed on the piezoelectric materials can be easily computed either through analytical or finite element models. The efficacy of a method to determine power developed across a resistive load, by representing the coupled piezoelectric electromechanical problem with an external load as an open circuit voltage driven equivalent circuit, is evaluated. The lack of backward feedback at finite resistive loads resulting from such an equivalent representation is examined by comparing the equivalent circuit model to the governing equations of a fully coupled circuit model for the electromechanical problem. It is found that the backward feedback is insignificant for weakly

  1. Social attitude towards wind energy applications in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2005-01-01

    During the last 3 yr (1999-2002) a significant increase in the utilization of the existing wind power has taken place in Greece, after a long period (1993-1998) of inactivity. Unfortunately, the largest part of new scheduled installations is concentrated in a few geographical regions, in an attempt to take advantage of the existing electrical network capabilities and the acceptable infrastructure situation. This significant concentration of very large size wind turbines, rapidly installed in a few geographical areas, led to serious reactions from the local population, which in some cases even led to the complete cancellation of the wind power projects. In this context, an extensive study is conducted, concerning the public attitude towards wind energy applications, in several island and mainland Greek territories possessing high wind potential and investment interest. The results obtained significantly reveal acceptance of the existing wind parks, being, however, rather against new installations. More specifically, in the Greek islands the public attitude is clearly supportive, while in the Greek mainland the public attitude is either divided or definitely against wind power applications. The most troublesome outcome of this survey is the existence of a specific minority that is strongly against wind energy applications, disregarding any financial benefits. Among the primary conclusions drawn, one may underline the necessity of additional public information regarding the wind energy sector

  2. Wood energy-commercial applications

    Science.gov (United States)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  3. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection.

    Science.gov (United States)

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2016-03-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.

  4. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-289-B] Application To Export Electric Energy; Intercom... application. SUMMARY: Intercom Energy, Inc. (Intercom) has applied to renew its authority to transmit electric... of Energy (DOE) issued Order No. EA-289, which authorized Intercom to transmit electric energy from...

  5. Results from Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  6. Results From Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, Kevin [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  7. universal specific energy curve for para- bolic open channels

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    UNIVERSAL SPECIFIC ENERGY CURVE FOR PARA-. BOLIC OPEN CHANNELS. K.O. Aiyesimoju. Department of Civil Engineering. University of Lagos. Lagos, Nigeria. ABSTRACT. From the general relationship between specific energy and flow depth for all open channels, the specific relationship for parabolic open ...

  8. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  9. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    Science.gov (United States)

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  10. The waste originating from nuclear energy peaceful applications and its management

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management

  11. Energy from wood - an overview

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2000-01-01

    The present publication is the introduction to a series of papers on fundamentals and applications of wood energy. It summarizes figures and data of the actual situation of fuel wood utilization in Switzerland and its potential for the future. Further, the advantages of bio-energy are discussed and the possibilities of funding for bio-energy in Switzerland are described. Wood contributes with 2.5% to the total energy demand in Switzerland nowadays. However, the utilization of wood energy can be more than doubled, which is one of the targets of the Swiss energy policy. The supply chains for the different types of fuel wood are described and specifications and prices of log wood, forestry wood chips and wood residues are presented. The main applications of wood energy are residential heating with manually operated wood boilers and stoves, on the one hand, and heat production with automatic wood furnaces in industry and communities, on the other hand. Automatic furnaces have been promoted in the past ten years and hence they contribute nowadays with more than 50% to the energy supply from wood with a further growing share. As an assistance for further information, a list of institutions and addresses in the field of wood energy in Switzerland is given in the paper. (author)

  12. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  13. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  14. Generating Safety-Critical PLC Code From a High-Level Application Software Specification

    Science.gov (United States)

    2008-01-01

    The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is

  15. 75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC

    Science.gov (United States)

    2010-12-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-191-D] Application To Export Electric Energy; Sempra Energy... application. SUMMARY: Sempra Energy Trading LLC (SET) has applied to renew its authority to transmit electric... transmit electric energy from the United States to Canada for a two- year term as a power marketer using...

  16. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Science.gov (United States)

    2012-05-25

    ...] Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States to... date listed above. Comments on the Emera applications to export electric energy to Canada should be...

  17. Renewable energy technology from underpinning physics to engineering application

    International Nuclear Information System (INIS)

    Infield, D G

    2008-01-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the 'UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry'. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation

  18. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  19. Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea

    Directory of Open Access Journals (Sweden)

    Wonchang Hur

    2015-05-01

    Full Text Available Energy Storage Systems (ESSs have recently been highlighted because of their many benefits such as load-shifting, frequency regulation, price arbitrage, renewables, and so on. Among those benefits, we aim at evaluating their economic value in frequency regulation application. However, unlike previous literature focusing on profits obtained from participating in the ancillary service market, our approach concentrates on the cost reduction from the perspective of a utility firm that has an obligation to pay energy fees to a power exchange. More specifically, we focus on the payments between the power exchange market and the utility firm as a major source of economic benefits. The evaluation is done by cost- benefit analysis (CBA with a dataset of the Korean market while considering operational constraint costs as well as scheduled energy payments, and a simulation algorithm for the evaluation is provided. Our results show the potential for huge profits to be made by cost reduction. We believe that this research can provide a guideline for a utility firm considering investing in ESSs for frequency regulation application as a source of cost reduction.

  20. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-315-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... BP Energy to transmit electric energy from the United States to Canada as a power marketer for a five...

  1. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  3. Hybrid energy fuel cell based system for household applications in a Mediterranean climate

    International Nuclear Information System (INIS)

    Nižetić, S.; Tolj, I.; Papadopoulos, A.M.

    2015-01-01

    Highlights: • A hybrid energy system was proposed, combining a HT-PEM fuel cell system and a standard split heat pump system with heat recovery for household applications. • The hybrid energy system is able to produce both high and low temperature heat, electricity and cooling capacity. • The system showed high overall energy efficiency and a favorable environmental aspect. • The calculated cost of overall produced energy proved to be competitive in comparison with the average cost of electricity for households. - Abstract: In this paper, a specific hybrid energy system was proposed for household applications. The hybrid energy system was assembled from a HT-PEM fuel cell stack supplied by hydrogen via a steam reformer, where finally the majority of produced electricity is used to drive a modified split heat pump system with heat recovery (that is enabled via standard modified accumulation boilers). The system is able to produce both high and low temperature heat output (in the form of hot water), cooling thermal output and electricity. Performance analysis was conducted and the specific hybrid energy system showed high value for overall energy efficiency, for the specific case examined it reached 250%. Levelized Cost of Energy (LCOE) analysis was also carried out and the proposed hybrid energy system’s cost is expected to be between 0.09 €/kW h and 0.16 €/kW h, which is certainly competitive with the current retail electricity price for households on the EU market. Additionally, the system also has environmental benefits in relation to reduced CO 2 emissions, as estimated CO 2 emissions from the proposed hybrid energy system are expected to be at around 9.0 gCO 2 /kW h or 2.6 times less than the emissions released from the utilization of grid electricity.

  4. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-314-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... electric energy from the United States to Mexico as a power marketer for a five-year term using existing...

  5. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  6. Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    A. Cavallo

    2017-01-01

    Full Text Available In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator to generator mode (i.e., when the battery pumps energy on the high-voltage bus is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

  7. Specific Energy of Hard Coal Under Load

    Directory of Open Access Journals (Sweden)

    Bogusz Anna

    2015-03-01

    Full Text Available The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the

  8. Energy conservation in ethanol production from renewable resources and non-petroleum energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

  9. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... surplus energy purchased from electric utilities, Federal power marketing agencies and other entities... DEPARTMENT OF ENERGY [OE Docket No. EA-376] Application To Export Electric Energy; Societe...

  10. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  11. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-382] Application To Export Electric Energy; Glacial Energy... Application. SUMMARY: Glacial Energy of Texas, Inc. (Glacial) has applied for authority to transmit electric... for authority to transmit electric energy from the United States to Mexico for five years as a power...

  12. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  13. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  14. Bio-specific recognition and applications: from molecular to colloidal scales

    International Nuclear Information System (INIS)

    Baudry, Jean; Bertrand, Emanuel; Lequeux, Nicolas; Bibette, Jerome

    2004-01-01

    Biomolecules have the well-known ability to build reversible complexes. Indeed, antigens and antibodies or adhesion molecules are able to recognize one another with a strong affinity and a very high specificity. This paper first reviews the various techniques and related results about binding and unbinding, at the scale of a unique ligand/receptor couple. One important biotechnological application arising from these recognition phenomena concerns immuno-diagnosis, which is essentially based on the formation of these specific complexes. We show how the physics of colloids associated with the growing scientific background concerning molecular recognition helps in rationalizing and inventing new diagnostic strategies. Finally the concept of colloidal self-assembling systems as biosensors is presented as directly impacting the most important questions related to molecular recognition and their biotechnological implications. (topical review)

  15. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-327-A] Application To Export Electric Energy; DC Energy.... SUMMARY: DC Energy, LLC (DC Energy) has applied to renew its authority to transmit electric energy from..., the Department of Energy (DOE) issued Order No. EA-327 authorizing DC Energy to transmit electric...

  16. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  17. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Science.gov (United States)

    2010-12-10

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-306-A] Application To Export Electric Energy; MAG Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... of Energy (DOE) issued Order No. EA-306, which authorized MAG E.S. to transmit electric energy from...

  18. Application specific dimensioning of energy storage systems for light rail vehicles; Betriebsspezifische Auslegung von Energiespeichern fuer Strassenbahnen

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, S. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany). Abt. fuer Emissionsfreie Antriebe und Energiespeicher; Lehnert, M. [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme IVI, Dresden (Germany)

    2008-07-01

    The insertion of electric energy storage systems to obtain a decreasing energy and power demand of trams and light rail vehicles can occur as stationary or mobile construction. For the dimensioning of a mobile energy storage system the objective of the application has to be fixed. At the practical example of the tram in Dresden the dimensioning with the goal energy saving is demonstrated. (orig.)

  19. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  20. Biomass - Energy - Climate - From photosynthesis to bio-economy. V. 1: 'the energy from the fields'; V. 2: 'the energy from the woods'

    International Nuclear Information System (INIS)

    Brulhet, Jacques; Figuet, Raymond; Bardon, Eric; Bour-Poitrinal, Emmanuelle; Dereix, Charles; Leblanc-Cuvillier, Anick

    2011-10-01

    A fist volume presents, outlines and comments the possibilities of energy generation from the biomass produced in fields, the development potential of biomass production and of food industry, the challenge of bio-wastes and soil structure, the relationship between renewable energies and new crops, the development of agriculture to supply bio-refineries, produce biofuels and develop vegetal chemistry. Examples of biomass valorisation in la Reunion are presented. The second volume addresses the possibilities related to wood exploitation. It outlines ways to mobilise this resource, discusses the issue of forest exploitation in Guyana, gives an overview of wood applications, describes how to valorise forest carbon storage, gives an overview of innovation, governance and information for this specific sector, and evokes the place of bio-economy on markets

  1. Scaling up biomass gasifier use: an application-specific approach

    International Nuclear Information System (INIS)

    Ghosh, Debyani; Sagar, Ambuj D.; Kishore, V.V.N.

    2006-01-01

    Biomass energy accounts for about 11% of the global primary energy supply, and it is estimated that about 2 billion people worldwide depend on biomass for their energy needs. Yet, most of the use of biomass is in a primitive and inefficient manner, primarily in developing countries, leading to a host of adverse implications on human health, environment, workplace conditions, and social well being. Therefore, the utilization of biomass in a clean and efficient manner to deliver modern energy services to the world's poor remains an imperative for the development community. One possible approach to do this is through the use of biomass gasifiers. Although significant efforts have been directed towards developing and deploying biomass gasifiers in many countries, scaling up their dissemination remains an elusive goal. Based on an examination of biomass gasifier development, demonstration, and deployment efforts in India-a country with more than two decades of experiences in biomass gasifier development and dissemination, this article identifies a number of barriers that have hindered widespread deployment of biomass gasifier-based energy systems. It also suggests a possible approach for moving forward, which involves a focus on specific application areas that satisfy a set of criteria that are critical to deployment of biomass gasifiers, and then tailoring the scaling up strategy to the characteristics of the user groups for that application. Our technical, financial, economic and institutional analysis suggests an initial focus on four categories of applications-small and medium enterprises, the informal sector, biomass-processing industries, and some rural areas-may be particularly feasible and fruitful

  2. 77 FR 50486 - Application To Export Electric Energy; TexMex Energy, LLC

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-294-B] Application To Export Electric Energy; TexMex Energy.... SUMMARY: TexMex Energy, LLC (TexMex) has applied to renew its authority to transmit electric energy from...Mex to transmit electric energy from the United States to Mexico as a power marketer for a five-year...

  3. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  4. Application of Text Analytics to Extract and Analyze Material–Application Pairs from a Large Scientific Corpus

    Directory of Open Access Journals (Sweden)

    Nikhil Kalathil

    2018-01-01

    Full Text Available When assessing the importance of materials (or other components to a given set of applications, machine analysis of a very large corpus of scientific abstracts can provide an analyst a base of insights to develop further. The use of text analytics reduces the time required to conduct an evaluation, while allowing analysts to experiment with a multitude of different hypotheses. Because the scope and quantity of metadata analyzed can, and should, be large, any divergence from what a human analyst determines and what the text analysis shows provides a prompt for the human analyst to reassess any preliminary findings. In this work, we have successfully extracted material–application pairs and ranked them on their importance. This method provides a novel way to map scientific advances in a particular material to the application for which it is used. Approximately 438,000 titles and abstracts of scientific papers published from 1992 to 2011 were used to examine 16 materials. This analysis used coclustering text analysis to associate individual materials with specific clean energy applications, evaluate the importance of materials to specific applications, and assess their importance to clean energy overall. Our analysis reproduced the judgments of experts in assigning material importance to applications. The validated methods were then used to map the replacement of one material with another material in a specific application (batteries.

  5. Renewable energy for professional applications: a guide to implementing off-grid power supplies in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Paish, O.; Oldach, R.

    2002-09-01

    These guidelines are intended to help those considering renewable energy systems to supply power to off-grid applications without access to the UK mains electricity network. The guidelines consider: examples of renewable energy systems used applications with a low power demand in the UK; renewable energy technologies relevant to off-grid applications (solar photovoltaics, wind generators, micro-hydro turbines and hybrid systems); nine steps for project implementation; defining and optimising the load application; estimating energy resources when using solar energy, wind power and hydro power; general rules of thumb when choosing a power source; system components such as batteries, inverters, support structure and civil works; basic system sizing calculations; developing a specification and contacting suppliers; checking equipment, installation and commissioning; legal and other non-technical issues; operating issues such as maintenance and safety; and selected case studies from the UK.

  6. Renewable energy applications in Greece—What is the public attitude?

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.; Katsanou, Ev.

    2012-01-01

    Large-scale integration of Renewable Energy Sources (RES) applications is thought to be imperative for Greece in view of meeting the targets of 2020, which dictate that 20% of the national gross energy consumption and 40% of the national gross electricity consumption should be covered by RES. However, availability of suitable sites for the installation of such applications is questioned, since apart from the fact that many locations of high RES potential and adequate infrastructure have already been allocated, the society opposition often sets additional barriers. The present study focuses on the assessment of the levels of social acceptability for selected RES technologies (wind, small hydro and photovoltaics) in a representative region of Southern Greece. The specific area is of major interest since, apart from the operating and scheduled installations of RES applications in the next years, the local population is also familiar with the long-term operation of a lignite-based power station (850 MW). One three-part questionnaire has been deployed for conducting the survey based on a representative sample of local inhabitants. According to the results obtained, high levels of acceptability of renewable energy applications have been encountered although the need for additional public information regarding RES exploitation has also been designated. - Highlights: ► This study assesses the levels of social acceptability for several Renewable Energy Sources (RES) technologies. ► The survey was conducted in the wide region of central Peloponnesus (S. Greece). ► The area has already remarkable RES-based installations. ► Respondents are familiar with long-term operation of a lignite-based power station. ► Based on results, high levels of acceptability of RES applications have been recorded.

  7. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Science.gov (United States)

    2012-03-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-211-C] Application To Export Electric Energy; DTE Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... transmit electric energy from the United States to Canada as a power marketer for a two-year term using...

  8. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  9. Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Kerui

    2014-01-01

    The importance of technology heterogeneity in estimating economy-wide energy efficiency has been emphasized by recent literature. Some studies use the metafrontier analysis approach to estimate energy efficiency. However, for such studies, some reliable priori information is needed to divide the sample observations properly, which causes a difficulty in unbiased estimation of energy efficiency. Moreover, separately estimating group-specific frontiers might lose some common information across different groups. In order to overcome these weaknesses, this paper introduces a latent class stochastic frontier approach to measure energy efficiency under heterogeneous technologies. An application of the proposed model to Chinese energy economy is presented. Results show that the overall energy efficiency of China's provinces is not high, with an average score of 0.632 during the period from 1997 to 2010. - Highlights: • We introduce a latent class stochastic frontier approach to measure energy efficiency. • Ignoring technological heterogeneity would cause biased estimates of energy efficiency. • An application of the proposed model to Chinese energy economy is presented. • There is still a long way for China to develop an energy efficient regime

  10. Engaging energy saving through motivation-specific social comparison

    OpenAIRE

    Petkov, Petromil;Köbler, Felix;Foth, Marcus;Medland, Richard C.;Krcmar, Helmut

    2014-01-01

    Comparison is widely used in research projects and commercial products whose goal is to motivate energy saving at home. This research builds on fundamental theories from social psychology in an attempt to shed light on how to motivate consumers to conserve energy by providing relevant people for social comparison depending on consumer?s motivation to compare. To support the research process, the mobile application EnergyWiz was developed through a theory-driven design approach. Along with oth...

  11. 77 FR 20805 - Application to Export Electric Energy; PPL EnergyPlus, LLC

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-210-C] Application to Export Electric Energy; PPL Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... to transmit electric energy from the United States to Canada as a power marketer for a two-year term...

  12. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-328-A] Application To Export Electric Energy; RBC Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... to transmit electric energy from the United States to Canada as a power marketer for a five-year term...

  13. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    Science.gov (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  14. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  15. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  16. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Science.gov (United States)

    2011-05-25

    ... Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... an application from E-T Global for authority to transmit electric energy from the United States to...

  17. Determination of the specific surface energy of oxides and glasses in the solid-state

    International Nuclear Information System (INIS)

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  18. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-326-A] Application To Export Electric Energy; Citigroup... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... electric energy from the United States to Canada as a power marketer for a five-year term. The current...

  19. Wireless energy transmission to supplement energy harvesters in sensor network applications

    Energy Technology Data Exchange (ETDEWEB)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  20. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  1. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Science.gov (United States)

    2010-07-02

    ... Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP (BEM LP) has applied for authority to transmit electric... surplus energy purchased from electric utilities, Federal power marketing agencies and other entities...

  2. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  3. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2010-09-23

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-375] Application To Export Electric Energy; Rainbow Energy... electric energy from the United States to Mexico pursuant to section 202(e) of the Federal Power Act. DATES... franchised service area. The electric energy that Rainbow proposes to export to Mexico would be surplus...

  4. Measuring the benefits from an innovation: an application to energy

    Energy Technology Data Exchange (ETDEWEB)

    Fishelson, G

    1979-01-01

    Market imperfections mean that the public has to finance research related to improving technologies of energy usage and the finding of new energy sources. The decision to invest in research has to be based on economic criteria and one such criterion is cost--benefit analysis. Four types of innovation are presented and a way outlined in which to evaluate their social benefits. Specific characteristics, such as exhaustibility of energy resources, are explicitly included in the evaluation framework. 15 references.

  5. 77 FR 19008 - Guidelines for Home Energy Professionals: Standard Work Specifications for Single Family Energy...

    Science.gov (United States)

    2012-03-29

    .... The development of the Guidelines for Home Energy Professionals: Standard Work Specifications for... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Guidelines for Home Energy Professionals: Standard Work Specifications for Single Family Energy Upgrades AGENCY: Office of Energy...

  6. 77 FR 23238 - Guidelines for Home Energy Professionals: Standard Work Specifications for Single Family Energy...

    Science.gov (United States)

    2012-04-18

    ...: Comments on the Guidelines for Home Energy Professionals: Standard Work Specifications for Single Family... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Guidelines for Home Energy Professionals: Standard Work Specifications for Single Family Energy Upgrades AGENCY: Office of Energy...

  7. Fuel cell based integrated and distributed energy applications (FC-IDEA)

    International Nuclear Information System (INIS)

    Kotak, D.B.; Wu, S.; Fleetwood, M.S.; Tamoto, H.

