WorldWideScience

Sample records for species specific genome

  1. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  2. Comparative analyses identified species-specific functional roles in oral microbial genomes

    Science.gov (United States)

    Chen, Tsute; Gajare, Prasad; Olsen, Ingar; Dewhirst, Floyd E.

    2017-01-01

    ABSTRACT The advent of next generation sequencing is producing more genomic sequences for various strains of many human oral microbial species and allows for insightful functional comparisons at both intra- and inter-species levels. This study performed in-silico functional comparisons for currently available genomic sequences of major species associated with periodontitis including Aggregatibacter actinomycetemcomitans (AA), Porphyromonas gingivalis (PG), Treponema denticola (TD), and Tannerella forsythia (TF), as well as several cariogenic and commensal streptococcal species. Complete or draft sequences were annotated with the RAST to infer structured functional subsystems for each genome. The subsystems profiles were clustered to groups of functions with similar patterns. Functional enrichment and depletion were evaluated based on hypergeometric distribution to identify subsystems that are unique or missing between two groups of genomes. Unique or missing metabolic pathways and biological functions were identified in different species. For example, components involved in flagellar motility were found only in the motile species TD, as expected, with few exceptions scattered in several streptococcal species, likely associated with chemotaxis. Transposable elements were only found in the two Bacteroidales species PG and TF, and half of the AA genomes. Genes involved in CRISPR were prevalent in most oral species. Furthermore, prophage related subsystems were also commonly found in most species except for PG and Streptococcus mutans, in which very few genomes contain prophage components. Comparisons between pathogenic (P) and nonpathogenic (NP) genomes also identified genes potentially important for virulence. Two such comparisons were performed between AA (P) and several A. aphrophilus (NP) strains, and between S. mutans + S. sobrinus (P) and other oral streptococcal species (NP). This comparative genomics approach can be readily used to identify functions unique to

  3. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  4. Quantifying Temporal Genomic Erosion in Endangered Species.

    Science.gov (United States)

    Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love

    2018-03-01

    Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Genomic definition of species. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1993-03-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species- and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called species genome. Our proposal for the definition of a biological species is as follows: A species comprises a group of actual and potential biological organisms built according to a unique genome program that is recorded, and at least in part expressed, in the structures of their genomic nucleic acid molecule(s), having intragroup sequence differences which can be fully interconverted in the process of organismal reproduction.

  6. Genomic definition of species. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Dramanac, R.

    1992-06-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called (species) genome. The definition of species based on chromosomes, genes, or genome common to its member organisms has been implied or mentioned in passing numerous times. Some population biologists think that members of species have similar ``homeostatic genotypes,`` which are to a degree resistant to mutation or environmental change in the production of a basic phenotype.

  7. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.

  8. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Monika Szczecińska

    2015-09-01

    patens and Pulsatilla vernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.

  9. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements.

    Directory of Open Access Journals (Sweden)

    Meghana Deepak Shirke

    Full Text Available Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck, finger millet (leaf and neck, foxtail millet (leaf and buffel grass (leaf. Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors.

  10. Population Genomics of Paramecium Species.

    Science.gov (United States)

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  12. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  13. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences.

    Science.gov (United States)

    Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou

    2016-11-01

    It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.

  14. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species.

    Directory of Open Access Journals (Sweden)

    Gizem Kalay

    2010-11-01

    Full Text Available cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of

  15. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  16. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  17. Microbial species delineation using whole genome sequences.

    Science.gov (United States)

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  19. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity.

    Directory of Open Access Journals (Sweden)

    Tamara Smokvina

    Full Text Available Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis

  20. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    Science.gov (United States)

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  1. What can comparative genomics tell us about species concepts in the genus Aspergillus?

    Energy Technology Data Exchange (ETDEWEB)

    Rokas, Antonis; payne, gary; Federova, Natalie D.; Baker, Scott E.; Machida, Masa; yu, Jiujiang; georgianna, D. R.; Dean, Ralph A.; Bhatnagar, Deepak; Cleveland, T. E.; Wortman, Jennifer R.; Maiti, R.; Joardar, V.; Amedeo, Paolo; Denning, David W.; Nierman, William C.

    2007-12-15

    Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.

  2. Roegneria alashanica Keng: a species with the StStStYStY genome constitution.

    Science.gov (United States)

    Wang, Richard R-C; Jensen, Kevin B

    2017-06-01

    The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, St 1 St 2 , similar to that of Pseudoroegneria elytrigioides (C. Yen & J.L. Yang) B.R. Lu. A study, however, concluded that R. alashanica had the StY genome formula typical for tetraploid species of Roegneria. For the present study, R. alashanica, Elymus longearistatus (Bioss.) Tzvelev (StY genomes), Pseudoroegneria strigosa (M. Bieb.) Á. Löve (St), Pseudoroegneria libanoctica (Hackel) D.R. Dewey (St), and Pseudoroegneria spicata (Pursh) Á. Löve (St) were screened for the Y-genome specific marker B14(F+R) 269 . All E. longearistatus plants expressed intense bands specific to the Y genome. Only 6 of 10 R. alashanica plants exhibited relatively faint bands for the STS marker. Previously, the genome in species of Pseudoroegneria exhibiting such faint Y-genome specific marker was designated as St Y . Based on these results, R. alashanica lacks the Y genome in E. longearistatus but likely possess two remotely related St genomes, St and St Y . According to its genome constitution, R. alashanica should be classified in the genus Pseudoroenera and given the new name Pseudoroegneria alashanica (Keng) R.R.-C. Wang and K.B. Jensen.

  3. Cross-species genome-wide identification of evolutionary conserved microproteins

    DEFF Research Database (Denmark)

    Straub, Daniel; Wenkel, Stephan

    2017-01-01

    Protein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known micro...... act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals....

  4. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat.

    Science.gov (United States)

    Naito, Mariko; Ogura, Yoshitoshi; Itoh, Takehiko; Shoji, Mikio; Okamoto, Masaaki; Hayashi, Tetsuya; Nakayama, Koji

    2016-02-01

    Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    Science.gov (United States)

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  6. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  7. The evolution of microbial species - a view through the genomic lens

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Neha; Mukherjee, Supratim; ivanova, Natalia; Mavromatis, Konstantinos; Konstantinidis, Konstantinos; Kyrpides, Nikos; Pati, Amrita

    2014-03-17

    For a long time prokaryotic species definition has been under debate and a constant source of turmoil in microbiology. This has recently prompted the ASM to call for a scalable and reproducible technique, which uses meaningful commonalities to cluster microorganisms into groups corresponding to prokaryotic species. Whole-genome Average Nucleotide Identity (gANI) was previously suggested as a measure of genetic distance that generally agrees with prokaryotic species assignments based on the accepted best practices (DNA-DNA hybridization and 16S rDNA similarity). In this work, we prove that gANI is indeed the meaningful commonality based on which microorganisms can be grouped into the aforementioned clusters. By analyzing 1.76 million pairs of genomes we find that identification of the closest relatives of an organism via gANI is precise, scalable, reproducible, and reflects the evolutionary dynamics of microbes. We model the previously unexplored statistical properties of gANI using 6,000 microbial genomes and apply species-specific gANI cutoffs to reveal anomalies in the current taxonomic species definitions for almost 50percent of the species with multiple genome sequences. We also provide evidence of speciation events and genetic continuums in 17.8percent of those species. We consider disagreements between gANI-based groupings and named species and demonstrate that the former have all the desired features to serve as the much-needed natural groups for moving forward with taxonomy. Further, the groupings identified are presented in detail at http://ani.jgi-psf.org to facilitate comprehensive downstream analysis for researchers across different disciplines

  8. Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact.

    Science.gov (United States)

    Walters-Conte, Kathryn B; Johnson, Diana L E; Allard, Marc W; Pecon-Slattery, Jill

    2011-01-01

    Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.

  9. Species specificity in major urinary proteins by parallel evolution.

    Directory of Open Access Journals (Sweden)

    Darren W Logan

    Full Text Available Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1 diversity, to enable the signaling of multiple behaviors, 2 dynamic regulation, to indicate age and dominance, and 3 species-specificity. Recently, the major urinary proteins (Mups have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues.Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species-specific

  10. The other side of comparative genomics: genes with no orthologs between the cow and other mammalian species

    Directory of Open Access Journals (Sweden)

    Ajmone-Marsan Paolo

    2009-12-01

    Full Text Available Abstract Background With the rapid growth in the availability of genome sequence data, the automated identification of orthologous genes between species (orthologs is of fundamental importance to facilitate functional annotation and studies on comparative and evolutionary genomics. Genes with no apparent orthologs between the bovine and human genome may be responsible for major differences between the species, however, such genes are often neglected in functional genomics studies. Results A BLAST-based method was exploited to explore the current annotation and orthology predictions in Ensembl. Genes with no orthologs between the two genomes were classified into groups based on alignments, ontology, manual curation and publicly available information. Starting from a high quality and specific set of orthology predictions, as provided by Ensembl, hidden relationship between genes and genomes of different mammalian species were unveiled using a highly sensitive approach, based on sequence similarity and genomic comparison. Conclusions The analysis identified 3,801 bovine genes with no orthologs in human and 1010 human genes with no orthologs in cow, among which 411 and 43 genes, respectively, had no match at all in the other species. Most of the apparently non-orthologous genes may potentially have orthologs which were missed in the annotation process, despite having a high percentage of identity, because of differences in gene length and structure. The comparative analysis reported here identified gene variants, new genes and species-specific features and gave an overview of the other side of orthology which may help to improve the annotation of the bovine genome and the knowledge of structural differences between species.

  11. Comparative Analysis of the Complete Chloroplast Genomes of Four Aconitum Medicinal Species

    Directory of Open Access Journals (Sweden)

    Jing Meng

    2018-04-01

    Full Text Available Aconitum (Ranunculaceae consists of approximately 400 species distributed in the temperate regions of the northern hemisphere. Many species are well-known herbs, mainly used for analgesia and anti-inflammatory purposes. This genus is well represented in China and has gained widespread attention for its toxicity and detoxification properties. In southwestern China, several Aconitum species, called ‘Dula’ in the Yi Nationality, were often used to control the poisonous effects of other Aconitum plants. In this study, the complete chloroplast (cp genomes of these species were determined for the first time through Illumina paired-end sequencing. Our results indicate that their cp genomes ranged from 151,214 bp (A. episcopale to 155,769 bp (A. delavayi in length. A total of 111–112 unique genes were identified, including 85 protein-coding genes, 36–37 tRNA genes and eight ribosomal RNA genes (rRNA. We also analyzed codon usage, IR expansion or contraction and simple sequence repeats in the cp genomes. Eight variable regions were identified and these may potentially be useful as specific DNA barcodes for species identification of Aconitum. Phylogenetic analysis revealed that all five studied species formed a new clade and were resolved with 100% bootstrap support. This study will provide genomic resources and potential plastid markers for DNA barcoding, further taxonomy and germplasm exploration of Aconitum.

  12. Comparative Analysis of the Complete Chloroplast Genomes of Four Aconitum Medicinal Species.

    Science.gov (United States)

    Meng, Jing; Li, Xuepei; Li, Hongtao; Yang, Junbo; Wang, Hong; He, Jun

    2018-04-26

    Aconitum (Ranunculaceae) consists of approximately 400 species distributed in the temperate regions of the northern hemisphere. Many species are well-known herbs, mainly used for analgesia and anti-inflammatory purposes. This genus is well represented in China and has gained widespread attention for its toxicity and detoxification properties. In southwestern China, several Aconitum species, called ‘Dula’ in the Yi Nationality, were often used to control the poisonous effects of other Aconitum plants. In this study, the complete chloroplast (cp) genomes of these species were determined for the first time through Illumina paired-end sequencing. Our results indicate that their cp genomes ranged from 151,214 bp ( A. episcopale ) to 155,769 bp ( A. delavayi ) in length. A total of 111⁻112 unique genes were identified, including 85 protein-coding genes, 36⁻37 tRNA genes and eight ribosomal RNA genes (rRNA). We also analyzed codon usage, IR expansion or contraction and simple sequence repeats in the cp genomes. Eight variable regions were identified and these may potentially be useful as specific DNA barcodes for species identification of Aconitum . Phylogenetic analysis revealed that all five studied species formed a new clade and were resolved with 100% bootstrap support. This study will provide genomic resources and potential plastid markers for DNA barcoding, further taxonomy and germplasm exploration of Aconitum .

  13. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna

    2015-01-01

    , winter hardiness, drought tolerance and resistance to grazing. In this study we have sequenced and assembled the low copy fraction of the genomes of Lolium westerwoldicum, Lolium multiflorum, Festuca pratensis and Lolium temulentum. We have also generated de-novo transcriptome assemblies for each species......, and these have aided in the annotation of the genomic sequence. Using this data we were able to generate annotated assemblies of the gene rich regions of the four species to complement the already sequenced Lolium perenne genome. Using these gene models we have identified orthologous genes between the species...

  14. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    Science.gov (United States)

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  15. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny.

    Science.gov (United States)

    Yu, Xiang-Qin; Drew, Bryan T; Yang, Jun-Bo; Gao, Lian-Ming; Li, De-Zhu

    2017-01-01

    Schima is an ecologically and economically important woody genus in tea family (Theaceae). Unresolved species delimitations and phylogenetic relationships within Schima limit our understanding of the genus and hinder utilization of the genus for economic purposes. In the present study, we conducted comparative analysis among the complete chloroplast (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess a typical quadripartite structure, with conserved genomic structure and gene order. The size of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 duplicated in the inverted repeat (IR). These cp genomes are highly conserved and do not show obvious expansion or contraction of the IR region. The percent variability of the 68 coding and 93 noncoding (>150 bp) fragments is consistently less than 3%. The seven most widely touted DNA barcode regions as well as one promising barcode candidate showed low sequence divergence. Eight mutational hotspots were identified from the 11 cp genomes. These hotspots may potentially be useful as specific DNA barcodes for species identification of Schima. The 58 cpSSR loci reported here are complementary to the microsatellite markers identified from the nuclear genome, and will be leveraged for further population-level studies. Phylogenetic relationships among the 11 Schima species were resolved with strong support based on the cp genome data set, which corresponds well with the species distribution pattern. The data presented here will serve as a foundation to facilitate species identification, DNA barcoding and phylogenetic reconstructions for future exploration of Schima.

  16. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    Science.gov (United States)

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  17. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  18. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    International Nuclear Information System (INIS)

    Vamathevan, Jessica J.; Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M.; Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli; Kenny, Steve; Brown, James R.; Huxley-Jones, Julie; Lyon, Jon; Haselden, John; Min, Jiumeng; Sanseau, Philippe

    2013-01-01

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns

  19. Mycobacterial species as case-study of comparative genome analysis.

    Science.gov (United States)

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  20. H2DB: a heritability database across multiple species by annotating trait-associated genomic loci.

    Science.gov (United States)

    Kaminuma, Eli; Fujisawa, Takatomo; Tanizawa, Yasuhiro; Sakamoto, Naoko; Kurata, Nori; Shimizu, Tokurou; Nakamura, Yasukazu

    2013-01-01

    H2DB (http://tga.nig.ac.jp/h2db/), an annotation database of genetic heritability estimates for humans and other species, has been developed as a knowledge database to connect trait-associated genomic loci. Heritability estimates have been investigated for individual species, particularly in human twin studies and plant/animal breeding studies. However, there appears to be no comprehensive heritability database for both humans and other species. Here, we introduce an annotation database for genetic heritabilities of various species that was annotated by manually curating online public resources in PUBMED abstracts and journal contents. The proposed heritability database contains attribute information for trait descriptions, experimental conditions, trait-associated genomic loci and broad- and narrow-sense heritability specifications. Annotated trait-associated genomic loci, for which most are single-nucleotide polymorphisms derived from genome-wide association studies, may be valuable resources for experimental scientists. In addition, we assigned phenotype ontologies to the annotated traits for the purposes of discussing heritability distributions based on phenotypic classifications.

  1. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  2. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Science.gov (United States)

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  3. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Science.gov (United States)

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  4. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2016-02-01

    Full Text Available Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1 the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2 genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12 autotrophy as a bacterial virulence factor; 3 CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4 finding Leptospira pathogen-specific specialized protein secretion systems; 5 novel virulence-related genes/gene families such as the Virulence Modifying (VM (PF07598 paralogs proteins and pathogen-specific adhesins; 6 discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7 and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately

  5. Genomic resources for multiple species in the Drosophila ananassae species group.

    Science.gov (United States)

    Signor, Sarah; Seher, Thaddeus; Kopp, Artyom

    2013-01-01

    The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.

  6. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    Science.gov (United States)

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  7. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals

    Science.gov (United States)

    Böhme, Ulrike; Otto, Thomas D.; Cotton, James A.; Steinbiss, Sascha; Sanders, Mandy; Oyola, Samuel O.; Nicot, Antoine; Gandon, Sylvain; Patra, Kailash P.; Herd, Colin; Bushell, Ellen; Modrzynska, Katarzyna K.; Billker, Oliver; Vinetz, Joseph M.; Rivero, Ana; Newbold, Chris I.; Berriman, Matthew

    2018-01-01

    Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum. We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum. PMID:29500236

  8. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus.

    Science.gov (United States)

    Yu, Jie; Song, Yuqin; Ren, Yan; Qing, Yanting; Liu, Wenjun; Sun, Zhihong

    2017-11-03

    The genomic diversity of different species within the genus Lactococcus and the relationships between genomic differentiation and environmental factors remain unclear. In this study, type isolates of ten Lactococcus species/subspecies were sequenced to assess their genomic characteristics, metabolic diversity, and phylogenetic relationships. The total genome sizes varied between 1.99 (Lactococcus plantarum) and 2.46 megabases (Mb; L. lactis subsp. lactis), and the G + C content ranged from 34.81 (L. lactis subsp. hordniae) to 39.67% (L. raffinolactis) with an average value of 37.02%. Analysis of genome dynamics indicated that the genus Lactococcus has an open pan-genome, while the core genome size decreased with sequential addition at the genus and species group levels. A phylogenetic dendrogram based on the concatenated amino acid sequences of 643 core genes was largely consistent with the phylogenetic tree obtained by 16S ribosomal RNA (rRNA) genes, but it provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis. Comparative genomics indicated that species in the genus Lactococcus had high degrees of diversity in genome size, gene content, and carbohydrate metabolism. This may be important for the specific adaptations that allow different Lactococcus species to survive in different environments. These results provide a quantitative basis for understanding the genomic and metabolic diversity within the genus Lactococcus, laying the foundation for future studies on taxonomy and functional genomics.

  9. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  10. Assessing the origin of species in the genomic era

    OpenAIRE

    Moyle, Leonie C

    2005-01-01

    Advances in genomics have rapidly accelerated research into the genetics of species differences, reproductive isolating barriers, and hybrid incompatibility. Recent genomic analyses in Drosophila species suggest that modified olfactory cues are involved in discrimination that is reinforced by natural selection.

  11. Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.

    Science.gov (United States)

    Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan

    2012-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.

  12. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    Science.gov (United States)

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  13. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  14. Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown.We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i all three triploid hybrids are stable in both chromosome number and gross structure; (ii stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner.Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might

  15. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  16. The Sequenced Angiosperm Genomes and Genome Databases.

    Science.gov (United States)

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  17. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Directory of Open Access Journals (Sweden)

    Inkyu Park

    Full Text Available Aconitum species (belonging to the Ranunculaceae are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  18. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Science.gov (United States)

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  19. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Science.gov (United States)

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  20. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Directory of Open Access Journals (Sweden)

    Marta Matvienko

    Full Text Available Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC, which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  1. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  2. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang

    2012-06-15

    Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication

  3. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.

    Science.gov (United States)

    Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi

    2014-01-01

    A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

  4. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer

    Science.gov (United States)

    2011-01-01

    Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism. PMID:21816042

  5. Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae

    Directory of Open Access Journals (Sweden)

    Gui-Chun Liu

    2017-11-01

    Full Text Available Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis were estimated by propidium iodide (PI-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg, a 3.1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.

  6. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    Science.gov (United States)

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  7. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    Science.gov (United States)

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  8. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    Science.gov (United States)

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  9. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    Science.gov (United States)

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  10. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    Science.gov (United States)

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  11. Genome Target Evaluator (GTEvaluator: A workflow exploiting genome dataset to measure the sensitivity and specificity of genetic markers.

    Directory of Open Access Journals (Sweden)

    Arnaud Felten

    Full Text Available Most of the bacterial typing methods used to discriminate isolates in medical or food safety microbiology are based on genetic markers used as targets in PCR or hybridization experiments. These DNA typing methods are important tools for studying prevalence and epidemiology, for conducting surveillance, investigations and control of biological hazard sources. In that perspective, it is crucial to insure that the chosen genetic markers have the greatest specificity and sensitivity. The wealth of whole-genome sequences available for many bacterial species offers the opportunity to evaluate the performance of these genetic markers. In the present study, we have developed GTEvaluator, a bioinformatics workflow which ranks genetic markers depending on their sensitivity and specificity towards groups of well-defined genomes. GTEvaluator identifies the most performant genetic markers to target individuals among a population. The individuals (i.e. a group of genomes within a collection are defined by any kind of particular phenotypic or biological properties inside a related population (i.e. collection of genomes. The performance of the genetic markers is computed by a distance value which takes into account both sensitivity and specificity. In this study we report two examples of GTEvaluator application. In the first example Bacillus phenotypic markers were evaluated for their capacity to distinguish B. cereus from B. thuringiensis. In the second experiment, GTEvaluator measured the performance of genetic markers dedicated to the molecular serotyping of Salmonella enterica. In one in silico experiment it was possible to test 64 markers onto 134 genomes corresponding to 14 different serotypes.

  12. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris.

    Directory of Open Access Journals (Sweden)

    Radim Cegan

    Full Text Available Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24, but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA, which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.

  13. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    Science.gov (United States)

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  14. Interaction between the genomes of Lactococcus lactis and phages of the P335 species

    Science.gov (United States)

    Kelly, William J.; Altermann, Eric; Lambie, Suzanne C.; Leahy, Sinead C.

    2013-01-01

    Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (Φ KW2) has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids (LTAs) are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome. PMID:24009606

  15. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  16. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  17. Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats.