    2004-01-01

    'Full text:' The commercial success of fuel cells will depend upon their adaptation to mobile (e.g., cars, wheelchairs, mopeds, bicycles), stationary (e.g., remote or distributed power), and portable energy applications. Typically such applications are capital intensive and involve a lot of unknowns given that they use new and emergent technology. Also many applications (e.g., hydrogen fuelling station) can be achieved using different technologies and 'pathways'. Thus it is important that a full assessment of possible alternatives be carried out taking into consideration factors such as: capital, operating and maintenance costs; equipment performance, utilization, reliability and scalability; effectiveness to meet the energy demand. NRC is developing a generic software tool which industry experts can use to facilitate assessment of alternative solutions to fulfill the energy requirements for their specific application. We call this tool FC-IDEA (Fuel Cell-based Integrated and Distributed Energy Applications). The system has the following key components: - A Web-based Human-Machine Interface designed for the industry expert to configure and assess alternative designs and operational approaches to satisfy their energy needs (e.g., hydrogen demand profile for a fuelling station, electricity demand profile for a stationary power application); - A Comprehensive Database containing the performance characteristics of energy devices (e.g., electrolysers, hydrogen storage tanks, compressors, dispensers, fuel cells, reformers) that may be used to configure the required application; - A Simulation Model capable of representing the physical system in full 3D to enable ' what-if' analysis of design and operational alternatives and measuring such parameters as performance, utilization, failure and maintenance, shift schedules, and costs. Using this system the expert would be able to configure alternative energy nodes (e.g., remote power) consisting of energy devices. Similarly

  8. AECL programs for new applications for nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1982-05-01

    This document reports the activities of the New Applications Steering Committee (NASC) of Atomic Energy of Canada Ltd. The NASC is intended to develop future RβD programs, and more specifically to promote certain existing ideas that have not yet become part of established programs, stimulate new idaas, identify needs and opportunities for RβD, evaluate proposals for RβD programs, initiate action on new ideas, and provide feedback to a staff who may be expected to generate ideas. Major areas and technologies that have been studied by the NASC and are covered in this report include oil substitution by nuclear heat and by electricity, energy storage and the role of hydrogen, nuclear energy in liquid fuel production, assessment of Canadian energy resources, and computer modelling of energy systems

  9. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  10. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  11. Human body heat for powering wearable devices: From thermal energy to application

    International Nuclear Information System (INIS)

    Thielen, Moritz; Sigrist, Lukas; Magno, Michele; Hierold, Christofer; Benini, Luca

    2017-01-01

    Highlights: • A complete system optimization for wearable thermal harvesting from body heat to the application is proposed. • State-of-the-art thermal harvesters and DC-DC converters are compared and classified. • Extensive simulation and experiments are carried out to characterize the harvesting performance. • A case study demonstrates the feasibility to supply a multi-sensor wearables only from body heat. - Abstract: Energy harvesting is the key technology to enable self-sustained wearable devices for the Internet of Things and medical applications. Among various types of harvesting sources such as light, vibration and radio frequency, thermoelectric generators (TEG) are a promising option due to their independence of light conditions or the activity of the wearer. This work investigates scavenging of human body heat and the optimization of the power conversion efficiency from body core to the application. We focus on the critical interaction between thermal harvester and power conditioning circuitry and compare two approaches: (1) a high output voltage, low thermal resistance μTEG combined with a high efficiency actively controlled single inductor DC-DC converter, and (2) a high thermal resistance, low electric resistance mTEG in combination with a low-input voltage coupled inductors based DC-DC converter. The mTEG approach delivers up to 65% higher output power per area in a lab setup and 1–15% in a real-world experiment on the human body depending on physical activity and environmental conditions. Using off-the-shelf and low-cost components, we achieve an average power of 260 μW (μTEG) to 280 μW (mTEG) and power densities of 13 μW cm"−"2 (μTEG) to 14 μW cm"−"2 (mTEG) for systems worn on the human wrist. With the small and lightweight harvesters optimized for wearability, 16% (mTEG) to 24% (μTEG) of the theoretical maximum efficiency is achieved in a worst-case scenario. This efficiency highly depends on the application specific conditions

  12. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  13. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  14. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  15. Application specific integrated circuits and hybrid micro circuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sukhwani, Menka; Mukhopadhyay, P.K.; Shastrakar, R.S.; Sudheer, M.; Shedam, V.; Keni, Anubha

    2009-01-01

    Rapid development in semiconductor technology, sensors, detectors and requirements of high energy physics experiments as well as advances in commercially available nuclear instruments have lead to challenges for instrumentation. These challenges are met with development of Application Specific Integrated Circuits and Hybrid Micro Circuits. This paper discusses various activities in ASIC and HMC development in Bhabha Atomic Research Centre. (author)

  16. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Science.gov (United States)

    2010-03-17

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-301-A] Application To Export Electric Energy; Integrys... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the.... 824a(e)). On May 24, 2005, DOE issued Order No. EA-301 authorizing Integrys Energy to transmit electric...

  17. Current state of low energy EB devices and its application technology

    International Nuclear Information System (INIS)

    Kinoshita, Shinobu

    2000-01-01

    This paper introduced the current state of low energy type EB (electron beam) devices with an acceleration voltage of 300 kV or below and specific application examples. As for EB devices, it introduced the ultra-compact new EB device (microbeam LV), experimental devices, and the pilot/production devices which have been recently developed by the manufacturer to which the author belongs. As the applications of low energy EB devices, it specifically introduced curing, graft polymerization, crosslinking, and sterilization/disinfection with soft electrons: (1) examples of EB curing; antistatic agents in antibacterial/antifungal property imparting processing, hard coat, printing and topcoat, high gloss/pattern transfer processing, and metal vapor deposition film, (2) example of graft polymerization; barrier imparting films, and (3) examples of crosslinking; shrinking films/tubes and foamed sheets. (A.O.)

  18. 77 FR 39689 - Application To Export Electric Energy; Dynasty Power, Inc.

    Science.gov (United States)

    2012-07-05

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-385] Application To Export Electric Energy; Dynasty Power.... SUMMARY: Dynasty Power, Inc. (Dynasty Power) has applied for authority to transmit electric energy from... an application from Dynasty Power for authority to transmit electric energy from the United States to...

  19. 75 FR 6369 - Application To Export Electric Energy; Aquilon Power Ltd.

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-361] Application To Export Electric Energy; Aquilon Power.... SUMMARY: Aquilon Power Ltd. (Aquilon Power) has applied for authority to transmit electric energy from the... received an application from Aquilon Power for authority to transmit electric energy from the United States...

  20. Application and assessment of multiscale bending energy for morphometric characterization of neural cells

    Science.gov (United States)

    Cesar, Roberto Marcondes; Costa, Luciano da Fontoura

    1997-05-01

    The estimation of the curvature of experimentally obtained curves is an important issue in many applications of image analysis including biophysics, biology, particle physics, and high energy physics. However, the accurate calculation of the curvature of digital contours has proven to be a difficult endeavor, mainly because of the noise and distortions that are always present in sampled signals. Errors ranging from 1% to 1000% have been reported with respect to the application of standard techniques in the estimation of the curvature of circular contours [M. Worring and A. W. M. Smeulders, CVGIP: Im. Understanding, 58, 366 (1993)]. This article explains how diagrams of multiscale bending energy can be easily obtained from curvegrams and used as a robust general feature for morphometric characterization of neural cells. The bending energy is an interesting global feature for shape characterization that expresses the amount of energy needed to transform the specific shape under analysis into its lowest energy state (i.e., a circle). The curvegram, which can be accurately obtained by using digital signal processing techniques (more specifically through the Fourier transform and its inverse, as described in this work), provides multiscale representation of the curvature of digital contours. The estimation of the bending energy from the curvegram is introduced and exemplified with respect to a series of neural cells. The masked high curvature effect is reported and its implications to shape analysis are discussed. It is also discussed and illustrated that, by normalizing the multiscale bending energy with respect to a standard circle of unitary perimeter, this feature becomes an effective means for expressing shape complexity in a way that is invariant to rotation, translation, and scaling, and that is robust to noise and other artifacts implied by image acquisition.

  1. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  2. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  3. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  4. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  5. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-281-B] Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Manitoba Hydro (Manitoba) has applied to renew its authority to transmit electric energy from the...

  6. 76 FR 37797 - Application to Export Electric Energy; Freepoint Commodities, LLC

    Science.gov (United States)

    2011-06-28

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-380] Application to Export Electric Energy; Freepoint... application. SUMMARY: Freepoint Commodities, LLC has requested authority to transmit electric energy from the... Commodities requesting authority to transmit electric energy from the United States to Canada for ten years as...

  7. Fuel specification, energy consumption and CO2 emission in oil refineries

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2007-01-01

    The more stringent environmental quality specifications for oil products worldwide are tending to step up energy use and, consequently, CO 2 emissions at refineries. In Brazil, for example, the stipulated reduction in the sulfur content of diesel and gasoline between 2002 and 2009 should increase the energy use of Brazil's refining industry by around 30%, with effects on its CO 2 emissions. Thus, the world refining industry must deal with trade-offs between emissions of pollutants with local impacts (due to fuel specifications) and emissions of pollutants with global impacts (due to the increased energy use at refineries to remove contaminants from oil products). Two promising technology options for refineries could ease this clash in the near-to-mid term: the reduction per se of the energy use at the refinery; and the development of treatment processes using non-hydrogen consuming techniques. For instance, in Brazilian refineries, the expanded energy use resulting from severe hydrotreatment to comply with the more stringent specifications of oil products may be almost completely offset by energy saving options and alternative desulfurization techniques, if barriers to invest in technological innovations are overcome. (author)

  8. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  9. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  10. Assessing measures of energy efficiency performance and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.

    2008-02-15

    This paper explores different measures of energy efficiency performance (hereafter referred to as 'MEEP'): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages and their roles within policy frameworks. MEEP may be necessary at several stages during policy design: in a developing regulatory framework; during the actual application; and in evaluation after policy implementation. Policy makers should consider the suitability of MEEP at each of these stages, based on criteria such as reliability, feasibility and verifiability. The paper considers the importance of so-called boundary definitions when measuring energy performance, and how these affect the appropriateness of country comparisons to guide policy decisions. The paper also addresses the limitations of both energy intensity and technology diffusion indicators as measures of energy efficiency performance. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21 GJ. Both a proper understanding of various methods to assess energy efficiency and the linkage with policy objectives and frameworks are important. Using the diffusion rates of specific energy-efficient processes is a technology-oriented approach which seeks to encourage the retrofitting or replacement of less efficient equipment. There are fewer boundary problems using diffusion rates than by calculating energy consumption. 42 refs., 15 figs., 4 tabs., 1 app.

  11. Effect of tube diameter on the specific energy consumption of the ice making process

    International Nuclear Information System (INIS)

    Tangthieng, C.

    2011-01-01

    One of the favorite forms of ice for consuming is tube ice, which is produced by a refrigeration unit referred to as an ice making tower. In order to redesign the tower for the energy-efficiency purpose, the aim of this paper is to numerically investigate the effect of tube diameter on the ice thickness, the cooling load, and the specific energy consumption. The mathematical model of the ice formation within the tube is developed by assuming unsteady and one-dimensional heat conduction. The governing equations are composed of the wall and the ice regions with the convective boundary condition and isothermal solidification at the interface. The governing system is transformed into a dimensionless form and numerically solved by the finite difference method. The numerical results are validated by comparing the ice thickness obtained from the numerical prediction and that obtained from the field measurement, resulting in qualitative agreement. The variations of ice thickness, cooling load, and specific energy consumption with time for four different tube diameters are presented. The result shows the location of the minimum specific energy consumption as a function of time. By comparing between different tube diameters, the value of the minimum specific energy consumption of a small diameter tube is lower than that of a large diameter one. On the other hand, the behavior of the specific energy consumption of a large diameter tube indicates the existence of a low specific energy consumption period of time beyond the minimum point. Therefore, by choosing a proper tube diameter, the minimum value of the average specific energy consumption over the entire production cycle is obtained, leading to higher energy efficiency. - Research Highlights: → The result indicates the minimum specific energy consumption as a function of time. → A smaller diameter tube has a lower value of the minimum specific energy consumption, but a large one has an extended range of low specific

  12. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  13. Segmentation of electric energy customers by specific niches; Segmentacao de clientes de energia eletrica por nichos especiais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Lucia Rodrigues da; Jannuzzi, Gilberto de Martino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: jannuzzi@fen.unicamp.br

    2009-04-15

    The article presents the classic segmentation used in electric energy industry for large customers. The paper argues the limitations of this classification, as well as, the potentialities to classify customers for specific niches, the example of that already occurs in other competitive sectors of the economy. Twelve potential forms for classifying large customers in electricity industry are presented: geographic localization; value of the invoice; sector of productive activity; types of share holding composition and enterprise management; forms and characteristics of the use of the electric energy in the final units; degree of technological sophistication; client relation cost benefit; common factors in energy process of purchase; brand associated with the customer; extraordinary factors, such as, urgency, application and volume of energy; personal characteristics of the purchaser in charge of the operation; former-customers who moved from the captive market to the free market and vice versa. The article concludes proposing a new methodology to identify the specific niches of customers in the electric sector, as well as the inductive and restrictive factors of this methodology. (author)

  14. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  15. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  16. Low temperature geothermal energy applications in the Albuquerque area. Final report, July 1, 1978-August 18, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, D.; Houghton, A.V.

    1979-01-01

    A study was made of the engineering and economic feasibility of hot water geothermal energy applications in the Albuquerque area. A generalized system design was developed and used as the basis for a series of economic case studies. Reservoir and user siting considerations were studied in light of the economic findings. Several specific potential applications were identified, including university campuses, industrial and commercial facilities, and residential buildings. Specific key technical problems relating to Albuquerque area applications were studied. These included environmental impacts, corrosion, scaling, heat losses in wells and transmission lines, heat exchangers, control systems, and system utilization and reliability. It is concluded that geothermal energy could be competitive with other energy sources for space heating and limited industrial use for moderate to large (10 million Btu/hr or more) energy using systems.

  17. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  18. Neutron energy measurement for practical applications

    Science.gov (United States)

    Roshan, M. V.; Sadeghi, H.; Ghasabian, M.; Mazandarani, A.

    2018-03-01

    Industrial demand for neutrons constrains careful energy measurements. Elastic scattering of monoenergetic α -particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with specific energy is obtained by counting the number of α -particles in the corresponding location on the charged particle detector. Monte Carlo simulation and COMSOL Multiphysics5.2 are used to account for one-to-one collision of neutrons with α -particles.

  19. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  20. 78 FR 14779 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-339-A] Application to Export Electric Energy; Shell Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... transmit electric energy from the United States to Canada as a power marketer for a five-year term using...

  1. 78 FR 14778 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-338-A] Application to Export Electric Energy; Shell Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... transmit electric energy from the United States to Mexico as a power marketer for a five-year term using...

  2. 75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.

    Science.gov (United States)

    2010-06-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-182-C] Application To Export Electric Energy; H.Q. Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... transmit electric energy from the United States to Canada as a power marketer using existing international...

  3. Application of Korean Specific Data to Economic Cost Estimation by KOSCA-MACCS2

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Jang, Seung-Cheol

    2015-01-01

    Default values for various data provided by MACCS2(MELCOR Accident Consequence Code System Version 2) such as population, weather, food, and economic cost are far from current domestic condition. In the case of economic cost data, related default values came from MACCS and WASH-1400. KAERI (Korea Atomic Energy Research Institute) has been developed a Korean-specific level 3 PSA (Probabilistic Safety Assessment) code package based on MACCS2 to reflect domestic condition for off-site consequence analysis. To this end, we performed a study on the domestic specific technical issues for level 3 PSA, which are a dose conversion factor, food chain model, atmospheric dispersion model, and domestic-specific economic effect model. Based on the study, we developed a level 3 PSA code, so-called KOSCAMACCS2 (Korean-specific Off-Site Consequence Analysis based on MACCS2). The purpose of this paper is to introduce economic cost variable provided by KOSCA-MACCS2 and application of Korean-specific data to the related economic cost estimation with KOSCA-MACCS2. In this paper, we introduced economic cost variable provided by KOSCA-MACCS2 and suggested the application plan of Korean-specific data to the related economic cost estimation. To this end, we considered data sources for those economic cost variables to reflect Korea-specific features such as data by Statistics Korea or Bank of Korea etc. For the decontamination related variables, we applied foreign literatures to apply data, which are Extern-E and UNESCO Chernobyl Forum data. Based on the data resources we estimated data for input variables related to economic cost estimation

  4. Application of Korean Specific Data to Economic Cost Estimation by KOSCA-MACCS2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Yeong; Jang, Seung-Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Default values for various data provided by MACCS2(MELCOR Accident Consequence Code System Version 2) such as population, weather, food, and economic cost are far from current domestic condition. In the case of economic cost data, related default values came from MACCS and WASH-1400. KAERI (Korea Atomic Energy Research Institute) has been developed a Korean-specific level 3 PSA (Probabilistic Safety Assessment) code package based on MACCS2 to reflect domestic condition for off-site consequence analysis. To this end, we performed a study on the domestic specific technical issues for level 3 PSA, which are a dose conversion factor, food chain model, atmospheric dispersion model, and domestic-specific economic effect model. Based on the study, we developed a level 3 PSA code, so-called KOSCAMACCS2 (Korean-specific Off-Site Consequence Analysis based on MACCS2). The purpose of this paper is to introduce economic cost variable provided by KOSCA-MACCS2 and application of Korean-specific data to the related economic cost estimation with KOSCA-MACCS2. In this paper, we introduced economic cost variable provided by KOSCA-MACCS2 and suggested the application plan of Korean-specific data to the related economic cost estimation. To this end, we considered data sources for those economic cost variables to reflect Korea-specific features such as data by Statistics Korea or Bank of Korea etc. For the decontamination related variables, we applied foreign literatures to apply data, which are Extern-E and UNESCO Chernobyl Forum data. Based on the data resources we estimated data for input variables related to economic cost estimation.

  5. Defect Chemistry of Oxides for Energy Applications.

    Science.gov (United States)

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  7. Some new high energy materials and their formulations for specialized applications

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash [Directorate of Materials, DRDO HQrs, ' B' Wing, Sena Bhavan, New Delhi - 110 011 (India)

    2005-10-01

    Energetic materials form an integral part of most weapon systems and a large number of new high-energy materials: thermally stable explosives, high-performance explosives, melt-castable explosives, insensitive high explosives and energetic binders have been reported in the literature in recent years. Some explosive formulations based on these new energetic materials are also vaguely reported. This paper examines these materials and their formulations from the point of view of stability, reliability, safety and specific applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  9. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  10. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim [Univ. of California, Berkeley, CA (United States); Kammen, Dan [Univ. of California, Berkeley, CA (United States); McDonell, Vince [Univ. of California, Irvine, CA (United States); Samuelsen, Scott [Univ. of California, Irvine, CA (United States); Beyene, Asfaw [San Diego State Univ., CA (United States); Ganji, Ahmad [San Francisco State Univ., CA (United States)

    2013-09-30

    ) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.

  11. 75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-365] Application To Export Electric Energy; Centre Lane... application. SUMMARY: Centre Lane Trading Limited (CLT) has applied for authority to transmit electric energy...)). On April 20, 2010, DOE received an application from CLT for authority to transmit electric energy...

  12. Enabling Energy-Efficient Advertising for Mobile Applications

    OpenAIRE

    Prochkova, Irena

    2013-01-01

    Advertisements are the main source of revenue for many free mobile applications, however, they increase the energy consumption of the mobile device. In particu- lar, the radio communication used for the advertisement data transfer is energy hungry, so advertisement sponsored applications (free) consume more energy than paid applications.In this thesis, we analyse the effect that advertisements have on the mobile device performance, especially, the energy consumption of transferring and displa...

  13. Energy applications of superconductivity

    International Nuclear Information System (INIS)

    Schneider, T.R.; Dale, S.J.; Wolf, S.M.

    1991-01-01

    Recent progress in developing high-temperature superconductors has enhanced the economic viability of energy applications such as power systems, motors, material processing and handling, refrigeration, transportation, and power electronics. This paper discusses the technical and economic issues associated with these applications

  14. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  15. Clean Energy Application Centers: Annual Metrics Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    Between fiscal year (FY) 2010 and 2013, the U.S. Department of Energy (DOE) funded nine Clean Energy Application Centers (CEACs) with national coverage to promote and assist in transforming the market for Combined Heat and Power (CHP), Waste Heat to Power CHP, and district energy (DE) with CHP1. Prior to that, similar services were provided by eight Regional Application Centers (RACs). The key services that the CEACs provided were market assessments, education and outreach, and technical assistance. There were eight regional CEACs, each of which served a specific area of the country, and a separate center operated by the International District Energy Association (IDEA) which supported the regional centers with technical assistance, education, training, publicity, and outreach related to district energy with CHP. Oak Ridge National Laboratory (ORNL) has performed four previous studies of CEAC activities. The first one examined what the centers had done each year from the initiation of the program through FY 2008; the second addressed center activities for FY 2009; the third one focused on what was accomplished in FY 2010; and the fourth looked at the CEACs’ FY 2011 accomplishments, with a heightened emphasis on the adoption of CHP\\DE technologies and the activities thought to be most closely related to CHP/DE development and use. The most recent study, documented in this report, examines CEAC activities in FY 2012.

  16. Energy conservation applications of microprocessors

    Energy Technology Data Exchange (ETDEWEB)

    Shih, James Y.

    1979-07-01

    A survey of the application of microprocessors for industrial and commercial energy conservation has been made. Microprocessor applications for HVAC, chiller control, and automotive equipment are discussed. A case study of successful replacement of a conventional cooling plant control is recounted. The rapid advancement of microelectronic technology will affect efficient energy control, more sophisticated control methodology, and more investment in controls.

  17. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    aligned network designed to maximize device performance. Monolayers of large sized graphene nanosheets function as highly electrically conducting current collectors within a mesoporous network of smaller graphene nanosheets for improved rate capability of the electrical double layer capacitor (EDLC) electrode. This nano-architecture produces an electrode with superior performance for high power EDLC applications: a high frequency capacitative response; a nearly rectangular cyclic voltammogram at a scanning rate of 1000 mv/sec; a rapid current response; small equivalent series resistance (ESR); and fast ionic diffusion. Integration of this nanostructured graphene nanosheet architecture with conductive polymers or metal oxide nanostructurcs was also investigated to produce similar multilayered structures for electrochemical energy storage applications. These inexpensive graphene nanosheets coupled with this facile and robust nanostructuring process make both this new material and method highly advantageous for many potential applications ranging from optoelectronics to high power electrochemical energy storage applications.

  18. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    Science.gov (United States)

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  19. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  20. Nanostructured oxides for energy storage applications in batteries and supercapacitors

    International Nuclear Information System (INIS)

    Chandra, A.; Roberts, A. J.; Yee, E. L. H.; Slade, R. C. T.

    2009-01-01

    Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in super capacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of >100 F g -1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented. (authors)

  1. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  2. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  3. Technical specifications requirements: Automated reasoning applications

    International Nuclear Information System (INIS)

    Lidsky, L.M.; Dobrzeniecki, A.B.

    1990-03-01

    Several software systems were developed and tested to determine what advantages could be gained from explicitly translating complicated regulatory requirements into computerized relationships. The Technical Specifications for US nuclear power plants were chosen as the test-bed application domain, and two analysis systems were developed to monitor plant compliance with operational limits, and track and schedule equipment test and maintenance activities mandated by Technical Specifications. Choosing PROLOG as the computer language to represent these regulatory requirements resulted in a natural match between the semantic structure of the written specifications and the corollary coded rules. Additional research results affirmed the utility of declarative programming styles, explicit management of problem complexity, and attention to the robustness and flexibility of the overall software systems. 5 refs., 2 figs

  4. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  5. Specific energy released in power reactors

    International Nuclear Information System (INIS)

    Zaritskaya, T.S.; Kiselev, G.V.; Rudik, A.P.; Tsenter, Eh.M.

    1986-01-01

    Technique of determination are described and analysis of specific energy for different methods of critically maintance of RBMK and WWER-440 reactors are conducted. Characteristics of the optimal mode of critically maintanance are determined

  6. Energy-Specific Optimization of Attenuation Thresholds for Low-Energy Virtual Monoenergetic Images in Renal Lesion Evaluation.

    Science.gov (United States)

    Patel, Bhavik N; Farjat, Alfredo; Schabel, Christoph; Duvnjak, Petar; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele

    2018-05-01

    The purpose of this study was to determine in vitro and in vivo the optimal threshold for renal lesion vascularity at low-energy (40-60 keV) virtual monoenergetic imaging. A rod simulating unenhanced renal parenchymal attenuation (35 HU) was fitted with a syringe containing water. Three iodinated solutions (0.38, 0.57, and 0.76 mg I/mL) were inserted into another rod that simulated enhanced renal parenchyma (180 HU). Rods were inserted into cylindric phantoms of three different body sizes and scanned with single- and dual-energy MDCT. In addition, 102 patients (32 men, 70 women; mean age, 66.8 ± 12.9 [SD] years) with 112 renal lesions (67 nonvascular, 45 vascular) measuring 1.1-8.9 cm underwent single-energy unenhanced and contrast-enhanced dual-energy CT. Optimal threshold attenuation values that differentiated vascular from nonvascular lesions at 40-60 keV were determined. Mean optimal threshold values were 30.2 ± 3.6 (standard error), 20.9 ± 1.3, and 16.1 ± 1.0 HU in the phantom, and 35.9 ± 3.6, 25.4 ± 1.8, and 17.8 ± 1.8 HU in the patients at 40, 50, and 60 keV. Sensitivity and specificity for the thresholds did not change significantly between low-energy and 70-keV virtual monoenergetic imaging (sensitivity, 87-98%; specificity, 90-91%). The AUC from 40 to 70 keV was 0.96 (95% CI, 0.93-0.99) to 0.98 (95% CI, 0.95-1.00). Low-energy virtual monoenergetic imaging at energy-specific optimized attenuation thresholds can be used for reliable characterization of renal lesions.

  7. The comparison and selection of programming languages for high energy physics applications

    International Nuclear Information System (INIS)

    White, B.

    1991-06-01

    This paper discusses the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to high energy physics (HEP) applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The languages evaluated were Ada, C, FORTRAN 77, FORTRAN 99 (formerly 8X), Pascal and PL/1. Particular emphasis is placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, conclusions are reached and some recommendations are made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. 54 refs

  8. Economic Feasibility Analysis of the Application of Geothermal Energy Facilities to Public Building Structures

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2014-03-01

    Full Text Available This study aims to present an efficient plan for the application of a geothermal energy facility at the building structure planning phase. Energy consumption, energy cost and the primary energy consumption of buildings were calculated to enable a comparison of buildings prior to the application of a geothermal energy facility. The capacity for energy savings and the costs related to the installation of such a facility were estimated. To obtain more reliable criteria for economic feasibility, the lifecycle cost (LCC analysis incorporated maintenance costs (reflecting repair and replacement cycles based on construction work specifications of a new renewable energy facility and initial construction costs (calculated based on design drawings for its practical installation. It is expected that the findings of this study will help in the selection of an economically viable geothermal energy facility at the building construction planning phase.

  9. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  10. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests

    International Nuclear Information System (INIS)

    Lamers, Patrick; Thiffault, Evelyne; Paré, David; Junginger, Martin

    2013-01-01

    Past research on identifying potentially negative impacts of forest management activities has primarily focused on traditional forest operations. The increased use of forest biomass for energy in recent years, spurred predominantly by policy incentives for the reduction of fossil fuel use and greenhouse gas emissions, and by efforts from the forestry sector to diversify products and increase value from the forests, has again brought much attention to this issue. The implications of such practices continue to be controversially debated; predominantly the adverse impacts on soil productivity and biodiversity, and the climate change mitigation potential of forest bioenergy. Current decision making processes require comprehensive, differentiated assessments of the known and unknown factors and risk levels of potentially adverse environmental effects. This paper provides such an analysis and differentiates between the feedstock of harvesting residues, roundwood, and salvage wood. It concludes that the risks related to biomass for energy outtake are feedstock specific and vary in terms of scientific certainty. Short-term soil productivity risks are higher for residue removal. There is however little field evidence of negative long-term impacts of biomass removal on productivity in the scale predicted by modeling. Risks regarding an alteration of biodiversity are relatively equally distributed across the feedstocks. The risk of limited or absent short-term carbon benefits is highest for roundwood, but negligible for residues and salvage wood. Salvage operation impacts on soil productivity and biodiversity are a key knowledge gap. Future research should also focus on deriving regionally specific, quantitative thresholds for sustainable biomass removal. -- Highlights: ► Synthesis of the scientific uncertainties regarding biomass for energy outtake. ► With specific focus on soil productivity, biodiversity, and carbon balance. ► Balanced determination of the risk levels

  11. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  12. Financial methods applicable to energy-conserving retrofits for single-family residences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    The National Savings and Loan League (NSLL) has been researching techniques that may be used to finance energy-conservation measures in the residential sector. Twelve techniques developed and tested by NSLL are: future-advances clause under open-end mortgages; borrowing against existing savings accounts; home-improvement loans; variable-rate mortgages; second trusts or second mortgages; variable-payment mortgages; balloon-payment mortgages; deferred monthly payments for periods of excessive energy use; renegotiation of terms at set intervals; lower interest rates offered on mortgages in return for lender sharing in equity appreciation of the property; graduated payments; and deferred-interest loans. The testing took place in Pittsburgh, PA. The program consisted of 8 specific tasks, including several directed at different financial innovations for the financing of retrofits. Details are presented on findings; legal research; relationship of utilities to installation of retrofits; financing techniques applicable to retrofits; and national energy program for single-family residences. Some extensive attachments include information on: legal aspects, energy loan advertisements, and potential savings to be realized from various residential retrofit energy-conservation measures.

  13. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  14. Single component, reversible ionic liquids for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Blasucci; Ryan Hart; Veronica Llopis Mestre; Dominique Julia Hahne; Melissa Burlager; Hillary Huttenhower; Beng Joo Reginald Thio; Pamela Pollet; Charles L. Liotta; Charles A. Eckert [Georgia Institute of Technology, Atlanta, GA (United States). Chemical & Biomolecular Engineering

    2010-06-15

    Single component, reversible ionic liquids have excellent potential as novel solvents for a variety of energy applications. Our energy industry is faced with many new challenges including increased energy consumption, depleting oil reserves, and increased environmental awareness. We report the use of reversible ionic liquids to solve two energy challenges: extraction of hydrocarbons from contaminated crude oil and carbon capture from power plant flue gas streams. Our reversible solvents are derived from silylated amine molecular liquids which react with carbon dioxide reversibly to form ionic liquids. Here we compare the properties of various silylated amine precursors and their corresponding ionic liquids. We show how the property changes are advantageous in the two aforementioned energy applications. In the case of hydrocarbon purification, we take advantage of the polarity switch between precursor and ionic liquid to enable separations. In carbon capture, our solvents act as dual physical and chemical capture agents for carbon dioxide. Finally, we show the potential economics of scale-up for both processes. 20 refs., 1 fig., 3 tabs.

  15. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Lin, Hua-Tay [ORNL; Wereszczak, Andrew A [ORNL

    2006-11-01

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was ~ 0.07 mm, and the scratch velocity used was ~ 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the depth of groove. Extensive thermal softening was observed in the dynamic scratch of the tested TiAls, which facilitated both the detachments of developing chips and the pile-ups of materials on side ridges. Sizable fractures were observed in the transverse direction on the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the tested TiAls. The materiel removal might be subjected to different mechanisms, but the overall response of materials can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The obtained depth-independent specific energy and scratch hardness can be used to screen the candidate materials for the specific purpose depending on whether the application is scratch-dominant or impact-dominant. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation in the material loss or material removal (higher depth-independent specific energy), while the TiAl with smaller colony size show a higher resistance against the indentation (higher depth-independent scratch hardness). The observations and

  16. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  17. 77 FR 39689 - Application To Export Electric Energy; IPR-GDF SUEZ Energy Marketing North America, Inc.

    Science.gov (United States)

    2012-07-05

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-386] Application To Export Electric Energy; IPR-GDF SUEZ... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202... authority to transmit electric energy from the United States to Mexico for five years as a power marketer...

  18. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  19. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  20. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  1. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  2. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  3. 75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.

    Science.gov (United States)

    2010-12-17

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-366] Application to Export Electric Energy; Twin Rivers... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... received an application from Twin Rivers for authority to transmit electric energy from the United States...

  4. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Science.gov (United States)

    2012-04-04

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-98-M] Application To Export Electric Energy; WSPP Inc... members to transmit electric energy from the United States to Canada, pursuant to section 202(e) of the... transmit electric energy from the United States to Canada. DATES: Comments, protests, or motions to...

  5. Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

    Directory of Open Access Journals (Sweden)

    Claudia Rahmann

    2017-06-01

    Full Text Available In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

  6. Duval Corporation application study: nuclear process energy from PE-CNSG

    International Nuclear Information System (INIS)

    1977-12-01

    The technical and economic studies were performed to examine the possible installation of a small, integral pressurized water reactor as an industrial energy source in the Duval Corporation's Frasch Process sulfur mining operation located in Culberson County, Texas. Since this is the first industrial application study attempted for this type of reactor, it has been a learning process on the nuclear plant side as well as the industrial side, particularly in the area of economic analysis. The importance of considering inflationary effects, the significance of plant financing form, and the annualized, after-tax cash flow and incremental rate-of-return methods of comparison in determing energy costs have all been recognized during the course of the study

  7. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    Science.gov (United States)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  8. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  9. Technical specification use and application

    International Nuclear Information System (INIS)

    Williamson, D.; Hoffman, D.R.

    1991-01-01

    Since early 1988 intensive efforts have been under way to produce a new and improved Standard Technical Specification. The program involves a coordinated effort between utility personnel representing each of the four nuclear steam supply system (NSSS) product lines, the NSSS vendors, and the US Nuclear Regulatory Commission (NRC). This intensive work period is actually the culmination of a decade of rhetoric about shortcomings of the existing technical specifications. Work on the improved technical specifications provided a unique forum for intense philosophical discussions between the users and enforcers of technical specifications, the outcome of which could have an impact on all licensees. Some of the more intriguing difficulties in the use and application of existing technical specifications, as well as discussions of the resolutions being applied in the improved technical specifications and the dilemmas remaining to be resolved are discussed in the paper

  10. Software engineering with application-specific languages

    Science.gov (United States)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  11. Characterizing Energy per Job in Cloud Applications

    Directory of Open Access Journals (Sweden)

    Thi Thao Nguyen Ho

    2016-12-01

    Full Text Available Energy efficiency is a major research focus in sustainable development and is becoming even more critical in information technology (IT with the introduction of new technologies, such as cloud computing and big data, that attract more business users and generate more data to be processed. While many proposals have been presented to optimize power consumption at a system level, the increasing heterogeneity of current workloads requires a finer analysis in the application level to enable adaptive behaviors and in order to reduce the global energy usage. In this work, we focus on batch applications running on virtual machines in the context of data centers. We analyze the application characteristics, model their energy consumption and quantify the energy per job. The analysis focuses on evaluating the efficiency of applications in terms of performance and energy consumed per job, in particular when shared resources are used and the hosts on which the virtual machines are running are heterogeneous in terms of energy profiles, with the aim of identifying the best combinations in the use of resources.

  12. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  13. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  14. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  15. A generic framework for the description and analysis of energy security in an energy system

    International Nuclear Information System (INIS)

    Hughes, Larry

    2012-01-01

    While many energy security indicators and models have been developed for specific jurisdictions or types of energy, few can be considered sufficiently generic to be applicable to any energy system. This paper presents a framework that attempts to meet this objective by combining the International Energy Agency's definition of energy security with structured systems analysis techniques to create three energy security indicators and a process-flow energy systems model. The framework is applicable to those energy systems which can be described in terms of processes converting or transporting flows of energy to meet the energy–demand flows from downstream processes. Each process affects the environment and is subject to jurisdictional policies. The framework can be employed to capture the evolution of energy security in an energy system by analyzing the results of indicator-specific metrics applied to the energy, demand, and environment flows associated with the system's constituent processes. Energy security policies are treated as flows to processes and classified into one of three actions affecting the process's energy demand or the process or its energy input, or both; the outcome is determined by monitoring changes to the indicators. The paper includes a detailed example of an application of the framework. - Highlights: ► The IEA's definition of energy security is parsed into three energy security indicators: availability, affordability, and acceptability. ► Data flow diagrams and other systems analysis tools can represent an energy system and its processes, flows, and chains. ► Indicator-specific metrics applied to a process's flow determine the state of energy security in an energy system, an energy chain, or process. ► Energy policy is considered as a flow and policy outcomes are obtained by measuring flows with indicator-specific metrics. ► The framework is applicable to most jurisdictions and energy types.

  16. Neutron applications in materials for energy

    CERN Document Server

    Kearley, Gordon J

    2015-01-01

    Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being

  17. Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Lin, H.-T.; Wereszczak, A.A.

    2006-11-30

    Mechanical responses of three gamma titanium aluminides (TiAls) (denoted as Alloy A, Alloy B and Alloy C) subjected to dynamic scratching were studied by using a single-grit pendulum (rotating) scratch tester. The maximum depth of groove was {approx} 0.07 mm, and the scratch velocity was {approx} 1.0 m/s. Normal and tangential forces were monitored. The material removal mechanisms were examined using a scanning electron microscope (SEM) and the scratches were measured by using a laser profilometer. The mechanical properties of the tested TiAls were characterized by the instantaneous specific energy, scratch resistance and scratch hardness as related to the groove depth. Extensive thermal softening was observed in the dynamic scratch test of the TiAls, which facilitated both the detachment of developing chips and pile-up of material on side ridges. Sizable fractures were observed in the transverse direction in the tested TiAls; these fractures tended to participate in the chip formation, depending on the microstructure of the TiAl and the size of the scratch groove. Specific energy and scratch hardness are depth-dependent to various degrees for the TiAls tested. The material removal might be subjected to different mechanisms, but the overall material response can be effectively characterized by the HEM (Hwang, Evans and Malkin) model and the PSR (proportional specimen resistance) model. The depth-independent specific energy and scratch hardness can be used to screen candidate materials for the applications that are scratch-dominated versus impact-dominated. Among the three tested TiAls, the TiAl with larger colony or grain size exhibits a stronger capability of energy dissipation during material removal (higher depth-independent specific energy), while the TiAl with smaller colony size shows a higher resistance to indentation (higher depth-independent scratch hardness). The observations and conclusions in this study can serve as a base line for the further

  18. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  19. 75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-09-23

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...)). On August 30, 2010, DOE received an application from EDF for authority to transmit electric energy... service area. The electric energy that EDF proposes to export to Mexico would be surplus energy purchased...

  20. 75 FR 26202 - Application To Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-367] Application To Export Electric Energy; EDF Trading...)). On April 27, 2010, DOE received an application from EDF for authority to transmit electric energy... franchised service area. The electric energy that EDF proposes to export to Canada would be surplus energy...

  1. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  2. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  3. XML-Based Visual Specification of Multidisciplinary Applications

    Science.gov (United States)

    Al-Theneyan, Ahmed; Jakatdar, Amol; Mehrotra, Piyush; Zubair, Mohammad

    2001-01-01

    The advancements in the Internet and Web technologies have fueled a growing interest in developing a web-based distributed computing environment. We have designed and developed Arcade, a web-based environment for designing, executing, monitoring, and controlling distributed heterogeneous applications, which is easy to use and access, portable, and provides support through all phases of the application development and execution. A major focus of the environment is the specification of heterogeneous, multidisciplinary applications. In this paper we focus on the visual and script-based specification interface of Arcade. The web/browser-based visual interface is designed to be intuitive to use and can also be used for visual monitoring during execution. The script specification is based on XML to: (1) make it portable across different frameworks, and (2) make the development of our tools easier by using the existing freely available XML parsers and editors. There is a one-to-one correspondence between the visual and script-based interfaces allowing users to go back and forth between the two. To support this we have developed translators that translate a script-based specification to a visual-based specification, and vice-versa. These translators are integrated with our tools and are transparent to users.

  4. Institutional origins of the Department of Energy: the Office of Military Application. Energy History Series Volume 1, No. 1

    International Nuclear Information System (INIS)

    Anders, R.M.

    1980-08-01

    The Department of Energy Organization Act of 1977 brought together for the first time in one department most of the government's energy programs. With these programs came a score of organizational entities, each with its own history and traditions, from a dozen departments and independent agencies. This report traces the history of the Office of Military Application, from its inception as the Division of Military Application in the Atomic Energy Commission, through the Energy Research and Development Administration to its present status as an office in the Department of Energy

  5. Renewable-energy applications in Egypt

    International Nuclear Information System (INIS)

    Hammad, M.A.

    2005-01-01

    The paper illustrates the main activities carried out concerning development and application of renewable-energy technologies in Egypt. Main attention is devoted to biogas technology, solar and wind energy technologies. The main constraints for implementation of renewable-energy technologies in Egypt and the activities carried out for its release are highlighted. The coordination between the Islamic and other developing countries is highly needed, to achieve marked progress in implementation of renewable energy and sustainable development. Establishment of a network for renewable energy among the Islamic countries can play an active role in these aspects. (author)

  6. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  7. On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power

    Science.gov (United States)

    Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.

    1994-02-01

    Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.

  8. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  9. Innovative thermal energy harvesting for future autonomous applications

    International Nuclear Information System (INIS)

    Monfray, Stephane

    2013-01-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies and Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market

  10. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  11. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  12. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  13. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  14. Metal-Organic Frameworks For Adsorption Driven Energy Transformation : From Fundamentals To Applications

    NARCIS (Netherlands)

    De Lange, M.F.

    2015-01-01

    A novel class of materials, i.e. Metal-Organic Frameworks (MOFs), has successfully been developed that is extremely suited for application in heat pumps and chillers. They have a superior performance over commercial sorbents and may potentially contribute to considerable energy savings worldwide.

  15. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Science.gov (United States)

    2010-03-17

    ... impact on the reliability of the U.S. electric power supply system. Copies of this application will be... DEPARTMENT OF ENERGY [OE Docket Nos. EA-363 and EA-364] Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity Delivery and Energy Reliability...

  16. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  17. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  18. A Mechanism for Using Renewable Energy Applications in Remote Areas

    Directory of Open Access Journals (Sweden)

    Safwat Abdel Fattah Seleem

    2015-08-01

    Full Text Available Currently our world is facing the challenge of natural resources depletion, specifically, the depletion of fossil fuel resources. Accordingly, the implementation of the sustainable energy sources is no longer a luxury, but a key issue for survival. Egypt is one of the most fortunate locations when it comes to renewable energies such as wind and solar but implementation remains lacking.  This paper addresses this matter by offering simple applicable solutions for remote areas such as Al-Wadi Al-Jadid and Sinai. The idea is based on creating a self-sustaining simple closed system that can be replicated in different settlements which offers prosperity for the local communities. The proposed system will be designed  to  address  the  technical,  financial  and  social  barriers  that  prevent  renewable energies from becoming widespread in Egypt. Such a system would consist of financial institutions, suppliers, local technical capacity building, and local awareness raising and education. In addition, using the fly ash material in concrete structures aims to save energy, to reduce using of cement as the fly ash replace about of 25 % of cement quantity. Accordingly the use of fly ash material leads to reducing the emission of CO2 coming from the factories of cement. Simply, in order for renewable energy to spread, the community as a whole must benefit, private individuals must benefit by being able to make a living out of renewable energy, and the structures for finance must be available.

  19. High specific energy Lithium Sulfur cell for space application

    Directory of Open Access Journals (Sweden)

    Samaniego Bruno

    2017-01-01

    Airbus DS has been testing and characterizing prototype Li-S cells manufactured by OXIS Energy Ltd. since 2014, demonstrating the potential and fast evolution of the cells performance. This paper presents the last test results on a set of different batches provided by OXIS and performed at Airbus DS premises in the frame of an ESA Innovation Triangle Initiative (ITI.