    Science.gov (United States)

    Nazaripanah, N; Adelirad, F; Delbari, A; Sahaf, R; Abbasi-Asl, T; Ohadi, M

    2018-04-05

    While there is an ongoing trend to identify single nucleotide substitutions (SNSs) that are linked to inter/intra-species differences and disease phenotypes, short tandem repeats (STRs)/microsatellites may be of equal (if not more) importance in the above processes. Genes that contain STRs in their promoters have higher expression divergence compared to genes with fixed or no STRs in the gene promoters. In line with the above, recent reports indicate a role of repetitive sequences in the rise of young transcription start sites (TSSs) in human evolution. Following a comparative genomics study of all human protein-coding genes annotated in the GeneCards database, here we provide a genome-scale portrait of human-specific short- and medium-size (≥ 3-repeats) tri- and tetranucleotide STRs and STR motifs in the critical core promoter region between - 120 and + 1 to the TSS and evidence of skewing of this compartment in reference to the STRs that are not human-specific (Levene's test p human-specific transcripts was detected in the tri and tetra human-specific compartments (mid-p genome-scale skewing of STRs at a specific region of the human genome and a link between a number of these STRs and TSS selection/transcript specificity. The STRs and genes listed here may have a role in the evolution and development of characteristics and phenotypes that are unique to the human species.

  18. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera

    Directory of Open Access Journals (Sweden)

    Riss Simone

    2011-04-01

    Full Text Available Abstract Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg. Most of this variation (67% could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32% at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  19. [The investigation of genomes of some species of the genus Gentiana in nature and in vitro cell culture].

    Science.gov (United States)

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2002-01-01

    The comparative study of the genomes of intact plants-representatives of some species of the genus Gentiana L. as well as cultured cells of G. lutea and G. punctata was performed using restriction analysis. Species specificity of restriction fragment patterns for studied representatives of this genus was revealed. The differences between electrophoretic patterns of digested DNA purified from rhizome and leaves of G. lutea and G. punctata were found. The changes in genomes of G. lutea and G. punctata cells cultured in vitro compared with the genomes of intact plants were detected. The data obtained evidence that some of them may be of nonrandom character.

  20. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    Science.gov (United States)

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  1. Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain.

    Science.gov (United States)

    Ahrens, Collin W; Supple, Megan A; Aitken, Nicola C; Cantrill, David J; Borevitz, Justin O; James, Elizabeth A

    2017-06-01

    Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  3. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Directory of Open Access Journals (Sweden)

    Cuihua Gu

    2018-02-01

    Full Text Available Qat (Catha edulis, Celastraceae is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA genes, 8 ribosomal RNA (rRNA genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.

  4. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Science.gov (United States)

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  5. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  6. Mycobacterial species as case-study of comparative genome analysis

    DEFF Research Database (Denmark)

    Zakham, F.; Belayachi, L.; Ussery, David

    2011-01-01

    . Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length...... defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene...... the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str...

  7. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Science.gov (United States)

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  8. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.

    Science.gov (United States)

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-08-22

    The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression

  9. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2007-08-01

    Full Text Available Abstract Background The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. Results The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c a significant reduction of RNA editing. Conclusion Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards

  10. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    Science.gov (United States)

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  11. Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks

    NARCIS (Netherlands)

    Kraus, R.H.S.; Kerstens, H.H.D.; Hooft, van W.F.; Megens, H.J.W.C.; Elmberg, J.; Tsvey, A.; Sartakov, D.; Soloviev, S.A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no

  12. Endogenous retroviruses function as species-specific enhancer elements in the placenta.

    Science.gov (United States)

    Chuong, Edward B; Rumi, M A Karim; Soares, Michael J; Baker, Julie C

    2013-03-01

    The mammalian placenta is remarkably distinct between species, suggesting a history of rapid evolutionary diversification. To gain insight into the molecular drivers of placental evolution, we compared biochemically predicted enhancers in mouse and rat trophoblast stem cells (TSCs) and found that species-specific enhancers are highly enriched for endogenous retroviruses (ERVs) on a genome-wide level. One of these ERV families, RLTR13D5, contributes hundreds of mouse-specific histone H3 lysine 4 monomethylation (H3K4me1)- and histone H3 lysine 27 acetylation (H3K27ac)-defined enhancers that functionally bind Cdx2, Eomes and Elf5-core factors that define the TSC regulatory network. Furthermore, we show that RLTR13D5 is capable of driving gene expression in rat placental cells. Analysis in other tissues shows that species-specific ERV enhancer activity is generally restricted to hypomethylated tissues, suggesting that tissues permissive for ERV activity gain access to an otherwise silenced source of regulatory variation. Overall, our results implicate ERV enhancer co-option as a mechanism underlying the extensive evolutionary diversification of placental development.

  13. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2014-03-01

    Full Text Available Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.

  14. Nanoparticles for Site Specific Genome Editing

    Science.gov (United States)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to

  15. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  16. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    Science.gov (United States)

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  17. CrusView: a Java-based visualization platform for comparative genomics analyses in Brassicaceae species.

    Science.gov (United States)

    Chen, Hao; Wang, Xiangfeng

    2013-09-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/.

  18. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    Science.gov (United States)

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  20. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species.

    Science.gov (United States)

    Fu, Peng-Cheng; Zhang, Yan-Zhao; Geng, Hui-Min; Chen, Shi-Long

    2016-01-01

    The chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri , which is endemic to the Qinghai-Tibetan Plateau (QTP). Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea . The simple sequence repeats (SSRs) and phylogenetics were studied as well. The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB , ndhF and clpP , have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified

  1. Comparative genomics of Wolbachia and the bacterial species concept.

    Directory of Open Access Journals (Sweden)

    Kirsten Maren Ellegaard

    2013-04-01

    Full Text Available The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally

  2. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  3. Mitochondrial genomic comparison of Clonorchis sinensis from South Korea with other isolates of this species.

    Science.gov (United States)

    Wang, Daxi; Young, Neil D; Koehler, Anson V; Tan, Patrick; Sohn, Woon-Mok; Korhonen, Pasi K; Gasser, Robin B

    2017-07-01

    Clonorchiasis is a neglected tropical disease that affects >35 million people mainly in China, Vietnam, South Korea and some parts of Russia. The disease-causing agent, Clonorchis sinensis, is a liver fluke of humans and other piscivorous animals, and has a complex aquatic life cycle involving snails and fish intermediate hosts. Chronic infection in humans causes liver disease and associated complications including malignant bile duct cancer. Central to control and to understanding the epidemiology of this disease is knowledge of the specific identity of the causative agent as well as genetic variation within and among populations of this parasite. Although most published molecular studies seem to suggest that C. sinensis represents a single species and that genetic variation within the species is limited, karyotypic variation within C. sinensis among China, Korea (2n=56) and Russian Far East (2n=14) suggests that this taxon might contain sibling species. Here, we assessed and applied a deep sequencing-bioinformatic approach to sequence and define a reference mitochondrial (mt) genome for a particular isolate of C. sinensis from Korea (Cs-k2), to confirm its specific identity, and compared this mt genome with homologous data sets available for this species. Comparative analyses revealed consistency in the number and structure of genes as well as in the lengths of protein-coding genes, and limited genetic variation among isolates of C. sinensis. Phylogenetic analyses of amino acid sequences predicted from mt genes showed that representatives of C. sinensis clustered together, with absolute nodal support, to the exclusion of other liver fluke representatives, but sub-structuring within C. sinensis was not well supported. The plan now is to proceed with the sequencing, assembly and annotation of a high quality draft nuclear genome of this defined isolate (Cs-k2) as a basis for a detailed investigation of molecular variation within C. sinensis from disparate

  4. The genomic impact of 100 million years of social evolution in seven ant species

    DEFF Research Database (Denmark)

    Gadau, Jürgen; Helmkampf, Martin; Nygaard, Sanne

    2012-01-01

    Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants...... between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general....... makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization...

  5. Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Perumal, Sampath; Lee, Jonghoon; Waminal, Nomar Espinosa; Jayakodi, Murukarthick; Lee, Sang-Choon; Jin, Seungwoo; Choi, Beom-Soon; Yu, Yeisoo; Ko, Ho-Cheol; Choi, Ji-Weon; Ryu, Kyoung-Yul; Sohn, Seong-Han; Parkin, Isobel; Yang, Tae-Jin

    2018-05-09

    The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.

  6. The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae).

    Science.gov (United States)

    Wang, Kai; Wang, Yuyu; Yang, Ding

    2016-05-01

    The complete mitochondrial (mt) genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae), was sequenced. The 15,723 bp long genome has the standard metazoan complement of 37 genes and an A+T-rich region, which is the same as the insect ancestral genome arrangement.

  7. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  8. CrusView: A Java-Based Visualization Platform for Comparative Genomics Analyses in Brassicaceae Species[OPEN

    Science.gov (United States)

    Chen, Hao; Wang, Xiangfeng

    2013-01-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/. PMID:23898041

  9. M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species

    Directory of Open Access Journals (Sweden)

    Messeguer Xavier

    2006-10-01

    Full Text Available Abstract Background Due to recent advances in whole genome shotgun sequencing and assembly technologies, the financial cost of decoding an organism's DNA has been drastically reduced, resulting in a recent explosion of genomic sequencing projects. This increase in related genomic data will allow for in depth studies of evolution in closely related species through multiple whole genome comparisons. Results To facilitate such comparisons, we present an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. M-GCAT is able to compare and identify highly conserved regions in up to 20 closely related bacterial species in minutes on a standard computer, and as many as 90 (containing 75 cloned genomes from a set of 15 published enterobacterial genomes in an hour. M-GCAT also incorporates a novel comparative genomics data visualization interface allowing the user to globally and locally examine and inspect the conserved regions and gene annotations. Conclusion M-GCAT is an interactive comparative genomics tool well suited for quickly generating multiple genome comparisons frameworks and alignments among closely related species. M-GCAT is freely available for download for academic and non-commercial use at: http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html.

  10. Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    Directory of Open Access Journals (Sweden)

    Althoff Ryan

    2008-01-01

    Full Text Available Abstract Background Musa species (Zingiberaceae, Zingiberales including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. Results We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. Conclusion These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic

  11. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Science.gov (United States)

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  12. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  13. The identification of genes specific to Prevotella intermedia and Prevotella nigrescens using genomic subtractive hybridization.

    Science.gov (United States)

    Masakiyo, Yoshiaki; Yoshida, Akihiro; Shintani, Yasuyuki; Takahashi, Yusuke; Ansai, Toshihiro; Takehara, Tadamichi

    2010-06-01

    Prevotella intermedia and Prevotella nigrescens, which are often isolated from periodontal sites, were once considered two different genotypes of P. intermedia. Although the genomic sequence of P. intermedia was determined recently, little is known about the genetic differences between P. intermedia and P. nigrescens. The subtractive hybridization technique is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains or species. We used subtractive hybridization to identify the DNA regions specific to P. intermedia ATCC 25611 and P. nigrescens ATCC 25261. Using this method, four P. intermedia ATCC 25611-specific and three P. nigrescens ATCC 25261-specific regions were determined. From the species-specific regions, insertion sequence (IS) elements were isolated for P. intermedia. IS elements play an important role in the pathogenicity of bacteria. For the P. intermedia-specific regions, the genes adenine-specific DNA-methyltransferase and 8-amino-7-oxononanoate synthase were isolated. The P. nigrescens-specific region contained a Flavobacterium psychrophilum SprA homologue, a cell-surface protein involved in gliding motility, Prevotella melaninogenica ATCC 25845 glutathione peroxide, and Porphyromonas gingivalis ATCC 33277 leucyl-tRNA synthetase. The results demonstrate that the subtractive hybridization technique was useful for distinguishing between the two closely related species. Furthermore, this technique will contribute to our understanding of the virulence of these species. 2009 Elsevier Ltd. All rights reserved.

  14. Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH.

    Science.gov (United States)

    Liu, Ruijuan; Wang, Richard R-C; Yu, Feng; Lu, Xingwang; Dou, Quanwen

    2017-08-01

    Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as St l Y l . Notably, a close relationship between S l and Y l genomes was observed.

  15. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  16. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  17. The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae).

    Science.gov (United States)

    Kim, Na-Rae; Kim, Kyunghee; Lee, Sang-Choon; Lee, Jung-Hoon; Cho, Seong-Hyun; Yu, Yeisoo; Kim, Young-Dong; Yang, Tae-Jin

    2016-11-01

    Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis.

  18. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    Science.gov (United States)

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  19. Identification and characterization of insect-specific proteins by genome data analysis

    Directory of Open Access Journals (Sweden)

    Clark Terry

    2007-04-01

    Full Text Available Abstract Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts. ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through

  20. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  1. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species.

    Science.gov (United States)

    Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  2. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  3. Genome position specific priors for genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Lund, Mogens Sandø

    2012-01-01

    casual mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects...... for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed Results...

  4. Comparative Genomics in Homo sapiens.

    Science.gov (United States)

    Oti, Martin; Sammeth, Michael

    2018-01-01

    Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

  5. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence.

    Science.gov (United States)

    Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A

    2015-03-01

    Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus. © 2014 John Wiley & Sons Ltd.

  6. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  7. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species.

    Directory of Open Access Journals (Sweden)

    Marc Tollis

    Full Text Available Agassiz's desert tortoise (Gopherus agassizii is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1 that turtles are among the slowest-evolving genome-enabled reptiles, (2 amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3 fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

  8. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species.

    Science.gov (United States)

    Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A; Revilla, Eloy; O'Brien, Stephen J

    2005-07-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.

  9. Genotyping of Brucella species using clade specific SNPs

    Directory of Open Access Journals (Sweden)

    Foster Jeffrey T

    2012-06-01

    Full Text Available Abstract Background Brucellosis is a worldwide disease of mammals caused by Alphaproteobacteria in the genus Brucella. The genus is genetically monomorphic, requiring extensive genotyping to differentiate isolates. We utilized two different genotyping strategies to characterize isolates. First, we developed a microarray-based assay based on 1000 single nucleotide polymorphisms (SNPs that were identified from whole genome comparisons of two B. abortus isolates , one B. melitensis, and one B. suis. We then genotyped a diverse collection of 85 Brucella strains at these SNP loci and generated a phylogenetic tree of relationships. Second, we developed a selective primer-extension assay system using capillary electrophoresis that targeted 17 high value SNPs across 8 major branches of the phylogeny and determined their genotypes in a large collection ( n = 340 of diverse isolates. Results Our 1000 SNP microarray readily distinguished B. abortus, B. melitensis, and B. suis, differentiating B. melitensis and B. suis into two clades each. Brucella abortus was divided into four major clades. Our capillary-based SNP genotyping confirmed all major branches from the microarray assay and assigned all samples to defined lineages. Isolates from these lineages and closely related isolates, among the most commonly encountered lineages worldwide, can now be quickly and easily identified and genetically characterized. Conclusions We have identified clade-specific SNPs in Brucella that can be used for rapid assignment into major groups below the species level in the three main Brucella species. Our assays represent SNP genotyping approaches that can reliably determine the evolutionary relationships of bacterial isolates without the need for whole genome sequencing of all isolates.

  10. Cross-species mapping of bidirectional promoters enables prediction of unannotated 5' UTRs and identification of species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-04-01

    Full Text Available Abstract Background Bidirectional promoters are shared regulatory regions that influence the expression of two oppositely oriented genes. This type of regulatory architecture is found more frequently than expected by chance in the human genome, yet many specifics underlying the regulatory design are unknown. Given that the function of most orthologous genes is similar across species, we hypothesized that the architecture and regulation of bidirectional promoters might also be similar across species, representing a core regulatory structure and enabling annotation of these regions in additional mammalian genomes. Results By mapping the intergenic distances of genes in human, chimpanzee, bovine, murine, and rat, we show an enrichment for pairs of genes equal to or less than 1,000 bp between their adjacent 5' ends ("head-to-head" compared to pairs of genes that fall in the same orientation ("head-to-tail" or whose 3' ends are side-by-side ("tail-to-tail". A representative set of 1,369 human bidirectional promoters was mapped to orthologous sequences in other mammals. We confirmed predictions for 5' UTRs in nine of ten manual picks in bovine based on comparison to the orthologous human promoter set and in six of seven predictions in human based on comparison to the bovine dataset. The two predictions that did not have orthology as bidirectional promoters in the other species resulted from unique events that initiated transcription in the opposite direction in only those species. We found evidence supporting the independent emergence of bidirectional promoters from the family of five RecQ helicase genes, which gained their bidirectional promoters and partner genes independently rather than through a duplication process. Furthermore, by expanding our comparisons from pairwise to multispecies analyses we developed a map representing a core set of bidirectional promoters in mammals. Conclusion We show that the orthologous positions of bidirectional

  11. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    Science.gov (United States)

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  12. Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    Science.gov (United States)

    Cellier, Gilles; Jacobs, Jonathan M.; Mangenot, Sophie; Barbe, Valérie; Lajus, Aurélie; Vallenet, David; Medigue, Claudine; Fegan, Mark; Allen, Caitilyn; Prior, Philippe

    2011-01-01

    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical

  13. Ecology and genomics of Bacillus subtilis.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2008-06-01

    Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

  14. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity

    Science.gov (United States)

    Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.

    2016-01-01

    Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  15. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  16. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  17. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  18. Comparative Genomics Revealed Genetic Diversity and Species/Strain-Level Differences in Carbohydrate Metabolism of Three Probiotic Bifidobacterial Species

    Directory of Open Access Journals (Sweden)

    Toshitaka Odamaki

    2015-01-01

    Full Text Available Strains of Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium animalis are widely used as probiotics in the food industry. Although numerous studies have revealed the properties and functionality of these strains, it is uncertain whether these characteristics are species common or strain specific. To address this issue, we performed a comparative genomic analysis of 49 strains belonging to these three bifidobacterial species to describe their genetic diversity and to evaluate species-level differences. There were 166 common clusters between strains of B. breve and B. longum, whereas there were nine common clusters between strains of B. animalis and B. longum and four common clusters between strains of B. animalis and B. breve. Further analysis focused on carbohydrate metabolism revealed the existence of certain strain-dependent genes, such as those encoding enzymes for host glycan utilisation or certain membrane transporters, and many genes commonly distributed at the species level, as was previously reported in studies with limited strains. As B. longum and B. breve are human-residential bifidobacteria (HRB, whereas B. animalis is a non-HRB species, several of the differences in these species’ gene distributions might be the result of their adaptations to the nutrient environment. This information may aid both in selecting probiotic candidates and in understanding their potential function as probiotics.

  19. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; de Sain, Mara; Ter Horst, Anneliek; van der Gragt, Michelle; Rep, Martijn

    2018-01-01

    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis , which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales When tested on a collection of strains encompassing different clonal lineages of these formae speciales , nonpathogenic strains, and strains of other formae speciales , they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum , Fusarium oxysporum f. sp. niveum , Fusarium oxysporum f. sp. momordicae , and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum , a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on

  20. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  1. Use of species-specific PCR for the identification of 10 sea cucumber species

    Science.gov (United States)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  2. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    Science.gov (United States)

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  3. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  4. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.

  5. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  6. Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species.

    Science.gov (United States)

    Watanabe, Takayasu; Shibasaki, Masaki; Maruyama, Fumito; Sekizaki, Tsutomu; Nakagawa, Ichiro

    2017-01-01

    The oral bacterial species Porphyromonas gingivalis, a periodontal pathogen, has plastic genomes that may be driven by homologous recombination with exogenous deoxyribonucleic acid (DNA) that is incorporated by natural transformation and conjugation. However, bacteriophages and plasmids, both of which are main resources of exogenous DNA, do not exist in the known P. gingivalis genomes. This could be associated with an adaptive immunity system conferred by clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes in P. gingivalis as well as innate immune systems such as a restriction-modification system. In a previous study, few immune targets were predicted for P. gingivalis CRISPR/Cas. In this paper, we analyzed 51 P. gingivalis genomes, which were newly sequenced, and publicly available genomes of 13 P. gingivalis and 46 other Porphyromonas species. We detected 6 CRISPR/Cas types (classified by sequence similarity of repeat) in P. gingivalis and 12 other types in the remaining species. The Porphyromonas CRISPR spacers with potential targets in the genus Porphyromonas were approximately 23 times more abundant than those with potential targets in other genus taxa (1,720/6,896 spacers vs. 74/6,896 spacers). Porphyromonas CRISPR/Cas may be involved in genome plasticity by exhibiting selective interference against intra- and interspecies nucleic acids.

  7. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    Science.gov (United States)

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population

  8. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  9. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  10. Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae inferred from whole chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Huan Hu

    2016-12-01

    Full Text Available IntroductionIt is rather difficult to delimit recently diverged species and construct their interspecific relationships because of insufficient informative variations of sampled DNA fragments (Schluter, 2000; Arnold, 2006. The genome-scale sequence variations were found to increase the phylogenetic resolutions of both high- and low-taxonomic groups (e.g., Yoder et al., 2013; Lamichhaney et al., 2015. It is still expensive to collect nuclear genome variations between species for most none-model genera without the reference genome. However, chloroplast genomes (plastome are relatively easy to be assembled to examine interspecific relationships for phylogenetic analyses, especially in addressing unresolved relationship at low taxonomic levels (Wu et al., 2010; Nock et al., 2011; Yang et al., 2013; Huang et al., 2014; Carbonell-Caballero et al., 2015. Plastomes are haploid with maternal inheritance in most angiosperms (Corriveau and Coleman, 1988; Zhang and Liu, 2003; Hagemann, 2004 and are highly conservative in gene order and genome structure with rare recombinations (Jansen et al., 2007; Moore et al., 2010. In this study, we aimed to examine species delimitation and interspecific relationships in Orychophragmus through assembling chloroplast genomes of multiple individuals of tentatively delimited species (Hu et al., 2015a. Orychophragmus is a small genus in the mustard family (Brassicaceae, Cruciferae distributed in northern, central, and southeastern China (Zhou et al., 2001. Its plants have been widely cultivated as ornamentals, vegetables, or source of seed oil (Sun et al., 2011. Despite controversial species delimitations in the genus (Zhou et al., 1987; Tan et al., 1998; Wu and Zhao, 2003; Al-Shehbaz and Yang, 2000; Zhou et al., 2001; Sun et al., 2012, our recent study based on nuclear (nr ITS sequence variations suggested the recognition of seven species (Hu et al., 2015a. Orychophragmus is sister to Sinalliaria, which is a genus endemic

  11. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus.

    Science.gov (United States)

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-08-17

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding.

  13. The minimum information about a genome sequence (MIGS) specification

    DEFF Research Database (Denmark)

    Field, D; Garrity, G; Gray, T

    2008-01-01

    With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the...... that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases....... the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources...

  14. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction

    Directory of Open Access Journals (Sweden)

    Audic Stéphane

    2009-04-01

    Full Text Available Abstract Background The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R. africae, the agent of African tick-bite fever, which does not affect the fitness of its tick vector. Results We evaluated the clonality of R. africae in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a tra operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to R. prowazekii, R. rickettsii and R. conorii. R. africae and R. prowazekii have, respectively, the less and most decayed genomes. Eighteen genes are present only in R. africae including one with a putative protease domain upregulated at 37°C. Conclusion Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in Rickettsia species virulence is mostly associated with gene loss. The genome sequence was deposited in GenBank under accession number [GenBank: NZ_AAUY01000001].