  20. Emerging Energy Applications of Two-Dimensional Layered Transition Metal Dichalcogenides

    KAUST Repository

    Li, Henan

    2015-10-31

    Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy. TMDC layered materials represent a diverse and largely untapped source of 2D systems. High-quality TMDC layers with an appropriate size, variable thickness, superior electronic and optical properties can be produced by the exfoliation or vapour phase deposition method. Semiconducting TMDC monolayers have been demonstrated feasible for various energy related applications, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage. In this review, we start from the structure, properties and preparation, followed by detailed discussions on the development of TMDC-based nano energy applications. Graphical abstract The structure characterizations and preparative methods of 2D TMDCs have obtained significant progresses. Their recent advances for nano energy generation, solar harvesting, conversion and storage, and green electronics are reviewed.

  1. Perspective: Dynamic Shadowing Growth and its Energy Applications

    Directory of Open Access Journals (Sweden)

    Yiping eZhao

    2014-09-01

    Full Text Available The unique features of dynamic shadowing growth (DSG in structural and compositional design of nanomaterials are discussed. Their recent applications in energy storage, fuel cell, and solar energy conversion have been reviewed briefly. Future directions for applying DSG nanostructures in renewable energy applications are presented.

  2. Global Stress Classification System for Materials Used in Solar Energy Applications

    Science.gov (United States)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  3. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  4. Mining software specifications methodologies and applications

    CERN Document Server

    Lo, David

    2011-01-01

    An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns. In the first set of chapters, the book introduces a number of studies on mining finite

  5. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    Science.gov (United States)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  6. Single-Walled Carbon Nanohorns for Energy Applications

    Science.gov (United States)

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-01-01

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092

  7. Single-Walled Carbon Nanohorns for Energy Applications

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2015-10-01

    Full Text Available With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs, which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented.

  8. The comparison and selection of programming languages for high energy physics applications

    International Nuclear Information System (INIS)

    White, B.; Stanford Linear Accelerator Center, CA

    1989-01-01

    In this paper a comparison is presented of programming languages in the context of high energy physics software applications. The evaluation method uses was specifically devised to address the issues of particular importance to HEP applications, not just the technical features of the languages considered. The candidate languages evaluated were Ada, C, FORTRAN 77, FORTRAN 8x, Pascal and PL/I. Some conclusions are drawn and recommendations made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. (orig.)

  9. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    Science.gov (United States)

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  10. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  11. Development and Application of a ZigBee-Based Building Energy Monitoring and Control System

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2014-01-01

    Full Text Available Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS, which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.

  12. 46 CFR 90.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... to which the text pertains, and in many cases limits the application of the text to vessels... 46 Shipping 4 2010-10-01 2010-10-01 false Specific application noted in text. 90.05-5 Section 90... VESSELS GENERAL PROVISIONS Application § 90.05-5 Specific application noted in text. (a) At the beginning...

  13. 46 CFR 70.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... the text pertains, and in many cases limits the application of the text to vessels contracted for... 46 Shipping 3 2010-10-01 2010-10-01 false Specific application noted in text. 70.05-5 Section 70... PROVISIONS Application § 70.05-5 Specific application noted in text. (a) At the beginning of the various...

  14. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  15. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  16. TEA HF laser with a high specific radiation energy

    Science.gov (United States)

    Puchikin, A. V.; Andreev, M. V.; Losev, V. F.; Panchenko, Yu. N.

    2017-01-01

    Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.

  17. 46 CFR 24.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ..., and in many cases limits the application of the text to vessels contracted for before or after a... 46 Shipping 1 2010-10-01 2010-10-01 false Specific application noted in text. 24.05-5 Section 24... Application § 24.05-5 Specific application noted in text. (a) At the beginning of the various parts, subparts...

  18. 46 CFR 188.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... which the text pertains, and in many cases limits the application of the text to vessels contracted for... 46 Shipping 7 2010-10-01 2010-10-01 false Specific application noted in text. 188.05-5 Section 188... GENERAL PROVISIONS Application § 188.05-5 Specific application noted in text. (a) At the beginning of the...

  19. 77 FR 74472 - Application to Export Electric Energy; Energia Renovable S.C., LLC

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-387] Application to Export Electric Energy; Energia... application. SUMMARY: Energia Renovable S.C., LLC (Energia Renovable) has applied for authority to transmit...)). On September 11, 2012, DOE received an application from Energia Renovable for authority to transmit...

  20. RF energy harvesting and transport for wireless autonomous sensor network applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    "RF Energy Harvesting and Transport for Wireless Autonomous Sensor Network Applications: Principles and Requirements" - For wireless energy transfer over longer distances, the far-field transfer of RF energy may be used. We make a distinction between harvesting RF energy from signals present in the

  1. Energy technologies for distributed utility applications: Cost and performance trends, and implications for photovoltaics

    International Nuclear Information System (INIS)

    Eyer, J.M.

    1994-01-01

    Utilities are evaluating several electric generation and storage (G ampersand S) technologies for distributed utility (DU) applications. Attributes of leading DU technologies and implications for photovoltaics (PV) are described. Included is a survey of present and projected cost and performance for: (1) small, advanced combustion turbines (CTs); (2) advanced, natural gas-fired, diesel engines (diesel engines); and (3) advanced lead-acid battery systems (batteries). Technology drivers and relative qualitative benefits are described. A levelized energy cost-based cost target for PV for DU applications is provided. The analysis addresses only relative cost, for PV and for three selected alternative DU technologies. Comparable size, utility, and benefits are assumed, although relative value is application-specific and often technology- and site-specific

  2. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  3. Concerning 1991 basic plan for atomic energy development and application (subjected to examination)

    International Nuclear Information System (INIS)

    1990-01-01

    The prime minister developed a draft 1991 Basic Plan for Atomic Energy Development and Application and sent it to the Nuclear Safety Commission for examination. The Commission started the examination at its 14th meeting. The report outlines results of the examination. A Basic Plan is developed each year to promote efforts at atomic energy development and application systematically and efficiently. In particular, it identifies specific activities required to realize the basic policies shown in the Long Term Program for Atomic Energy Development and Application. In the present report, activities required for improving the safety measures in general are described first, with special emphasis placed on the improvement in nuclear safety regulations and promotion of nuclear safety research. Activities required for promoting nuclear power generation are then outlined. It also insists that the nuclear fuel cycle should be established by promoting measures for uranium resources, uranium enrichment, spent fuel enrichment, and radioactive waste disposal. Other required efforts include the development of improved power reactors, implementation of major projects, and development of basic technology. (N.K.)

  4. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Science.gov (United States)

    2013-11-04

    ... Energy Marketing Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing Inc. (BEMI) has applied to renew its authority... President of Legal Services and General Counsel, Brookfield Energy Marketing Inc., 480 de la Cite Blvd...

  5. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  6. 76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation

    Science.gov (United States)

    2011-03-02

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-290-B] Application to Export Electric Energy; Ontario Power... of Energy (DOE) issued Order No. EA-290, which authorized OPG to transmit electric energy from the... of the export authority contained in Order No. EA-290-A for a five-year term. The electric energy...

  7. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C., E-mail: william.barber@dxray.com [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Wessel, J.C. [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Nygard, E. [Interon AS, Asker (Norway); Iwanczyk, J.S. [DxRay, Inc., Northridge, CA (United States)

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  9. The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976-2015.

    Science.gov (United States)

    Di Francia, Girolamo

    2017-04-07

    Although sensor technologies have been developing quite similarly all over the world, the investigation of their applications has been more affected by the specific industrial and economic characteristics of each country. This paper aims to investigate the development of applications based on sensor devices in the sectors of energy and the environment, in Italy, throughout the last forty years (1976-2015), examining the most relevant papers published by Italian R & D groups working in this field. Italy depends on foreign imports for more than 80% of its primary energy needs, and this has directed the research effort on the development of sensor applications both to improve load shaping and consumers' awareness and to develop specific equipment to maximize renewable energy production. Similarly, for the environment sector, there are increasing efforts to develop solutions to support a more and more capillary control of the environment itself using a cooperative approach. In both the sectors it seems that the solutions proposed can help to relieve the structural problems that Italy suffers and that the scientific and technical results obtained so far also have significant international relevance.

  10. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  11. Specification and Compilation of Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Geuns, S.J.

    2015-01-01

    This thesis is concerned with the specification, compilation and corresponding temporal analysis of real-time stream processing applications that are executed on embedded multiprocessor systems. An example of such applications are software defined radio applications. These applications typically

  12. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  13. High and very high temperature reactor research for multipurpose energy applications

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Fuetterer, Michael; Groot, Sander de; Ruer, Jacques

    2011-01-01

    Ten years ago, the European High Temperature Reactor (HTR) Technology Network (HTR-TN) launched a programme for developing HTR Technology, which expanded so far through 4 successive Euratom Framework Programmes. Many projects have been performed - in particular the RAPHAEL project in the 6th Euratom Framework Programme and presently ARCHER in the 7th - in line with the Network strategy that identified cogeneration of process heat and power as the main specific mission of HTR. HTR can indeed address the growing energy needs of industry presently fully relying on fossil fuel combustion with a CO 2 -lean generation technology, thanks to its high operating temperature and to its unique flexibility obtained from its large thermal inertia and its low power. Relying on the legacy of the former European leadership in HTR technology, this programme has addressed specific developments required for industrial process heat applications and for increasing HTR performances (higher temperatures and fuel burn-up). Decisive achievements have been obtained concerning fuel manufacturing and irradiation behaviour, key components and their materials, safety, computer code validation and specific HTR waste (fuel and graphite) management. Key experiments have been performed or are still ongoing: irradiation of graphite, fuel and vessel materials and the corresponding post-irradiation examinations, safety tests and isotopic analyses; thermal-hydraulic tests of an Intermediate Heat Exchanger mock-up in helium; air ingress experiments for a block type core, etc. Through Euratom participation in the Generation IV International Forum (GIF), these achievements contribute to international cooperation. HTR-TN strategy has been recently integrated by the 'Sustainable Nuclear Energy Technology Platform' (SNE-TP) as one of the 3 'pillars' of its global nuclear strategy. It is also in line with the orientations and the timing of the 'Strategic Energy Technology Plan (SET-Plan)' for the development

  14. Design considerations for application of metallic honeycomb as an energy absorber

    International Nuclear Information System (INIS)

    Lee, W.H.; Roemer, R.E.

    1980-01-01

    Design for postulated accidents in nuclear power plants often requires mitigation of impact to safety-related structures. Plastically designed, energy absorbing mechanisms are often used in the design of such mitigating structures. Metallic honeycomb is the most efficient, practical, energy-absorbing material currently in use. Recent tests indicate that its use in this application, however, presents some unique design and fabrication problems. The paper presents the results of static and dynamic crush tests concerned with the effect of impact velocity, material properties, cell density, loading configuration, and overall pad geometry. Specific design recommendations are made in each area, and suggestions are provided to improve fabrication techniques and minimize subsequent problems

  15. Solar energy for process heat: Design/cost studies of four industrial retrofit applications

    Science.gov (United States)

    French, R. L.; Bartera, R. E.

    1978-01-01

    Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.

  16. Micro- and macroanalytical methods for the determination of the specific cumulated energy consumption for the production of consumer goods

    Energy Technology Data Exchange (ETDEWEB)

    Flaschar, W.

    1979-01-01

    As an estimation shows the total share of the final energy consumption for the production of goods amounts to more than 50%. Consequently, the present study is directed toward an important field. Apart from systemizing and confronting methods which have already been used it also tries to largely genereralize the problems of the specific cumulated energy consumption (SCEC). First, the terminolgy of energy and materials balances is fundamentally defined and determined. The influencing factors of the SCEC are analyzed and presented and the essential variables of energy consumption are explained with the help of examples. The fundamentals of cumulation as well as micro- and macroanalytical methods for the determination of the SCEC are worked out and discussed. The last part of the study shows the application of general methods and the solution of special problems when determining the SCEC for a particular product as exemplified by the practice of producing natural yogurt.

  17. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  18. Analysis Tools for Sizing and Placement of Energy Storage for Grid Applications - A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Michael G.; Kintner-Meyer, Michael CW; Sadovsky, Artyom; DeSteese, John G.

    2010-09-24

    The purpose of this report was to review pertinent literature and studies that might reveal models capable of optimizing the siting, sizing and economic value of energy storage in the future smart grid infrastructure. Energy storage technology and utility system deployment have been subjects of intense research and development for over three decades. During this time, many models have been developed that consider energy storage implementation in the electric power industry and other applications. Nevertheless, this review of literature discovered no actual models and only a few software tools that relate specifically to the application environment and expected requirements of the evolving smart grid infrastructure. This report indicates the existing need for such a model and describes a pathway for developing it.

  19. 78 FR 42512 - Application to Export Electric Energy; Royal Bank of Canada

    Science.gov (United States)

    2013-07-16

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-342-A] Application to Export Electric Energy; Royal Bank of.... SUMMARY: Royal Bank of Canada (RBC) has applied to renew its authority to transmit electric energy from..., 2008, DOE issued Order No. EA-342, which authorized RBC to transmit electric energy from the United...

  20. Possible Lead Free Nanocomposite Dielectrics for High Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Kurpati

    2017-03-01

    Full Text Available There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, the present brief review work focuses on the feasibility of development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. It is expected that Lead-free sodium Niobate nanowires (NaNbO3 and Boron nitride will be a future candidate to be synthesized using simple hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF/ divinyl tetramethyl disiloxanebis (benzocyclobutene matrix using a solution-casting method for Nanocomposites fabrication. The energy density of NaNbO3 and BN based composites are also be compared with that of lead-containing (PbTiO3/PVDF Nano composites to show the feasibility of replacing lead-containing materials from high-energy density dielectric capacitors. Further, this paper explores the feasibility of these materials for space applications because of high energy storage capacity, more flexibility and high operating temperatures. This paper is very much useful researchers who would like to work on polymer nanocomposites for high energy storage applications.

  1. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  2. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  3. Geothermal energy applications in China

    International Nuclear Information System (INIS)

    Ren, X.; Tang, N.; Zhang, Z.; Wang, J.

    1990-01-01

    This paper updates geothermal energy applications in China. To total energy consumption for electricity is 20.38 MWe, and for direct use is 41,222 TJ/yr, even though the beneficial heat was estimated to be 7,198 TJ/yr. The attached tables are the basic geothermal information mainly the years 1985-1989. Some of the tables are additions to the report or preceeding years

  4. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  5. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Science.gov (United States)

    2010-08-18

    ... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...

  6. Concept for Specific Lines of Business, Energy Saving Tourism

    International Nuclear Information System (INIS)

    Jilek, W.

    1998-01-01

    In the spirit of the objectives of the Energy Plan 1995 in order to make more efficient use of energy and thus to reduce energy requirements, to promote the use of renewable energies, and to attach maximum importance to the ecological compatibility of the energy systems, among other project the provincial government of Styria is pursuing the option of consulting small and medium-sized enterprises in a target manner. Three years after being launched, this Ecological Company Consulting scheme for various lines of business is now producing successful results, demonstrating that energy saving, business profit and ecology can go hand in hand by example of numerous pilot projects. Trade-specific concepts have been elaborated for foodstuffs, carpenters and car repair and sales firms, bakeries and hairdressers and, most recently, for tourist industry business /hotels, bars, restaurants, etc.). The province of Styria, represented by the Energy Commissioner and the department of waste management, is co-operating closely in the Ecological Company Consulting scheme with the Styrian Chamber of Commerce and the Economy Promotion Institute (Wirtschaftsfoerderungsinstitut). In several cases, other provinces, the Federal Ministry of Environmental, Youth and Family Affairs, and the Federal Chamber of Commerce have adopted the results of this co-operation, while in some cases subsidy schemes are linked to these trade-specific concepts. In the course of the scheme, the aim is to investigate energy requirements, saving potentials and questions of waste management. (author)

  7. 76 FR 11437 - Application To Export Electric Energy; SESCO Enterprises Canada, LTD

    Science.gov (United States)

    2011-03-02

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-297-B] Application To Export Electric Energy; SESCO... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... electric energy from the United States to Canada as a power marketer for a two-year term using existing...

  8. Building on strengths: Canada's energy policy framework. Insights from the Canadian Energy Forums

    International Nuclear Information System (INIS)

    Schmidt, G.

    2011-01-01

    This paper discusses Canada's energy policy and insights from the Canadian Energy Forums. The Energy Council of Canada held a series of Canadian Energy Forums leading up to Canada hosting the World Energy Congress Montreal 2010 in September. The Cross-Canada Forums focused upon specific regions of Canada and obtained from governments, industry and other stake holders, perspectives and planned policy actions to address present and future energy challenges.

  9. 78 FR 11633 - Application To Export Electric Energy; ConocoPhillips Company

    Science.gov (United States)

    2013-02-19

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-336-A] Application To Export Electric Energy; Conoco..., DOE issued Order No. EA-336, which authorized CoP to transmit electric energy from the United States... facilities to the transmission grid. CoP states that all of the electric energy that CoP proposes to export...

  10. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  11. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    International Nuclear Information System (INIS)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-01-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications

  12. Electron Energy-Loss Spectroscopy: Fundamentals and applications in the characterization of minerals

    International Nuclear Information System (INIS)

    Krishnan, K.M.

    1989-04-01

    The combined use of an energy-loss spectrometer and an analytical electron microscope with fine probe forming capabilities provides a wealth of information about the sample at high spatial resolution. Fundamental principles governing the physics of the interaction between the fast electron and a thin foil sample, to account for the fine structure in the inelastically scattered fast electron distribution (Electron-Energy Loss Spectroscopy, EELS), will be reviewed. General application of EELS is in the area of low atomic number elements (Z < 11) microanalysis, where it significantly complements the more widely used Energy Dispersive X-ray Spectroscopy (EDXS). However, a careful analysis of the low loss plasmon oscillations and the fine structure in the core-loss edges, can provide additional information related to the bonding and electronic structure of the sample. An illustration of this is presented from our study of Cδ diamond residue from the Allende carbonaceous chondrite. Combination of EELS with channeling effects can provide specific site occupation/valence information in crystalline materials. Details of this novel crystallographic method will be outlined and illustrated with an example of the study of chromite spinels. Finally, some pertinent experimental details will be discussed. 7 figs

  13. 76 FR 67430 - Application To Export Electric Energy; Tenaska Power Services Co.

    Science.gov (United States)

    2011-11-01

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-243-B] Application To Export Electric Energy; Tenaska Power... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... to transmit electric energy from the United States to Canada as a power marketer for a two-year term...

  14. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  15. State-specific Multi-reference Perturbation Theories with Relaxed Coefficients: Molecular Applications

    Directory of Open Access Journals (Sweden)

    Debashis Mukherjee

    2002-06-01

    Full Text Available Abstract: We present in this paper two new versions of Rayleigh-Schr¨odinger (RS and the Brillouin-Wigner (BW state-specific multi-reference perturbative theories (SSMRPT which stem from our state-specific multi-reference coupled-cluster formalism (SS-MRCC, developed with a complete active space (CAS. They are manifestly sizeextensive and are designed to avoid intruders. The combining coefficients cμ for the model functions φμ are completely relaxed and are obtained by diagonalizing an effective operator in the model space, one root of which is the target eigenvalue of interest. By invoking suitable partitioning of the hamiltonian, very convenient perturbative versions of the formalism in both the RS and the BW forms are developed for the second order energy. The unperturbed hamiltonians for these theories can be chosen to be of both Mφller-Plesset (MP and Epstein-Nesbet (EN type. However, we choose the corresponding Fock operator fμ for each model function φμ, whose diagonal elements are used to define the unperturbed hamiltonian in the MP partition. In the EN partition, we additionally include all the diagonal direct and exchange ladders. Our SS-MRPT thus utilizes a multi-partitioning strategy. Illustrative numerical applications are presented for potential energy surfaces (PES of the ground (1Σ+ and the first delta (1Δ states of CH+ which possess pronounced multi-reference character. Comparison of the results with the corresponding full CI values indicates the efficacy of our formalisms.

  16. Review for the military application of nuclear energy

    International Nuclear Information System (INIS)

    Park, M. J.

    1998-01-01

    In order to understand the broad technology of nuclear energy, we have explored how our present knowledge of nuclear energy has been developed, and how some of this knowledge is applied. Techniques learned from nuclear physics are used the build fearsome weapons of mass destruction, whose proliferation is a constant threat to our future. To develop military applications of nuclear technology systematically, high level human resources and creative brains should be sufficiently trained and secured

  17. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  18. The Development of Sensor Applications in the Sectors of Energy and Environment in Italy, 1976–2015

    Directory of Open Access Journals (Sweden)

    Girolamo Di Francia

    2017-04-01

    Full Text Available Although sensor technologies have been developing quite similarly all over the world, the investigation of their applications has been more affected by the specific industrial and economic characteristics of each country. This paper aims to investigate the development of applications based on sensor devices in the sectors of energy and the environment, in Italy, throughout the last forty years (1976–2015, examining the most relevant papers published by Italian R & D groups working in this field. Italy depends on foreign imports for more than 80% of its primary energy needs, and this has directed the research effort on the development of sensor applications both to improve load shaping and consumers’ awareness and to develop specific equipment to maximize renewable energy production. Similarly, for the environment sector, there are increasing efforts to develop solutions to support a more and more capillary control of the environment itself using a cooperative approach. In both the sectors it seems that the solutions proposed can help to relieve the structural problems that Italy suffers and that the scientific and technical results obtained so far also have significant international relevance.

  19. 77 FR 11515 - Application to Export Electric Energy; NRG Power Marketing LLC

    Science.gov (United States)

    2012-02-27

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-384] Application to Export Electric Energy; NRG Power... electric energy from the United States to Mexico pursuant to section 202(e) of the Federal Power Act (FPA... requested. The electric energy that NRGPML proposes to export to Mexico would be surplus energy purchased...

  20. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Navarrete T, M; Cabrera M, L; Arandia, P A; Arriola S, H [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  1. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  2. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  3. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  4. Applications of neural networks in environmental and energy sciences and engineering. Proceedings of the 1995 workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-12-31

    These proceedings contain edited versions of the technical presentations of the Workshop on Environmental and Energy Applications of Neural Networks, held on March 30--31, 1995, in Richland, Washington. The purpose of the workshop was to provide a forum for discussing environmental, energy, and biomedical applications of neural networks. Panels were held to discuss various research and development issues relating to real-world applications in each of the three areas. The applications covered in the workshop were: Environmental applications -- modeling and predicting soil, air and water pollution, environmental sensing, spectroscopy, hazardous waste handling and cleanup; Energy applications -- process monitoring and optimization of power systems, modeling and control of power plants, environmental monitoring for power systems, power load forecasting, fault location and diagnosis of power systems; and Biomedical applications -- medical image and signal analysis, medical diagnosis, analysis of environmental health effects, and modeling biological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Energy shocks, crises and the policy process: A review of theory and application

    International Nuclear Information System (INIS)

    Grossman, Peter Z.

    2015-01-01

    What motivates changes in energy policy? Typically, the process begins with a notable exogenous event, a shock. Often, the shock leads to what is perceived to be a crisis. This review essay surveys theories of crisis policymaking from the social science literature and considers their application to changes in energy policy. Two cases — one from the U.S., the other from Germany — are examined in more detail from the standpoint of the theories discussed. Suggestions are made for improving energy policy analysis in the future. - Highlights: • An analysis of the idea of “crisis” and its application to energy. • A review of theories and models of the policy process and of policy change. • Theory applied to two energy cases. • Suggestion as to how the analysis of energy policymaking might be approached in the future

  6. Review on energy harvesting for structural health monitoring in aeronautical applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  7. Forced Attention to Specific Applicant Qualifications: Impact on Physical Attractiveness and Sex of Applicant Biases.

    Science.gov (United States)

    Cann, Arnie; And Others

    1981-01-01

    Undergraduates evaluated the qualifications of an attractive, average, or unattractive male or female applicant. Ratings of specific qualifications preceded or followed an overall and hiring decision rating. The order variable influenced ratings of specific qualifications but not the overall or hiring decision. Male and attractive applicants were…

  8. 75 FR 22579 - Application To Export Electric Energy; Morgan Stanley Capital Group Inc.

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-185-C] Application To Export Electric Energy; Morgan... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... energy from the United States to Canada as a power marketer using existing international electric...

  9. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  10. The Application of Quantum Energy Saver on Engine

    Directory of Open Access Journals (Sweden)

    Fang Xiong

    2016-01-01

    Full Text Available In order to reduce diesel fuel consumption, this paper conducts the research in view of a new type of quantum energy saving device, and then produce the sample and applied on automobile engine, Detect fuel use of an automobile by automobile fuel saving technology as-sessment methods from the department of transportation. Compare the changes of fuel use be-fore and after installation of quantum energy saving device on the same car, and give the feed-back of energy saving capability. The result shows, after installed quantum energy saver, both fuel consumption and the smoke of tail gas has decreased. The analysis and application of this paper carry out the conclusion that the quantum energy saver can play an important role in en-ergy saving and emission reduction, and provide a reference for other related research.

  11. Identifying The Most Applicable Renewable Energy Systems Of Iran

    Directory of Open Access Journals (Sweden)

    Nasibeh Mousavi

    2017-03-01

    Full Text Available These years because of energy crisis all of country try to find a new way to reduce energy consumptions and obtain maximum use of renewable energy. Iran also is not an exception of this progress. Renewable energy is energy that is provided by renewable sources such as the sun or wind. In general renewable energies are not adaptable to every single community. Because of location and special climate conditions of Iran most applicable renewable energy systems in Iran are solar and wind energy. Main purpose of this paper is to review and identify most applicable renewable energy systems of Iran and also review on traditional and current methods that utilized to obtain maximum use of these renewable energies.

  12. Diatomite-Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application.

    Science.gov (United States)

    Li, Jiaqiang; Xu, Jing; Xie, Ziqian; Gao, Xin; Zhou, Jingyuan; Xiong, Yan; Chen, Changguo; Zhang, Jin; Liu, Zhongfan

    2018-05-01

    Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh@3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  14. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  15. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  16. ICT applications for energy efficiency in buildings. Report from the KTH Centre for Sustainable Communication

    Energy Technology Data Exchange (ETDEWEB)

    Kramers, Anna H.; Svane, Oerjan

    2011-07-01

    The project 'ICT as a Motor of Transition' aims to examine how the innovative application of ICT can contribute to more energy-efficient transport habits and facilitate more sustainable ways of managing and using buildings, without the need for drastic changes in the city's physical structure. The project is an extended in-depth study and forms part of current research into urban sustainable development in the SitCit project at KTH Environmental Strategies Research (fms). The full title of the SitCit project is 'Situations of Opportunity in the Growth and Change of Three Stockholm City Districts - Everyday Life, Built Environment and Transport Explored as Energy Usage Systems and Governance Networks' (SitCit, 2010). It is an ongoing, cross-disciplinary, five-year project in collaboration with the Department of Energy Technology at KTH. An important part of the SitCit project is a methodological approach that integrates actors and measures in describing a process of change, in other words to look at 'What' can be transformed in parallel with transformation 'By Whom'? The 'ICT as a Motor of Transition' project focused on ICT solutions for energy-efficient and sustainable ways of managing and using buildings in the existing built environment. ICT could play a role as a key enabler for decreasing energy usage in buildings and at the same time create new business opportunities driven by the need for energy efficiency. Throughout the life cycle of a building, most energy ({approx}80%) is used during the operational stage (REEB, 2009a). The decisions made in the early design stages or in renovation stages for existing buildings thus influence about 80% of the total life cycle energy usage, while the impact of user behaviour and real-time control is in the range of 20% (REEB, 2009a). Therefore there is an urgent need to find new possibilities to decrease the energy usage in buildings. The overarching aim of this study

  17. Specific absorbed fractions of energy at various ages from internal photon sources: 1, Methods

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. This volume outlines various methods used to compute the PHI-values and describes how the ''best'' estimates recommended by us are chosen. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with the methods at photon energies below 200 keV. 41 refs., 25 figs., 23 tabs

  18. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  19. 76 FR 53888 - Application to Export Electric Energy; Morgan Stanley Capital Group Inc.

    Science.gov (United States)

    2011-08-30

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-184-B] Application to Export Electric Energy; Morgan... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... Order No. EA-184, authorizing MSCG to transmit electric energy from the United States to Mexico as a...

  20. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  1. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  2. 75 FR 57911 - Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc.

    Science.gov (United States)

    2010-09-23

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... purchased from electric utilities, Federal power marketing agencies and other entities within the United...

  3. Lithium-Catalyzed Carbon Aerogel and Its Possible Application in Energy Storage Materials

    Science.gov (United States)

    Ciszewski, Mateusz; Szatkowska, Elżbieta; Koszorek, Andrzej

    2017-07-01

    A lithium-based catalyst for carbon aerogel compounds and carbon nanotubes synthesis was used. Lithium hydroxide-catalyzed and CNT-modified carbon aerogel was compared to traditionally synthesized sodium carbonate-catalyzed carbon aerogel, as well as to the same material modified with CNT to evaluate the real effect of lithium hydroxide addition. Enhancement in the specific surface area from 498 m2/g to 786 m2/g and significant change in pore size distribution were observed. Low temperature, supercritical drying in carbon dioxide was used to prepare an organic aerogel with subsequent pyrolysis in an inert gas flow to convert it into carbon aerogel. The as-obtained material was examined with respect to energy storage applications, i.e. symmetric hybrid supercapacitors. It was shown that lithium hydroxide was responsible for shorter gelation time, increased specific surface area, and a greater number of micropores within the structure. For both reference materials prepared using sodium carbonate, quite different data were recorded. It was presented that the proper choice of carbon matrix should combine both high specific surface area and appropriate pore size distribution. High surface area and a relatively large number of micropores were responsible for specific capacity loss.

  4. Biosolids management strategies: an evaluation of energy production as an alternative to land application.

    Science.gov (United States)

    Egan, Maureen

    2013-07-01

    Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy.

  5. A site-specific slurry application technique on grassland and on arable crops.

    Science.gov (United States)

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  6. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  7. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  8. Nano devices and circuit techniques for low-energy applications and energy harvesting

    CERN Document Server

    2016-01-01

    This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications.    This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering signific...

  9. Advanced energy conversion and application - Decentralized energy systems. Papers; Fortschrittliche Energiewandlung und -anwendung - Schwerpunkt: Dezentrale Energiesysteme. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Decentralized energy systems is the major topic of this VDI report which contains the proceedings of the VDI conference on advanced energy conversion and application. The decentralized energy systems are in the focus because it is expected that they will gain in significance in the course of restructuring and liberalisation of the energy markets and growing commitment to greenhouse gas mitigation. The subjects of the papers are the cogeneration technology in general, and specific systems for combined generation of heat, power and cold,(CHPC systems), systems for renewable energy generation, industrial energy technology, and analysis and optimization of energy systems. The report is intended to serve as a source of guidance and reference for manufacturers and operators of decentralized energy systems, for decision-making on energy policy, and for the energy industry, counselling firms and regulatory/surveillance bodies, and members of universities involved in relevant research and development work. (orig./CB) [German] Themenschwerpunkt des VDI-Berichts sind die dezentralen Energiesysteme, die im Spannungsfeld von fortschreitender Liberalisierung der Energiemaerkte und der Bemuehungen um die Reduzierung von Emissionen an Bedeutung gewinnen. Dabei widmen sich die Beitraege den Systemen zur Kraft-Waerme-Kaelte-Kopplung und zur Nutzung erneuerbarer Energie sowie der industriellen Energietechnik und der Analyse und Optimierung von Energiesystemen. Der Bericht wendet sich an Hersteller und Betreiber dezentraler Energieanlagen, an Entscheidungstraeger aus Politik und Wirtschaft, an Berater und Ueberwachungsinstitutionen sowie an auf diesem Gebiet taetige Hochschullehrer und -mitarbeiter. (orig.)

  10. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    Science.gov (United States)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  11. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    Science.gov (United States)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  12. Applications of energy loss contrast STIM

    International Nuclear Information System (INIS)

    Bench, G.; Saint, A.; Legge, G.J.F.; Cholewa, M.

    1992-01-01

    Scanning Transmission Ion Microscopy (STIM) with energy loss contrast is a quantitative imaging technique. A focussed MeV ion microbeam is scanned over the sample and measured energy losses of residual ions at each beam location are used to provide the contrast in the image. The technique is highly efficient as almost every ion carries useful information from which quantitative data can be obtained. The high efficiency of data collection at present necessitates the use of small beam currents. Therefore small apertures can be used and fine spatial resolution can be achieved. High efficiency also makes it possible to collect large data sets for high definition imaging with a small radiation dose. Owing to the simple relationship between energy loss and areal density, STIM with energy loss contrast can provide a quantitative image that can be used to obtain areal density information on the sample. These areal density maps can be used not only to provide a high resolution image of the sample but also to normalise Particle Induced Xray Emission (PIXE) data. The small radiation dose required to form these areal density maps also allows one to use STIM with energy loss contrast to quantitatively monitor ion beam induced specimen changes caused by higher doses and dose rates used in other microanalytical techniques. STIM with energy loss contrast also provides the possibility of stereo imaging and ion microtomography. STIM has also been used in conjunction with channeling to explore transmission channeling in thin crystals. This paper will discuss these applications of STIM with energy loss contrast and look at further developments from them

  13. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for an adult male (70-kg Reference Man). These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  14. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  15. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  16. Low-energy positron beams - origins, developments and applications

    International Nuclear Information System (INIS)

    Beling, C.D.; Charlton, M.

    1987-01-01

    Over the last 15 years there have been rapid advances in the technology associated with low-energy positron beams. The origins of these advances, and some of the major developments, are discussed. Some applications from the diverse fields of surface physics, atomic scattering and positronium studies are highlighted. (author)

  17. Technical and economic feasibility of thermal energy storage. Thermal energy storage application to the brick/ceramic industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-10-01

    An initial project to study the technical and economic feasibility of thermal energy storage (TES) in the three major consumer markets, namely, the residential, commercial and industrial sectors is described. A major objective of the study was to identify viable TES applications from which a more concise study could be launched, leading to a conceptual design and in-depth validation of the TES energy impacts. This report documents one such program. The brick/ceramic industries commonly use periodic kilns which by their operating cycle require time-variant energy supply and consequently variable heat rejection. This application was one of the numerous TES opportunities that emerged from the first study, now available from the ERDA Technical Information Center, Oak Ridge, Tennessee, identified as Report No. COO-2558-1.

  18. Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.

    Science.gov (United States)

    Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J

    2017-03-01

    Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.

  19. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  20. Problems of increasing specific characteristics of pulse capacitors and cables

    International Nuclear Information System (INIS)

    Kuchinskij, G.S.; Monastyrskij, A.E.; Shilin, O.V.

    1984-01-01

    Requirements for high specific energy are practically related to all types of pulse capacitors of energy storage. At present the specific energy for most types of home and foreign pulse capacitors is about 0.1 MJ/m 3 at operating electric field intensity 70-100 kV/mm. It is shown that the basic means for increasing the specific energy and working intensity is the application of new polymeric film materials. Application of paper-film and film insulation permits to develop the specific types of capacitors designed for a limited service life in an aperiodic discharge mode with lower reliabiliy and the specific energy upto 0.5 MJ/m 3 . Characteristics of separate types of pulse capacitors and cables are given, and reliability criterion is considered. Measures of increasing reliability and service life for pulse capacitors and cables, used as tokamak power supplies are enumerated

  1. Modern wind energy technology for Russian applications. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Winther-Jensen, M., Bindner, H.W. [and others

    1999-05-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis for future joint ventures and technology exports. More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions. The research programme is envisaged to be carried out in three phases, the first phase being the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) wind turbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operational conditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up is for verifications of such adapted and modified wind turbines. The reporting of this project is made in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report, (Risoe-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy as agreed upon between the Russian and the Danish parties. (au)

  2. Flexible and transparent gastric battery: energy harvesting from gastric acid for endoscopy application.

    Science.gov (United States)

    Mostafalu, Pooria; Sonkusale, Sameer

    2014-04-15

    In this paper, we present the potential to harvest energy directly from the digestive system for powering a future wireless endoscopy capsule. A microfabricated electrochemical cell on flexible parylene film is proposed as a gastric battery. This electrochemical cell uses gastric juice as a source of unlimited electrolyte. Planar fabricated zinc [Zn] and palladium [Pd] electrodes serve as anode and cathode respectively. Due to planar geometry, no separator is needed. Moreover the annular structure of the electrodes provides lower distance between cathode and anode reducing the internal resistance. Both electrodes are biocompatible and parylene provides flexibility to the system. For a surface area of 15 mm(2), 1.25 mW is generated which is sufficient for most implantable endoscopy applications. Open circuit output voltage of this battery is 0.75 V. Since this gastric battery does not require any external electrolyte, it has low intrinsic weight, and since it is flexible and is made of biocompatible materials, it offers a promising solution for power in implantable applications. © 2013 Published by Elsevier B.V.

  3. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Science.gov (United States)

    2010-12-17

    ... Marketing, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Direct Energy Marketing, Inc. (DEMI) has applied to renew its authority to transmit..., Federal power marketing agencies, and other entities within the United States. The existing international...

  4. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  5. From principles to practice in site remediation: Specific application in the UK

    International Nuclear Information System (INIS)

    Hill, M.; Higgins, P.; Longley, P.; Kerrigan, E.; Smith, G.M.

    2005-01-01

    As a result of wide-scale application of radioactive materials in research, medicine, defence, nuclear power and industry, significant areas of land have become contaminated with radioactivity. Whilst many practices aim to minimise the potential for contamination, there remain a number of sites that are contaminated as a result of historical discharges and accidental releases. In the UK, defence sites are being remediated to be released for redevelopment. International principles, national guidelines and best practice are taken into account, but quantities of low or very low activity radioactive waste are generated, and require disposal. This paper discusses these issues and illustrates their implementation at a specific site in the UK. (author)

  6. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads

    International Nuclear Information System (INIS)

    Zhang, Xingtian; Zhang, Zutao; Pan, Hongye; Salman, Waleed; Yuan, Yanping; Liu, Yujie

    2016-01-01

    Graphical abstract: In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power supplies for rail-side equipment. The proposed system consists of a mechanical transmission and a rectifier. Acting as the energy input and transmission, Gears and a rack amplify the small vibrations of the track, and one-way bearings enhance efficiency by transforming bidirectional motion to unidirectional rotation. Supercapacitors are used in the energy harvesting system for the first time. The supercapacitors permit the storage of energy from rapidly changing transient currents and a steady power supply for external loads. The proposed system is demonstrated through dynamic simulations, which show the rapid response of the system. An efficiency of 55.5% is demonstrated in bench tests, verifying that the proposed electromagnetic energy harvesting system is effective and practical in renewable energy applications for railroads. - Highlights: • A frequently ignored source of energy, railroad track vibrations, is harvested. • A novel conversion mechanism is designed to maximize efficiency. • Supercapacitors are included in the electromagnetic energy harvesting system. • A portable design is proposed for wider application. - Abstract: As the demand for alternative sources of energy has increased, harvesting abundant environmental energy such as vibration energy including track vibrations in railway systems has attracted greater attention. In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power

  7. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  8. Renewable Energy in Water and Wastewater Treatment Applications; Period of Performance: April 1, 2001--September 1, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, N.

    2003-06-01

    This guidebook will help readers understand where and how renewable energy technologies can be used for water and wastewater treatment applications. It is specifically designed for rural and small urban center water supply and wastewater treatment applications. This guidebook also provides basic information for selecting water resources and for various kinds of commercially available water supply and wastewater treatment technologies and power sources currently in the market.

  9. Application of a tool of aid to the energy planning in isolated rural communities. Case of application Las Peladas

    International Nuclear Information System (INIS)

    Benítez Leyva, Lázaro Ventura; Jerez Pereira, Rubén; Pompa Chávez, Yanel; Tamayo Saborit, Michel; Rosa Andino, Alain de la

    2014-01-01

    This work refers the experience of a study of case realized in the rural community Las Peladas, located in the municipality Bartolome Maso Marquez, of the Granma province. In the same the application of a multi-objective mathematical model like computer tool of aid to the planning appears energetics, in agreement with the specific characteristics of the analyzed locality. The field study was based on the results of a participating survey, the observation and compilation of data that it made possible to obtain a characterization of the community and, this way, of delimiting the necessary parameters for the application of the tool. Five alternatives were evaluated: Aeolian energy, biomass, to pave, hydraulics and the connection to the national network. Of them, the model suggests, that the photovoltaic energy solar exerts the greater influence in the improvement of the integral sustainability of the capitals natural, physical, financial, human and social in the community. (author)

  10. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  11. Structure model of energy efficiency indicators and applications

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin

    2007-01-01

    For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant

  12. EDITORIAL: Selected papers from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011) Selected papers from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011)

    Science.gov (United States)

    Cho, Young-Ho

    2012-09-01

    This special section of Journal of Micromechanics and Microengineering features papers selected from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011), held at Sejong Hotel in Seoul, Korea during 15-18 November 2011. Since the first PowerMEMS workshop held in Sendai, Japan in 2000, the workshop has developed as the premier forum for reporting research results in micro and nanotechnology for power generation, energy conversion, harvesting and processing applications, including in-depth technical issues on nanostructures and materials for small-scale high-density energy and thermal management. Potential PowerMEMS applications cover not only portable power devices for consumer electronics and remote sensors, but also micro engines, impulsive thrusters and fuel cells for systems ranging from the nanometer to the millimeter scale. The 2011 technical program consists of 1 plenary talk, 4 invited talks and 118 contributed presentations. The 48 oral and 70 poster presentations, selected by 27 Technical Program Committee Members from 131 submitted abstracts, have stimulated lively discussion maximizing the interaction between participants. Among them, this special section includes 9 papers covering micro-scale power generators, energy converters, harvesters, thrusters and thermal coolers. Finally, we are grateful to the members of the International Steering Committee, the Technical Program Committee, and the Local Organizing Committee for their efforts and contributions to PowerMEMS 2011. We also thank the two companies Samsung Electro-Mechanics and LG Elite for technical tour arrangements. Special thanks go to Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, as well as to the staff of IOP Publishing for making this special section possible.

  13. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Benton, Nathanael [Nexant, Inc., San Francisco, CA (United States); Burns, Patrick [Nexant, Inc., San Francisco, CA (United States)

    2017-10-18

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressor replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  14. Electrospinning of Nanofibers for Energy Applications

    Science.gov (United States)

    Sun, Guiru; Sun, Liqun; Xie, Haiming; Liu, Jia

    2016-01-01

    With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage. PMID:28335256

  15. Electrospinning of Nanofibers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Guiru Sun

    2016-07-01

    Full Text Available With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage.

  16. Modelling energy demand of developing countries: Are the specific features adequately captured?

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.; Timilsina, Govinda R.

    2010-01-01

    This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor-rich and urban-rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries.