  15. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    Science.gov (United States)

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  16. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  17. Alignment-free genome tree inference by learning group-specific distance metrics.

    Science.gov (United States)

    Patil, Kaustubh R; McHardy, Alice C

    2013-01-01

    Understanding the evolutionary relationships between organisms is vital for their in-depth study. Gene-based methods are often used to infer such relationships, which are not without drawbacks. One can now attempt to use genome-scale information, because of the ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or ecological properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance metrics could be learned for most of the 18 groups of organisms tested here. Once a group-specific metric is available, it can be used to estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison between 10 methods--9 alignment-free and 1 alignment-based.

  18. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    International Nuclear Information System (INIS)

    Peltomaa, Riikka; Vaghini, Silvia; Patiño, Belén; Benito-Peña, Elena; Moreno-Bondi, María C.

    2016-01-01

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  19. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaa, Riikka; Vaghini, Silvia [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Patiño, Belén [Department of Microbiology III, Faculty of Biology, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Benito-Peña, Elena, E-mail: elenabp@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Moreno-Bondi, María C., E-mail: mcmbondi@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain)

    2016-09-07

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  20. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    Science.gov (United States)

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  1. The rubber tree genome reveals new insights into rubber production and species adaptation

    OpenAIRE

    Tang, Chaorong; Yang, Meng; Fang, Yongjun; Luo, Yingfeng; Gao, Shenghan; Xiao, Xiaohu; An, Zewei; Zhou, Binhui; Zhang, Bing; Tan, Xinyu; Yeang, Hoong Yeet; Qin, Yunxia; Yang, Jianghua; Lin, Qiang; Mei, Hailiang

    2016-01-01

    The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticif...

  2. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    Science.gov (United States)

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  3. Whole-genome in-silico subtractive hybridization (WISH - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Parrinello Hugues

    2010-06-01

    Full Text Available Abstract Background Emerging methods of massive sequencing that allow for rapid re-sequencing of entire genomes at comparably low cost are changing the way biological questions are addressed in many domains. Here we propose a novel method to compare two genomes (genome-to-genome comparison. We used this method to identify sex-specific sequences of the human blood fluke Schistosoma mansoni. Results Genomic DNA was extracted from male and female (heterogametic S. mansoni adults and sequenced with a Genome Analyzer (Illumina. Sequences are available at the NCBI sequence read archive http://www.ncbi.nlm.nih.gov/Traces/sra/ under study accession number SRA012151.6. Sequencing reads were aligned to the genome, and a pseudogenome composed of known repeats. Straightforward comparative bioinformatics analysis was performed to compare male and female schistosome genomes and identify female-specific sequences. We found that the S. mansoni female W chromosome contains only few specific unique sequences (950 Kb i.e. about 0.2% of the genome. The majority of W-specific sequences are repeats (10.5 Mb i.e. about 2.5% of the genome. Arbitrarily selected W-specific sequences were confirmed by PCR. Primers designed for unique and repetitive sequences allowed to reliably identify the sex of both larval and adult stages of the parasite. Conclusion Our genome-to-genome comparison method that we call "whole-genome in-silico subtractive hybridization" (WISH allows for rapid identification of sequences that are specific for a certain genotype (e.g. the heterogametic sex. It can in principle be used for the detection of any sequence differences between isolates (e.g. strains, pathovars or even closely related species.

  4. Genome Variation Map: a data repository of genome variations in BIG Data Center.

    Science.gov (United States)

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2018-01-04

    The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genome Variation Map: a data repository of genome variations in BIG Data Center

    Science.gov (United States)

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  6. The minimum information about a genome sequence (MIGS) specification

    Science.gov (United States)

    Field, Dawn; Garrity, George; Gray, Tanya; Morrison, Norman; Selengut, Jeremy; Sterk, Peter; Tatusova, Tatiana; Thomson, Nicholas; Allen, Michael J; Angiuoli, Samuel V; Ashburner, Michael; Axelrod, Nelson; Baldauf, Sandra; Ballard, Stuart; Boore, Jeffrey; Cochrane, Guy; Cole, James; Dawyndt, Peter; De Vos, Paul; dePamphilis, Claude; Edwards, Robert; Faruque, Nadeem; Feldman, Robert; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Goldstein, Philip; Guralnick, Robert; Haft, Dan; Hancock, David; Hermjakob, Henning; Hertz-Fowler, Christiane; Hugenholtz, Phil; Joint, Ian; Kagan, Leonid; Kane, Matthew; Kennedy, Jessie; Kowalchuk, George; Kottmann, Renzo; Kolker, Eugene; Kravitz, Saul; Kyrpides, Nikos; Leebens-Mack, Jim; Lewis, Suzanna E; Li, Kelvin; Lister, Allyson L; Lord, Phillip; Maltsev, Natalia; Markowitz, Victor; Martiny, Jennifer; Methe, Barbara; Mizrachi, Ilene; Moxon, Richard; Nelson, Karen; Parkhill, Julian; Proctor, Lita; White, Owen; Sansone, Susanna-Assunta; Spiers, Andrew; Stevens, Robert; Swift, Paul; Taylor, Chris; Tateno, Yoshio; Tett, Adrian; Turner, Sarah; Ussery, David; Vaughan, Bob; Ward, Naomi; Whetzel, Trish; Gil, Ingio San; Wilson, Gareth; Wipat, Anil

    2008-01-01

    With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the ‘transparency’ of the information contained in existing genomic databases. PMID:18464787

  7. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence.

    Science.gov (United States)

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-06-01

    Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree

  8. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  9. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  10. Characterization and Comparative Analysis of the Complete Chloroplast Genome of the Critically Endangered Species Streptocarpus teitensis (Gesneriaceae

    Directory of Open Access Journals (Sweden)

    Cornelius M. Kyalo

    2018-01-01

    Full Text Available Streptocarpus teitensis (Gesneriaceae is an endemic species listed as critically endangered in the International Union for Conservation of Nature (IUCN red list of threatened species. However, the sequence and genome information of this species remains to be limited. In this article, we present the complete chloroplast genome structure of Streptocarpus teitensis and its evolution inferred through comparative studies with other related species. S. teitensis displayed a chloroplast genome size of 153,207 bp, sheltering a pair of inverted repeats (IR of 25,402 bp each split by small and large single-copy (SSC and LSC regions of 18,300 and 84,103 bp, respectively. The chloroplast genome was observed to contain 116 unique genes, of which 80 are protein-coding, 32 are transfer RNAs, and four are ribosomal RNAs. In addition, a total of 196 SSR markers were detected in the chloroplast genome of Streptocarpus teitensis with mononucleotides (57.1% being the majority, followed by trinucleotides (33.2% and dinucleotides and tetranucleotides (both 4.1%, and pentanucleotides being the least (1.5%. Genome alignment indicated that this genome was comparable to other sequenced members of order Lamiales. The phylogenetic analysis suggested that Streptocarpus teitensis is closely related to Lysionotus pauciflorus and Dorcoceras hygrometricum.

  11. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    Science.gov (United States)

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.

    Directory of Open Access Journals (Sweden)

    Etienne G J Danchin

    2013-10-01

    Full Text Available Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when

  13. Translational genomics from model species Medicago truncatula to crop legume Trifolium pratense

    NARCIS (Netherlands)

    Lang Chunting, Chunting

    2012-01-01

    The legume Trifolium pratense (red clover) is an important fodder crop and produces important secondary metabolites. This makes red clover an interesting species. In this thesis, the red clover genome is compared to the legume model species Medicago truncatula, of which the

  14. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  15. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Science.gov (United States)

    Wang, Ying-hao; Wei, Wei; Kang, Ding-ming; Ma, Ke-ping

    2013-01-01

    It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  16. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2016-01-01

    Full Text Available In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  17. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  18. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  19. Genome mining of the genetic diversity in the Aspergillus genus - from a collection of more than 30 Aspergillus species

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Vesth, Tammi Camilla; Theobald, Sebastian

    In the era of high-throughput sequencing, comparative genomics can be applied for evaluating species diversity. In this project we aim to compare the genomes of 300 species of filamentous fungi from the Aspergillus genus, a complex task. To be able to define species, clade, and core features......, this project uses BLAST on the amino acid level to discover orthologs. With a potential of 300 Aspergillus species each having ~12,000 annotated genes, traditional clustering will demand supercomputing. Instead, our approach reduces the search space by identifying isoenzymes within each genome creating...... intragenomic protein families (iPFs), and then connecting iPFs across all genomes. The initial findings in a set of 31 species show that ~48% of the annotated genes are core genes (genes shared between all species) and 2-24% of the genes are defining the individual species. The methods presented here...

  20. Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae.

    Directory of Open Access Journals (Sweden)

    Konstantina T Tsoumani

    Full Text Available Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88%-97% of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it's rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages.

  1. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes.

    Science.gov (United States)

    Murat, Claude; Zampieri, Elisa; Vallino, Marta; Daghino, Stefania; Perotto, Silvia; Bonfante, Paola

    2011-05-01

    Characterization of genomic variation among different microbial species, or different strains of the same species, is a field of significant interest with a wide range of potential applications. We have investigated the genomic variation in mycorrhizal fungal genomes through genomic suppressive subtractive hybridization. The comparison was between phylogenetically distant and close truffle species (Tuber spp.), and between isolates of the ericoid mycorrhizal fungus Oidiodendron maius featuring different degrees of metal tolerance. In the interspecies experiment, almost all the sequences that were identified in the Tuber melanosporum genome and absent in Tuber borchii and Tuber indicum corresponded to transposable elements. In the intraspecies comparison, some specific sequences corresponded to regions coding for enzymes, among them a glutathione synthetase known to be involved in metal tolerance. This approach is a quick and rather inexpensive tool to develop molecular markers for mycorrhizal fungi tracking and barcoding, to identify functional genes and to investigate the genome plasticity, adaptation and evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Bacillus subtilis genome diversity.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  3. The complete mitochondrial genomes for three Toxocara species of human and animal health significance

    Directory of Open Access Journals (Sweden)

    Wu Xiang-Yun

    2008-05-01

    Full Text Available Abstract Background Studying mitochondrial (mt genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. Results The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus

  4. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonas

    2015-02-01

    Full Text Available Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies. It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating genomic selection into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken and fish. It outlines tasks to help understanding possible consequences when applying genomic information in

  5. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  6. Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus.

    Science.gov (United States)

    Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo

    2012-02-01

    Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.).

    Science.gov (United States)

    Wang, Hongxia; Walla, James A; Zhong, Shaobin; Huang, Danqiong; Dai, Wenhao

    2012-11-01

    Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

  8. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    Science.gov (United States)

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  9. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  10. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  11. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Energy Technology Data Exchange (ETDEWEB)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-02-10

    SUMMARY

    The genusspecies'>Trichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inspecies'>T. reesei,species'>T. atroviride, andspecies'>T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of eachspecies'>Trichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofspecies'>Trichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique tospecies'>Trichoderma, and these warrant further

  12. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes.

    Science.gov (United States)

    Song, Yutong; Gorbatsevych, Oleksandr; Liu, Ying; Mugavero, JoAnn; Shen, Sam H; Ward, Charles B; Asare, Emmanuel; Jiang, Ping; Paul, Aniko V; Mueller, Steffen; Wimmer, Eckard

    2017-10-10

    Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2 Min , a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2 Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2 Min , 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either ( a ) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or ( b ) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.

  13. Identification of genome-specific transcripts in wheat–rye translocation lines

    Directory of Open Access Journals (Sweden)

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  14. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Directory of Open Access Journals (Sweden)

    Andersson Jan O

    2010-10-01

    Full Text Available Abstract Background Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig. Results We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes. Conclusions Our results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.

  15. The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species.

    Science.gov (United States)

    Feng, Shiqian; Yang, Qianqian; Li, Hu; Song, Fan; Stejskal, Václav; Opit, George P; Cai, Wanzhi; Li, Zhihong; Shao, Renfu

    2018-03-02

    The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila , however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila , and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila , including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula , than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila , and indicate that L. bostrychophila is a cryptic species. Copyright © 2018 Feng et al.

  16. The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae Is a Cryptic Species

    Directory of Open Access Journals (Sweden)

    Shiqian Feng

    2018-03-01

    Full Text Available The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt genome of an asexual strain (Beibei, China of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7–87.4% from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila. Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.

  17. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  18. Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits.

    Science.gov (United States)

    Dessimoz, Christophe; Boeckmann, Brigitte; Roth, Alexander C J; Gonnet, Gaston H

    2006-01-01

    Correct orthology assignment is a critical prerequisite of numerous comparative genomics procedures, such as function prediction, construction of phylogenetic species trees and genome rearrangement analysis. We present an algorithm for the detection of non-orthologs that arise by mistake in current orthology classification methods based on genome-specific best hits, such as the COGs database. The algorithm works with pairwise distance estimates, rather than computationally expensive and error-prone tree-building methods. The accuracy of the algorithm is evaluated through verification of the distribution of predicted cases, case-by-case phylogenetic analysis and comparisons with predictions from other projects using independent methods. Our results show that a very significant fraction of the COG groups include non-orthologs: using conservative parameters, the algorithm detects non-orthology in a third of all COG groups. Consequently, sequence analysis sensitive to correct orthology assignments will greatly benefit from these findings.

  19. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  20. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.

    2007-01-01

    We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific pri......We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group......-specific primers in combination with a terminal restriction fragment length polymorphism profile. Intact cells were extracted from the environmental sample, and fluorescent in situ hybridization probing with Cy3-labeled probes designed from the clone library was subsequently used to detect the organisms...... of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene...

  1. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Directory of Open Access Journals (Sweden)

    Ying-hao Wang

    Full Text Available It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  2. Leptospira species molecular epidemiology in the genomic era.

    Science.gov (United States)

    Caimi, K; Repetto, S A; Varni, V; Ruybal, P

    2017-10-01

    Leptospirosis is a zoonotic disease which global burden is increasing often related to climatic change. Hundreds of whole genome sequences from worldwide isolates of Leptospira spp. are available nowadays, together with online tools that permit to assign MLST sequence types (STs) directly from raw sequence data. In this work we have applied R7L-MLST to near 500 genomes and strains collection globally distributed. All 10 pathogenic species as well as intermediate were typed using this MLST scheme. The correlation observed between STs and serogroups in our previous work, is still satisfied with this higher dataset sustaining the implementation of MLST to assist serological classification as a complementary approach. Bayesian phylogenetic analysis of concatenated sequences from R7-MLST loci allowed us to resolve taxonomic inconsistencies but also showed that events such as recombination, gene conversion or lateral gene transfer played an important role in the evolution of Leptospira genus. Whole genome sequencing allows us to contribute with suitable epidemiologic information useful to apply in the design of control strategies and also in diagnostic methods for this illness. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genomic relations among 31 species of Mammillaria haworth (Cactaceae) using random amplified polymorphic DNA.

    Science.gov (United States)

    Mattagajasingh, Ilwola; Mukherjee, Arup Kumar; Das, Premananda

    2006-01-01

    Thirty-one species of Mammillaria were selected to study the molecular phylogeny using random amplified polymorphic DNA (RAPD) markers. High amount of mucilage (gelling polysaccharides) present in Mammillaria was a major obstacle in isolating good quality genomic DNA. The CTAB (cetyl trimethyl ammonium bromide) method was modified to obtain good quality genomic DNA. Twenty-two random decamer primers resulted in 621 bands, all of which were polymorphic. The similarity matrix value varied from 0.109 to 0.622 indicating wide variability among the studied species. The dendrogram obtained from the unweighted pair group method using arithmetic averages (UPGMA) analysis revealed that some of the species did not follow the conventional classification. The present work shows the usefulness of RAPD markers for genetic characterization to establish phylogenetic relations among Mammillaria species.

  4. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    Science.gov (United States)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  5. Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix

    NARCIS (Netherlands)

    Zhe Zhang, Z.; Liu, J.F.; Ding, Z.; Bijma, P.; Koning, de D.J.

    2010-01-01

    With the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture species of economic importance. With markers covering the entire genome,

  6. Genomic support for speciation and specificity of baculoviruses

    NARCIS (Netherlands)

    Jakubowska, A.K.

    2010-01-01

    Keywords: baculovirus, insects, speciation, genomics, phylogeny, host specificity

    The Baculoviridae comprise a large family of double-stranded DNA viruses infecting
    arthropods. In this thesis two baculoviruses, Leucoma salicis nucleopolyhedrovirus
    (LesaNPV) and Agrotis

  7. The tiger genome and comparative analysis with lion and snow leopard genomes.

    Science.gov (United States)

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.

  8. The tiger genome and comparative analysis with lion and snow leopard genomes

    Science.gov (United States)

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  9. Short and long-term genome stability analysis of prokaryotic genomes.

    Science.gov (United States)

    Brilli, Matteo; Liò, Pietro; Lacroix, Vincent; Sagot, Marie-France

    2013-05-08

    Gene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes (i.e. the backbone gene order); on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events. We developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation (hereinafter called backbone stability) against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics (insertions and deletions) have a much more dramatic effect on genome organization stability than backbone rearrangements. In this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were

  10. Site-specific genomic (SSG and random domain-localized (RDL mutagenesis in yeast

    Directory of Open Access Journals (Sweden)

    Honigberg Saul M

    2004-04-01

    Full Text Available Abstract Background A valuable weapon in the arsenal available to yeast geneticists is the ability to introduce specific mutations into yeast genome. In particular, methods have been developed to introduce deletions into the yeast genome using PCR fragments. These methods are highly efficient because they do not require cloning in plasmids. Results We have modified the existing method for introducing deletions in the yeast (S. cerevisiae genome using PCR fragments in order to target point mutations to this genome. We describe two PCR-based methods for directing point mutations into the yeast genome such that the final product contains no other disruptions. In the first method, site-specific genomic (SSG mutagenesis, a specific point mutation is targeted into the genome. In the second method, random domain-localized (RDL mutagenesis, a mutation is introduced at random within a specific domain of a gene. Both methods require two sequential transformations, the first transformation integrates the URA3 marker into the targeted locus, and the second transformation replaces URA3 with a PCR fragment containing one or a few mutations. This PCR fragment is synthesized using a primer containing a mutation (SSG mutagenesis or is synthesized by error-prone PCR (RDL mutagenesis. In SSG mutagenesis, mutations that are proximal to the URA3 site are incorporated at higher frequencies than distal mutations, however mutations can be introduced efficiently at distances of at least 500 bp from the URA3 insertion. In RDL mutagenesis, to ensure that incorporation of mutations occurs at approximately equal frequencies throughout the targeted region, this region is deleted at the same time URA3 is integrated. Conclusion SSG and RDL mutagenesis allow point mutations to be easily and efficiently incorporated into the yeast genome without disrupting the native locus.

  11. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  12. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Directory of Open Access Journals (Sweden)

    Kevin Anthony Meyer

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01 and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02, and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes and resistance to foreign genetic elements (such as CRISPR-Cas systems. Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  13. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-01-01

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  14. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  15. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  17. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  18. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  19. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes [v2; ref status: indexed, http://f1000r.es/2x3

    Directory of Open Access Journals (Sweden)

    Ted Kalbfleisch

    2014-02-01

    Full Text Available Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease.  High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals.  Comparisons between these species have provided unique insights into mammalian gene function.  However, the number of species with reference genomes is small compared to those needed for studying molecular evolutionary relationships in the tree of life.  For example, among the even-toed ungulates there are approximately 300 species whose phylogenetic relationships have been calculated in the 10k trees project.  Only six of these have reference genomes:  cattle, swine, sheep, goat, water buffalo, and bison.  Although reference sequences will eventually be developed for additional hoof stock, the resources in terms of time, money, infrastructure and expertise required to develop a quality reference genome may be unattainable for most species for at least another decade.  In this work we mapped 35 Gb of next generation sequence data of a Katahdin sheep to its own species’ reference genome (Ovis aries Oar3.1 and to that of a species that diverged 15 to 30 million years ago (Bos taurus UMD3.1.  In total, 56% of reads covered 76% of UMD3.1 to an average depth of 6.8 reads per site, 83 million variants were identified, of which 78 million were homozygous and likely represent interspecies nucleotide differences. Excluding repeat regions and sex chromosomes, nearly 3.7 million heterozygous sites were identified in this animal vs. bovine UMD3.1, representing polymorphisms occurring in sheep.  Of these, 41% could be readily mapped to orthologous positions in ovine Oar3.1 with 80% corroborated as heterozygous.  These variant sites, identified via interspecies mapping could be used for comparative genomics, disease association studies, and ultimately to understand

  20. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae: A Comparative Analysis and Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Jie Cai

    Full Text Available Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.

  1. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.

    Science.gov (United States)

    Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin

    2013-07-24

    Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating

  2. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    Science.gov (United States)

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.

  3. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae inferred from genomic in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    Full Text Available The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  4. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones.

    Directory of Open Access Journals (Sweden)

    Elena Varela-Álvarez

    Full Text Available Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies.

  5. Bulked segregant analysis of the pirarucu (Arapaima gigas) genome for identification of sex-specific molecular markers.

    Science.gov (United States)

    Almeida, I G; Ianella, P; Faria, M T; Paiva, S R; Caetano, A R

    2013-12-04

    Arapaima gigas (Osteoglossidae) is one of the largest fish species in the Amazon Basin, attaining lengths of over 2.5 m and weights of over 100 kg. Its flesh is prized, and it has great potential for production in aquaculture systems. However, live pirarucu cannot be reliably sexed visually, even after sexual development, since this species does not have clear external sexual dimorphism. Simple and inexpensive methods for sexing immature pirarucu based on DNA markers would facilitate production of this species in commercial operations. We analyzed A. gigas male and female DNA pools with 566 RAPD primers, generating 2609 fragments, with an estimated 1341 segregating polymorphic markers, and an estimated average spacing of 714 kb, which corresponds to less than 0.1% of the species' genome. Two putative sex-specific fragments were initially identified in bulked samples; but they were not confirmed in a study of individual male and female samples. We suggest that A. gigas has developed a non-chromosomal system of sex determination or, alternatively, that the species has undergone a recent loss of the chromosome carrying the sex-determining locus.

  6. Next-generation sampling: Pairing genomics with herbarium specimens provides species-level signal in Solidago (Asteraceae).