  17. Modelling energy demand of developing countries: Are the specific features adequately captured?

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Subhes C. [CEPMLP, University of Dundee, Dundee DD1 4HN (United Kingdom); Timilsina, Govinda R. [Development Research Group, The World Bank, Washington DC (United States)

    2010-04-15

    This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor-rich and urban-rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries. (author)

  18. A Smartphone Application for Personalized and Multi-Method Interventions toward Energy Saving in Buildings

    Directory of Open Access Journals (Sweden)

    Peeraya Inyim

    2018-05-01

    Full Text Available Occupant behavior is a significant contributor to energy waste in buildings. This research introduces an advanced smartphone application, developed based on the theoretical underpinnings of situational awareness theory, to effectively implement multi-method and personalized intervention to encourage energy conservation behaviors of building occupants. The new smart application provides several innovative features, such as energy saving points, customized feedback, and visualized user interface, which are implemented in the application to support multi-method interventions. The application was created using the Java language for Android devices. With the use of the Android platform, the app takes advantage of hardware technology from the user’s mobile device. Measurement of occupancy behavior is accomplished by making use of the device’s positional sensors. Orientation and geomagnetic field sensors serve to provide an accurate location of an occupant inside the building. The application can determine energy waste in a zone by using occupancy behavior. Moreover, the application offers real-time and projected future energy consumption based on occupants’ behaviors. This novel feature can significantly improve communication that can lead to prompt action for building energy reduction. Results show how the app can compile raw data on energy behavior and make it easy to understand for the user through the use of visuals and statistical algorithms.

  19. EDITORIAL: Selected papers from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010) Selected papers from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010)

    Science.gov (United States)

    Reynaerts, Dominiek; Vullers, Ruud

    2011-10-01

    This special section of Journal of Micromechanics and Microengineering features papers selected from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010). The workshop was organized in Leuven, Belgium from 30 November to 3 December 2010 by Katholieke Universiteit Leuven and the imec/Holst Centre. This was a special PowerMEMS Workshop, for several reasons. First of all, we celebrated the 10th anniversary of the workshop: the first PowerMEMS meeting was organized in Sendai, Japan in 2000. None of the organizers or participants of this first meeting could have predicted the impact of the workshop over the next decade. The second reason was that, for the first time, the conference organization spanned two countries: Belgium and the Netherlands. Thanks to the advances in information technology, teams from Katholieke Universiteit Leuven (Belgium) and the imec/Holst Centre in Eindhoven (the Netherlands) have been able to work together seamlessly as one team. The objective of the PowerMEMS Workshop is to stimulate innovation in micro and nanotechnology for power generation and energy conversion applications. Its scope ranges from integrated microelectromechanical systems (MEMS) for power generation, dissipation, harvesting, and management, to novel nanostructures and materials for energy-related applications. True to the objective of the PowerMEMSWorkshop, the 2010 technical program covered a broad range of energy related research, ranging from the nanometer to the millimeter scale, discussed in 5 invited and 52 oral presentations, and 112 posters. This special section includes 14 papers covering vibration energy harvesters, thermal applications and micro power systems. Finally, we wish to express sincere appreciation to the members of the International Steering Committee, the Technical Program Committee and last but not least the Local Organizing Committee. This special issue was edited in

  20. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  1. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  2. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  3. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  4. European Hydrogen Energy Road-map (HyWays) - First Results from Simulation, Stakeholder Discussion and Evaluation

    International Nuclear Information System (INIS)

    Reinhold Wurster; Ulrich Bunger; Jean-Marc Agator; Martin Wietschel; Harm Jeeninga

    2006-01-01

    HyWays is an integrated project, co-funded by research institutes, industry, national agencies and by the European Commission under the 6. Framework Programme. HyWays aims to develop a validated and well accepted Road-map for the introduction of hydrogen in the European energy system. The main characteristic of this Road-map is that it reflects real life conditions by taking into account not only technological but also country specific institutional, geographic and socio/economic barriers and opportunities. Both stationary and mobile applications are addressed, including possible synergies ('spill over effects') between these applications. HyWays will systematically describe the future steps to be taken for large-scale introduction of hydrogen as an energy carrier in the power market and transport sector and as a storage medium for renewable energy. An Action Plan for the support of the introduction of hydrogen technologies will be derived from this Road-map. (authors)

  5. An examination of the abandonment of applications for energy efficiency retrofit grants in Ireland

    International Nuclear Information System (INIS)

    Collins, Matthew; Curtis, John

    2017-01-01

    The Sustainable Energy Authority of Ireland (SEAI) operates the Better Energy Homes (BEH) grant scheme to incentivise residential energy efficiency retrofits, an ongoing scheme which was implemented in 2009. This scheme provides a financial incentive for home owners to engage in energy efficiency retrofits, provided the upgrades meet appropriate energy efficiency standards. This study analyses the BEH data, which is comprised of all applications from March 2009 to October 2015, in order to examine the extent to which applications are abandoned and the determinants thereof. We find that more complicated retrofits are more likely to be abandoned, with variation across certain combinations of retrofit measure. We find lower probabilities of abandonment among certain obligated parties, who are energy retailers obliged by the State to reduce energy consumption in Ireland, while others possess greater likelihoods of abandonment, relative to private retrofits. We find that newer homes are less likely to abandon an application than older homes, as are applications made for apartments, relative to houses. Regional variations exist in abandonment, with rural households more likely to abandon than urban households. A seasonal trend in abandonment is also present, with higher likelihoods of abandonment among applications made during winter. - Highlights: • We use a stated preference approach to model the abandonment of grant applications. • Deeper retrofits are more likely to be abandoned, with variation across measures. • Abandonment is less likely in applications made via obligated energy suppliers. • Regional and Seasonal variations exist in abandonment.

  6. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  7. Energy Savings Through Thermally Efficient Crucible Technology: Fundamentals, Process Modeling, and Applications

    Science.gov (United States)

    Shi, Wenwu; Pinto, Brian

    2017-12-01

    Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.

  8. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    Science.gov (United States)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  9. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    Science.gov (United States)

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  10. 75 FR 80482 - Application To Export Electric Energy; TransCanada Power Marketing Ltd.

    Science.gov (United States)

    2010-12-22

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-262-C] Application To Export Electric Energy; TransCanada... to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... the Department of Energy (DOE) issued Order No. EA- 262, which authorized TCPM to transmit electric...

  11. Direct Energy Conversion for Low Specific Mass In-Space Power and Propulsion

    Science.gov (United States)

    Scott, John H.; George, Jeffrey A.; Tarditi, Alfonso G.

    2013-01-01

    "Changing the game" in space exploration involves changing the paradigm for the human exploration of the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition. For the purposes of this assessment an "annual expedition" capability is defined as an in-space power & propulsion system which, with launch mass limits as defined in NASA s Mars Architecture 5.0, enables sending a crew to Mars and returning them after a 30-day surface stay within one year, irrespective of planetary alignment. In this work the authors intend to show that obtaining this capability requires the development of an in-space power & propulsion system with an end-to-end specific mass considerably less than 3 kg/kWe. A first order energy balance analysis reveals that the technologies required to create a system with this specific mass include direct energy conversion and nuclear sources that release energy in the form of charged particle beams. This paper lays out this first order approximation and details these conclusions.

  12. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  13. Bioremediation: Application of slow-release fertilizers on low-energy shorelines

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.; Levy, E.M.

    1993-01-01

    In situ biodegradation, the activation of microbial processes capable of destroying contaminants where they are found in the environment, is a biological process that responds rapidly to changing environmental factors. Accordingly, in situ sediment enclosures were used to test the efficacy of selected nutrient formulations to enhance the biodegradation of a waxy crude oil in a low-energy shoreline environment. The addition of soluble inorganic fertilizers (ammonium nitrate and triple superphosphate) and slow-release nutrient formulations (sulfur-coated urea) stimulated microbial activity and prolonged the period of oil degradation, despite a decline in seasonal temperatures. Low temperatures reduced the permeability of the coating on the slow-release fertilizers, effectively suppressing nutrient release. Of the nutrient formulations evaluated, the authors recommend the application of granular slow-release fertilizers (such as sulfur-coated urea) when the overlying water temperatures are above 15 degrees C, and the application of soluble inorganic fertilizers (such as ammonium nitrate) at lower temperatures. Comprehensive analysis of the experimental results indicate that application protocols for bioremediation (form and type of fertilizer or type and frequency of application), be specifically tailored to account for differences in environmental parameters (including oil characteristics) at each contaminated site

  14. A carbon-carbon composite materials development program for fusion energy applications

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Engle, G.B.; Hollenberg, G.W.

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible

  15. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  16. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multistage switched inductor boost converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar

    2017-01-01

    In this paper Multistage Switched Inductor Boost Converter (Multistage SIBC) is uttered for renewable energy applications. The projected converter is derived from an amalgamation of the conventional step-up converter and inductor stack. The number of inductor and duty ratio decides the overall...

  18. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...... in vivo glucose monitoring in diabetes patients). However, the most attractive are oxygen-reducing enzymes such as blue-copper-containing laccases coupled to electrodes, which provide the 4e- bioelectroreduction of O2 to H2O (1.23 V vs. NHE) at potentials approaching the thermodynamic ones. Exploitation...... of laccase-based biocathodes in the biofuel cells and in the hybrid biobattery-type or photovoltaic power sources could essentially broaden their application, enabling extraction of energy from the sea water/water dissolved oxygen. Here we demonstrate up to 0.8 mW cm-2 extracted power densities and 1.5 month...

  19. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  20. Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments

    Directory of Open Access Journals (Sweden)

    Minsung Kim

    2017-04-01

    Full Text Available In this paper, we propose a helical piezoelectric energy harvester, examine its application to clothes in the form of an energy harvesting garment, and analyze its design and characteristics. The helical harvester is composed of an elastic core and a polymer piezoelectric strap twining the core. The fabricated harvester is highly elastic and can be stretched up to 158% of its initial length. Following the experiments using three different designs, the maximum output power is measured as 1.42 mW at a 3 MΩ load resistance and 1 Hz motional frequency. The proposed helical harvesters are applied at four positions of stretchable tight-fitting sportswear, namely shoulder, arm joint, knee, and hip. The maximum output voltage is measured as more than 20 V from the harvester at the knee position during intended body motions. In addition, electric power is also generated from this energy harvesting garment during daily human motions, which is about 3.9 V at the elbow, 3.1 V at the knee, and 4.4 V at the knee during push-up, walking, and squatting motions, respectively.

  1. Interview in Radio Educacion on the applications of nuclear energy

    International Nuclear Information System (INIS)

    Balcazar G, M.

    1991-01-01

    The objective that presides over this interview, is to show before the public the diverse applications that can have the nuclear energy, apart from the warlike aspect and the electric power generation. (Author)

  2. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

    Science.gov (United States)

    Wang, Huanlei; Xu, Zhanwei; Kohandehghan, Alireza; Li, Zhi; Cui, Kai; Tan, Xuehai; Stephenson, Tyler James; King'ondu, Cecil K; Holt, Chris M B; Olsen, Brian C; Tak, Jin Kwon; Harfield, Don; Anyia, Anthony O; Mitlin, David

    2013-06-25

    We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.

  3. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  4. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  5. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    natural gas prices, an unlikely circumstance but one that would undermine the very development of oilsands as surely as high cost and limited availability of natural gas. We examine the applications of nuclear energy to oil sands production, and the concomitant hydrogen production, utilizing realistic reactor designs, modern power and energy market considerations, and environmental constraints on waste and emissions. We cover all aspects of feasibility, specifically technical issues, comparative economics, schedule, regulatory requirements, and other implementation factors. We compare and contrast the claims versus the realities, and also provide the synergistive utilization of co-generation of hydrogen using coupled nuclear and windpower. Among the many non-technological issues expressed by the oil industry are their lack of experience with nuclear technology or nuclear power generation, and with the regulatory framework. The application of any nuclear technology must also consider Government and public support, local and First Nations acceptance, site selection, access to water, oil sands, and transmission, oil industry buy-in on the basis of hard nosed economics, the impacts of oil and gas prices, labour costs and the need for long-term contracts for steam and electricity, together with an experienced nuclear plant owner/operator. (author)

  6. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  7. Determination and Application of Comprehensive Specific Frictional Resistance in Heating Engineering

    Directory of Open Access Journals (Sweden)

    Yanan Tian

    2018-01-01

    Full Text Available In this study, we analyze the deficiencies of specific frictional resistance in heating engineering. Based on economic specific frictional resistance, we put forward the concept of comprehensive specific frictional resistance, which considers the multiple factors of technology, economy, regulation modes, pipe segment differences, and medium pressure. Then, we establish a mathematical model of a heating network across its lifespan in order to develop a method for determining the comprehensive specific frictional resistance. Relevant conclusions can be drawn from the results. As an application, we have planned the heating engineering for Yangyuan County in China, which demonstrates the feasibility and superiority of the method.

  8. Trip Energy Estimation Methodology and Model Based on Real-World Driving Data for Green Routing Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Til, Harrison J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    A data-informed model to predict energy use for a proposed vehicle trip has been developed in this paper. The methodology leverages nearly 1 million miles of real-world driving data to generate the estimation model. Driving is categorized at the sub-trip level by average speed, road gradient, and road network geometry, then aggregated by category. An average energy consumption rate is determined for each category, creating an energy rates look-up table. Proposed vehicle trips are then categorized in the same manner, and estimated energy rates are appended from the look-up table. The methodology is robust and applicable to almost any type of driving data. The model has been trained on vehicle global positioning system data from the Transportation Secure Data Center at the National Renewable Energy Laboratory and validated against on-road fuel consumption data from testing in Phoenix, Arizona. The estimation model has demonstrated an error range of 8.6% to 13.8%. The model results can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations to reduce energy consumption. This work provides a highly extensible framework that allows the model to be tuned to a specific driver or vehicle type.

  9. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  10. Electrospun nanofibers for energy and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Bin; Yu, Jianyong (eds.) [Donghua Univ., Shanghai (China). State Key Lab. for Modification of Chemical Fibers and Polymer Materials; Donghua Univ., Shanghai (China). Nanomaterials Research Center

    2014-10-01

    This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding.

  11. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  12. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  13. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  14. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode-specific

  15. Techniques and tools for measuring energy efficiency of scientific software applications

    CERN Document Server

    Abdurachmanov, David; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Nurminen, Jukka K.; Nyback, Filip; Pestana, Goncalo; Ou, Zhonghong; Khan, Kashif

    2014-01-01

    The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running o...

  16. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  17. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  18. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  19. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  20. What can wave energy learn from offshore oil and gas?

    Science.gov (United States)

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  1. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  2. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  3. Z-Pinch Fusion for Energy Applications

    International Nuclear Information System (INIS)

    SPIELMAN, RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999

  4. 10 CFR 34.13 - Specific license for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY... industrial radiography. An application for a specific license for the use of licensed material in industrial...

  5. 75 FR 75994 - Application To Export Electric Energy; NRG Power Marketing LLC

    Science.gov (United States)

    2010-12-07

    ... Marketing LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: NRG Power Marketing LLC (NRGPML) has applied to renew its authority to transmit electric... to Canada would be surplus energy purchased from electric utilities, Federal power marketing agencies...

  6. A directory of computer software applications: energy. Report for 1974--1976

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    The computer programs or the computer program documentation cited in this directory have been developed for a variety of applications in the field of energy. The cited computer software includes applications in solar energy, petroleum resources, batteries, electrohydrodynamic generators, magnetohydrodynamic generators, natural gas, nuclear fission, nuclear fusion, hydroelectric power production, and geothermal energy. The computer software cited has been used for simulation and modeling, calculations of future energy requirements, calculations of energy conservation measures, and computations of economic considerations of energy systems

  7. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  8. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  9. VLSI systems energy management from a software perspective – A literature survey

    Directory of Open Access Journals (Sweden)

    Prasada Kumari K.S.

    2016-09-01

    Full Text Available The increasing demand for ultra-low power electronic systems has motivated research in device technology and hardware design techniques. Experimental studies have proved that the hardware innovations for power reduction are fully exploited only with the proper design of upper layer software. Also, the software power and energy modelling and analysis – the first step towards energy reduction is complex due to the inter and intra dependencies of processors, operating systems, application software, programming languages and compilers. The subject is too vast; the paper aims to give a consolidated view to researchers in arriving at solutions to power optimization problems from a software perspective. The review emphasizes the fact that software design and implementation is to be viewed from system energy conservation angle rather than as an isolated process. After covering a global view of end to end software based power reduction techniques for micro sensor nodes to High Performance Computing systems, specific design aspects related to battery powered Embedded computing for mobile and portable systems are addressed in detail. The findings are consolidated into 2 major categories – those related to research directions and those related to existing industry practices. The emerging concept of Green Software with specific focus on mainframe computing is also discussed in brief. Empirical results on power saving are included wherever available. The paper concludes that only with the close co-ordination between hardware architect, software architect and system architect low energy systems can be realized.

  10. Efficient Energy use in Different Applications

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lars

    2007-05-15

    There is a steadily growing awareness for environmental issues caused by the increased energy use, mainly in the industrial world. The use of fossil fuels has reached the point where it can not be looked at as an endless source. The resources are decreasing at a pace where alternative energy sources will be a necessity for this and future generations. Global warming, due to increased concentration of greenhouse gases in the atmosphere, has become one of the most important issues on the political agenda at all levels. A widespread opinion is that energy conservation technologies are needed and a shift towards renewable energy sources is required to attain a sustainable development of our society and a progress in the developing countries. This thesis is focusing on two different energy conservation technologies in different applications. The open absorption system, a modification of an absorption heat pump is a promising technique in moist air processes, recovering the latent heat in the air and decreasing the total heat demand. The technology has been tested in two full scale pilot plants at a sawmill operating four timber dryers and another unit installed at an indoor swimming pool. The technique has had positive outcomes in both operational and energy conservation respects. It has been shown that the energy demand was decreased considerably in both applications. The investment cost has proved to be relatively high, but optimization of operational parameters shows a potential to decrease the initial investment and make the technology more competitive. Pressurized entrained-flow high temperature black liquor gasification (PEHT-BLG), developed by Chemrec AB, is another novel technique presented in this thesis. Black liquor is an important by-product in the papermaking process. Chemicals and energy is recovered in the conventional recovery boiler where superheated steam is produced to generate electricity and process heat. The cooking chemicals are recovered from the

  11. Extracting meronomy relations from domain-specific, textual corporate databases

    NARCIS (Netherlands)

    Ittoo, R.A.; Bouma, G.; Maruster, L.; Wortmann, J.C.; Hopfe, C.J.; Rezgui, Y.; Métais, E.; Preece, A.; Li, H.

    2010-01-01

    Various techniques for learning meronymy relationships from open-domain corpora exist. However, extracting meronymy relationships from domain-specific, textual corporate databases has been overlooked, despite numerous application opportunities particularly in domains like product development and/or

  12. Application of nuclear energy in Vietnam

    International Nuclear Information System (INIS)

    Van Thuan, V.

    2006-01-01

    Full text: Radioactive isotopes were introduced to medical treatment in Vietnam very early by M. Curie in 1923. A research reactor has been in operation since 1963 serving up to now an effective base for radioisotope production and nuclear analysis. After reunification of the country, the nuclear technique applications are developing faster and getting widespread. The twenty-year period from 1976 to 1995 was relatively limited by activity of R and D institutions. Nowadays, their interaction with companies demonstrates a dynamic commercialization of nuclear techniques in Vietnam. Investment from government as well as from the private sector has been increased significantly for the last ten years to nuclear medicine and radiotherapy. The radiographic NDT is getting a familiar technique to industry, particularly, in construction of strategy-important industrial and civil projects. NCS are upgraded in different factories, such as mining, ore processing and cement industries. Tracer techniques have shown benefit in oil offshore exploring and in sedimentation management of rivers and harbours. Isotope techniques are playing a competitive role for environmental monitoring and underground water management in the country. Radiation processing is transferred to a commercial scale emphasizing on sterilization of medical products and food preservation. There are still some problems such as public acceptance of radioactive techniques or a lack of both infrastructure and manpower to meet the national demands. However, the government of Vietnam has recently approved the national strategy for peaceful uses of atomic energy, which not only highlights the development of isotope and radiation applications in near future, but also clearly emphasizes the need of nuclear electrical generation by 2017-2020 for the national energy security

  13. Prefeasibility study of a e-business application for the energy wood markets

    International Nuclear Information System (INIS)

    Jokinen, J.; Maelkoenen, A.; Kivelae, H.

    2002-01-01

    Finland has a national target to increase the use of forest based energy from current 0.8 million m 3 /a to 5 million m 3 /a by 2010. Realisation of the target will depend on the functionality of the energy wood markets. The objective of the prefeasibility study is to identify the best e-business applications for energy wood markets in order to achieve the targeted forest energy level by 2010. (orig.)

  14. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  15. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  16. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    Science.gov (United States)

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  17. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  18. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  19. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  20. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  1. Generic Guide Specification for Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required

  2. 78 FR 26765 - Application to Export Electric Energy; ALLETE, Inc., d/b/a Minnesota Power

    Science.gov (United States)

    2013-05-08

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-196-D] Application to Export Electric Energy; ALLETE, Inc... renew its authority to transmit electric energy from the United States to Canada pursuant to section 202... Power to transmit electric energy from the United States to Canada as a power marketer for a five-year...

  3. Advanced directions of peaceful applications of nuclear energy in the Republic of Azerbaijan

    International Nuclear Information System (INIS)

    Garibov, A.A.

    2006-01-01

    Full text: Application of nuclear energy is actual during last years due to depletion of organic sources of row materials. Therefore, each country develops the programs on peaceful application of nuclear energy and using alternative as well as other energy sources on the basis of the analysis of fuel-energy balance and energy demand state. The Republic of Azerbaijan has huge hydrocarbon resources and alternative energy sources. However, taking into account the fact that hydrocarbon resources can cover increasing energy demand at maximum 50-60 years and renewable energy sources can not meet large energy demand during near future then the discovering of advanced ways on peaceful application of nuclear energy is of great importance. Since the seventies of the twentieth century, wide spectrum of scientific researches on the discovering advanced ways on peaceful application of nuclear energy are carried out in the Republic of Azerbaijan. Among them it is necessary to mark the following directions: radiation modification of the properties of polymers, absorbents, catalysts, metals and alloys, semiconductors, dielectrics, ferroelectrics and various devices; radiation oil-chemistry processes; radiation polymerization; radiation-heterogeneous processes; atomic-hydrogen energy; scientific problems of radiation safety and nuclear security; discovering possibilities for using radiation technologies in the solution of environmental problems; radiation sciences of materials and radiation physics; radiation biology and medicine; application of isotope sources in medicine; application of isotope in oil-gas industry; application of isotope sources in radiography and different fields of technique

  4. Application software, domain-specific languages, and language design assistants

    OpenAIRE

    Heering, Jan

    2000-01-01

    textabstractWhile application software does the real work, domain-specific languages (DSLs) are tools to help produce it efficiently, and language design assistants in turn are meta-tools to help produce DSLs quickly. DSLs are already in wide use (HTML for web pages, Excel macros for spreadsheet applications, VHDL for hardware design, ...), but many more will be needed for both new as well as existing application domains. Language design assistants to help develop them currently exist only in...

  5. Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets

    Science.gov (United States)

    Okioga, Irene Teshamulwa

    This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.

  6. Application of solar energy for meeting the energetic demand of large hotel objects

    International Nuclear Information System (INIS)

    Aycheh, B.

    1993-01-01

    The extensive review of renewable energy sources especially taking account the solar energy and its practical application have been described. It has been shown that the use of solar batteries for supply the large hotel objects is satisfactory only in geographic regions of very intensive isolation, e.g. in Latakia. For regions in Middle Europe, the calculations of energy needs during whole year have been shown that application of only solar energy is un-sufficient and economically unreasonable. During winter the solar installation should be supported by the sources of energy available in the region. The core full economical analysis has been done. Its results proved that e.g. for the German climate conditions the price of energy unit taken from combined solar installation is very close the price of energy obtained in conventional fossil fuel power plants. 37 refs, 48 figs, 29 tabs

  7. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  8. Applications of a shadow camera system for energy meteorology

    Science.gov (United States)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  9. Nanoscale applications for information and energy systems

    CERN Document Server

    Korkin, Anatoli

    2012-01-01

    This book presents nanotechnology fundamentals and applications in the key research areas of information technology and solar energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching.

  10. Wideband piezoelectric energy harvester for low-frequency application with plucking mechanism

    Science.gov (United States)

    Hiraki, Yasuhiro; Masuda, Arata; Ikeda, Naoto; Katsumura, Hidenori; Kagata, Hiroshi; Okumura, Hidenori

    2015-04-01

    Wireless sensor networks need energy harvesting from vibrational environment for their power supply. The conventional resonance type vibration energy harvesters, however, are not always effective for low frequency application. The purpose of this paper is to propose a high efficiency energy harvester for low frequency application by utilizing plucking and SSHI techniques, and to investigate the effects of applying those techniques in terms of the energy harvesting efficiency. First, we derived an approximate formulation of energy harvesting efficiency of the plucking device by theoretical analysis. Next, it was confirmed that the improved efficiency agreed with numerical and experimental results. Also, a parallel SSHI, a switching circuit technique to improve the performance of the harvester was introduced and examined by numerical simulations and experiments. Contrary to the simulated results in which the efficiency was improved from 13.1% to 22.6% by introducing the SSHI circuit, the efficiency obtained in the experiment was only 7.43%. This would due to the internal resistance of the inductors and photo MOS relays on the switching circuit and the simulation including this factor revealed large negative influence of it. This result suggested that the reduction of the switching resistance was significantly important to the implementation of SSHI.

  11. Long-term forecasts of regional, customer and use-specific energy demand

    International Nuclear Information System (INIS)

    Schwarz, Juerg

    1999-11-01

    In the future the Swiss electricity market will have to contend with changes stemming from market liberalization. The need for instruments to analyze and predict market shares of electricity is greater than ever; tools are also greatly needed to help managers and workers prepare for new beginnings and to reorient customers. The development and application of such an instrument are the object of the present thesis. A computer program produced within the context of this work can, based on an adapted bottom-up model, be used to analyze and predict the energy demand in the supply area of a medium-sized electric utility. Elektra Birseck Muenchenstein was included in the investigation as a representative medium-sized electric utility, and it provided the basis for a supply area. Current energy demand was depicted with a bottom-up approach and different scenarios of future development were calculated using a prognosis horizon of 30 years. For the market segmentation all consumer sectors had to be considered in detail. In addition, 'regionality', 'substitution' and 'customer proximity' factors had to be illustrated in the model, i.e. the regional development in the supply area, the substitution of energy sources -above all natural gas -and the detailed view of large, individual customers. The choice of a bottom-up approach created a demand for a large quantity of data, not all of which were available or could be produced. An additional crucial capability of the computer simulation was the comparison of assumptions and results of the prognoses. The users needed to be able to consider multiple future eventualities if they were to play out different scenarios to the end. Fulfilling these partly divergent criteria in the structural definition of the energy demand model was one of the large challenges of this work. The result of the dissertation is a differentiated prognosis instrument for the supply area of an electric utility. The structure of the suggested solution is

  12. Magnetic energy storage devices for small scale applications

    International Nuclear Information System (INIS)

    Kumar, B.

    1992-01-01

    This paper covers basic principles of magnetic energy storage, structure requirements and limitations, configurations of inductors, attributes of high-T c superconducting materials including thermal instabilities, a relative comparison with the state-of-the-art high energy density power sources, and refrigeration requirements. Based on these fundamental considerations, the design parameters of a micro superconducting magnetic energy unit for Air Force applications is presented and discussed

  13. Application Protocol, Initial Graphics Exchange Specification (IGES), Layered Electrical Product

    Energy Technology Data Exchange (ETDEWEB)

    O`Connell, L.J. [ed.

    1994-12-01

    An application protocol is an information systems engineering view of a specific product The view represents an agreement on the generic activities needed to design and fabricate the product the agreement on the information needed to support those activities, and the specific constructs of a product data standard for use in transferring some or all of the information required. This application protocol describes the data for electrical and electronic products in terms of a product description standard called the Initial Graphics Exchange Specification (IGES). More specifically, the Layered Electrical Product IGES Application Protocol (AP) specifies the mechanisms for defining and exchanging computer-models and their associated data for those products which have been designed in two dimensional geometry so as to be produced as a series of layers in IGES format The AP defines the appropriateness of the data items for describing the geometry of the various parts of a product (shape and location), the connectivity, and the processing and material characteristics. Excluded is the behavioral requirements which the product was intended to satisfy, except as those requirements have been recorded as design rules or product testing requirements.

  14. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  15. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  16. 40 CFR 166.20 - Application for a specific, quarantine, or public health exemption.

    Science.gov (United States)

    2010-07-01

    ..., or public health exemption. 166.20 Section 166.20 Protection of Environment ENVIRONMENTAL PROTECTION... EMERGENCY CONDITIONS Specific, Quarantine, and Public Health Exemptions § 166.20 Application for a specific, quarantine, or public health exemption. (a) General information required in an application for a specific...

  17. Designing Domain-Specific Heterogeneous Architectures from Dataflow Programs

    Directory of Open Access Journals (Sweden)

    Süleyman Savas

    2018-04-01

    Full Text Available The last ten years have seen performance and power requirements pushing computer architectures using only a single core towards so-called manycore systems with hundreds of cores on a single chip. To further increase performance and energy efficiency, we are now seeing the development of heterogeneous architectures with specialized and accelerated cores. However, designing these heterogeneous systems is a challenging task due to their inherent complexity. We proposed an approach for designing domain-specific heterogeneous architectures based on instruction augmentation through the integration of hardware accelerators into simple cores. These hardware accelerators were determined based on their common use among applications within a certain domain.The objective was to generate heterogeneous architectures by integrating many of these accelerated cores and connecting them with a network-on-chip. The proposed approach aimed to ease the design of heterogeneous manycore architectures—and, consequently, exploration of the design space—by automating the design steps. To evaluate our approach, we enhanced our software tool chain with a tool that can generate accelerated cores from dataflow programs. This new tool chain was evaluated with the aid of two use cases: radar signal processing and mobile baseband processing. We could achieve an approximately 4 × improvement in performance, while executing complete applications on the augmented cores with a small impact (2.5–13% on area usage. The generated accelerators are competitive, achieving more than 90% of the performance of hand-written implementations.

  18. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  19. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  20. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    Science.gov (United States)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  1. Automated Design of Application-Specific Smart Camera Architectures

    NARCIS (Netherlands)

    Caarls, W.

    2008-01-01

    Parallel heterogeneous multiprocessor systems are often shunned in embedded system design, not only because of their design complexity but because of the programming burden. Programs for such systems are architecture-dependent: the application developer needs architecture-specific knowledge to

  2. Development and applications of high energy industrial computed tomography in China

    International Nuclear Information System (INIS)

    Xiao, YongShun; Chen, Zhiqiang

    2016-01-01

    In recent years, China's rapid development of high-end equipment manufacturing industry in the high-speed railway, aircraft, carrier rocket, etc. brings the growing requirements of the high quality assurance of the product. The accelerator based high-energy X-ray Industrial CT has the advantages of strong penetrating power, high sensitivity defect detection and quantitative measurement with image visualization, can meet the needs of the large complicated structure inspection demands. This paper introduces the current research and development status of high energy industrial CT system in China. Research achievements by the Tsinghua University and the Granpect company are discussed, including the ICT system design, high-power LINAC accelerator X-ray source and high detection efficiency detector development, fast and accurate reconstruction algorithms research, etc. This paper also introduces the particularized NDT applications from dozens of industrial CT systems made by Granpect in China, including welding structure nondestructive testing, assembly quality inspection, reverse engineering, scientific research and other applications. Then the future development and application of high energy industrial CT is prospected.

  3. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  4. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  5. 75 FR 5353 - Energy Northwest; Notice of Receipt and Availability of Application for Renewal of Columbia...

    Science.gov (United States)

    2010-02-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0029; Docket No. 50-397] Energy Northwest; Notice of Receipt and Availability of Application for Renewal of Columbia Generating Station Facility Operating... Commission) has received an application, dated January 19, 2010, from Energy Northwest (EN), filed pursuant...

  6. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    Science.gov (United States)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  7. 76 FR 3881 - Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc.

    Science.gov (United States)

    2011-01-21

    ... Energy Marketing (U.S.) Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: TransAlta Energy Marketing (U.S.) Inc. (TEMUS) has applied to renew its..., Federal power marketing agencies, and other entities within the United States. The existing international...

  8. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project element is to increase the specific energy of Li-ion battery cells to 265 Wh/kg and the energy density to 500 Wh/L at 10oC while maintaining...

  9. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  10. Initial Results from an Energy-Aware Airborne Dynamic, Data-Driven Application System Performing Sampling in Coherent Boundary-Layer Structures

    Science.gov (United States)

    Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.

    2014-12-01

    The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.

  11. Influence of fossil energy applications on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M.; Ayar, G.; Oguzhan, C.; Uluduz, H.; Faiz, U. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    The aim of this work is to investigate influence of fossil energy applications on the environmental pollution. Turkey's high rate of economic growth experienced during much of the 1990s, besides resulting in booming industrial production, also led to higher levels of energy consumption, imports, air and water pollution, and greater risks to the country's environment. Air pollution is a major problem in Turkey, with key pollutants including sulfur dioxide, suspended particulates, nitrogen oxides, and carbon dioxide. In Turkey, carbon dioxide emissions from fossil fuels totaled about 50.07 million tons in 2001. However, fuel share of carbon emissions in 2001 was oil 44.2%, coal 38.8%, and natural gas 16.9%. Total carbon dioxide emissions from fossil fuels are expected to be 104 million tons in 2025.

  12. Energy from biomass: An overview. Energie uit biomassa: Een overzicht

    Energy Technology Data Exchange (ETDEWEB)

    Van der Toorn, L J; Elliott, T P [Non-Traditional Business Division, Shell International Petroleum Company, London (United Kingdom)

    1992-03-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs.

  13. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  14. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  15. Prefeasibility study of a e-business application for the energy wood markets

    International Nuclear Information System (INIS)

    Jokinen, J.; Maelkoenen, A.; Kivelae, H.

    2001-01-01

    Finland has a national target to increase the use of forest based energy from current 0.8 million m 3 /a to 5 million m 3 /a by 2010. Realisation of the target will depend on the functionality of the energy wood markets. The objective of the prefeasibility study is to identify the best e-business applications for energy wood markets in order to achieve the targeted forest energy level by 2010. The prefeasibility study will be ready in November, 2001. (orig.)

  16. Chapter 1: Introduction. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; Haeri, Hossein [The Cadmus Group, Portland, OR (United States); Reynolds, Arlis [The Cadmus Group, Portland, OR (United States)

    2017-09-28

    This chapter provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are or are among the most commonly used and accepted in the energy efficiency industry for certain measures or programs. As such, they draw from the existing body of research and best practices for energy efficiency program evaluation, measurement, and verification (EM&V). These protocols were developed as part of the Uniform Methods Project (UMP), funded by the U.S. Department of Energy (DOE). The principal objective for the project was to establish easy-to-follow protocols based on commonly accepted methods for a core set of widely deployed energy efficiency measures.

  17. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.

    Science.gov (United States)

    Wang, Yimin; Bowman, Joel M

    2013-10-21

    We present a theory of mode-specific tunneling that makes use of the general tunneling path along the imaginary-frequency normal mode of the saddle point, Qim, and the associated relaxed potential, V(Qim) [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. The novel aspect of the theory is the projection of the normal modes of a minimum onto the Qim path and the determination of turning points on V(Qim). From that projection, the change in tunneling upon mode excitation can be calculated. If the projection is zero, no enhancement of tunneling is predicted. In that case vibrationally adiabatic (VA) theory could apply. However, if the projection is large then VA theory is not applicable. The approach is applied to mode-specific tunneling in full-dimensional malonaldehyde, using an accurate full-dimensional potential energy surface. Results are in semi-quantitative agreement with experiment for modes that show large enhancement of the tunneling, relative to the ground state tunneling splitting. For the six out-of-plane modes, which have zero projection on the planar Qim path, VA theory does apply, and results from that theory agree qualitatively and even semi-quantitatively with experiment. We also verify the failure of simple VA theory for modes that show large enhancement of tunneling.

  18. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  19. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  20. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  1. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  2. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water-steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  3. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water--steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling, and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  4. MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications

    KAUST Repository

    Chen, Wei

    2013-11-01

    Nanostructured materials provide new and exciting approaches to the development of supercapacitor electrodes for high-performance electrochemical energy storage applications. One of the biggest challenges in materials science and engineering, however, is to prepare the nanomaterials with desirable characteristics and to engineer the structures in proper ways. This dissertation presents the successful preparation and application of very promising materials in the area of supercapacitor energy storage, including manganese dioxide and its composites, polyaniline and activated carbons. Attention has been paid to understanding their growth process and performance in supercapacitor devices. The morphological and electrochemical cycling effects, which contribute to the understanding of the energy storage mechanism of MnO2 based supercapacitors is thoroughly investigated. In addition, MnO2 based binary (MnO2-carbon nanocoils, MnO2-graphene) and ternary (MnO2-carbon nanotube-graphene) nanocomposites, as well as two novel electrodes (MnO2-carbon nanotube-textile and MnO2-carbon nanotube-sponge) have been studied as supercapacitor electrode materials, showing much improved electrochemical storage performance with good energy and power densities. Furthermore, a general chemical route was introduced to synthesize different conducting polymers and activated carbons by taking the MnO2 nanostructures as reactive templates. The electrochemical behaviors of the polyaniline and activated nanocarbon supercapacitors demonstrate the morphology-dependent enhancement of capacitance. Excellent energy and power densities were obtained from the template-derived polyaniline and activated carbon based supercapacitors, indicating the success of our proposed chemical route toward the preparation of high performance supercapacitor materials. The work discussed in this dissertation conclusively showed the significance of the preparation of desirable nanomaterials and the design of effective

  5. Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia

    International Nuclear Information System (INIS)

    Llop, Maria; Pie, Laia

    2008-01-01

    The aim of this paper is to analyze the economic impact of alternative policies implemented on the energy activities of the Catalan production system. Specifically, we analyze the effects of a tax on intermediate energy uses, a reduction in intermediate energy demand, and a tax on intermediate uses combined with a reduction in intermediate energy demand. The methodology involves two versions of the input-output price model: a competitive price formulation and a mark-up price formulation. The input-output price framework will make it possible to evaluate how the alternative measures modify production prices, consumption prices, private real income, and intermediate energy uses. The empirical application is for the Catalan economy and uses economic data for the year 2001. The combination of a tax on energy uses and an improvement in the energy efficiency of the production system is a measure that accomplishes both economic and environmental goals, since it has no effects on prices, it has a positive effect on private real income and, finally, energy consumption is considerably reduced. (author)

  6. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  7. Specific absorbed fractions of energy at various ages from internal photon sources: 3, Five-year-old

    International Nuclear Information System (INIS)

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for a five-year-old or 19-kg person. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  8. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  9. 76 FR 20651 - Application To Export Electric Energy; Cargill Power Markets, LLC

    Science.gov (United States)

    2011-04-13

    ... application. SUMMARY: Cargill Power Markets, LLC (CPM) has applied for authority to transmit electric energy... the FPA (16 U.S.C. 824a(e)). On March 22, 2011, DOE received an application from CPM for authority to... international transmission facilities. CPM does not own any electric transmission facilities nor does it hold a...

  10. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    Science.gov (United States)

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    Science.gov (United States)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  12. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    International Nuclear Information System (INIS)

    Hoffmann, D; Willmann, A; Göpfert, R; Becker, P; Folkmer, B; Manoli, Y

    2013-01-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced

  13. A piezoelectric fibre composite based energy harvesting device for potential wearable applications

    International Nuclear Information System (INIS)

    Swallow, L M; Luo, J K; Siores, E; Patel, I; Dodds, D

    2008-01-01

    Rapid technological advances in nanotechnology, microelectronic sensors and systems are becoming increasingly miniaturized to the point where embedded wearable applications are beginning to emerge. A restriction to the widespread application of these microsystems is the power supply of relatively sizable dimensions, weight, and limited lifespan. Emerging micropower sources exploit self-powered generators utilizing the intrinsic energy conversion characteristics of smart materials. 'Energy harvesting' describes the process by which energy is extracted from the environment, converted and stored. Piezoelectric materials have been used to convert mechanical into electrical energy through their inherent piezoelectric effect. This paper focuses on the development of a micropower generator using microcomposite based piezoelectric materials for energy reclamation in glove structures. Devices consist of piezoelectric fibres, 90–250 µm in diameter, aligned in a unidirectional manner and incorporated into a composite structure. The fibres are laid within a single laminate structure with copper interdigitated electrodes assembled on both sides, forming a thin film device. Performances of devices with different fibre diameters and material thicknesses are investigated. Experiments are outlined that detail the performance characteristics of such piezoelectric fibre laminates. Results presented show voltage outputs up to 6 V which is considered enough for potential applications in powering wearable microsystems

  14. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  15. Evaluation of risk effective STIs with specific application to diesels

    International Nuclear Information System (INIS)

    Vesely, W.E.; Samanta, P.K.; Ginzburg, T.

    1987-01-01

    From a risk standpoint, the objective of surveillance tests is to control the risk arising from failures which can occur while the component is on standby. At the same time, risks caused by the test from test-caused failures and test-caused degradations need also to be controlled. Risk-acceptable test intervals balance these risks in an attempt to achieve an acceptable low, overall risk. Risk and reliability approaches are presented which allow risk-acceptable test intervals to be determined for any component. To provide focus for the approaches, diesels are specifically evaluated, however, the approaches can be applied not only to diesels, but to any component with suitable data. Incorporation of the approaches in personal computer (PC) software is discussed, which can provide tools for the regulator or plant personnel for determining acceptable diesel test intervals for any plant specific or generic application. The FRANTIC III computer code was run to validate the approaches and to evaluate specific issues associated with determining risk effective test intervals for diesels. Using the approaches presented, diesel accident unavailability can be more effectively monitored and be controlled on a plant-specific or generic basis. Test intervals can be made more risk effective than they are now, producing more acceptable accident unavailabilities. The methods presented are one step toward performance-based technical specifications, which more directly control risks

  16. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  17. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  18. Hybrid Non-Isolated and Non Inverting Nx Interleaved DC-DC Multilevel Boost Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Kulkarni, Rishi M.; Padmanaban, Sanjeevi Kumar

    2016-01-01

    In this paper hybrid non isolated/ non inverting Nx interleaved DC-DC multilevel Boost Converter for renewable energy applications is presented. The presented hybrid topology is derived from the conventional interleaved converter and the Nx Multilevel boost converter. In renewable energy...... applications, generated energy cannot be directly used at application end. In most of the cases it needs to be stepped up with DC-DC converter at operating voltage levels as per the requirement of the application. Though conventional boost converter can theoretically be used for this purpose, but obtaining...

  19. A software application for energy flow simulation of a grid connected photovoltaic system

    International Nuclear Information System (INIS)

    Hamad, Ayman A.; Alsaad, Mohammad A.

    2010-01-01

    A computer software application was developed to simulate hourly energy flow of a grid connected photovoltaic system. This software application enables conducting an operational evaluation of a studied photovoltaic system in terms of energy exchange with the electrical grid. The system model consists of a photovoltaic array, a converter and an optional generic energy storage component that supports scheduled charging/discharging. In addition to system design parameters, the software uses hourly solar data and hourly load data to determine the amount of energy exchanged with electrical grid for each hour of the simulated year. The resulting information is useful in assessing the impact of the system on demand for electrical energy of a building that uses it. The software also aggregates these hourly results in daily, monthly and full year sums. The software finds the financial benefit of the system as the difference in grid electrical energy cost between two simultaneously considered cases. One is with load supplied only by the electrical grid, while the other is with the photovoltaic system present and contributing energy. The software supports the energy pricing scheme used in Jordan for domestic consumers, which is based on slices of monthly consumption. By projecting the yearly financial results on the system lifetime, the application weighs the financial benefit resulting from using the system against its cost, thus facilitating an economical evaluation.