    Science.gov (United States)

    Beck, James B; Semple, John C

    2015-06-01

    The ability to conduct species delimitation and phylogeny reconstruction with genomic data sets obtained exclusively from herbarium specimens would rapidly enhance our knowledge of large, taxonomically contentious plant genera. In this study, the utility of genotyping by sequencing is assessed in the notoriously difficult genus Solidago (Asteraceae) by attempting to obtain an informative single-nucleotide polymorphism data set from a set of specimens collected between 1970 and 2010. Reduced representation libraries were prepared and Illumina-sequenced from 95 Solidago herbarium specimen DNAs, and resulting reads were processed with the nonreference Universal Network-Enabled Analysis Kit (UNEAK) pipeline. Multidimensional clustering was used to assess the correspondence between genetic groups and morphologically defined species. Library construction and sequencing were successful in 93 of 95 samples. The UNEAK pipeline identified 8470 single-nucleotide polymorphisms, and a filtered data set was analyzed for each of three Solidago subsections. Although results varied, clustering identified genomic groups that often corresponded to currently recognized species or groups of closely related species. These results suggest that genotyping by sequencing is broadly applicable to DNAs obtained from herbarium specimens. The data obtained and their biological signal suggest that pairing genomics with large-scale herbarium sampling is a promising strategy in species-rich plant groups.

  7. Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae.

    Science.gov (United States)

    Edholm, Eva-Stina; Goyos, Ana; Taran, Joseph; De Jesús Andino, Francisco; Ohta, Yuko; Robert, Jacques

    2014-06-01

    Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization, and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members Xenopus laevis (allotetraploid) and Xenopus tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12 N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians.

  8. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.

    Science.gov (United States)

    Shmakov, Sergey A; Sitnik, Vassilii; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin V; Koonin, Eugene V

    2017-09-19

    Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR "dark matter." We performed a comprehensive analysis of the spacers from all CRISPR- cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. IMPORTANCE The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers

  9. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  10. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    Science.gov (United States)

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in

  11. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  12. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  13. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    Science.gov (United States)

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  14. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats

    Science.gov (United States)

    Cahyadi, M.; Puruhita; Barido, F. H.; Hertanto, B. S.

    2018-01-01

    Polymerase chain reaction (PCR) is a molecular technique that widely used in agriculture area including species identification in animal-based products for halalness and food safety reasons. Amplification of DNA using PCR needs a primer pair (forward and reverse primers) to isolate specific DNA fragment in the genome. This objective of this study was to design specific primer from mitochondrial 12S rRNA region for species identification in raw beef, pork and chicken meat. Three published sequences, HQ184045, JN601075, and KT626857, were downloaded from National Center for Biotechnology Information (NCBI) website. Furthermore, those reference sequences were used to design specific primer for bovine, pig, and chicken species using primer3 v.0.4.0. A total of 15 primer pairs were picked up from primer3 software. Of these, an universal forward primer and three reverse primers which are specific for bovine, pig, and chicken species were selected to be optimized using multiplex-PCR technique. The selected primers were namely UNIF (5’-ACC GCG GTC ATA CGA TTA AC-3’), SPR (5’-AGT GCG TCG GCT ATT GTA GG-3’), BBR (5’-GAA TTG GCA AGG GTT GGT AA-3’), and AR (5’-CGG TAT GTA CGT GCC TCA GA-3’). In addition, the PCR products were visualized using 2% agarose gels under the UV light and sequenced to be aligned with reference sequences using Clustal Omega. The result showed that those primers were specifically amplified mitochondrial 12S rRNA regions from bovine, pig, and chicken using PCR. It was indicated by the existence of 155, 357, and 611 bp of DNA bands for bovine, pig, and chicken species, respectively. Moreover, sequence analysis revealed that our sequences were identically similar with reference sequences. It can be concluded that mitochondrial 12S rRNA may be used as a genetic marker for species identification in meat products.

  15. Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen.

    Science.gov (United States)

    Roche; Cong; Chen; Hanna; Gustine; Sherwood; Ozias-Akins

    1999-07-01

    Twelve molecular markers linked to pseudogamous apospory, a form of gametophytic apomixis, were previously isolated from Pennisetum squamulatum Fresen. No recombination between these markers was found in a segregating population of 397 individuals (Ozias-Akins et al. 1998, Proc. Natl Acad. Sci. USA, 95, 5127-5132). The objective of the present study was to test if these markers were also linked to the aposporous mode of reproduction in two small segregating populations of Cenchrus ciliaris (= Pennisetum ciliare (L.)Link), another apomictic grass species. Among 12 markers (sequence characterized amplified regions, SCARs), six were scored as dominant markers between aposporous and sexual C. ciliaris genotypes (presence/absence, respectively). Five were always linked to apospory and one showed a low level of recombination in 84 progenies. Restriction fragment length polymorphisms (RFLPs) were observed between sexual and apomictic phenotypes for three of the six remaining SCARs from P. squamulatum when used as probes. No recombination was observed in the F1 progenies. Preliminary data from megabase DNA analysis and sequencing in both species indicate that an apospory-specific genomic region (ASGR) is highly conserved between the two species. Although C. ciliaris has a smaller genome size to P. squamulatum, a higher copy number for markers linked to apospory found in the former may impair the progress of positional cloning of gene(s) for apomixis in this species.

  16. Genome - wide variation and demographic history of small cats with a focus on Felis species

    Directory of Open Access Journals (Sweden)

    Anubhab Khan

    2017-10-01

    Full Text Available Majority of the 38 known cat species are classified as small and they inhabit five of the seven continents. They survive in a vast range of habitats but still 12 out of the 18 threatened felids are small cats. However, there has not been enough progress in the field of small cat research as they generally get overshadowed by the charismatic big cats. Here we attempt to create a resource for small cat research especially of the genus Felis which has six species out of which two are classified as vulnerable by IUCN and at least one more is at risk. We collected tissue samples of four Felis chaus (Jungle cat from central India and used available whole genome sequences of nine individuals from four other Felis species, two individuals of Prionailurus bengalensis and an Otocolobus manul. These whole genome sequences were filtered and aligned with the already published domestic cat (Felis catus genome assembly. Felids are closely related species and reads from all species in our study aligned with the domestic cat genome with a rate of at least 93%. We estimated the existing genomic variation by calculating heterozygous SNP encounter rate. So far, it seems that all wild cats have more genetic variation than Felis catus species. This can be attributed to the inbreeding in these cats. Among the wild cats, Felis silvestris seems to have the highest level of genetic variation. To understand the reasons behind the distribution of genetic variation in small cats, we estimated the demographic histories of each of the species using PSMC. This method can only detect demographic changes more than 1000 generations ago. We observe that roughly all species share a parallel history in terms of population increase. The most interesting and important feature might be that all wild small cat population sizes increased exponentially around twenty thousand years ago as opposed to domestic cat and big cats which declined around this time. Another interesting feature of

  17. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  18. HPCE quantification of 5-methyl-2'-deoxycytidine in genomic DNA: methodological optimization for chestnut and other woody species.

    Science.gov (United States)

    Hasbún, Rodrigo; Valledor, Luís; Rodríguez, José L; Santamaria, Estrella; Ríos, Darcy; Sanchez, Manuel; Cañal, María J; Rodríguez, Roberto

    2008-01-01

    Quantification of deoxynucleosides using micellar high-performance capillary electrophoresis (HPCE) is an efficient, fast and inexpensive evaluation method of genomic DNA methylation. This approach has been demonstrated to be more sensitive and specific than other methods for the quantification of DNA methylation content. However, effective detection and quantification of 5-methyl-2'-deoxycytidine depend of the sample characteristics. Previous works have revealed that in most woody species, the quality and quantity of RNA-free DNA extracted that is suitable for analysis by means of HPCE varies among species of the same gender, among tissues taken from the same tree, and vary in the same tissue depending on the different seasons of the year. The aim of this work is to establish a quantification method of genomic DNA methylation that lends itself to use in different Castanea sativa Mill. materials, and in other angiosperm and gymnosperm woody species. Using a DNA extraction kit based in silica membrane has increased the resolutive capacity of the method. Under these conditions, it can be analyzed different organs or tissues of angiosperms and gymnosperms, regardless of their state of development. We emphasized the importance of samples free of nucleosides, although, in the contrary case, the method ensures the effective separation of deoxynucleosides and identification of 5-methyl-2'-deoxycytidine.

  19. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  20. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  1. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  2. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  3. Investigating hookworm genomes by comparative analysis of two Ancylostoma species

    Directory of Open Access Journals (Sweden)

    Kapulkin Wadim

    2005-04-01

    Full Text Available Abstract Background Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum. Results Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae. Conclusion The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics.

  4. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species.

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Shimahara, Yoshiko; Kamaishi, Takashi; Yoshida, Terutoyo; Nagai, Satoshi; Kobayashi, Takanori; Katoh, Masaya

    2017-01-01

    Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of

  5. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind; Martin, Darren Patrick; Navas-Castillo, Jesú s; Moriones, Enrique; Herná ndez-Zepeda, Cecilia; Idris, Ali; Murilo Zerbini, F.; Brown, Judith K.

    2014-01-01

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  6. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind

    2014-01-25

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  7. Genomic evolution of 11 type strains within family Planctomycetaceae.

    Directory of Open Access Journals (Sweden)

    Min Guo

    Full Text Available The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes orthology system. Subsequently, we identified genomic islands (GIs and structural variations (SVs among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications.

  8. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?

    Directory of Open Access Journals (Sweden)

    Oscar Franzén

    2009-08-01

    Full Text Available Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB. The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.

  9. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  10. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  11. Exploration of genetic diversity among medicinally important genus Epimedium species based on genomic and EST-SSR marker.

    Science.gov (United States)

    Yousaf, Zubaida; Hu, Weiming; Zhang, Yanjun; Zeng, Shaohua; Wang, Ying

    2015-01-01

    Epimedium species has gained prime importance due to their medicinal and economic values. Therefore, in this study, 26 genomic SSR and 10 EST-SSR markers were developed for 13 medicinal species of the Epimedium genus and one out-group species Vancouveria hexandra W. J. Hooker to explore the existing genetic diversity. A total of 100 alleles by genomic SSR and 65 by EST-SSR were detected. The genomic SSR markers were presented between 2-7 alleles per locus. The observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.00 to 4.5 and 0.0254 to 2.8108, respectively. Similarly, for EST-SSR, these values were ranged from 3.00 to 4.00 and 1.9650 to 2.7142. The number of alleles for EST-SSR markers ranged from 3 to 10 with an average of 3.51 per loci. It has been concluded that medicinally important species of the genus Epimedium possesses lower intraspecific genetic variation.

  12. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  13. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish

    Directory of Open Access Journals (Sweden)

    Atsuo Kawahara

    2016-05-01

    Full Text Available The zebrafish (Danio rerio is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR associated protein 9 (Cas9 system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  14. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  15. Draft Genome Sequences of Three Novel Low-Abundance Species Strains Isolated from Kefir Grain.

    Science.gov (United States)

    Kim, Yongkyu; Blasche, Sonja; Patil, Kiran R

    2017-09-28

    We report here the genome sequences of three novel bacterial species strains- Bacillus kefirresidentii Opo, Rothia kefirresidentii KRP, and Streptococcus kefirresidentii YK-isolated from kefir grains collected in Germany. The draft genomes of these isolates were remarkably dissimilar (average nucleotide identities, 77.80%, 89.01%, and 92.10%, respectively) to those of the previously sequenced strains. Copyright © 2017 Kim et al.

  16. SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases

    Science.gov (United States)

    Foerster, Hartmut; Bombarely, Aureliano; Battey, James N D; Sierro, Nicolas; Ivanov, Nikolai V; Mueller, Lukas A

    2018-01-01

    Abstract SolCyc is the entry portal to pathway/genome databases (PGDBs) for major species of the Solanaceae family hosted at the Sol Genomics Network. Currently, SolCyc comprises six organism-specific PGDBs for tomato, potato, pepper, petunia, tobacco and one Rubiaceae, coffee. The metabolic networks of those PGDBs have been computationally predicted by the pathologic component of the pathway tools software using the manually curated multi-domain database MetaCyc (http://www.metacyc.org/) as reference. SolCyc has been recently extended by taxon-specific databases, i.e. the family-specific SolanaCyc database, containing only curated data pertinent to species of the nightshade family, and NicotianaCyc, a genus-specific database that stores all relevant metabolic data of the Nicotiana genus. Through manual curation of the published literature, new metabolic pathways have been created in those databases, which are complemented by the continuously updated, relevant species-specific pathways from MetaCyc. At present, SolanaCyc comprises 199 pathways and 29 superpathways and NicotianaCyc accounts for 72 pathways and 13 superpathways. Curator-maintained, taxon-specific databases such as SolanaCyc and NicotianaCyc are characterized by an enrichment of data specific to these taxa and free of falsely predicted pathways. Both databases have been used to update recently created Nicotiana-specific databases for Nicotiana tabacum, Nicotiana benthamiana, Nicotiana sylvestris and Nicotiana tomentosiformis by propagating verifiable data into those PGDBs. In addition, in-depth curation of the pathways in N.tabacum has been carried out which resulted in the elimination of 156 pathways from the 569 pathways predicted by pathway tools. Together, in-depth curation of the predicted pathway network and the supplementation with curated data from taxon-specific databases has substantially improved the curation status of the species–specific N.tabacum PGDB. The implementation of this

  17. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  18. Fungal biology: compiling genomes and exploiting them

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Uehling, Jessie K [ORNL; Payen, Thibaut [INRA; Plett, Jonathan [University of Western Sydney, Australia

    2014-01-01

    The last 10 years have seen the cost of sequencing complete genomes decrease at an incredible speed. This has led to an increase in the number of genomes sequenced in all the fungal tree of life as well as a wide variety of plant genomes. The increase in sequencing has permitted us to study the evolution of organisms on a genomic scale. A number of talks during the conference discussed the importance of transposable elements (TEs) that are present in almost all species of fungi. These TEs represent an especially large percentage of genomic space in fungi that interact with plants. Thierry Rouxel (INRA, Nancy, France) showed the link between speciation in the Leptosphaeria complex and the expansion of TE families. For example in the Leptosphaeria complex, one species associated with oilseed rape has experienced a recent and massive burst of movement by a few TE families. The alterations caused by these TEs took place in discrete regions of the genome leading to shuffling of the genomic landscape and the appearance of genes specific to the species, such as effectors useful for the interactions with a particular plant (Rouxel et al., 2011). Other presentations showed the importance of TEs in affecting genome organization. For example, in Amanita different species appear to have been invaded by different TE families (Veneault-Fourrey & Martin, 2011).

  19. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  20. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    Science.gov (United States)

    Bergman, Casey M; Haddrill, Penelope R

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.

  1. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    Science.gov (United States)

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  2. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

    Directory of Open Access Journals (Sweden)

    Thao Thi Nguyen

    2018-02-01

    Full Text Available Type VI secretion system (T6SS has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM of T6SEs that possess markers for type VI effectors (MIX motif (MIX T6SEs, 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  3. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Science.gov (United States)

    Diouf, Fatou; Diouf, Diegane; Klonowska, Agnieszka; Le Queré, Antoine; Bakhoum, Niokhor; Fall, Dioumacor; Neyra, Marc; Parrinello, Hugues; Diouf, Mayecor; Ndoye, Ibrahima; Moulin, Lionel

    2015-01-01

    Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  4. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    Science.gov (United States)

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  6. Three Infectious Viral Species Lying in Wait in the Banana Genome

    Science.gov (United States)

    Chabannes, Matthieu; Baurens, Franc-Christophe; Duroy, Pierre-Olivier; Bocs, Stéphanie; Vernerey, Marie-Stéphanie; Rodier-Goud, Marguerite; Barbe, Valérie; Gayral, Philippe

    2013-01-01

    Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species—Goldfinger (eBSGFV), Imove (eBSImV), and Obino l'Ewai (eBSOLV)—in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed. PMID:23720724

  7. Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts.

    Science.gov (United States)

    Le Quéré, Antoine; Tak, Nisha; Gehlot, Hukam Singh; Lavire, Celine; Meyer, Thibault; Chapulliot, David; Rathi, Sonam; Sakrouhi, Ilham; Rocha, Guadalupe; Rohmer, Marine; Severac, Dany; Filali-Maltouf, Abdelkarim; Munive, Jose-Antonio

    2017-01-14

    Nitrogen fixing bacteria isolated from hot arid areas in Asia, Africa and America but from diverse leguminous plants have been recently identified as belonging to a possible new species of Ensifer (Sinorhizobium). In this study, 6 strains belonging to this new clade were compared with Ensifer species at the genome-wide level. Their capacities to utilize various carbon sources and to establish a symbiotic interaction with several leguminous plants were examined. Draft genomes of selected strains isolated from Morocco (Merzouga desert), Mexico (Baja California) as well as from India (Thar desert) were produced. Genome based species delineation tools demonstrated that they belong to a new species of Ensifer. Comparison of its core genome with those of E. meliloti, E. medicae and E. fredii enabled the identification of a species conserved gene set. Predicted functions of associated proteins and pathway reconstruction revealed notably the presence of transport systems for octopine/nopaline and inositol phosphates. Phenotypic characterization of this new desert rhizobium species showed that it was capable to utilize malonate, to grow at 48 °C or under high pH while NaCl tolerance levels were comparable to other Ensifer species. Analysis of accessory genomes and plasmid profiling demonstrated the presence of large plasmids that varied in size from strain to strain. As symbiotic functions were found in the accessory genomes, the differences in symbiotic interactions between strains may be well related to the difference in plasmid content that could explain the different legumes with which they can develop the symbiosis. The genomic analysis performed here confirms that the selected rhizobial strains isolated from desert regions in three continents belong to a new species. As until now only recovered from such harsh environment, we propose to name it Ensifer aridi. The presented genomic data offers a good basis to explore adaptations and functionalities that enable them

  8. Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout.

    Science.gov (United States)

    Madureira, Tânia Vieira; Pinheiro, Ivone; de Paula Freire, Rafaelle; Rocha, Eduardo; Castro, Luis Filipe; Urbatzka, Ralph

    2017-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of many processes in vertebrates, such as carbohydrate and lipid metabolism. PPARα, a member of the PPAR nuclear receptor gene subfamily (NR1C1), is involved in fatty acid metabolism, namely in peroxisomal β-oxidation. Two gene paralogues, pparαA and pparαB, were described in several teleost species with their origin dating back to the teleost-specific genome duplication (3R). Given the additional salmonid-specific genome duplication (4R), four genes could be theoretically anticipated for this gene subfamily. In this work, we examined the pparα gene repertoire in brown trout, Salmo trutta f. fario. Data disclosed two pparα-like sequences in brown trout. Phylogenetic analyses further revealed that the isolated genes are most likely genome pparαB duplicates, pparαBa and pparαBb, while pparαA is apparently absent in salmonids. Both genes showed a ubiquitous mRNA expression across a panel of 11 different organs. In vitro exposed primary brown trout hepatocytes strongly suggest that pparα gene paralogues are differently regulated by ethinylestradiol (EE2). PparαBb mRNA expression significantly decreased with dosage, reaching significance after exposure to 50μM EE2, while pparαBa mRNA increased, significant at 1μM EE2. The present data enhances the understanding of pparα function and evolution in teleost, and reinforces the evidence of a potential crosstalk between estrogenic and pparα signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species

    DEFF Research Database (Denmark)

    Li, Shengbin; Li, Bo; Cheng, Cheng

    2014-01-01

    sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures...

  10. Genomic characterisation of Arachis porphyrocalyx (Valls & C.E. Simpson, 2005) (Leguminosae): multiple origin of Arachis species with x = 9

    Science.gov (United States)

    Celeste, Silvestri María; Ortiz, Alejandra Marcela; Robledo, Germán Ariel; Valls, José Francisco Montenegro; Lavia, Graciela Inés

    2017-01-01

    Abstract The genus Arachis Linnaeus, 1753 comprises four species with x = 9, three belong to the section Arachis: Arachis praecox (Krapov. W.C. Greg. & Valls, 1994), Arachis palustris (Krapov. W.C. Greg. & Valls, 1994) and Arachis decora (Krapov. W.C. Greg. & Valls, 1994) and only one belongs to the section Erectoides: Arachis porphyrocalyx (Valls & C.E. Simpson, 2005). Recently, the x = 9 species of section Arachis have been assigned to G genome, the latest described so far. The genomic relationship of Arachis porphyrocalyx with these species is controversial. In the present work, we carried out a karyotypic characterisation of Arachis porphyrocalyx to evaluate its genomic structure and analyse the origin of all x = 9 Arachis species. Arachis porphyrocalyx showed a karyotype formula of 14m+4st, one pair of A chromosomes, satellited chromosomes type 8, one pair of 45S rDNA sites in the SAT chromosomes, one pair of 5S rDNA sites and pericentromeric C-DAPI+ bands in all chromosomes. Karyotype structure indicates that Arachis porphyrocalyx does not share the same genome type with the other three x = 9 species and neither with the remaining Erectoides species. Taking into account the geographic distribution, morphological and cytogenetic features, the origin of species with x = 9 of the genus Arachis cannot be unique; instead, they originated at least twice in the evolutionary history of the genus. PMID:28919947

  11. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Lionel [UMR, France; Klonowska, Agnieszka [UMR, France; Caroline, Bournaud [UMR, France; Booth, Kristina [University of Massachusetts; Vriezen, Jan A.C. [University of Massachusetts; Melkonian, Remy [UMR, France; James, Euan [James Hutton Institute, Dundee, United Kingdom; Young, Peter W. [University of York, United Kingdom; Bena, Gilles [UMR, France; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lizotte-Waniewski, Michelle [University of Massachusetts; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Riley, Monica [Woods Hole Oceanographic Institution (WHOI), Woods Hole

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  12. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut

    Directory of Open Access Journals (Sweden)

    Guo Yufang

    2012-11-01

    Full Text Available Abstract Background Cultivated peanut or groundnut (Arachis hypogaea L. is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40. Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20, which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons derived from 70,771 long-read (Sanger and 270,957 short-read (454 sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639 and GKBSPSc 30081 (PI 468327 in the B-genome species A. batizocoi. A high degree of macrosynteny was observed

  13. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,...

  14. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals

    KAUST Repository

    Voolstra, Christian R.; Li, Yong; Liew, Yi Jin; Baumgarten, Sebastian; Zoccola, Didier; Flot, Jean-Franç ois; Tambutté , Sylvie; Allemand, Denis; Aranda, Manuel

    2017-01-01

    Stony corals form the foundation of coral reef ecosystems. Their phylogeny is characterized by a deep evolutionary divergence that separates corals into a robust and complex clade dating back to at least 245 mya. However, the genomic consequences and clade-specific evolution remain unexplored. In this study we have produced the genome of a robust coral, Stylophora pistillata, and compared it to the available genome of a complex coral, Acropora digitifera. We conducted a fine-scale gene-based analysis focusing on ortholog groups. Among the core set of conserved proteins, we found an emphasis on processes related to the cnidarian-dinoflagellate symbiosis. Genes associated with the algal symbiosis were also independently expanded in both species, but both corals diverged on the identity of ortholog groups expanded, and we found uneven expansions in genes associated with innate immunity and stress response. Our analyses demonstrate that coral genomes can be surprisingly disparate. Future analyses incorporating more genomic data should be able to determine whether the patterns elucidated here are not only characteristic of the differences between S. pistillata and A. digitifera but also representative of corals from the robust and complex clade at large.

  15. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals

    KAUST Repository

    Voolstra, Christian R.

    2017-12-08

    Stony corals form the foundation of coral reef ecosystems. Their phylogeny is characterized by a deep evolutionary divergence that separates corals into a robust and complex clade dating back to at least 245 mya. However, the genomic consequences and clade-specific evolution remain unexplored. In this study we have produced the genome of a robust coral, Stylophora pistillata, and compared it to the available genome of a complex coral, Acropora digitifera. We conducted a fine-scale gene-based analysis focusing on ortholog groups. Among the core set of conserved proteins, we found an emphasis on processes related to the cnidarian-dinoflagellate symbiosis. Genes associated with the algal symbiosis were also independently expanded in both species, but both corals diverged on the identity of ortholog groups expanded, and we found uneven expansions in genes associated with innate immunity and stress response. Our analyses demonstrate that coral genomes can be surprisingly disparate. Future analyses incorporating more genomic data should be able to determine whether the patterns elucidated here are not only characteristic of the differences between S. pistillata and A. digitifera but also representative of corals from the robust and complex clade at large.

  16. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.

    Science.gov (United States)

    Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi

    2014-01-01

    With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).

  17. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    Science.gov (United States)

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  18. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    OpenAIRE

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  19. Insights into bilaterian evolution from three spiralian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.; Aerts, Andrea

    2012-01-07

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.

  20. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    Science.gov (United States)

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The Complete Genome of Brucella Suis 019 Provides Insights on Cross-Species Infection

    Directory of Open Access Journals (Sweden)

    Yuanzhi Wang

    2016-01-01

    Full Text Available Brucella species are the most important zoonotic pathogens worldwide and cause considerable harm to humans and animals. In this study, we presented the complete genome of B. suis 019 isolated from sheep (ovine with epididymitis. B. suis 019 has a rough phenotype and can infect sheep, rhesus monkeys and possibly humans. The comparative genome analysis demonstrated that B. suis 019 is closest to the vaccine strain B. suis bv. 1 str. S2. Further analysis associated the rsh gene to the pathogenicity of B. suis 019, and the WbkA gene to the rough phenotype of B. suis 019. The 019 complete genome data was deposited in the GenBank database with ID PRJNA308608.

  3. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps.

    Science.gov (United States)

    Schaeffer, Stephen W; Bhutkar, Arjun; McAllister, Bryant F; Matsuda, Muneo; Matzkin, Luciano M; O'Grady, Patrick M; Rohde, Claudia; Valente, Vera L S; Aguadé, Montserrat; Anderson, Wyatt W; Edwards, Kevin; Garcia, Ana C L; Goodman, Josh; Hartigan, James; Kataoka, Eiko; Lapoint, Richard T; Lozovsky, Elena R; Machado, Carlos A; Noor, Mohamed A F; Papaceit, Montserrat; Reed, Laura K; Richards, Stephen; Rieger, Tania T; Russo, Susan M; Sato, Hajime; Segarra, Carmen; Smith, Douglas R; Smith, Temple F; Strelets, Victor; Tobari, Yoshiko N; Tomimura, Yoshihiko; Wasserman, Marvin; Watts, Thomas; Wilson, Robert; Yoshida, Kiyohito; Markow, Therese A; Gelbart, William M; Kaufman, Thomas C

    2008-07-01

    The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.

  4. Genome Sequence of Anoxybacillus geothermalis Strain GSsed3, a Novel Thermophilic Endospore-Forming Species

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Roussel-Delif, Ludovic; Jeanneret, Nicole; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Regenspurg, Simona; McMurry, Kim; Gleasner, Cheryl D.; Lo, Chien-Chi; Li, Paul; Vuyisich, Momchilo; Chain, Patrick S.

    2015-01-01

    Anoxybacillus geothermalis strain GSsed3 is an endospore-forming thermophilic bacterium isolated from filter deposits in a geothermal site. This novel species has a larger genome size (7.2 Mb) than that of any other Anoxybacillus species, and it possesses genes that support its phenotypic metabolic characterization and suggest an intriguing link to metals. PMID:26067952

  5. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species.

    Directory of Open Access Journals (Sweden)

    Darshan Shimoga Chandrashekar

    Full Text Available Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses.We developed the 'Genomic Repeat Element Analyzer for Mammals' (GREAM for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a enrichment within chromosomal region(s of interest, and b comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20 known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species.GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting repeats in various

  6. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria.

    Science.gov (United States)

    Zhao, Meicheng; Zhi, Hui; Doust, Andrew N; Li, Wei; Wang, Yongfang; Li, Haiquan; Jia, Guanqing; Wang, Yongqiang; Zhang, Ning; Diao, Xianmin

    2013-04-11

    The Setaria genus is increasingly of interest to researchers, as its two species, S. viridis and S. italica, are being developed as models for understanding C4 photosynthesis and plant functional genomics. The genome constitution of Setaria species has been studied in the diploid species S. viridis, S. adhaerans and S. grisebachii, where three genomes A, B and C were identified respectively. Two allotetraploid species, S. verticillata and S. faberi, were found to have AABB genomes, and one autotetraploid species, S. queenslandica, with an AAAA genome, has also been identified. The genomes and genome constitutions of most other species remain unknown, even though it was thought there are approximately 125 species in the genus distributed world-wide. GISH was performed to detect the genome constitutions of Eurasia species of S. glauca, S. plicata, and S. arenaria, with the known A, B and C genomes as probes. No or very poor hybridization signal was detected indicating that their genomes are different from those already described. GISH was also performed reciprocally between S. glauca, S. plicata, and S. arenaria genomes, but no hybridization signals between each other were found. The two sets of chromosomes of S. lachnea both hybridized strong signals with only the known C genome of S. grisebachii. Chromosomes of Qing 9, an accession formerly considered as S. viridis, hybridized strong signal only to B genome of S. adherans. Phylogenetic trees constructed with 5S rDNA and knotted1 markers, clearly classify the samples in this study into six clusters, matching the GISH results, and suggesting that the F genome of S. arenaria is basal in the genus. Three novel genomes in the Setaria genus were identified and designated as genome D (S. glauca), E (S. plicata) and F (S. arenaria) respectively. The genome constitution of tetraploid S. lachnea is putatively CCC'C'. Qing 9 is a B genome species indigenous to China and is hypothesized to be a newly identified species. The

  7. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  8. Evolutionary constraints shape caste-specific gene expression across 15 ant species.

    Science.gov (United States)

    Morandin, Claire; Mikheyev, Alexander S; Pedersen, Jes Søe; Helanterä, Heikki

    2017-05-01

    Development of polymorphic phenotypes from similar genomes requires gene expression differences. However, little is known about how morph-specific gene expression patterns vary on a broad phylogenetic scale. We hypothesize that evolution of morph-specific gene expression, and consequently morph-specific phenotypic evolution, may be constrained by gene essentiality and the amount of pleiotropic constraints. Here, we use comparative transcriptomics of queen and worker morphs, that is, castes, from 15 ant species to understand the constraints of morph-biased gene expression. In particular, we investigate how measures of evolutionary constraints at the sequence level (expression level, connectivity, and number of gene ontology [GO] terms) correlate with morph-biased expression. Our results show that genes indeed vary in their potential to become morph-biased. The existence of genes that are constrained in becoming caste-biased potentially limits the evolutionary decoupling of the caste phenotypes, that is, it might result in "caste load" occasioning from antagonistic fitness variation, similarly to sexually antagonistic fitness variation between males and females. On the other hand, we suggest that genes under low constraints are released from antagonistic variation and thus more likely to be co-opted for morph specific use. Overall, our results suggest that the factors that affect sequence evolutionary rates and evolution of plastic expression may largely overlap. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Decoding the similarities and differences among mycobacterial species.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    2017-08-01

    Full Text Available Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair, RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes, yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases.

  10. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    Science.gov (United States)

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  11. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  12. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    Science.gov (United States)

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. © FASEB.

  13. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  14. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  15. “Controlled, cross-species dataset for exploring biases in genome annotation and modification profiles”

    Directory of Open Access Journals (Sweden)

    Alison McAfee

    2015-12-01

    Full Text Available Since the sequencing of the honey bee genome, proteomics by mass spectrometry has become increasingly popular for biological analyses of this insect; but we have observed that the number of honey bee protein identifications is consistently low compared to other organisms [1]. In this dataset, we use nanoelectrospray ionization-coupled liquid chromatography–tandem mass spectrometry (nLC–MS/MS to systematically investigate the root cause of low honey bee proteome coverage. To this end, we present here data from three key experiments: a controlled, cross-species analyses of samples from Apis mellifera, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and Homo sapiens; a proteomic analysis of an individual honey bee whose genome was also sequenced; and a cross-tissue honey bee proteome comparison. The cross-species dataset was interrogated to determine relative proteome coverages between species, and the other two datasets were used to search for polymorphic sequences and to compare protein cleavage profiles, respectively.

  16. Analysis of infant isolates of Bifidobacterium breve by comparative genome hybridization indicates the existence of new subspecies with marked infant specificity.

    Science.gov (United States)

    Boesten, Rolf; Schuren, Frank; Wind, Richèle D; Knol, Jan; de Vos, Willem M

    2011-09-01

    A total of 20 Bifidobacterium strains were isolated from fecal samples of 4 breast- and bottle-fed infants and all were characterized as Bifidobacterium breve based on 16S rRNA gene sequence and metabolic analysis. These isolates were further characterized and compared to the type strains of B. breve and 7 other Bifidobacterium spp. by comparative genome hybridization. For this purpose, we constructed and used a DNA-based microarray containing over 2000 randomly cloned DNA fragments from B. breve type strain LMG13208. This molecular analysis revealed a high degree of genomic variation between the isolated strains and allowed the vast majority to be grouped into 4 clusters. One cluster contained a single isolate that was virtually indistinguishable from the B. breve type strain. The 3 other clusters included 19 B. breve strains that differed considerably from all type strains. Remarkably, each of the 4 clusters included strains that were isolated from a single infant, indicating that a niche adaptation may contribute to variation within the B. breve species. Based on genomic hybridization data, the new B. breve isolates were estimated to contain approximately 60-90% of the genes of the B. breve type strain, attesting to the existence of various subspecies within the species B. breve. Further bioinformatic analysis identified several hundred diagnostic clones specific to the genomic clustering of the B. breve isolates. Molecular analysis of representatives of these revealed that annotated genes from the conserved B. breve core encoded mainly housekeeping functions, while the strain-specific genes were predicted to code for functions related to life style, such as carbohydrate metabolism and transport. This is compatible with genetic adaptation of the strains to their niche, a combination of infants and diet. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae).

    Science.gov (United States)

    Ma, Qiuyue; Li, Shuxian; Bi, Changwei; Hao, Zhaodong; Sun, Congrui; Ye, Ning

    2017-02-01

    Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba ( http://bio.njfu.edu.cn/gb2/gbrowse/Ziziphus_jujuba_cp/ ). Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1-4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.

  18. Expression and genomic organization of zonadhesin-like genes in three species of fish give insight into the evolutionary history of a mosaic protein

    Directory of Open Access Journals (Sweden)

    Davidson William S

    2005-11-01

    Full Text Available Abstract Background The mosaic sperm protein zonadhesin (ZAN has been characterized in mammals and is implicated in species-specific egg-sperm binding interactions. The genomic structure and testes-specific expression of zonadhesin is known for many mammalian species. All zonadhesin genes characterized to date consist of meprin A5 antigen receptor tyrosine phosphatase mu (MAM domains, mucin tandem repeats, and von Willebrand (VWD adhesion domains. Here we investigate the genomic structure and expression of zonadhesin-like genes in three species of fish. Results The cDNA and corresponding genomic locus of a zonadhesin-like gene (zlg in Atlantic salmon (Salmo salar were sequenced. Zlg is similar in adhesion domain content to mammalian zonadhesin; however, the domain order is altered. Analysis of puffer fish (Takifugu rubripes and zebrafish (Danio rerio sequence data identified zonadhesin (zan genes that share the same domain order, content, and a conserved syntenic relationship with mammalian zonadhesin. A zonadhesin-like gene in D. rerio was also identified. Unlike mammalian zonadhesin, D. rerio zan and S. salar zlg were expressed in the gut and not in the testes. Conclusion We characterized likely orthologs of zonadhesin in both T. rubripes and D. rerio and uncovered zonadhesin-like genes in S. salar and D. rerio. Each of these genes contains MAM, mucin, and VWD domains. While these domains are associated with several proteins that show prominent gut expression, their combination is unique to zonadhesin and zonadhesin-like genes in vertebrates. The expression patterns of fish zonadhesin and zonadhesin-like genes suggest that the reproductive role of zonadhesin evolved later in the mammalian lineage.

  19. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  20. Genomic diversity of Lactobacillus salivarius

    OpenAIRE

    Raftis, Emma J.

    2015-01-01

    Lactobacillus salivarius is unusual among the lactobacilli due to its multireplicon genome architecture. The circular megaplasmids harboured by L. salivarius strains encode strain-specific traits for intestinal survival and probiotic activity. L. salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. In terms of probiotic strain selection, it is important to have an understanding of the level of genomic diversity present in this species. Comp...

  1. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Directory of Open Access Journals (Sweden)

    Fatou Diouf

    Full Text Available Acacia senegal (L Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60% clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4. We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T, one in MSP1 (STM8789, MSP2 (ORS3359 and MSP3 (ORS3324. The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  2. SIGI: score-based identification of genomic islands

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2004-03-01

    Full Text Available Abstract Background Genomic islands can be observed in many microbial genomes. These stretches of DNA have a conspicuous composition with regard to sequence or encoded functions. Genomic islands are assumed to be frequently acquired via horizontal gene transfer. For the analysis of genome structure and the study of horizontal gene transfer, it is necessary to reliably identify and characterize these islands. Results A scoring scheme on codon frequencies Score_G1G2(cdn = log(f_G2(cdn / f_G1(cdn was utilized. To analyse genes of a species G1 and to test their relatedness to species G2, scores were determined by applying the formula to log-odds derived from mean codon frequencies of the two genomes. A non-redundant set of nearly 400 codon usage tables comprising microbial species was derived; its members were used alternatively at position G2. Genes having at least one score value above a species-specific and dynamically determined cut-off value were analysed further. By means of cluster analysis, genes were identified that comprise clusters of statistically significant size. These clusters were predicted as genomic islands. Finally and individually for each of these genes, the taxonomical relation among those species responsible for significant scores was interpreted. The validity of the approach and its limitations were made plausible by an extensive analysis of natural genes and synthetic ones aimed at modelling the process of gene amelioration. Conclusions The method reliably allows to identify genomic island and the likely origin of alien genes.

  3. Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    NARCIS (Netherlands)

    Piffanelli, P.; Ciampi, A.Y.; Silva, F.R.; Santos, C.R.; Dhont, A.; Vilarinhos, A.; Pappas, G.; Souza, M.T.; Milller, R.N.G.

    2008-01-01

    Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no

  4. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    Science.gov (United States)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica; Nielsen, Jens; Nielsen, Kristian Fog; Workman, Mhairi; Frisvad, Jens Christian

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. PMID:27739446

  5. Identification of a new genomic hot spot of evolutionary diversification of protein function.

    Directory of Open Access Journals (Sweden)

    Aline Winkelmann

    Full Text Available Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.

  6. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans

    OpenAIRE

    Joseph, Sandeep J.; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D.; Dean, Deborah

    2015-01-01

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene ...

  7. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species

    Science.gov (United States)

    Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that i...

  8. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.

    Science.gov (United States)

    Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

  9. Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics.

    Directory of Open Access Journals (Sweden)

    Scott L Hamilton

    Full Text Available In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2 at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm] on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes, integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus, in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.

  10. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  11. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    Science.gov (United States)

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  12. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO

  13. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens.

    Science.gov (United States)

    Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P

    2015-02-20

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.

  14. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha

    2015-07-30

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  15. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; Abu Samra, Dina Bashir Kamil; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy M.

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  16. Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain.

    Science.gov (United States)

    Romay, Gustavo; Chirinos, Dorys T; Geraud-Pouey, Francis; Gillis, Annika; Mahillon, Jacques; Bragard, Claude

    2018-02-01

    At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.

  17. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility.

    Science.gov (United States)

    Mořkovský, Libor; Janoušek, Václav; Reif, Jiří; Rídl, Jakub; Pačes, Jan; Choleva, Lukáš; Janko, Karel; Nachman, Michael W; Reifová, Radka

    2018-02-01

    Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (F ST ) and of high divergence (D xy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females. © 2018 John Wiley & Sons Ltd.

  18. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  19. Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Vendramin, Veronica

    2014-01-01

    species after 30 days of incubation and made it possible to identify those species that are able to grow in that extreme environment. The genome sequence of Lactobacillus fabifermentans, one of the dominant species identified, was then analyzed using shotgun sequencing and comparative genomics....... The results revealed that it is one of the largest genomes among the Lactobacillus sequenced and is characterized by a large number of genes involved in carbohydrate utilization and in the regulation of gene expression. The genome was shaped through a large number of gene duplication events, while lateral...... gene transfer contributed to a lesser extent with respect to other Lactobacillus species. According to genomic analysis, its carbohydrate utilization pattern and ability to form biofilm are the main genetic traits linked to the adaptation the species underwent permitting it to grow in fermenting grape...

  20. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J

    2017-01-01

    -heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re...

  1. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    Science.gov (United States)

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  2. Comparative “Omics” of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis

    Science.gov (United States)

    Niehaus, Eva-Maria; Münsterkötter, Martin; Proctor, Robert H.; Brown, Daren W.; Sharon, Amir; Idan, Yifat; Oren-Young, Liat; Sieber, Christian M.; Novák, Ondřej; Pěnčík, Aleš; Tarkowská, Danuše; Hromadová, Kristýna; Freeman, Stanley; Maymon, Marcel; Elazar, Meirav; Youssef, Sahar A.; El-Shabrawy, El Said M.; Shalaby, Abdel Baset A.; Houterman, Petra; Brock, Nelson L.; Burkhardt, Immo; Tsavkelova, Elena A.; Dickschat, Jeroen S.; Galuszka, Petr; Güldener, Ulrich; Tudzynski, Bettina

    2016-01-01

    Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style. PMID:28040774

  3. ReMixT: clone-specific genomic structure estimation in cancer.

    Science.gov (United States)

    McPherson, Andrew W; Roth, Andrew; Ha, Gavin; Chauve, Cedric; Steif, Adi; de Souza, Camila P E; Eirew, Peter; Bouchard-Côté, Alexandre; Aparicio, Sam; Sahinalp, S Cenk; Shah, Sohrab P

    2017-07-27

    Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal signals and jointly predict mixture proportions, clone-specific segment copy number, and clone specificity of breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt .

  4. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Directory of Open Access Journals (Sweden)

    Alix Armero

    Full Text Available The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L. is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut and a reference species (oil palm to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/.

  5. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Science.gov (United States)

    Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique

    2017-01-01

    The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).

  6. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Schoville, Sean D; Chen, Yolanda H; Andersson, Martin N; Benoit, Joshua B; Bhandari, Anita; Bowsher, Julia H; Brevik, Kristian; Cappelle, Kaat; Chen, Mei-Ju M; Childers, Anna K; Childers, Christopher; Christiaens, Olivier; Clements, Justin; Didion, Elise M; Elpidina, Elena N; Engsontia, Patamarerk; Friedrich, Markus; García-Robles, Inmaculada; Gibbs, Richard A; Goswami, Chandan; Grapputo, Alessandro; Gruden, Kristina; Grynberg, Marcin; Henrissat, Bernard; Jennings, Emily C; Jones, Jeffery W; Kalsi, Megha; Khan, Sher A; Kumar, Abhishek; Li, Fei; Lombard, Vincent; Ma, Xingzhou; Martynov, Alexander; Miller, Nicholas J; Mitchell, Robert F; Munoz-Torres, Monica; Muszewska, Anna; Oppert, Brenda; Palli, Subba Reddy; Panfilio, Kristen A; Pauchet, Yannick; Perkin, Lindsey C; Petek, Marko; Poelchau, Monica F; Record, Éric; Rinehart, Joseph P; Robertson, Hugh M; Rosendale, Andrew J; Ruiz-Arroyo, Victor M; Smagghe, Guy; Szendrei, Zsofia; Thomas, Gregg W C; Torson, Alex S; Vargas Jentzsch, Iris M; Weirauch, Matthew T; Yates, Ashley D; Yocum, George D; Yoon, June-Sun; Richards, Stephen

    2018-01-31

    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.

  7. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Science.gov (United States)

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  8. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    OpenAIRE

    Elsik, Christine G.; Tellam, Ross L.; Worley, Kim C.; Gibbs, Richard A.; Abatepaulo, Antonio R. R.; Abbey, Colette A.; Adelson, David L.; Aerts, Jan; Ahola, Virpi; Alexander, Lee; Alioto, Tyler; Almeida, Iassudara G.; Amadio, Ariel F.; Anatriello, Elen; Antonarakis, Stylianos E.

    2009-01-01

    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specifi...

  9. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    Science.gov (United States)

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of

  10. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species

    OpenAIRE

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G.; O’Brien, Stephen J.; Johnson, Warren E.

    2005-01-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondr...

  11. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    Science.gov (United States)

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model

  12. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  13. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  14. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold......Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass...... to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  15. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences.

    Science.gov (United States)

    Sun, Genlou; Komatsuda, Takao

    2010-08-01

    It is well known that Elymus arose through hybridization between representatives of different genera. Cytogenetic analyses show that all its members include the St genome in combination with one or more of four other genomes, the H, Y, P, and W genomes. The origins of the H, P, and W genomes are known, but not for the Y genome. We analyzed the single copy nuclear gene coding for elongation factor G (EF-G) from 28 accessions of polyploid Elymus species and 45 accessions of diploid Triticeae species in order to investigate origin of the Y genome and its relationship to other genomes in the tribe Triticeae. Sequence comparisons among the St, H, Y, P, W, and E genomes detected genome-specific polymorphisms at 66 nucleotide positions. The St and Y genomes are relatively dissimilar. The phylogeny of the Y genome sequences was investigated for the first time. They were most similar to the W genome sequences. The Y genome sequences were placed in two different groups. These two groups were included in an unresolved clade that included the W and E sequences as well as sequences from many annual species. The H genomes sequences were in a clade with the F, P, and Ns genome sequences as sister groups. These two clades were more closely related to each other and to the L and Xp genomes than they were to the St genome sequences. These data support the hypothesis that the Y genome evolved in a diploid species and has a different origin from the St genome. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Genome sequences of six Phytophthora species associated with forests in New Zealand

    Science.gov (United States)

    Studholme, D.J.; McDougal, R.L.; Sambles, C.; Hansen, E.; Hardy, G.; Grant, M.; Ganley, R.J.; Williams, N.M.

    2015-01-01

    In New Zealand there has been a long association of Phytophthora diseases in forests, nurseries, remnant plantings and horticultural crops. However, new Phytophthora diseases of trees have recently emerged. Genome sequencing has been performed for 12 Phytophthora isolates, from six species: Phytophthora pluvialis, Phytophthora kernoviae, Phytophthora cinnamomi, Phytophthora agathidicida, Phytophthora multivora and Phytophthora taxon Totara. These sequences will enable comparative analyses to identify potential virulence strategies and ultimately facilitate better control strategies. This Whole Genome Shotgun data have been deposited in DDBJ/ENA/GenBank under the accession numbers LGTT00000000, LGTU00000000, JPWV00000000, JPWU00000000, LGSK00000000, LGSJ00000000, LGTR00000000, LGTS00000000, LGSM00000000, LGSL00000000, LGSO00000000, and LGSN00000000. PMID:26981359

  17. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points.

    Science.gov (United States)

    DeVilbiss, Andrew W; Sanalkumar, Rajendran; Johnson, Kirby D; Keles, Sunduz; Bresnick, Emery H

    2014-08-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  18. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  19. Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning

    NARCIS (Netherlands)

    Shahib, Ali Al-; Gilbert, David; Breitling, Rainer

    2007-01-01

    Much work has been done to identify species-specific proteins in sequenced genomes and hence to determine their function. We assumed that such proteins have specific physico-chemical properties that will discriminate them from proteins in other species. In this paper, we examine the validity of this

  20. PLAZA 3.0: an access point for plant comparative genomics

    Science.gov (United States)

    Proost, Sebastian; Van Bel, Michiel; Vaneechoutte, Dries; Van de Peer, Yves; Inzé, Dirk; Mueller-Roeber, Bernd; Vandepoele, Klaas

    2015-01-01

    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms. PMID:25324309

  1. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  2. Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species.

    Science.gov (United States)

    Fang, Shu; Yukilevich, Roman; Chen, Ying; Turissini, David A; Zeng, Kai; Boussy, Ian A; Wu, Chung-I

    2012-06-01

    The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.

  3. The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella

    Directory of Open Access Journals (Sweden)

    Sun Meisheng

    2006-08-01

    Full Text Available Abstract Background Compelling evidence indicates that Shigella species, the etiologic agents of bacillary dysentery, as well as enteroinvasive Escherichia coli, are derived from multiple origins of Escherichia coli and form a single pathovar. To further understand the genome diversity and virulence evolution of Shigella, comparative genomic hybridization microarray analysis was employed to compare the gene content of E. coli K-12 with those of 43 Shigella strains from all lineages. Results For the 43 strains subjected to CGH microarray analyses, the common backbone of the Shigella genome was estimated to contain more than 1,900 open reading frames (ORFs, with a mean number of 726 undetectable ORFs. The mosaic distribution of absent regions indicated that insertions and/or deletions have led to the highly diversified genomes of pathogenic strains. Conclusion These results support the hypothesis that by gain and loss of functions, Shigella species became successful human pathogens through convergent evolution from diverse genomic backgrounds. Moreover, we also found many specific differences between different lineages, providing a window into understanding bacterial speciation and taxonomic relationships.

  4. Defining the phylogenomics of Shigella species: a pathway to diagnostics.

    Science.gov (United States)

    Sahl, Jason W; Morris, Carolyn R; Emberger, Jennifer; Fraser, Claire M; Ochieng, John Benjamin; Juma, Jane; Fields, Barry; Breiman, Robert F; Gilmour, Matthew; Nataro, James P; Rasko, David A

    2015-03-01

    Shigellae cause significant diarrheal disease and mortality in humans, as there are approximately 163 million episodes of shigellosis and 1.1 million deaths annually. While significant strides have been made in the understanding of the pathogenesis, few studies on the genomic content of the Shigella species have been completed. The goal of this study was to characterize the genomic diversity of Shigella species through sequencing of 55 isolates representing members of each of the four Shigella species: S. flexneri, S. sonnei, S. boydii, and S. dysenteriae. Phylogeny inferred from 336 available Shigella and Escherichia coli genomes defined exclusive clades of Shigella; conserved genomic markers that can identify each clade were then identified. PCR assays were developed for each clade-specific marker, which was combined with an amplicon for the conserved Shigella invasion antigen, IpaH3, into a multiplex PCR assay. This assay demonstrated high specificity, correctly identifying 218 of 221 presumptive Shigella isolates, and sensitivity, by not identifying any of 151 diverse E. coli isolates incorrectly as Shigella. This new phylogenomics-based PCR assay represents a valuable tool for rapid typing of uncharacterized Shigella isolates and provides a framework that can be utilized for the identification of novel genomic markers from genomic data. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. A proposed genus boundary for the prokaryotes based on genomic insights.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhou, Jizhong; Oren, Aharon; Zhang, Yu-Zhong

    2014-06-01

    Genomic information has already been applied to prokaryotic species definition and classification. However, the contribution of the genome sequence to prokaryotic genus delimitation has been less studied. To gain insights into genus definition for the prokaryotes, we attempted to reveal the genus-level genomic differences in the current prokaryotic classification system and to delineate the boundary of a genus on the basis of genomic information. The average nucleotide sequence identity between two genomes can be used for prokaryotic species delineation, but it is not suitable for genus demarcation. We used the percentage of conserved proteins (POCP) between two strains to estimate their evolutionary and phenotypic distance. A comprehensive genomic survey indicated that the POCP can serve as a robust genomic index for establishing the genus boundary for prokaryotic groups. Basically, two species belonging to the same genus would share at least half of their proteins. In a specific lineage, the genus and family/order ranks showed slight or no overlap in terms of POCP values. A prokaryotic genus can be defined as a group of species with all pairwise POCP values higher than 50%. Integration of whole-genome data into the current taxonomy system can provide comprehensive information for prokaryotic genus definition and delimitation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Genomic characteristics of vB_PpaP_PP74, a T7-like Autographivirinae bacteriophage infecting a potato pathogen of the newly proposed species Pectobacterium parmentieri.

    Science.gov (United States)

    Kabanova, Anastasia; Shneider, Mikhail; Bugaeva, Eugenia; Ha, Vo Thi Ngoc; Miroshnikov, Kirill; Korzhenkov, Aleksei; Kulikov, Eugene; Toschakov, Stepan; Ignatov, Alexander; Miroshnikov, Konstantin

    2018-02-08

    Bacteriophage vB_PpaP_PP74 (PP74) is a novel virulent phage that infects members of the species Pectobacterium parmentieri, a newly established species of soft-rot-causing bacteria in the family Pectobacteriaceae, derived from potato-specific Pectobacterium wasabiae. vB_PpaP_PP74 was identified as a member of the family Podoviridae by transmission electron microscopy. The phage has a 39,790-bp dsDNA genome containing 50 open reading frames (ORFs). Because of the absence of genes encoding toxins or lysogeny factors, PP74 may be considered a candidate phage for pathogen biocontrol applications. The genome layout is similar to genomes of T7-like phages within the subfamily Autographivirinae, and therefore, functions can be attributed to most of ORFs. However, the closest nucleotide sequence homologs of phage PP74 are unclassified Escherichia phages. Based on phylogenetic analysis, vB_PpaP_PP74 is a sensu lato T7-like phage, but it forms a distant subgenus group together with homologous enterobacterial phages.

  7. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species.

    Science.gov (United States)

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G; O'Brien, Stephen J; Johnson, Warren E

    2006-02-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2-telomeric region vs. D2-centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species.

  8. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  9. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species.

    Science.gov (United States)

    Ziya Motalebipour, Elmira; Kafkas, Salih; Khodaeiaminjan, Mortaza; Çoban, Nergiz; Gözel, Hatice

    2016-12-07

    Pistachio (Pistacia vera L.) is one of the most important nut crops in the world. There are about 11 wild species in the genus Pistacia, and they have importance as rootstock seed sources for cultivated P. vera and forest trees. Published information on the pistachio genome is limited. Therefore, a genome survey is necessary to obtain knowledge on the genome structure of pistachio by next generation sequencing. Simple sequence repeat (SSR) markers are useful tools for germplasm characterization, genetic diversity analysis, and genetic linkage mapping, and may help to elucidate genetic relationships among pistachio cultivars and species. To explore the genome structure of pistachio, a genome survey was performed using the Illumina platform at approximately 40× coverage depth in the P. vera cv. Siirt. The K-mer analysis indicated that pistachio has a genome that is about 600 Mb in size and is highly heterozygous. The assembly of 26.77 Gb Illumina data produced 27,069 scaffolds at N50 = 3.4 kb with a total of 513.5 Mb. A total of 59,280 SSR motifs were detected with a frequency of 8.67 kb. A total of 206 SSRs were used to characterize 24 P. vera cultivars and 20 wild Pistacia genotypes (four genotypes from each five wild Pistacia species) belonging to P. atlantica, P. integerrima, P. chinenesis, P. terebinthus, and P. lentiscus genotypes. Overall 135 SSR loci amplified in all 44 cultivars and genotypes, 41 were polymorphic in six Pistacia species. The novel SSR loci developed from cultivated pistachio were highly transferable to wild Pistacia species. The results from a genome survey of pistachio suggest that the genome size of pistachio is about 600 Mb with a high heterozygosity rate. This information will help to design whole genome sequencing strategies for pistachio. The newly developed novel polymorphic SSRs in this study may help germplasm characterization, genetic diversity, and genetic linkage mapping studies in the genus Pistacia.

  10. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity.

    Science.gov (United States)

    Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin

    2018-05-01

    Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    and quality of reliable gene annotation grows. Results We present a procedure, Agene, that automatically generates a species-specific gene predictor from a set of reliable mRNA sequences and a genome. We apply a Hidden Markov model (HMM) that implements explicit length distribution modelling for all gene......Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... structure blocks using acyclic discrete phase type distributions. The state structure of the each HMM is generated dynamically from an array of sub-models to include only gene features represented in the training set. Conclusion Acyclic discrete phase type distributions are well suited to model sequence...

  12. The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Jason W. Sahl

    2016-09-01

    Full Text Available Whole-genome sequence (WGS data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives.

  13. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    Science.gov (United States)

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  14. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  15. The nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae).

    Science.gov (United States)

    Chen, Zhi-Teng; Wu, Hai-Yan; Du, Yu-Zhou

    2016-07-01

    We report the nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae), which is a circular molecule of 15,416 bp in length and consists of 13 protein-coding genes, 2 ribosomal RNAs, 20 transfer RNAs and a partial control region (645 bp). Using the 13 protein-coding genes of 8 stoneflies and 3 other related species, we constructed a phylogenetic tree to verify the accuracy of the new determined mitogenome sequences. Our results provide basic data for further study of phylogeny in Plecoptera.

  16. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  17. Patterns of positive selection in six Mammalian genomes

    DEFF Research Database (Denmark)

    Kosiol, Carolin; Vinar, Tomás; da Fonseca, Rute R

    2008-01-01

    Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small...... several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR... showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity...

  18. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  19. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from total DNA Sequences.

    NARCIS (Netherlands)

    Izan, Shairul; Esselink, G.; Visser, R.G.F.; Smulders, M.J.M.; Borm, T.J.A.

    2017-01-01

    Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This

  20. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa

    Directory of Open Access Journals (Sweden)

    Pazos-Navarro María

    2011-12-01

    Full Text Available Abstract Background Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species. Results 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total. Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2% successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme. Conclusions B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This

  1. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  2. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    Science.gov (United States)

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  3. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively......The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...

  4. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  5. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.

    LENUS (Irish Health Repository)

    Jackson, Andrew P

    2009-12-01

    Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.

  6. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction

    Science.gov (United States)

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-01-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847

  7. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction.

    Science.gov (United States)

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-05-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  8. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels

    Directory of Open Access Journals (Sweden)

    Pieretti Isabelle

    2012-11-01

    Full Text Available Abstract Background Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH, genomic features of two strains differing in pathogenicity. Results Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity. Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism

  9. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria

    Science.gov (United States)

    Valach, Matus; Farkas, Zoltan; Fricova, Dominika; Kovac, Jakub; Brejova, Brona; Vinar, Tomas; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Lang, B. Franz; Nosek, Jozef

    2011-01-01

    Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance. PMID:21266473

  10. PLAZA 3.0: an access point for plant comparative genomics.

    Science.gov (United States)

    Proost, Sebastian; Van Bel, Michiel; Vaneechoutte, Dries; Van de Peer, Yves; Inzé, Dirk; Mueller-Roeber, Bernd; Vandepoele, Klaas

    2015-01-01

    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Dcode.org anthology of comparative genomic tools.

    Science.gov (United States)

    Loots, Gabriela G; Ovcharenko, Ivan

    2005-07-01

    Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.

  12. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  13. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species

    Directory of Open Access Journals (Sweden)

    Gupta Radhey S

    2006-01-01

    Full Text Available Abstract Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.

  14. Genome plasticity and systems evolution in Streptomyces

    Science.gov (United States)

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  15. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix.

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2010-09-01

    Full Text Available With the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture species of economic importance. With markers covering the entire genome, genetic merit of genotyped individuals can be predicted directly within the framework of mixed model equations, by using a matrix of relationships among individuals that is derived from the markers. Here we extend that approach by deriving a marker-based relationship matrix specifically for the trait of interest.In the framework of mixed model equations, a new best linear unbiased prediction (BLUP method including a trait-specific relationship matrix (TA was presented and termed TABLUP. The TA matrix was constructed on the basis of marker genotypes and their weights in relation to the trait of interest. A simulation study with 1,000 individuals as the training population and five successive generations as candidate population was carried out to validate the proposed method. The proposed TABLUP method outperformed the ridge regression BLUP (RRBLUP and BLUP with realized relationship matrix (GBLUP. It performed slightly worse than BayesB with an accuracy of 0.79 in the standard scenario.The proposed TABLUP method is an improvement of the RRBLUP and GBLUP method. It might be equivalent to the BayesB method but it has additional benefits like the calculation of accuracies for individual breeding values. The results also showed that the TA-matrix performs better in predicting ability than the classical numerator relationship matrix and the realized relationship matrix which are derived solely from pedigree or markers without regard to the trait. This is because the TA-matrix not only accounts for the Mendelian sampling term, but also puts the greater emphasis on those markers that explain more of the genetic variance in the trait.

  16. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    Science.gov (United States)

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  17. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences

    Directory of Open Access Journals (Sweden)

    Shairul Izan

    2017-08-01

    Full Text Available Whole Genome Shotgun (WGS sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This re-sequencing approach may select against structural differences between the genomes especially in non-model species for which no close relatives have been sequenced before. The alternative approach is to de novo assemble the chloroplast genome from total genomic DNA sequences. In this study, we used k-mer frequency tables to identify and extract the chloroplast reads from the WGS reads and assemble these using a highly integrated and automated custom pipeline. Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left due to coverage variation in the WGS dataset. We have successfully de novo assembled three complete chloroplast genomes from plant species with a range of nuclear genome sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb, Aegilops tauschii (4 Gb and Paphiopedilum henryanum (25 Gb. We also highlight the need to optimize the choice of k and the amount of data used. This new and cost-effective method for de novo short read assembly will facilitate the study of complete chloroplast genomes with more accurate analyses and inferences, especially in non-model plant genomes.

  18. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    Science.gov (United States)

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  19. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species

    DEFF Research Database (Denmark)

    Pearce, S L; Clarke, D F; East, P D

    2017-01-01

    BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptom......BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics......, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100...... lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show...

  20. Differential paralog divergence modulates genome evolution across yeast species.

    Directory of Open Access Journals (Sweden)

    Monica R Sanchez

    2017-02-01

    Full Text Available Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200-500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution.

  1. Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms.

    Directory of Open Access Journals (Sweden)

    Lieschen De Vos

    Full Text Available The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture.

  2. Effect of specific enzyme inhibitors on replication, total genome DNA repair and on gene-specific DNA repair after UV irradiation in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.C.; Stevsner, Tinna; Bohr, Vilhelm A. (National Cancer Institute, NIH, Bethesda, MD (USA). Division of Cancer Treatment, Laboratory of Molecular Pharmacology); Mattern, M.R. (Smith Kline Beecham Pharmaceuticals, King of Prussia, PA (USA). Department of Biomolecular Discovery)

    1991-09-01

    The effects were studied of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. The inhibitors were tested of DNA poly-merase {alpha} and {delta} (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topo-isomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, the effects were tested of the potential topoisomerase I activator, {beta}-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; {beta}-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair. (author). 36 refs.; 3 figs.; 2 tabs.

  3. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.

    2013-01-01

    to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer...... and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible...... a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling....

  4. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  5. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease.

    Science.gov (United States)

    Gomez-Valero, Laura; Rusniok, Christophe; Rolando, Monica; Neou, Mario; Dervins-Ravault, Delphine; Demirtas, Jasmin; Rouy, Zoe; Moore, Robert J; Chen, Honglei; Petty, Nicola K; Jarraud, Sophie; Etienne, Jerome; Steinert, Michael; Heuner, Klaus; Gribaldo, Simonetta; Médigue, Claudine; Glöckner, Gernot; Hartland, Elizabeth L; Buchrieser, Carmen

    2014-01-01

    The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.

  6. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Directory of Open Access Journals (Sweden)

    Kim Seungill

    2008-12-01

    Full Text Available Abstract Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets and 34 plant and animal (38 datasets species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site http://genomebrowser.snu.ac.kr/.

  7. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    Full Text Available The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome

  8. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis , we investigated nTNL orthologs in the genomes of common bean, Medicago , soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis , common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  9. Enhancer Evolution across 20 Mammalian Species

    Science.gov (United States)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  10. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes

    Directory of Open Access Journals (Sweden)

    Telonis-Scott Marina

    2010-09-01

    Full Text Available Abstract Background Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2 and biotypes (1 and 2 was used for comparative genomic analysis. Results Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. Conclusions We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.

  11. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.

    Science.gov (United States)

    Hess, Jon E; Campbell, Nathan R; Close, David A; Docker, Margaret F; Narum, Shawn R

    2013-06-01

    Unlike most anadromous fishes that have evolved strict homing behaviour, Pacific lamprey (Entosphenus tridentatus) seem to lack philopatry as evidenced by minimal population structure across the species range. Yet unexplained findings of within-region population genetic heterogeneity coupled with the morphological and behavioural diversity described for the species suggest that adaptive genetic variation underlying fitness traits may be responsible. We employed restriction site-associated DNA sequencing to genotype 4439 quality filtered single nucleotide polymorphism (SNP) loci for 518 individuals collected across a broad geographical area including British Columbia, Washington, Oregon and California. A subset of putatively neutral markers (N = 4068) identified a significant amount of variation among three broad populations: northern British Columbia, Columbia River/southern coast and 'dwarf' adults (F(CT) = 0.02, P ≪ 0.001). Additionally, 162 SNPs were identified as adaptive through outlier tests, and inclusion of these markers revealed a signal of adaptive variation related to geography and life history. The majority of the 162 adaptive SNPs were not independent and formed four groups of linked loci. Analyses with matsam software found that 42 of these outlier SNPs were significantly associated with geography, run timing and dwarf life history, and 27 of these 42 SNPs aligned with known genes or highly conserved genomic regions using the genome browser available for sea lamprey. This study provides both neutral and adaptive context for observed genetic divergence among collections and thus reconciles previous findings of population genetic heterogeneity within a species that displays extensive gene flow. © 2012 John Wiley & Sons Ltd.

  12. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Science.gov (United States)

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  13. Identification of species- and tissue-specific proteins using proteomic strategy

    Science.gov (United States)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  14. Development of Genomic Resources in the Species of Trifolium L. and Its Application in Forage Legume Breeding

    Directory of Open Access Journals (Sweden)

    Leif Skøt

    2012-05-01

    Full Text Available Clovers (genus Trifolium are a large and widespread genus of legumes. A number of clovers are of agricultural importance as forage crops in grassland agriculture, particularly temperate areas. White clover (Trifolium repens L. is used in grazed pasture and red clover (T. pratense L. is widely cut and conserved as a winter feed. For the diploid red clover, genetic and genomic tools and resources have developed rapidly over the last five years including genetic and physical maps, BAC (bacterial artificial chromosome end sequence and transcriptome sequence information. This has paved the way for the use of genome wide selection and high throughput phenotyping in germplasm development. For the allotetraploid white clover progress has been slower although marker assisted selection is in use and relatively robust genetic maps and QTL (quantitative trait locus information now exist. For both species the sequencing of the model legume Medicago truncatula gene space is an important development to aid genomic, biological and evolutionary studies. The first genetic maps of another species, subterranean clover (Trifolium subterraneum L. have also been published and its comparative genomics with red clover and M. truncatula conducted. Next generation sequencing brings the potential to revolutionize clover genomics, but international consortia and effective use of germplasm, novel population structures and phenomics will be required to carry out effective translation into breeding. Another avenue for clover genomic and genetic improvement is interspecific hybridization. This approach has considerable potential with regard to crop improvement but also opens windows of opportunity for studies of biological and evolutionary processes.

  15. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  16. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species

    Science.gov (United States)

    Raymond, Frédéric; Boisvert, Sébastien; Roy, Gaétan; Ritt, Jean-François; Légaré, Danielle; Isnard, Amandine; Stanke, Mario; Olivier, Martin; Tremblay, Michel J.; Papadopoulou, Barbara; Ouellette, Marc; Corbeil, Jacques

    2012-01-01

    The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage. PMID:21998295

  17. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  18. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    DEFF Research Database (Denmark)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes...... confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted...... of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential...

  19. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development

    Directory of Open Access Journals (Sweden)

    Tadashi Nomura

    2018-03-01

    Full Text Available Summary: Highly ordered brain architectures in vertebrates consist of multiple neuron subtypes with specific neuronal connections. However, the origin of and evolutionary changes in neuron specification mechanisms remain unclear. Here, we report that regulatory mechanisms of neuron subtype specification are divergent in developing amniote brains. In the mammalian neocortex, the transcription factors (TFs Ctip2 and Satb2 are differentially expressed in layer-specific neurons. In contrast, these TFs are co-localized in reptilian and avian dorsal pallial neurons. Multi-potential progenitors that produce distinct neuronal subtypes commonly exist in the reptilian and avian dorsal pallium, whereas a cis-regulatory element of avian Ctip2 exhibits attenuated transcription suppressive activity. Furthermore, the neuronal subtypes distinguished by these TFs are not tightly associated with conserved neuronal connections among amniotes. Our findings reveal the evolutionary plasticity of regulatory gene functions that contribute to species differences in neuronal heterogeneity and connectivity in developing amniote brains. : Neuronal heterogeneity is essential for assembling intricate neuronal circuits. Nomura et al. find that species-specific transcriptional mechanisms underlie diversities of excitatory neuron subtypes in mammalian and non-mammalian brains. Species differences in neuronal subtypes and connections suggest functional plasticity of regulatory genes for neuronal specification during amniote brain evolution. Keywords: Ctip2, Satb2, multi-potential progenitors, transcriptional regulation, neuronal connectivity

  20. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    Science.gov (United States)

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  1. Facilitating genome navigation : survey sequencing and dense radiation-hybrid gene mapping

    NARCIS (Netherlands)

    Hitte, C; Madeoy, J; Kirkness, EF; Priat, C; Lorentzen, TD; Senger, F; Thomas, D; Derrien, T; Ramirez, C; Scott, C; Evanno, G; Pullar, B; Cadieu, E; Oza, [No Value; Lourgant, K; Jaffe, DB; Tacher, S; Dreano, S; Berkova, N; Andre, C; Deloukas, P; Fraser, C; Lindblad-Toh, K; Ostrander, EA; Galibert, F

    Accurate and comprehensive sequence coverage for large genomes has been restricted to only a few species of specific interest. Lower sequence coverage (survey sequencing) of related species can yield a wealth of information about gene content and putative regulatory elements. But survey sequences

  2. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.

    Science.gov (United States)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-03-01

    The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    Science.gov (United States)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  4. The complete genome sequence of Trueperella pyogenes UFV1 reveals a processing system involved in the quorumsensing signal response

    DEFF Research Database (Denmark)

    Duarte, Vinicius da Silva; Treu, Laura; Campanaro, Stefano

    2017-01-01

    We present here the complete genome sequence of Trueperella pyogenes UFV1. The 2.3-Mbp genome contains an extremely interesting AI-2 transporter and processing system related to the quorum-sensing signal response. This specific feature is described in this species for the first time and might be ...... be responsible for a new pathogenic behavior.......We present here the complete genome sequence of Trueperella pyogenes UFV1. The 2.3-Mbp genome contains an extremely interesting AI-2 transporter and processing system related to the quorum-sensing signal response. This specific feature is described in this species for the first time and might...

  5. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng

    2018-04-25

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth\\'s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  6. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J.; Bajic, Vladimir B.; Drazen, Jeffrey C.; Bartlett, Douglas; Qian, Pei-Yuan

    2018-01-01

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth's oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  7. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    Science.gov (United States)

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species

  8. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  9. Computational identification of strain-, species- and genus-specific proteins

    Directory of Open Access Journals (Sweden)

    Thiagarajan Rathi

    2005-11-01

    Full Text Available Abstract Background The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. Description A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001 any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively, or if BLAST, using the best hit as the query (reverse BLAST, does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification system web site (updated semi-annually at http://pir.georgetown.edu/cupid. Conclusion CUPID

  10. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  11. Cluster analysis of Helicobacter pylori genomic DNA fingerprints suggests gastroduodenal disease-specific associations.

    Science.gov (United States)

    Go, M F; Chan, K Y; Versalovic, J; Koeuth, T; Graham, D Y; Lupski, J R

    1995-07-01

    Helicobacter pylori infection is now accepted as the most common cause of chronic active gastritis and peptic ulcer disease. The etiologies of many infectious diseases have been attributed to specific or clonal strains of bacterial pathogens. Polymerase chain reaction (PCR) amplification of DNA between repetitive DNA sequences, REP elements (REP-PCR), has been utilized to generate DNA fingerprints to examine similarity among strains within a bacterial species. Genomic DNA from H. pylori isolates obtained from 70 individuals (39 duodenal ulcers and 31 simple gastritis) was PCR-amplified using consensus probes to repetitive DNA elements. The H. pylori DNA fingerprints were analyzed for similarity and correlated with disease presentation using the NTSYS-pc computer program. Each H. pylori strain had a distinct DNA fingerprint except for two pairs. Single-colony DNA fingerprints of H. pylori from the same patient were identical, suggesting that each patient harbors a single strain. Computer-assisted cluster analysis of the REP-PCR DNA fingerprints showed two large clusters of isolates, one associated with simple gastritis and the other with duodenal ulcer disease. Cluster analysis of REP-PCR DNA fingerprints of H. pylori strains suggests that duodenal ulcer isolates, as a group, are more similar to one another and different from gastritis isolates. These results suggest that disease-specific strains may exist.

  12. USE OF COMPETITIVE GENOMIC HYBRIDIZATION TO ENRICH FOR GENOME-SPECIFIC DIFFERENCES BETWEEN TWO CLOSELY RELATED HUMAN FECAL INDICATOR BACTERIA

    Science.gov (United States)

    Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...

  13. Environmental genomics of "Haloquadratum walsbyi" in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species

    Directory of Open Access Journals (Sweden)

    Bolhuis Henk

    2006-07-01

    Full Text Available Abstract Background Mature saturated brine (crystallizers communities are largely dominated (>80% of cells by the square halophilic archaeon "Haloquadratum walsbyi". The recent cultivation of the strain HBSQ001 and thesequencing of its genome allows comparison with the metagenome of this taxonomically simplified environment. Similar studies carried out in other extreme environments have revealed very little diversity in gene content among the cell lineages present. Results The metagenome of the microbial community of a crystallizer pond has been analyzed by end sequencing a 2000 clone fosmid library and comparing the sequences obtained with the genome sequence of "Haloquadratum walsbyi". The genome of the sequenced strain was retrieved nearly complete within this environmental DNA library. However, many ORF's that could be ascribed to the "Haloquadratum" metapopulation by common genome characteristics or scaffolding to the strain genome were not present in the specific sequenced isolate. Particularly, three regions of the sequenced genome were associated with multiple rearrangements and the presence of different genes from the metapopulation. Many transposition and phage related genes were found within this pool which, together with the associated atypical GC content in these areas, supports lateral gene transfer mediated by these elements as the most probable genetic cause of this variability. Additionally, these sequences were highly enriched in putative regulatory and signal transduction functions. Conclusion These results point to a large pan-genome (total gene repertoire of the genus/species even in this highly specialized extremophile and at a single geographic location. The extensive gene repertoire is what might be expected of a population that exploits a diverse nutrient pool, resulting from the degradation of biomass produced at lower salinities.

  14. Species-Specific Monoclonal Antibodies to Escherichia coli-Expressed p36 Cytosolic Protein of Mycoplasma hyopneumoniae

    Science.gov (United States)

    Caron, J.; Sawyer, N.; Moumen, B. Ben Abdel; Bouh, K. Cheikh Saad; Dea, S.

    2000-01-01

    The p36 protein of Mycoplasma hyopneumoniae is a cytosolic protein carrying species-specific antigenic determinants. Based on the genomic sequence of the reference strain ATCC 25934, primers were designed for PCR amplification of the p36-encoding gene (948 bp). These primers were shown to be specific to M. hyopneumoniae since no DNA amplicons could be obtained with other mycoplasma species and pathogenic bacteria that commonly colonize the porcine respiratory tract. The amplified p36 gene was subcloned into the pGEX-4T-1 vector to be expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The GST-p36 recombinant fusion protein was purified by affinity chromatography and cut by thrombin, and the enriched p36 protein was used to immunize female BALB/c mice for the production of anti-p36 monoclonal antibodies (MAbs). The polypeptide specificity of the nine MAbs obtained was confirmed by Western immunoblotting with cell lysates prepared from the homologous strain. Cross-reactivity studies of the anti-p36 MAbs towards two other M. hyopneumoniae reference strains (ATCC 25095 and J strains) and Quebec field strains that had been isolated in culture suggested that these anti-p36 MAbs were directed against a highly conserved epitope, or closely located epitopes, of the p36 protein. No reactivity was demonstrated against other mycoplasma species tested. Clinical signs and lesions suggestive of enzootic pneumonia were reproduced in specific-pathogen-free pigs infected experimentally with a virulent Quebec field strain (IAF-DM9827) of M. hyopneumoniae. The bacteria could be recovered from lung homogenates of pigs that were killed after the 3-week observation period by both PCR and cultivation procedures. Furthermore, the anti-p36 MAbs permitted effective detection by indirect immunofluorescence of M. hyopneumoniae in frozen lung sections from experimentally infected pigs. However, attempts to use the recombinant p36 protein as an antigen in an

  15. Microdiversification of a Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a Partially Interspecific Gene Pool

    Science.gov (United States)

    Schmidt, Johanna; Jezberová, Jitka; Koll, Ulrike; Hahn, Martin W.

    2016-01-01

    ABSTRACT Microdiversification of a planktonic freshwater bacterium was studied by comparing 37 Polynucleobacter asymbioticus strains obtained from three geographically separated sites in the Austrian Alps. Genome comparison of nine strains revealed a core genome of 1.8 Mb, representing 81% of the average genome size. Seventy-five percent of the remaining flexible genome is clustered in genomic islands (GIs). Twenty-four genomic positions could be identified where GIs are potentially located. These positions are occupied strain specifically from a set of 28 GI variants, classified according to similarities in their gene content. One variant, present in 62% of the isolates, encodes a pathway for the degradation of aromatic compounds, and another, found in 78% of the strains, contains an operon for nitrate assimilation. Both variants were shown in ecophysiological tests to be functional, thus providing the potential for microniche partitioning. In addition, detected interspecific horizontal exchange of GIs indicates a large gene pool accessible to Polynucleobacter species. In contrast to core genes, GIs are spread more successfully across spatially separated freshwater habitats. The mobility and functional diversity of GIs allow for rapid evolution, which may be a key aspect for the ubiquitous occurrence of Polynucleobacter bacteria. IMPORTANCE Assessing the ecological relevance of bacterial diversity is a key challenge for current microbial ecology. The polyphasic approach which was applied in this study, including targeted isolation of strains, genome analysis, and ecophysiological tests, is crucial for the linkage of genetic and ecological knowledge. Particularly great importance is attached to the high number of closely related strains which were investigated, represented by genome-wide average nucleotide identities (ANI) larger than 97%. The extent of functional diversification found on this narrow phylogenetic scale is compelling. Moreover, the transfer of

  16. Karyotype and genome size analyses in species of Helichrysum (Asteraceae

    Directory of Open Access Journals (Sweden)

    Narjes Azizi

    2014-09-01

    Full Text Available Karyotype studies were performed in 18 populations of eight Helichrysum species in Iran. Those species showed chromosome numbers of 2n = 2x = 14; 2n = 4x = 24, 28 and 32; 2n = 6x = 36; 2n = 7x = 42; 2n = 8x = 48; 2n = 9x = 54; and 2n = 10x = 60. The chromosome numbers of H. davisianum, H. globiferum, H. leucocephalum and H. oocephalum are reported here for the first time. New ploidy levels are reported for H. oligocephalum (2n = 4x = 24 and H. plicatum (2n = 4x = 32. The chromosomes were metacentric and submetacentric. An ANOVA among H. globiferum and H. leucocephalum populations showed significant differences for the coefficient of variation for chromosome size, total form percentage and the asymmetry indices, indicating that changes in the chromosome structure of Helichrysum species occurred during their diversification. Significant positive correlations among the species and populations studied, in terms of the total chromosome length, lengths of the short arms and lengths of the long arms, indicate that these karyotypic features change simultaneously during speciation events. The genome sizes of Helichrysum species are reported here for first time. The 2C DNA content ranged from 8.13 pg (in H. rubicundum to 18.4 pg (in H. leucocephalum and H. davisianum. We found that C-value correlated significantly with ploidy level, total chromosome length, lengths of the long arms and lengths of the short arms (p<0.05, indicating that changes in chromosome structure are accompanied by changes in DNA content.

  17. The evolutionary history of bears is characterized by gene flow across species

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel

    2017-01-01

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140

  18. The evolutionary history of bears is characterized by gene flow across species.

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel

    2017-04-19

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.

  19. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  20. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  1. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome.

    Science.gov (United States)

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O'Connor, Timothy D; Abecasis, Gonçalo R; Wojcik, Genevieve L; Gignoux, Christopher R; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E; Bustamante, Carlos; Beaty, Terri H; Mathias, Rasika A; Barnes, Kathleen C; Qin, Zhaohui S

    2017-04-21

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an 'African Diaspora Power Chip' (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry.

  2. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  3. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans.

    Directory of Open Access Journals (Sweden)

    Chris T Yohn

    2005-04-01

    Full Text Available Retroviral infections of the germline have the potential to episodically alter gene function and genome structure during the course of evolution. Horizontal transmissions between species have been proposed, but little evidence exists for such events in the human/great ape lineage of evolution. Based on analysis of finished BAC chimpanzee genome sequence, we characterize a retroviral element (Pan troglodytes endogenous retrovirus 1 [PTERV1] that has become integrated in the germline of African great ape and Old World monkey species but is absent from humans and Asian ape genomes. We unambiguously map 287 retroviral integration sites and determine that approximately 95.8% of the insertions occur at non-orthologous regions between closely related species. Phylogenetic analysis of the endogenous retrovirus reveals that the gorilla and chimpanzee elements share a monophyletic origin with a subset of the Old World monkey retroviral elements, but that the average sequence divergence exceeds neutral expectation for a strictly nuclear inherited DNA molecule. Within the chimpanzee, there is a significant integration bias against genes, with only 14 of these insertions mapping within intronic regions. Six out of ten of these genes, for which there are expression data, show significant differences in transcript expression between human and chimpanzee. Our data are consistent with a retroviral infection that bombarded the genomes of chimpanzees and gorillas independently and concurrently, 3-4 million years ago. We speculate on the potential impact of such recent events on the evolution of humans and great apes.

  4. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Joelle Amselem

    2011-08-01

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these

  5. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  7. The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences

    Science.gov (United States)

    Touchon, Marie; Cury, Jean; Yoon, Eun-Jeong; Krizova, Lenka; Cerqueira, Gustavo C.; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice; Rocha, Eduardo P.C.

    2014-01-01

    Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens. PMID:25313016

  8. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  9. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  10. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae.

    Science.gov (United States)

    Boo, Ga Hun; Hughey, Jeffery R; Miller, Kathy Ann; Boo, Sung Min

    2016-10-14

    DNA sequences from type specimens provide independent, objective characters that enhance the value of type specimens and permit the correct application of species names to phylogenetic clades and specimens. We provide mitochondrial genomes (mitogenomes) from archival type specimens of ten species in agar-producing red algal genera Gelidium and Pterocladiella. The genomes contain 43-44 genes, ranging in size from 24,910 to 24,970 bp with highly conserved gene synteny. Low Ka/Ks ratios of apocytochrome b and cytochrome oxidase genes support their utility as markers. Phylogenies of mitogenomes and cox1+rbcL sequences clarified classification at the genus and species levels. Three species formerly in Gelidium and Pterocladia are transferred to Pterocladiella: P. media comb. nov., P. musciformis comb. nov., and P. luxurians comb. and stat. nov. Gelidium sinicola is merged with G. coulteri because they share identical cox1 and rbcL sequences. We describe a new species, Gelidium millariana sp. nov., previously identified as G. isabelae from Australia. We demonstrate that mitogenomes from type specimens provide a new tool for typifying species in the Gelidiales and that there is an urgent need for analyzing mitogenomes from type specimens of red algae and other morphologically simple organisms for insight into their nomenclature, taxonomy and evolution.

  11. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles

    Science.gov (United States)

    Eo, Soo Hyung; DeWoody, J. Andrew

    2010-01-01

    Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427

  12. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792

    DEFF Research Database (Denmark)

    Valles, Iliana Espinoza; Vora, Gary J; Lin, Baochuan

    2015-01-01

    Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome....... The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78 %) than to those of the other closely related species Vibrio owensii (67 %), Vibrio rotiferianus (63 %) and Vibrio campbellii (59 %). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA......-DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that V. harveyi is the most conserved of the four species studied and V. campbellii may be divided into at least three...

  13. The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions

    Directory of Open Access Journals (Sweden)

    Ana Gutiérrez-Preciado

    2017-04-01

    Full Text Available We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.

  14. Evolutionary and biomedical insights from the rhesus macaque genome.

    Science.gov (United States)

    Gibbs, Richard A; Rogers, Jeffrey; Katze, Michael G; Bumgarner, Roger; Weinstock, George M; Mardis, Elaine R; Remington, Karin A; Strausberg, Robert L; Venter, J Craig; Wilson, Richard K; Batzer, Mark A; Bustamante, Carlos D; Eichler, Evan E; Hahn, Matthew W; Hardison, Ross C; Makova, Kateryna D; Miller, Webb; Milosavljevic, Aleksandar; Palermo, Robert E; Siepel, Adam; Sikela, James M; Attaway, Tony; Bell, Stephanie; Bernard, Kelly E; Buhay, Christian J; Chandrabose, Mimi N; Dao, Marvin; Davis, Clay; Delehaunty, Kimberly D; Ding, Yan; Dinh, Huyen H; Dugan-Rocha, Shannon; Fulton, Lucinda A; Gabisi, Ramatu Ayiesha; Garner, Toni T; Godfrey, Jennifer; Hawes, Alicia C; Hernandez, Judith; Hines, Sandra; Holder, Michael; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Khan, Ziad Mohid; Kirkness, Ewen F; Cree, Andrew; Fowler, R Gerald; Lee, Sandra; Lewis, Lora R; Li, Zhangwan; Liu, Yih-Shin; Moore, Stephanie M; Muzny, Donna; Nazareth, Lynne V; Ngo, Dinh Ngoc; Okwuonu, Geoffrey O; Pai, Grace; Parker, David; Paul, Heidie A; Pfannkoch, Cynthia; Pohl, Craig S; Rogers, Yu-Hui; Ruiz, San Juana; Sabo, Aniko; Santibanez, Jireh; Schneider, Brian W; Smith, Scott M; Sodergren, Erica; Svatek, Amanda F; Utterback, Teresa R; Vattathil, Selina; Warren, Wesley; White, Courtney Sherell; Chinwalla, Asif T; Feng, Yucheng; Halpern, Aaron L; Hillier, Ladeana W; Huang, Xiaoqiu; Minx, Pat; Nelson, Joanne O; Pepin, Kymberlie H; Qin, Xiang; Sutton, Granger G; Venter, Eli; Walenz, Brian P; Wallis, John W; Worley, Kim C; Yang, Shiaw-Pyng; Jones, Steven M; Marra, Marco A; Rocchi, Mariano; Schein, Jacqueline E; Baertsch, Robert; Clarke, Laura; Csürös, Miklós; Glasscock, Jarret; Harris, R Alan; Havlak, Paul; Jackson, Andrew R; Jiang, Huaiyang; Liu, Yue; Messina, David N; Shen, Yufeng; Song, Henry Xing-Zhi; Wylie, Todd; Zhang, Lan; Birney, Ewan; Han, Kyudong; Konkel, Miriam K; Lee, Jungnam; Smit, Arian F A; Ullmer, Brygg; Wang, Hui; Xing, Jinchuan; Burhans, Richard; Cheng, Ze; Karro, John E; Ma, Jian; Raney, Brian; She, Xinwei; Cox, Michael J; Demuth, Jeffery P; Dumas, Laura J; Han, Sang-Gook; Hopkins, Janet; Karimpour-Fard, Anis; Kim, Young H; Pollack, Jonathan R; Vinar, Tomas; Addo-Quaye, Charles; Degenhardt, Jeremiah; Denby, Alexandra; Hubisz, Melissa J; Indap, Amit; Kosiol, Carolin; Lahn, Bruce T; Lawson, Heather A; Marklein, Alison; Nielsen, Rasmus; Vallender, Eric J; Clark, Andrew G; Ferguson, Betsy; Hernandez, Ryan D; Hirani, Kashif; Kehrer-Sawatzki, Hildegard; Kolb, Jessica; Patil, Shobha; Pu, Ling-Ling; Ren, Yanru; Smith, David Glenn; Wheeler, David A; Schenck, Ian; Ball, Edward V; Chen, Rui; Cooper, David N; Giardine, Belinda; Hsu, Fan; Kent, W James; Lesk, Arthur; Nelson, David L; O'brien, William E; Prüfer, Kay; Stenson, Peter D; Wallace, James C; Ke, Hui; Liu, Xiao-Ming; Wang, Peng; Xiang, Andy Peng; Yang, Fan; Barber, Galt P; Haussler, David; Karolchik, Donna; Kern, Andy D; Kuhn, Robert M; Smith, Kayla E; Zwieg, Ann S

    2007-04-13

    The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.

  15. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  16. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    Science.gov (United States)

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  18. Inclusion of Population-specific Reference Panel from India to the 1000 Genomes Phase 3 Panel Improves Imputation Accuracy.

    Science.gov (United States)

    Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R

    2017-07-27

    Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.

  19. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    Science.gov (United States)

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  20. Species-specific nested PCR as a diagnostic tool for Brucella ovis infection in rams

    Directory of Open Access Journals (Sweden)

    L.F. Costa

    2013-02-01

    Full Text Available The aim of the present study was to evaluate a species-specific nested PCR based on a previously described species-specific PCR for detection of B. ovis in semen and urine samples of experimentally infected rams. The performance of the species-specific nested PCR was compared with the results of a genus-specific PCR. Fourteen rams were experimentally infected with the Brucella ovis REO 198 strain and samples of semen and urine were collected every week up to 180 days post infection. Out of 83 semen samples collected, 42 (50.6% were positive for the species-specific nested PCR, and 23 (27.7% were positive for the genus-specific PCR. Out of 75 urine samples, 49 (65.3% were positive for the species-specific nested PCR, whereas 11 (14.6% were genus-specific PCR positive. Species-specific nested PCR was significantly more sensitive (P<0.001 than the genus-specific PCR in semen and urine from experimentally infected rams. In conclusion, the species-specific nested PCR developed in this study may be used as a diagnostic tool for the detection of B. ovis in semen and urine samples from suspected rams.

  1. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.

    Science.gov (United States)

    Laurie, John D; Ali, Shawkat; Linning, Rob; Mannhaupt, Gertrud; Wong, Philip; Güldener, Ulrich; Münsterkötter, Martin; Moore, Richard; Kahmann, Regine; Bakkeren, Guus; Schirawski, Jan

    2012-05-01

    Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.

  2. Genome size variation among and within Camellia species by using flow cytometric analysis.

    Directory of Open Access Journals (Sweden)

    Hui Huang

    Full Text Available BACKGROUND: The genus Camellia, belonging to the family Theaceae, is economically important group in flowering plants. Frequent interspecific hybridization together with polyploidization has made them become taxonomically "difficult taxa". The DNA content is often used to measure genome size variation and has largely advanced our understanding of plant evolution and genome variation. The goals of this study were to investigate patterns of interspecific and intraspecific variation of DNA contents and further explore genome size evolution in a phylogenetic context of the genus. METHODOLOGY/PRINCIPAL FINDINGS: The DNA amount in the genus was determined by using propidium iodide flow cytometry analysis for a total of 139 individual plants representing almost all sections of the two subgenera, Camellia and Thea. An improved WPB buffer was proven to be suitable for the Camellia species, which was able to counteract the negative effects of secondary metabolite and generated high-quality results with low coefficient of variation values (CV <5%. Our results showed trivial effects on different tissues of flowers, leaves and buds as well as cytosolic compounds on the estimation of DNA amount. The DNA content of C. sinensis var. assamica was estimated to be 1C = 3.01 pg by flow cytometric analysis, which is equal to a genome size of about 2940 Mb. CONCLUSION: Intraspecific and interspecific variations were observed in the genus Camellia, and as expected, the latter was larger than the former. Our study suggests a directional trend of increasing genome size in the genus Camellia probably owing to the frequent polyploidization events.

  3. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    Science.gov (United States)

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation.

  4. [Reticulate evolution of parthenogenetic species of the Lacertidae rock lizards: inheritance of CLsat tandem repeats and anonymous RAPD markers].

    Science.gov (United States)

    Chobanu, D; Rudykh, I A; Riabinina, N L; Grechko, V V; Kramerov, D A; Darevskiĭ, I S

    2002-01-01

    The genetic relatedness of several bisexual and of four unisexual "Lacerta saxicola complex" lizards was studied, using monomer sequences of the complex-specific CLsat tandem repeats and anonymous RAPD markers. Genomes of parthenospecies were shown to include different satellite monomers. The structure of each such monomer is specific for a certain pair of bisexual species. This fact might be interpreted in favor of co-dominant inheritance of these markers in bisexual species hybridogenesis. This idea is supported by the results obtained with RAPD markers; i.e., unisexual species genomes include only the loci characteristic of certain bisexual species. At the same time, in neither case parthenospecies possess specific, autoapomorphic loci that were not present in this or that bisexual species.

  5. Use of Whole-Genus Genome Sequence Data To Develop a Multilocus Sequence Typing Tool That Accurately Identifies Yersinia Isolates to the Species and Subspecies Levels

    Science.gov (United States)

    Hall, Miquette; Chattaway, Marie A.; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica. PMID:25339391

  6. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.).

    Science.gov (United States)

    Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling

    2014-06-04

    Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  8. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  9. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  10. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi Xuan; Han, Bin; Kurata, Nori

    2015-01-01

    . Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all

  11. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted. PMID:28187131

  12. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae.

    Directory of Open Access Journals (Sweden)

    Rangeline Azevedo da Silva

    Full Text Available The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI- bands. The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted.

  13. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsuoka

    Full Text Available The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome, namely Triticumturgidum L. (AABB genome and Aegilopstauschii Coss. (DD genome. An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL analysis showed that (1 production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2 first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3 six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated

  14. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  15. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  16. Genome analysis of Betanodavirus from cultured marine fish species in Malaysia.

    Science.gov (United States)

    Ransangan, Julian; Manin, Benny Obrain

    2012-04-23

    Betanodavirus is the causative agent of the viral nervous necrosis (VNN) or viral encephalopathy and retinopathy disease in marine fish. This disease is responsible for most of the mass mortalities that occurred in marine fish hatcheries in Malaysia. The genome of this virus consists of two positive-sense RNA molecules which are the RNA1 and RNA2. The RNA1 molecule contains the RdRp gene which encodes for the RNA-dependent RNA polymerase and the RNA2 molecule contains the Cp gene which encodes for the viral coat protein. In this study, total RNAs were extracted from 32 fish specimens representing the four most cultured marine fish species in Malaysia. The fish specimens were collected from different hatcheries and aquaculture farms in Malaysia. The RNA1 was successfully amplified using three pairs of overlapping PCR primers whereas the RNA2 was amplified using a pair of primers. The nucleotide analysis of RdRp gene revealed that the Betanodavirus in Malaysia were 94.5-99.7% similar to the RGNNV genotype, 79.8-82.1% similar to SJNNV genotype, 81.5-82.4% similar to BFNNV genotype and 79.8-80.7% similar to TPNNV genotype. However, they showed lower similarities to FHV (9.4-14.2%) and BBV (7.2-15.7%), respectively. Similarly, the Cp gene revealed that the viruses showed high nucleotide similarity to RGNNV (95.9-99.8%), SJNNV (72.2-77.4%), BFNNV (80.9-83.5%), TPNNV (77.2-78.1%) and TNV (75.1-76.5%). However, as in the RdRp gene, the coat protein gene was highly dissimilar to FHV (3.0%) and BBV (2.6-4.1%), respectively. Based on the genome analysis, the Betanodavirus infecting cultured marine fish species in Malaysia belong to the RGNNV genotype. However, the phylogenetic analysis of the genes revealed that the viruses can be further divided into nine sub-groups. This has been expected since various marine fish species of different origins are cultured in Malaysia. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. [Evolution of genomic imprinting in mammals: what a zoo!].

    Science.gov (United States)

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  18. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop.

    Science.gov (United States)

    Tian, Yang; Zeng, Yan; Zhang, Jing; Yang, ChengGuang; Yan, Liang; Wang, XuanJun; Shi, ChongYing; Xie, Jing; Dai, TianYi; Peng, Lei; Zeng Huan, Yu; Xu, AnNi; Huang, YeWei; Zhang, JiaJin; Ma, Xiao; Dong, Yang; Hao, ShuMei; Sheng, Jun

    2015-07-01

    The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera's high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.

  19. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences.

    Science.gov (United States)

    Touchon, Marie; Cury, Jean; Yoon, Eun-Jeong; Krizova, Lenka; Cerqueira, Gustavo C; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice; Rocha, Eduardo P C

    2014-10-13

    Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society

  20. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly

    Directory of Open Access Journals (Sweden)

    J. W. Clouse

    2016-03-01

    Full Text Available Amaranth ( L. is an emerging pseudocereal native to the New World that has garnered increased attention in recent years because of its nutritional quality, in particular its seed protein and more specifically its high levels of the essential amino acid lysine. It belongs to the Amaranthaceae family, is an ancient paleopolyploid that shows disomic inheritance (2 = 32, and has an estimated genome size of 466 Mb. Here we present a high-quality draft genome sequence of the grain amaranth. The genome assembly consisted of 377 Mb in 3518 scaffolds with an N of 371 kb. Repetitive element analysis predicted that 48% of the genome is comprised of repeat sequences, of which -like elements were the most commonly classified retrotransposon. A de novo transcriptome consisting of 66,370 contigs was assembled from eight different amaranth tissue and abiotic stress libraries. Annotation of the genome identified 23,059 protein-coding genes. Seven grain amaranths (, , and and their putative progenitor ( were resequenced. A single nucleotide polymorphism (SNP phylogeny supported the classification of as the progenitor species of the grain amaranths. Lastly, we generated a de novo physical map for using the BioNano Genomics’ Genome Mapping platform. The physical map spanned 340 Mb and a hybrid assembly using the BioNano physical maps nearly doubled the N of the assembly to 697 kb. Moreover, we analyzed synteny between amaranth and sugar beet ( L. and estimated, using analysis, the age of the most recent polyploidization event in amaranth.

  1. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  2. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  3. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  4. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation.

    Science.gov (United States)

    Lee, Jun-Yeong; Han, Geon Goo; Kim, Eun Bae; Choi, Yun-Jaie

    2017-12-01

    Lactobacillus salivarius is an important member of the animal gut microflora and is a promising probiotic bacterium. However, there is a lack of research on the genomic diversity of L. salivarius species. In this study, we generated 21 L. salivarius draft genomes, and investigated the pan-genome of L. salivarius strains isolated from humans, pigs and chickens using all available genomes, focusing on host adaptation. Phylogenetic clustering showed a distinct categorization of L. salivarius strains depending on their hosts. In the pan-genome, 15 host-specific genes and 16 dual-host-shared genes that only one host isolate did not possess were identified. Comparison of 56 extracellular protein encoding genes and 124 orthologs related to exopolysaccharide production in the pan-genome revealed that extracellular components of the assayed bacteria have been globally acquired and mutated under the selection pressure for host adaptation. We also found the three host-specific genes that are responsible for energy production in L. salivarius. These results showed that L. salivarius has evolved to adapt to host habitats in two ways, by gaining the abilities for niche adhesion and efficient utilization of nutrients. Our study offers a deeper understanding of the probiotic species L. salivarius, and provides a basis for future studies on L. salivarius and other mutualistic bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-06-01

    Full Text Available Abstract Background Herpes simplex type II (HSV-2 is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M system, we previously identified the Escherichia coli restriction enzyme (REase EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome. Methods and results Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,, and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class, 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00 at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the

  6. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders...... by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements....... These results provide important insight into the functional genetics underpinning mammalian regulatory evolution....

  7. The Geobacillus pan-genome: implications for the evolution of the genus

    Directory of Open Access Journals (Sweden)

    Oliver Keoagile Ignatius Bezuidt

    2016-05-01

    Full Text Available The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Interestingly, our analysis has shown that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.

  8. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  9. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  10. MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement

    Directory of Open Access Journals (Sweden)

    Zhang Liqing

    2010-01-01

    Full Text Available Abstract Background Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model. However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model. Results In this paper, we develop MSOAR 2.0, an improved system for one-to-one ortholog assignment. For a pair of input genomes, the system first focuses on the tandemly duplicated genes of each genome and tries to identify among them those that were duplicated after the speciation (i.e., the so-called inparalogs, using a simple phylogenetic tree reconciliation method. For each such set of tandemly duplicated inparalogs, all but one gene will be deleted from the concerned genome (because they cannot possibly appear in any one-to-one ortholog pairs, and MSOAR is invoked. Using both simulated and real data experiments, we show that MSOAR 2.0 is able to achieve a better sensitivity and specificity than MSOAR. In comparison with the well-known genome-scale ortholog assignment tool InParanoid, Ensembl ortholog database, and the orthology information extracted from the well-known whole-genome multiple alignment program MultiZ, MSOAR 2.0 shows the highest sensitivity. Although the specificity of MSOAR 2.0 is slightly worse than that of InParanoid in the real data experiments

  11. [RAPD analysis of four species of Cuscuta in Shandong Province].

    Science.gov (United States)

    Lin, Huibin; Lin, Jianqun; Lin, Jianqiang

    2003-01-01

    To explore the genome difference of four species of Cuscuta in different hosts. RAPD was used by 50 primers. Four species of genus Cuscuta can be identified by 8 primers. Both Cuscuta chinensis and C. australis from Subg. Grammica had 3 bands whose molecular weights were 1.3 kb, 1.45 kb and 1.53 kb respectively. C. japonica and C. lupuliformis from Subg. Monogyna had a 1.48 kb specific band. Cuscuta of same subgenus had similar RAPD result and close genetic relationship. Same species of Cuscuta in different hosts showed DNA polymorphism. It indicated that hosts can affect genome of Cuscuta to some extent. RAPD can be used to identify the species of Cuscuta or same Cuscuta in different hosts.

  12. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  13. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  14. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    Directory of Open Access Journals (Sweden)

    Loren H. Rieseberg

    2012-10-01

    Full Text Available Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp. and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis, with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi. We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the

  15. "Orphan" retrogenes in the human genome.

    Science.gov (United States)

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-02-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify "orphan" retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.

  16. Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses.

    Science.gov (United States)

    Schein, Catherine H; Ye, Mengyi; Paul, Aniko V; Oberste, M Steven; Chapman, Nora; van der Heden van Noort, Gerbrand J; Filippov, Dmitri V; Choi, Kyung H

    2015-10-01

    Enteroviruses (EV) uridylylate a peptide, VPg, as the first step in their replication. VPgpUpU, found free in infected cells, serves as the primer for RNA elongation. The abilities of four polymerases (3D(pol)), from EV-species A-C, to uridylylate VPgs that varied by up to 60% of their residues were compared. Each 3D(pol) was able to uridylylate all five VPgs using polyA RNA as template, while showing specificity for its own genome encoded peptide. All 3D(pol) uridylylated a consensus VPg representing the physical chemical properties of 31 different VPgs. Thus the residues required for uridylylation and the enzymatic mechanism must be similar in diverse EV. As VPg-binding sites differ in co-crystal structures, the reaction is probably done by a second 3D(pol) molecule. The conservation of polymerase residues whose mutation reduces uridylylation but not RNA elongation is compared. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Species-specific ant brain manipulation by a specialized fungal parasite.

    Science.gov (United States)

    de Bekker, Charissa; Quevillon, Lauren E; Smith, Philip B; Fleming, Kimberly R; Ghosh, Debashis; Patterson, Andrew D; Hughes, David P

    2014-08-29

    A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation

  18. Acquiring Reference Genomes from Uncultured Microbes by Micromanipulation and Low-complexity Metagenomics

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Albertsen, Mads; Nielsen, Jeppe Lund

    A pre-requisite for many of the –omics approaches applied in environmental microbiology today are high quality reference genomes. Until recently such genomes have been difficult to obtain from unculturable, complex microbial communities. However, lately the ‘single cell genomics’ approach based...... on isolation and amplification of genomic DNA from a single or few clonal cells has proven efficient for this purpose although very tedious. The aim of this study was to apply the methodology of single cell genomics to filamentous organisms and microcolonies of specific species from microbial communities...

  19. Applied Genetics and Genomics in Alfalfa Breeding

    Directory of Open Access Journals (Sweden)

    E. Charles Brummer

    2012-03-01

    Full Text Available Alfalfa (Medicago sativa L., a perennial and outcrossing species, is a widely planted forage legume for hay, pasture and silage throughout the world. Currently, alfalfa breeding relies on recurrent phenotypic selection, but alternatives incorporating molecular marker assisted breeding could enhance genetic gain per unit time and per unit cost, and accelerate alfalfa improvement. Many major quantitative trait loci (QTL related to agronomic traits have been identified by family-based QTL mapping, but in relatively large genomic regions. Candidate genes elucidated from model species have helped to identify some potential causal loci in alfalfa mapping and breeding population for specific traits. Recently, high throughput sequencing technologies, coupled with advanced bioinformatics tools, have been used to identify large numbers of single nucleotide polymorphisms (SNP in alfalfa, which are being developed into markers. These markers will facilitate fine mapping of quantitative traits and genome wide association mapping of agronomic traits and further advanced breeding strategies for alfalfa, such as marker-assisted selection and genomic selection. Based on ideas from the literature, we suggest several ways to improve selection in alfalfa including (1 diversity selection and paternity testing, (2 introgression of QTL and (3 genomic selection.

  20. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.

    Science.gov (United States)

    Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A

    2016-08-12

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive

  1. Harnessing cross-species alignment to discover SNPs and generate a draft genome sequence of a bighorn sheep (Ovis canadensis).

    Science.gov (United States)

    Miller, Joshua M; Moore, Stephen S; Stothard, Paul; Liao, Xiaoping; Coltman, David W

    2015-05-20

    Whole genome sequences (WGS) have proliferated as sequencing technology continues to improve and costs decline. While many WGS of model or domestic organisms have been produced, a growing number of non-model species are also being sequenced. In the absence of a reference, construction of a genome sequence necessitates de novo assembly which may be beyond the ability of many labs due to the large volumes of raw sequence data and extensive bioinformatics required. In contrast, the presence of a reference WGS allows for alignment which is more tractable than assembly. Recent work has highlighted that the reference need not come from the same species, potentially enabling a wide array of species WGS to be constructed using cross-species alignment. Here we report on the creation a draft WGS from a single bighorn sheep (Ovis canadensis) using alignment to the closely related domestic sheep (Ovis aries). Two sequencing libraries on SOLiD platforms yielded over 865 million reads, and combined alignment to the domestic sheep reference resulted in a nearly complete sequence (95% coverage of the reference) at an average of 12x read depth (104 SD). From this we discovered over 15 million variants and annotated them relative to the domestic sheep reference. We then conducted an enrichment analysis of those SNPs showing fixed differences between the reference and sequenced individual and found significant differences in a number of gene ontology (GO) terms, including those associated with reproduction, muscle properties, and bone deposition. Our results demonstrate that cross-species alignment enables the creation of novel WGS for non-model organisms. The bighorn sheep WGS will provide a resource for future resequencing studies or comparative genomics.

  2. Genomic selection for crossbred performance accounting for breed-specific effects.

    Science.gov (United States)

    Lopes, Marcos S; Bovenhuis, Henk; Hidalgo, André M; van Arendonk, Johan A M; Knol, Egbert F; Bastiaansen, John W M

    2017-06-26

    Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs. The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively). In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred

  3. The mitochondrial genome of Toxocara canis.

    Science.gov (United States)

    Jex, Aaron R; Waeschenbach, Andrea; Littlewood, D Timothy J; Hu, Min; Gasser, Robin B

    2008-08-06

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  4. The mitochondrial genome of Toxocara canis.

    Directory of Open Access Journals (Sweden)

    Aaron R Jex

    2008-08-01

    Full Text Available Toxocara canis (Ascaridida: Nematoda, which parasitizes (at the adult stage the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida. The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  5. The Mitochondrial Genome of Toxocara canis

    Science.gov (United States)

    Littlewood, D. Timothy J.; Hu, Min; Gasser, Robin B.

    2008-01-01

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts. PMID:18682828

  6. A plant pathology perspective of fungal genome sequencing.

    Science.gov (United States)

    Aylward, Janneke; Steenkamp, Emma T; Dreyer, Léanne L; Roets, Francois; Wingfield, Brenda D; Wingfield, Michael J

    2017-06-01

    The majority of plant pathogens are fungi and many of these adversely affect food security. This mini-review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size. Both of these factors can be attributed to the expansion of repeat elements. Sequenced genomes of plant pathogens provide blueprints from which potential virulence factors were identified and from which genes associated with different pathogenic strategies could be predicted. Genome sequences have also made it possible to evaluate adaptability of pathogen genomes and genomic regions that experience selection pressures. Some genomic patterns, however, remain poorly understood and plant pathogen genomes alone are not sufficient to unravel complex pathogen-host interactions. Genomes, therefore, cannot replace experimental studies that can be complex and tedious. Ultimately, the most promising application lies in using fungal plant pathogen genomics to inform disease management and risk assessment strategies. This will ultimately minimize the risks of future disease outbreaks and assist in preparation for emerging pathogen outbreaks.

  7. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  8. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation

    Science.gov (United States)

    Wisniewski-Dyé, Florence; Lozano, Luis; Acosta-Cruz, Erika; Borland, Stéphanie; Drogue, Benoît; Prigent-Combaret, Claire; Rouy, Zoé; Barbe, Valérie; Mendoza Herrera, Alberto; González, Victor; Mavingui, Patrick

    2012-01-01

    Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510). The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis), and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron) are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation. PMID:24705077

  9. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation

    Directory of Open Access Journals (Sweden)

    Victor González

    2012-09-01

    Full Text Available Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510. The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis, and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation.

  10. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  11. Untangling nucleotide diversity and evolution of the H genome in polyploid Hordeum and Elymus species based on the single copy of nuclear gene DMC1.

    Directory of Open Access Journals (Sweden)

    Dongfa Sun

    Full Text Available Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass species originated from diploid Hordeum (barley species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1 data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum is higher than that in diploid Hordeum (π = 0.01488. The estimates of Tajima's D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05, suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π of the DMC1 sequences in Elymus polyploid species (π = 0.02083 is higher than that in polyploid Hordeum (π = 0.01680, suggesting that the degree of relationships between two parents of a polyploid might be a factor

  12. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  13. Genomic diversification of enterococci in hosts: the role of the mobilome.

    Science.gov (United States)

    Santagati, Maria; Campanile, Floriana; Stefani, Stefania

    2012-01-01

    Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained. Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments.

  14. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species.

    Science.gov (United States)

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Takahashi-Nakaguchi, Azusa; Matsuzawa, Tetsuhiro; Suzuki, Ken-ichiro; Fujita, Nobuyuki; Gonoi, Tohru

    2014-04-30

    Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology. Draft genome sequences of Nocardia asteroides NBRC 15531(T), Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402(T), and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4-11, 7-13, and 1-6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text. We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied

  15. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives

    KAUST Repository

    Mahfouz, Magdy M.

    2014-09-24

    The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any sequence of interest. Thus, TALEs have been used as a DNA targeting module fused to functional domains for a variety of targeted genomic and epigenomic modifications. TALE nucleases (TALENs) have been used with much success across eukaryotic species to edit genomes. Recently, clustered regularly interspaced palindromic repeats (CRISPRs) that are used as guide RNAs for Cas9 nuclease-specific digestion has been introduced as a highly efficient DNA-targeting platform for genome editing and regulation. Here, we review the discovery, development and limitations of TALENs and CRIPSR/Cas9 systems as genome-engineering platforms in plants. We discuss the current questions, potential improvements and the development of the next-generation genome-editing platforms with an emphasis on producing designer plants to address the needs of agriculture and basic plant biology.

  16. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives

    KAUST Repository

    Mahfouz, Magdy M.; Piatek, Agnieszka Anna; Stewart, Charles Neal

    2014-01-01

    The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any sequence of interest. Thus, TALEs have been used as a DNA targeting module fused to functional domains for a variety of targeted genomic and epigenomic modifications. TALE nucleases (TALENs) have been used with much success across eukaryotic species to edit genomes. Recently, clustered regularly interspaced palindromic repeats (CRISPRs) that are used as guide RNAs for Cas9 nuclease-specific digestion has been introduced as a highly efficient DNA-targeting platform for genome editing and regulation. Here, we review the discovery, development and limitations of TALENs and CRIPSR/Cas9 systems as genome-engineering platforms in plants. We discuss the current questions, potential improvements and the development of the next-generation genome-editing platforms with an emphasis on producing designer plants to address the needs of agriculture and basic plant biology.

  17. Genomics and fish adaptation

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2015-12-01

    Full Text Available The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied fish species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

  18. Transcriptome Sequencing of Diverse Peanut (Arachis Wild Species and the Cultivated Species Reveals a Wealth of Untapped Genetic Variability

    Directory of Open Access Journals (Sweden)

    Ratan Chopra

    2016-12-01

    Full Text Available To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32% were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.

  19. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  20. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.