  20. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  1. Chalcogenide glasses for device application modified by high-energy irradiation

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.

    2006-01-01

    Full text: Chalcogenide glasses (ChG) or chemical compounds of chalcogen atoms (S, Se or Te, but not O) with some elements from IV-th and V-th groups of the Periodic Table (typically As, Ge, Sb, Bi, etc. ) obtained by melt quenching, are a perspective for application in modern optoelectronics, photonics, telecommunications, acoustic-optics, xerography, lithography, etc. This uniqueness is due to extremely high sensitivity of ChG to external influences, associated, presumably, with high steric flexibility proper to glassy-like network with low average atomic coordination (chalcogen atoms are typically two-fold coordinated in a glassy-like network), relatively large internal free volume and specific lp-character of electronic states localized at a valence-band top. However, at present, the further possibilities for conventional chemical/technological methods to prepare ChG are fully exhausted. One of the steps to resolve this problem is post-technological modification of ChG using possibilities of high-energy irradiation. This work is focused on new advanced radiation-modified ChG for device application in optoelectronics. The attractive practical use of these non-crystalline materials is tightly connected with radiation-induced defect formation processes. For the first time, we consider the possibilities of Raman scattering along with X-ray diffraction and positron annihilation lifetime spectroscopy to characterize microstructural mechanisms of radiation-induced effects in ChG. (authors)

  2. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  3. Analysis of Practical and Academic Application for Knowledge of Lanquage for Specific Purposes

    Directory of Open Access Journals (Sweden)

    Lina Rutkienė

    2014-06-01

    Full Text Available The article examines the methods applied by graduate master’s degree students of the Faculty of Civil Engineering of Vilnius Gediminas Technical University for the purposes of using knowledge of language for specific purposes in the work and study environment. Their linguistic situation is ambivalent: they act in the academic environment, and therefore the used language has to meet academic requirements; on the other hand, most of them are adapting to the linguistic environment at work. Thus, master’s degree students are able to view the subject of language for specific purposes and the knowledge and skills gained from a practical perspective. With the help of a questionnaire and an interview, the article is aimed at assessing the experience of applying the knowledge gained by the students who completed a course on language for specific purposes 2–5 years ago. The article analyses both academic and practical applications regarding knowledge of language for specific purposes. Extralinguistic factors are taken into account when examining why employed master’s degree students do not always use what they have learnt. The problems of the practical application of knowledge are closely related to the cultural situation; hence, the relevant issues of the postmodern epoch are discussed. The paper explores the interconnection of the practical application of knowledge that covers economic and political factors and globalisation. The study focuses on the academic application of knowledge about the language for specific purposes. Attention is paid to dangers posed for the youth language by the predominance of information technologies in higher education institutions. The article analyses how employed master’s degree students evaluate the course on language for specific purposes and the linguistic revision of MA theses, as well as explores how the knowledge provided meets their needs.

  4. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    Science.gov (United States)

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Status of and prospects for the application of unconventional energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Stanescu, I D

    1975-01-01

    A review is provided of the status of various non-conventional energy sources. The economics and technical aspects of oil shale utilization are described. Oil shale is currently burned in power plants in the USSR. Oil sands are a similar resource, the most significant deposits belonging to Canada, the USA, Venezuela, and Madagascar. Geothermal resources are divided into dry steam, wet steam, hot water, geopressured, and hot-dry-rock categories. The geopressured type contains natural gas which is dissolved in saline water under pressure. Hot-dry-rock fields, in which cold water is heated by passing it through hot formations, are described. Solar energy applications are presently limited to domestic heating and hot water, but several power plant designs are under development. Wind energy is especially attractive for remote applications. A tidal energy power plant with a 240 MW output is operational in France. Other plants of this type have been proposed in the USSR, UK, Canada, and Argentina. Two ocean thermal gradient power plants are planned for the Gulf Stream, south of Miami. The production of energy from garbage by way of pyrolysis, hydrogenation, and anaerobic fermentation is discussed. High-temperature and fast-breeder reactors are briefly detailed.

  6. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  7. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  8. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  9. 75 FR 47536 - Application Deadline Extended; Executive Green ICT & Energy Efficiency Trade Mission to Mexico...

    Science.gov (United States)

    2010-08-06

    ... DEPARTMENT OF COMMERCE Application Deadline Extended; Executive Green ICT & Energy Efficiency... are organizing an Executive Green ICT & Energy Efficiency Trade Mission to Mexico City from September... & Communication Technology (ICT)'' solutions, as well as energy efficiency technologies to enter or increase their...

  10. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  11. Energy cascades in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A. C.; Brown, T. D.

    1979-03-15

    Combining energy uses in a cascade can result in significant overall reductions in fuel requirements. The simplest applications for a cascade are in the recovery of waste heat from existing processes using special boilers or turbines. Specific applications of more-complex energy cascades for Canada are discussed. A combined-cycle plant at a chemical refinery in Ontario is world leader in energy efficiency. Total-energy systems for commercial buildings, such as one installed in a school in Western Canada, offer attractive energy and operating cost benefits. A cogeneration plant proposed for the National Capital Region, generating electricity as well as steam for district heating, allows the use of a low-grade fossil fuel (coal), greatly improves energy-transformation efficiency, and also utilizes an effectively renewable resource (municipal garbage). Despite the widespread availability of equipment and technology of energy cascades, the sale of steam and electricity across plant boundaries presents a barrier. More widespread use of cascades will require increased cooperation among industry, electric utilities and the various levels of government if Canada is to realize the high levels of energy efficiency potential available.

  12. Assessing the Energy Consumption of Smartphone Applications

    Science.gov (United States)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  13. 40 CFR 73.83 - Secretary of Energy's action on net income neutrality applications.

    Science.gov (United States)

    2010-07-01

    ... Renewable Energy Reserve § 73.83 Secretary of Energy's action on net income neutrality applications. (a) First come, first served. The Secretary of Energy will process and certify net income neutrality... of Energy determines that the net income neutrality certification application does not meet the...

  14. Role of IAEA in non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    Kupitz, J.

    1997-01-01

    Worldwide, approximately 30% of total primary energy is used to produce electricity. Most of the remaining 70% is either used for transportation or is converted into hot water, steam and heat. The International Atomic Energy Agency is a specialized agency within the United Nations family whose role includes the development and practical application of atomic energy for peaceful uses throughout the world. The focus of this paper is on those applications associated with district heating and process heat production for industrial use. 14 refs, 3 figs, 1 tab

  15. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  17. 77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.

    Science.gov (United States)

    2012-02-27

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... DEPARTMENT OF ENERGY [OE Docket No. EA-383] Application To Export Electric Energy; Pilot Power... application. SUMMARY: Pilot Power Group, Inc. (Pilot Power) has applied for authority to transmit electric...

  18. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  19. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  20. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset

    International Nuclear Information System (INIS)

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-01-01

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered, operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to ∼50% if kept in the position of maximum SAR for 6 min continuously

  1. Application of energy conservation technologies in Indian industries

    International Nuclear Information System (INIS)

    Zubair, K.M.

    1992-01-01

    The quadrupling of oil prices in 1973 signaled the beginning of a crises period for the oil importing countries. It hampered the economic growth of developed and developing countries alike. The pace of industrialization slowed down, recession set in and the oil importing developing nations found their balance of payment situation steadily going worse. The second increase of oil prices in 1979 further compounded the problems. It did seem that the problem of economic growth and increasing debt burden was intractable as far as developing nations were concerned. Behind this turmoil were the faint stirrings of alternative actions that sought to wean the world from its oil and fossil fuel dominated economies. These alternatives ranged from harnessing renewable energy sources, such as solar, wind and biomass to implementing end-use energy efficiency strategies. A major lesson of the oil crunch era was that energy efficiency is tangible resource by itself that competes economically with contemporary energy supply options. In addition to this, four major national priorities, viz, economic competitiveness, utilization of scare capital for development, environmental quality and energy security through oil dependence provided an urgent rationale for saving energy. While conservation consciousness has already taken roots in Pakistan industry, it needs to be nurtured and gains need to be consolidated. The need of the hour is to take stock of the situation elsewhere, particularly in similar geographical and socio-economic situations, and plan for an energy efficient tomorrow. This article attempts to delineate the notable developments that have taken place in the application of energy conservation technologies in the Indian industries. These efforts have had a salutary effect on the Indian value added sector which was saddled with old plant and machinery designed in the era of cheap energy. (author)

  2. Application of the Monte Carlo method in calculation of energy-time distribution from a pulsed photon source in homogeneous air environment

    International Nuclear Information System (INIS)

    Ilic, R.D.; Vojvodic, V.I.; Orlic, M.P.

    1981-01-01

    The stochastic nature of photon interactions with matter and the characteristics of photon transport through real materials, are very well suited for applications of the Monte Carlo method in calculations of the energy-space distribution of photons. Starting from general principles of the Monte Carlo method, physical-mathematical model of photon transport from a pulsed source is given for the homogeneous air environment. Based on that model, a computer program is written which is applied in calculations of scattered photons delay spectra and changes of the photon energy spectrum. Obtained results provide the estimation of the timespace function of the electromagnetic field generated by photon from a pulsed source. (author)

  3. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenhua H.; Zhu Ying [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States); Tatarchuk, Bruce J., E-mail: brucet@eng.auburn.edu [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States)

    2011-08-15

    Highlights: {yields} Pb-acid battery is reexamined in electrode structure and capacitance enhancement. {yields} Pb-acid batteries were tested through the electrochemical impedance at loads. {yields} Electrode behaviors are evaluated by simulation using an equivalent circuit model. {yields} A defective and a failed Pb-acid battery was used in non-destructive analysis. {yields} Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the

  4. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu Ying; Tatarchuk, Bruce J.

    2011-01-01

    Highlights: → Pb-acid battery is reexamined in electrode structure and capacitance enhancement. → Pb-acid batteries were tested through the electrochemical impedance at loads. → Electrode behaviors are evaluated by simulation using an equivalent circuit model. → A defective and a failed Pb-acid battery was used in non-destructive analysis. → Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the improved electrode

  5. Dielectric elastomers: from the beginning of modern science to applications in actuators and energy harvesters

    Science.gov (United States)

    Baumgartner, Richard; Keplinger, Christoph; Kaltseis, Rainer; Schwödiauer, Reinhard; Bauer, Siegfried

    2011-04-01

    Electrically deformable materials have a long history, with first quotations in a letter from Alessandro Volta. The topic turned out to be hot at the end of the 19th century, with a landmark paper of Röntgen anticipating the dielectric elastomer principle. In 2000, Pelrine and co-workers generated huge interest in such soft actuators, by demonstrating voltage induced huge area expansion rates of more than 300%. Since then, the field became mature, with first commercial applications appearing on the market. New frontiers also emerged recently, for example by using dielectric transducers in a reverse mode for scavenging mechanical energy. In the present survey we briefly discuss the latest developments in the field.

  6. Analytics for smart energy management tools and applications for sustainable manufacturing

    CERN Document Server

    Oh, Seog-Chan

    2016-01-01

    This book introduces the issues and problems that arise when implementing smart energy management for sustainable manufacturing in the automotive manufacturing industry and the analytical tools and applications to deal with them. It uses a number of illustrative examples to explain energy management in automotive manufacturing, which involves most types of manufacturing technology and various levels of energy consumption. It demonstrates how analytical tools can help improve energy management processes, including forecasting, consumption, and performance analysis, emerging new technology identification as well as investment decisions for establishing smart energy consumption practices. It also details practical energy management systems, making it a valuable resource for professionals involved in real energy management processes, and allowing readers to implement the procedures and applications presented.

  7. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tiessen, Alex [Posterity Group, Derwood, MD (United States)

    2017-10-09

    Retrocommissioning (RCx) is a systematic process for optimizing energy performance in existing buildings. It specifically focuses on improving the control of energy-using equipment (e.g., heating, ventilation, and air conditioning [HVAC] equipment and lighting) and typically does not involve equipment replacement. Field results have shown proper RCx can achieve energy savings ranging from 5 percent to 20 percent, with a typical payback of two years or less (Thorne 2003). The method presented in this protocol provides direction regarding: (1) how to account for each measure's specific characteristics and (2) how to choose the most appropriate savings verification approach.

  8. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 2, Topic reports

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over the period of 5-20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This study was conducted by an 11-member panel of experts from industry and academia, including one each from Japan and Europe. This volume first presents an in-depth overview of the role of catalysis in future energy technology in chapter 1; then current catalytic research is critically reviewed and research recommended in 8 topic chapters: catalyst preparation (design and synthesis), catalyst characterization (structure/function), catalyst performance testing, reaction kinetics/reactor design, catalysis for industrial chemicals, catalysis for electrical applications (clean fuels, pollution remediation), catalysis for control of exhaust emissions, and catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass.

  9. Seismic Applications of Energy Dampers

    OpenAIRE

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  10. High-energy shadowing effect and its application to atomic and solid state physics

    International Nuclear Information System (INIS)

    Kudo, Hiroshi; Shima, Kunihiro; Ishihara, Toyoyuki; Takeshita, Hidefumi; Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi

    1994-01-01

    Ion-beam shadowing effects for projectiles in the MeV/u energy range have been studied with high-energy (keV) secondary electrons emitted from the surface of a target crystal. This article reviews and discusses applications of the high-energy shadowing effect to atomic and solid state physics, as well as physical and technical aspects of the electron spectroscopy under channeling incidence conditions. (orig.)

  11. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  12. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  13. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  14. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  15. Application of LBB to high energy piping systems in operating PWR

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  16. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2009-01-01

    This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends

  17. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mono or 3D video production for scientific dissemination of nuclear energy applications

    International Nuclear Information System (INIS)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F.; Araujo, Tawein

    2011-01-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  19. Mono or 3D video production for scientific dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F., E-mail: mol@ien.gov.b, E-mail: vgoncalves@ien.gov.b, E-mail: calexandre@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Araujo, Tawein [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Belas Artes; Legey, Ana Paula [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  20. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  1. IAEA support of international research and development of materials for sustainable energy applications

    International Nuclear Information System (INIS)

    Zeman, Andrej; Kaiser, Ralf; Simon, Aliz

    2013-01-01

    Full-text:The key mandate of the International Atomic Energy Agency (IAEA) is to promote the peaceful application of nuclear science and technology, verification as well as nuclear safety in the world. This includes a number of activities which aim to support the Member States and stimulate international cooperation in order for sustainable development. During the last 35 years, a well-established mechanism called the Coordinated Research Projects (CRP) has been effectively used to stimulate international research and scientific interaction among the Member States, covering various topics in the nuclear science and technology. Besides direct support of, so called coordinated research, the IAEA is also involved in organizing a number of highly specific international conferences and technical meetings which help to provide a broader platform for the specialist and experts in dedicated areas of nuclear science and technology. In view of support for renewable energy and its application, the IAEA organized series of meetings in 2009 (IEA France), 2010 (UQTR Canada) and 2011 (ANL USA) in order to discuss the scientific and technical issues of particular of national research initiatives related to the hydrogen storage and conversion technologies. All selected outputs of the meetings were published in a technical document publication series which are available to all member states. More recent initiatives are focus on the key nuclear techniques which are extremely valuable in research and development of new innovative materials, methods and technologies, characterization and performance testing of functional materials for innovative energy technologies and their application in sustainable energy sources (nuclear and non-nuclear). It is also important to underline that these programmatic activities are an integral part of the IAEA program on the Road to Rio+20: Applying Nuclear Technology for Sustainable Development. The paper summarizes the IAEA actions relevant to the

  2. The development and application practice of neglected tidal energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-qun; Liu, Chun-xia; Sun, Zhi-yi; Han, Ru-cheng [Department of Electronic and Information, Taiyuan University of Science and Technology, 030024 Taiyuan, Shanxi Province (China)

    2011-02-15

    Along the eastcoasts of China are large bodies of water, China has abundant ocean energy resource, such as the theory reserves of tidal resource is about 0.2 billion kW, as early as 1958, Jizhou tidal power station is the first tidal power station in China, which built in Shunde, Guangdong province, and more than 40 small tidal power stations are built in east coastal region in 1960s, and the total installed capacity is about 0.5 MW. But it is a pity, the application and development of tidal energy has not been regarded by the government and ordinary people due to the investment of power plant is big and the technology is not mature, so there are only several small tidal power stations in China, and Jiangxia tidal power station with an installed capacity of 3.2 MW is the most famous. Fortunately, with the rapid development of Chinese economic and society, the renewable and sustainable energy have been regarded by Chinese government, and the application and development of wind energy and solar energy is increasing in an incredible speed, and more and more specialists began to regard the application of tidal energy, and they thought that tidal energy can relieve the energy stress of east coastal region, and many layout of tidal energy exploitation is unfold in recently. This paper discusses the distribution zone and current developmental situation of tidal energy in China. Then, some application practice is described, such as tidal power station and tidal stream turbine. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of tidal energy in future China and the development barriers and recommendations are introduced, respectively. (author)

  3. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  4. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  5. Virus-Specific T Cells: Broadening Applicability.

    Science.gov (United States)

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-01-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  6. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  7. Brookhaven Regional Energy Facility Siting Model (REFS): model development and application

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.; Hobbs, B.; Ketcham, G.; McCoy, M.; Stern, R.

    1979-06-01

    A siting methodology developed specifically to bridge the gap between regional-energy-system scenarios and environmental transport models is documented. Development of the model is described in Chapter 1. Chapter 2 described the basic structure of such a model. Additional chapters on model development cover: generation, transmission, demand disaggregation, the interface to other models, computational aspects, the coal sector, water resource considerations, and air quality considerations. These subjects comprise Part I. Part II, Model Applications, covers: analysis of water resource constraints, water resource issues in the New York Power Pool, water resource issues in the New England Power Pool, water resource issues in the Pennsylvania-Jersey-Maryland Power Pool, and a summary of water resource constraint analysis. (MCW)

  8. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  9. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  10. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  11. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  12. Electrospinning of Nanofibers and Their Applications for Energy Devices

    Directory of Open Access Journals (Sweden)

    Xiaomin Shi

    2015-01-01

    Full Text Available With the depletion of fossil fuels and the increasing demand of energy for economic development, it is urgent to develop renewable energy technologies to sustain the economic growth. Electrospinning is a versatile and efficient fabrication method for one-dimensional (1D nanostructured fibers of metals, metal oxides, hydrocarbons, composites, and so forth. The resulting nanofibers (NFs with controllable diameters ranging from nanometer to micrometer scale possess unique properties such as a high surface-area-to-volume and aspect ratio, low density, and high pore volume. These properties make 1D nanomaterials more advantageous than conventional materials in energy harvesting, conversion, and storage devices. In this review, the key parameters for e-spinning are discussed and the properties of electrospun NFs and applications in solar cells, fuel cells, nanogenerators, hydrogen energy harvesting and storage, lithium-ion batteries, and supercapacitors are reviewed. The advantages and disadvantages of electrospinning and an outlook on the possible future directions are also discussed.

  13. Qweak experiment update and applications/opportunities at lower energies

    International Nuclear Information System (INIS)

    Pitt, Mark L.

    2013-01-01

    The Q weak experiment has recently completed data-taking at Jefferson Lab. The primary focus of the experiment is to perform a precision measurement of the proton's neutral weak charge. The Standard Model gives a definite prediction for the weak charge. Any deviation from that can be interpreted as evidence for new physics beyond the Standard Model. This precision, low energy measurement is sensitive to new physics signatures at energy scales up to 2 TeV. The experiment measures the parity-violating asymmetry in the scattering of 1.165 GeV longitudinally polarized electrons on the proton at low momentum transfer (Q 2 ∼ 0.025 (GeV/c) 2 ). This paper provides a brief status report on the experiment with a focus on instrumentation and techniques that are applicable to lower beam energy realizations of parity-violating electron scattering measurements. Estimates of anticipated errors on the proton's weak charge expected if the Q weak apparatus were used at a lower beam energy are also discussed

  14. Determinations of dose mean of specific energy for conventional x-rays by variance-measurements

    International Nuclear Information System (INIS)

    Forsberg, B.; Jensen, M.; Lindborg, L.; Samuelson, G.

    1978-05-01

    The dose mean value (zeta) of specific energy of a single event distribution is related to the variance of a multiple event distribution in a simple way. It is thus possible to determine zeta from measurements in high dose rates through observations of the variations in the ionization current from for instance an ionization chamber, if other parameters contribute negligibly to the total variance. With this method is has earlier been possible to obtain results down to about 10 nm in a beam of Co60-γ rays, which is one order of magnitude smaller than the sizes obtainable with the traditional technique. This advantage together with the suggestion that zeta could be an important parameter in radiobiology make further studies of the applications of the technique motivated. So far only data from measurements in beams of a radioactive nuclide has been reported. This paper contains results from measurements in a highly stabilized X-ray beam. The preliminary analysis shows that the variance technique has given reasonable results for object sizes in the region of 0.08 μm to 20 μm (100 kV, 1.6 Al, HVL 0.14 mm Cu). The results were obtained with a proportional counter except for the larger object sizes, where an ionization chamber was used. The measurements were performed at dose rates between 1 Gy/h and 40 Gy/h. (author)

  15. Novel designs for application specific MEMS pressure sensors.

    Science.gov (United States)

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  16. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Computational materials design for energy applications

    Science.gov (United States)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  19. Low energy electron scattering from fuels

    International Nuclear Information System (INIS)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M.

    2011-01-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  20. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist