WorldWideScience

Sample records for species sequence analysis

  1. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces

    Science.gov (United States)

    The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...

  2. Analysis of sequence diversity through internal transcribed spacers and simple sequence repeats to identify Dendrobium species.

    Science.gov (United States)

    Liu, Y T; Chen, R K; Lin, S J; Chen, Y C; Chin, S W; Chen, F C; Lee, C Y

    2014-04-08

    The Orchidaceae is one of the largest and most diverse families of flowering plants. The Dendrobium genus has high economic potential as ornamental plants and for medicinal purposes. In addition, the species of this genus are able to produce large crops. However, many Dendrobium varieties are very similar in outward appearance, making it difficult to distinguish one species from another. This study demonstrated that the 12 Dendrobium species used in this study may be divided into 2 groups by internal transcribed spacer (ITS) sequence analysis. Red and yellow flowers may also be used to separate these species into 2 main groups. In particular, the deciduous characteristic is associated with the ITS genetic diversity of the A group. Of 53 designed simple sequence repeat (SSR) primer pairs, 7 pairs were polymorphic for polymerase chain reaction products that were amplified from a specific band. The results of this study demonstrate that these 7 SSR primer pairs may potentially be used to identify Dendrobium species and their progeny in future studies.

  3. PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Lalucat Jorge

    2010-04-01

    Full Text Available Abstract Background The genus Pseudomonas comprises more than 100 species of environmental, clinical, agricultural, and biotechnological interest. Although, the recommended method for discriminating bacterial species is DNA-DNA hybridisation, alternative techniques based on multigenic sequence analysis are becoming a common practice in bacterial species discrimination studies. Since there is not a general criterion for determining which genes are more useful for species resolution; the number of strains and genes analysed is increasing continuously. As a result, sequences of different genes are dispersed throughout several databases. This sequence information needs to be collected in a common database, in order to be useful for future identification-based projects. Description The PseudoMLSA Database is a comprehensive database of multiple gene sequences from strains of Pseudomonas species. The core of the database is composed of selected gene sequences from all Pseudomonas type strains validly assigned to the genus through 2008. The database is aimed to be useful for MultiLocus Sequence Analysis (MLSA procedures, for the identification and characterisation of any Pseudomonas bacterial isolate. The sequences are available for download via a direct connection to the National Center for Biotechnology Information (NCBI. Additionally, the database includes an online BLAST interface for flexible nucleotide queries and similarity searches with the user's datasets, and provides a user-friendly output for easily parsing, navigating, and analysing BLAST results. Conclusions The PseudoMLSA database amasses strains and sequence information of validly described Pseudomonas species, and allows free querying of the database via a user-friendly, web-based interface available at http://www.uib.es/microbiologiaBD/Welcome.html. The web-based platform enables easy retrieval at strain or gene sequence information level; including references to published peer

  4. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    Science.gov (United States)

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  5. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  6. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  7. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species.

    Science.gov (United States)

    Kijas, J M; Fowler, J C; Thomas, M R

    1995-04-01

    Microsatellites, also called sequence tagged microsatellite sites (STMSs), have become important markers for genome analysis but are currently little studied in plants. To assess the value of STMSs for analysis within the Citrus plant species, two example STMSs were isolated from an intergeneric cross between rangpur lime (Citrus x limonia Osbeck) and trifoliate orange (Poncirus trifoliata (L.) Raf.). Unique flanking primers were constructed for polymerase chain reaction amplification both within the test cross and across a broad range of citrus and related species. Both loci showed length variation between test cross parents with alleles segregating in a Mendelian fashion to progeny. Amplification across species showed the STMS flanking primers to be conserved in every genome tested. The traits of polymorphism, inheritance, and conservation across species mean that STMS markers are ideal for genome mapping within Citrus, which contains high levels of genetic variability.

  8. Genetic Diversity in Passiflora Species Assessed by Morphological and ITS Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Shiamala Devi Ramaiya

    2014-01-01

    Full Text Available This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level.

  9. Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species.

    Science.gov (United States)

    Li, H C; Lu, H B; Yang, F Y; Liu, S J; Bai, C J; Zhang, Y W

    2015-03-31

    Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of Pennisetum spp (the hybrid P. americanum x P. purpureum, P. purpureum Schum., P. purpureum Schum. cv. Red, P. purpureum Schum. cv. Taiwan, and P. purpureum Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid Pennisetum had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species. Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

  10. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    Science.gov (United States)

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  11. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A.; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-01-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas. PMID:27410039

  12. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-07-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas.

  13. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    Directory of Open Access Journals (Sweden)

    Hirotomo Kato

    2016-07-01

    Full Text Available A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia guyanensis, L. (V. braziliensis, L. (V. naiffi, L. (V. lainsoni, and L. (Leishmania mexicana. Two dominant species, L. (V. guyanensis and L. (V. braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V. naiffi and L. (V. lainsoni were identified in Amazonian areas, and L. (L. mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V. braziliensis infection are increasing in Pacific coast areas.

  14. Confirmation of a novel siadenovirus species detected in raptors: partial sequence and phylogenetic analysis.

    Science.gov (United States)

    Kovács, Endre R; Benko, Mária

    2009-03-01

    Partial genome characterisation of a novel adenovirus, found recently in organ samples of multiple species of dead birds of prey, was carried out by sequence analysis of PCR-amplified DNA fragments. The virus, named as raptor adenovirus 1 (RAdV-1), has originally been detected by a nested PCR method with consensus primers targeting the adenoviral DNA polymerase gene. Phylogenetic analysis with the deduced amino acid sequence of the small PCR product has implied a new siadenovirus type present in the samples. Since virus isolation attempts remained unsuccessful, further characterisation of this putative novel siadenovirus was carried out with the use of PCR on the infected organ samples. The DNA sequence of the central genome part of RAdV-1, encompassing nine full (pTP, 52K, pIIIa, III, pVII, pX, pVI, hexon, protease) and two partial (DNA polymerase and DBP) genes and exceeding 12 kb pairs in size, was determined. Phylogenetic tree reconstructions, based on several genes, unambiguously confirmed the preliminary classification of RAdV-1 as a new species within the genus Siadenovirus. Further study of RAdV-1 is of interest since it represents a rare adenovirus genus of yet undetermined host origin.

  15. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    Science.gov (United States)

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  16. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    Science.gov (United States)

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  17. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project.

    Science.gov (United States)

    Conlan, Sean; Kong, Heidi H; Segre, Julia A

    2012-01-01

    Outbreaks of antibiotic-resistant bacterial infections emphasize the importance of surveillance of potentially pathogenic bacteria. Genomic sequencing of clinical microbiological specimens expands our capacity to study cultivable, fastidious and uncultivable members of the bacterial community. Herein, we compared the primary data collected by the NIH's Human Microbiome Project (HMP) with published epidemiological surveillance data of Staphylococcus aureus. The HMP's initial dataset contained microbial survey data from five body regions (skin, nares, oral cavity, gut and vagina) of 242 healthy volunteers. A significant component of the HMP dataset was deep sequencing of the 16S ribosomal RNA gene, which contains variable regions enabling taxonomic classification. Since species-level identification is essential in clinical microbiology, we built a reference database and used phylogenetic placement followed by most recent common ancestor classification to look at the species distribution for Staphylococcus, Klebsiella and Enterococcus. We show that selecting the accurate region of the 16S rRNA gene to sequence is analogous to carefully selecting culture conditions to distinguish closely related bacterial species. Analysis of the HMP data showed that Staphylococcus aureus was present in the nares of 36% of healthy volunteers, consistent with culture-based epidemiological data. Klebsiella pneumoniae and Enterococcus faecalis were found less frequently, but across many habitats. This work demonstrates that large 16S rRNA survey studies can be used to support epidemiological goals in the context of an increasing awareness that microbes flourish and compete within a larger bacterial community. This study demonstrates how genomic techniques and information could be critically important to trace microbial evolution and implement hospital infection control.

  18. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project.

    Directory of Open Access Journals (Sweden)

    Sean Conlan

    Full Text Available BACKGROUND: Outbreaks of antibiotic-resistant bacterial infections emphasize the importance of surveillance of potentially pathogenic bacteria. Genomic sequencing of clinical microbiological specimens expands our capacity to study cultivable, fastidious and uncultivable members of the bacterial community. Herein, we compared the primary data collected by the NIH's Human Microbiome Project (HMP with published epidemiological surveillance data of Staphylococcus aureus. METHODS: The HMP's initial dataset contained microbial survey data from five body regions (skin, nares, oral cavity, gut and vagina of 242 healthy volunteers. A significant component of the HMP dataset was deep sequencing of the 16S ribosomal RNA gene, which contains variable regions enabling taxonomic classification. Since species-level identification is essential in clinical microbiology, we built a reference database and used phylogenetic placement followed by most recent common ancestor classification to look at the species distribution for Staphylococcus, Klebsiella and Enterococcus. MAIN RESULTS: We show that selecting the accurate region of the 16S rRNA gene to sequence is analogous to carefully selecting culture conditions to distinguish closely related bacterial species. Analysis of the HMP data showed that Staphylococcus aureus was present in the nares of 36% of healthy volunteers, consistent with culture-based epidemiological data. Klebsiella pneumoniae and Enterococcus faecalis were found less frequently, but across many habitats. CONCLUSIONS: This work demonstrates that large 16S rRNA survey studies can be used to support epidemiological goals in the context of an increasing awareness that microbes flourish and compete within a larger bacterial community. This study demonstrates how genomic techniques and information could be critically important to trace microbial evolution and implement hospital infection control.

  19. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  20. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis.

    Science.gov (United States)

    McTaggart, Lisa R; Doucet, Jennifer; Witkowska, Maria; Richardson, Susan E

    2015-01-01

    Antimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains of Nocardia were determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates of Nocardia otitidiscaviarum, N. brasiliensis, N. abscessus complex, N. nova complex, N. transvalensis complex, N. farcinica, and N. cyriacigeorgica displaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strains N. nova ATCC BAA-2227, N. asteroides ATCC 19247(T), and N. farcinica ATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing of Nocardia spp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis

    Science.gov (United States)

    Awad, A; Khalil, S. R; Abd-Elhakim, Y. M

    2015-01-01

    Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegalensis), and Rock pigeon (Columba livia). Genomic DNA was extracted from blood samples and partial sequence of the mitochondrial cytochrome b gene (358 bp) was amplified and sequenced using universal primers. Sequences alignment and phylogenetic analyses were performed by CLC main workbench program. The obtained five sequences were deposited in GenBank and compared with those previously registered in GenBank. The similarity percentage was 88.60% between Gallus gallus and Coturnix japonica and 80.46% between Gallus gallus and Columba livia. The percentage of identity between the studied species and GenBank species ranged from 77.20% (Columba oenas and Anas platyrhynchos) to 100% (Gallus gallus and Gallus sonneratii, Coturnix coturnix and Coturnix japonica, Meleagris gallopavo and Columba livia). Amplification of the partial sequence of mitochondrial cytochrome b gene proved to be practical for identification of an avian species unambiguously. PMID:27175180

  2. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    OpenAIRE

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca...

  3. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Wei

    2012-10-01

    Full Text Available Abstract Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1 and Mediterranean (MED, respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84% and much higher than that of MEAM1 and MED (0.83%. This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for

  4. Detection of molecular markers by comparative sequence analysis of enzymes from mycobacteria species

    International Nuclear Information System (INIS)

    Asad, S.; Hussain, M.; Siddiqua, A.; Ain, Q.U.

    2014-01-01

    Mycobacterial species are one of the most important pathogens and among these members of non-tuberculous mycobacteria (NTM) and mycobacterial tuberculousis complex (MTC) are the causative agent of a relatively milder form of Tuberculosis. Traditional methods for identification of these groups of pathogens are time consuming, lack specificity and sensitivity and furthermore lead to the misidentification due to high similarity index. Therefore, more rapid, specific and cost-effective methods are required for the accurate identification of Mycobacterium species in routine diagnostics. In our study, we identified molecular markers in order to differentiate closely related cousin species of genus Mycobacterium including M. bovis, M. avium, M. leprae and M. tuberculosis. The nucleotide sequences of selected unique markers, i.e., enzymes (used previously in various biochemical tests for the identification of M. species) were selected and their ORFs were retrieved and selected functional proteins of respective biosynthetic pathways were compared in-silico. Result suggested that the variations in nucleotide sequences of the selected enzymes can be directly used for M. species discrimination in one step PCR test. We believe that the in-silico identification and storage of these distinctive characteristics of individual M. species will help in more precise recognition of pathogenic strains and hence specie specific targeted therapy. (author)

  5. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    Science.gov (United States)

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.

  6. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...... clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity...... enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some...

  7. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  8. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  9. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Directory of Open Access Journals (Sweden)

    Inkyu Park

    Full Text Available Aconitum species (belonging to the Ranunculaceae are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  10. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Science.gov (United States)

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  11. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae: A Comparative Analysis and Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Jie Cai

    Full Text Available Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.

  12. Phylogenetic Analysis of Phytophthora Species Based on Mitochondrial and Nuclear DNA Sequences

    NARCIS (Netherlands)

    Kroon, L.P.N.M.; Bakker, F.T.; Bosch, van den G.B.M.; Bonants, P.J.M.; Flier, W.G.

    2004-01-01

    A molecular phylogenetic analysis of the genus Phytophthora was performed, 113 isolates from 48 Phytophthora species were included in this analysis. Phylogenetic analyses were performed on regions of mitochondrial (cytochrome c oxidase subunit 1; NADH dehydrogenase subunit 1) and nuclear gene

  13. Detection and Resolution of Cryptosporidium Species and Species Mixtures by Genus-Specific Nested PCR-Restriction Fragment Length Polymorphism Analysis, Direct Sequencing, and Cloning ▿

    Science.gov (United States)

    Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.

    2011-01-01

    Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746

  14. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species.

    Science.gov (United States)

    Fu, Peng-Cheng; Zhang, Yan-Zhao; Geng, Hui-Min; Chen, Shi-Long

    2016-01-01

    The chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri , which is endemic to the Qinghai-Tibetan Plateau (QTP). Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea . The simple sequence repeats (SSRs) and phylogenetics were studied as well. The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB , ndhF and clpP , have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified

  15. In silico Coding Sequence Analysis of Walnut GAI and PIP2 Genes and Comparison with Different Plant Species

    Directory of Open Access Journals (Sweden)

    Mahdi Mohseniazar

    2017-02-01

    Full Text Available Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting and easy management, thus achieving higher yield. Trees on dwarfing rootstocks can also exhibit other economically important traits, such as precocious flowering, increased yield and increased disease resistance. Dwarf rootstocks have been extensively studied and released in stone and pome fruits, because of presence of genetic materials and the simplicity of budding methods. Control of tree size using genetically dwarf rootstocks for achievement to higher density and mechanized orchard systems is now very important for walnut production in the world especially in Iran. Many different genes can be involved in appear of this. Mutations in GAI and PIP2 genes cause dwarf trait by two different mechanisms in some plant species. In this case, we study in silico analysis of GAI and PIP2 genes consist of conserved sequences and domains, exon and intron number, function of their proteins, targeting, secondary and tertiary structure, and post translational modification. Materials and methods: The GAI and PIP2 mRNA and protein sequences (FASTA format belonging to 17 monocotyledon and dicotyledon were downloaded from NCBI (http://www.ncbi.nlm.nih.gov accessed, on September 2014. Several online web services and software were used for analysis of GAI and PIP2 mRNA and Proteins in plants. Comparative and bioinformatics analyses of PIP2 and GAI proteins were performed online at two websites NCBI (http://www.ncbi.nih.gov and EXPASY (http://expasy.org/tools. Molecular Evolutionary Genetics Analysis (MEGA; version 4 program and CLUSTAL-W with default parameters were used for multiple alignments of sequences. The phylogenetic analysis of GAI and PIP2 protein was

  16. In silico Coding Sequence Analysis of Walnut GAI and PIP2 Genes and Comparison with Different Plant Species

    Directory of Open Access Journals (Sweden)

    Mahdi Mohseniazar

    2017-09-01

    Full Text Available Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting and easy management, thus achieving higher yield. Trees on dwarfing rootstocks can also exhibit other economically important traits, such as precocious flowering, increased yield and increased disease resistance. Dwarf rootstocks have been extensively studied and released in stone and pome fruits, because of presence of genetic materials and the simplicity of budding methods. Control of tree size using genetically dwarf rootstocks for achievement to higher density and mechanized orchard systems is now very important for walnut production in the world especially in Iran. Many different genes can be involved in appear of this. Mutations in GAI and PIP2 genes cause dwarf trait by two different mechanisms in some plant species. In this case, we study in silico analysis of GAI and PIP2 genes consist of conserved sequences and domains, exon and intron number, function of their proteins, targeting, secondary and tertiary structure, and post translational modification. Materials and methods: The GAI and PIP2 mRNA and protein sequences (FASTA format belonging to 17 monocotyledon and dicotyledon were downloaded from NCBI (http://www.ncbi.nlm.nih.gov accessed, on September 2014. Several online web services and software were used for analysis of GAI and PIP2 mRNA and Proteins in plants. Comparative and bioinformatics analyses of PIP2 and GAI proteins were performed online at two websites NCBI (http://www.ncbi.nih.gov and EXPASY (http://expasy.org/tools. Molecular Evolutionary Genetics Analysis (MEGA; version 4 program and CLUSTAL-W with default parameters were used for multiple alignments of sequences. The phylogenetic analysis of GAI and PIP2 protein was

  17. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    Science.gov (United States)

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  18. A Universal Method for Species Identification of Mammals Utilizing Next Generation Sequencing for the Analysis of DNA Mixtures

    Science.gov (United States)

    Tillmar, Andreas O.; Dell'Amico, Barbara; Welander, Jenny; Holmlund, Gunilla

    2013-01-01

    Species identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample. The introduction of next generation sequencing opens new possibilities for such challenging samples. In this study we present a universal deep sequencing method using 454 GS Junior sequencing of a target on the mitochondrial gene 16S rRNA. The method was designed through phylogenetic analyses of DNA reference sequences from more than 300 mammal species. Experiments were performed on artificial species-species mixture samples in order to verify the method’s robustness and its ability to detect all species within a mixture. The method was also tested on samples from authentic forensic casework. The results showed to be promising, discriminating over 99.9 % of mammal species and the ability to detect multiple donors within a mixture and also to detect minor components as low as 1 % of a mixed sample. PMID:24358309

  19. Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species.

    Science.gov (United States)

    Nishibori, M; Tsudzuki, M; Hayashi, T; Yamamoto, Y; Yasue, H

    2002-01-01

    Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions

  20. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions.

    Science.gov (United States)

    de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E

    2015-01-01

    The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade

    Science.gov (United States)

    Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...

  2. Analysis of Toxic and Non-Toxic Alexandrium (Dinophyceae) Species Using Ribosomal RNA Gene Sequences

    Science.gov (United States)

    1993-02-01

    Therriault, J.-C. (1988). Cladistic analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonyaulax. Botanica Marina 31: 39- 51. 8... Botanica Marina 34: 575-587. Halegraeff, G. M., and Bolch, C.J. (1992). Transport of toxic dinoflagellate cysts via ship’s ballast water: implications...analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonv-u.!a,. Botanica Marina 31: 39-51. Curran, J., Baillie, D.L

  3. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species.

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Shimahara, Yoshiko; Kamaishi, Takashi; Yoshida, Terutoyo; Nagai, Satoshi; Kobayashi, Takanori; Katoh, Masaya

    2017-01-01

    Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of

  4. Sequence analysis of the 3’-untranslated region of HSP70 (type I genes in the genus Leishmania: its usefulness as a molecular marker for species identification

    Directory of Open Access Journals (Sweden)

    Requena Jose M

    2012-04-01

    Full Text Available Abstract Background The Leishmaniases are a group of clinically diverse diseases caused by parasites of the genus Leishmania. To distinguish between species is crucial for correct diagnosis and prognosis as well as for treatment decisions. Recently, sequencing of the HSP70 coding region has been applied in phylogenetic studies and for identifying of Leishmania species with excellent results. Methods In the present study, we analyzed the 3’-untranslated region (UTR of Leishmania HSP70-type I gene from 24 strains representing eleven Leishmania species in the belief that this non-coding region would have a better discriminatory capacity for species typing than coding regions. Results It was observed that there was a remarkable degree of sequence conservation in this region, even between species of the subgenus Leishmania and Viannia. In addition, the presence of many microsatellites was a common feature of the 3´-UTR of HSP70-I genes in the Leishmania genus. Finally, we constructed dendrograms based on global sequence alignments of the analyzed Leishmania species and strains, the results indicated that this particular region of HSP70 genes might be useful for species (or species complex typing, improving for particular species the discrimination capacity of phylogenetic trees based on HSP70 coding sequences. Given the large size variation of the analyzed region between the Leishmania and Viannia subgenera, direct visualization of the PCR amplification product would allow discrimination between subgenera, and a HaeIII-PCR-RFLP analysis might be used for differentiating some species within each subgenera. Conclusions Sequence and phylogenetic analyses indicated that this region, which is readily amplified using a single pair of primers from both Old and New World Leishmania species, might be useful as a molecular marker for species discrimination.

  5. Accurate and Practical Identification of 20 Fusarium Species by Seven-Locus Sequence Analysis and Reverse Line Blot Hybridization, and an In Vitro Antifungal Susceptibility Study▿†

    Science.gov (United States)

    Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun

    2011-01-01

    Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150

  6. [The use of 16S rDNA sequencing in species diversity analysis for sputum of patients with ventilator-associated pneumonia].

    Science.gov (United States)

    Yang, Xiaojun; Wang, Xiaohong; Liang, Zhijuan; Zhang, Xiaoya; Wang, Yanbo; Wang, Zhenhai

    2014-05-01

    To study the species and amount of bacteria in sputum of patients with ventilator-associated pneumonia (VAP) by using 16S rDNA sequencing analysis, and to explore the new method for etiologic diagnosis of VAP. Bronchoalveolar lavage sputum samples were collected from 31 patients with VAP. Bacterial DNA of the samples were extracted and identified by polymerase chain reaction (PCR). At the same time, sputum specimens were processed for routine bacterial culture. The high flux sequencing experiment was conducted on PCR positive samples with 16S rDNA macro genome sequencing technology, and sequencing results were analyzed using bioinformatics, then the results between the sequencing and bacteria culture were compared. (1) 550 bp of specific DNA sequences were amplified in sputum specimens from 27 cases of the 31 patients with VAP, and they were used for sequencing analysis. 103 856 sequences were obtained from those sputum specimens using 16S rDNA sequencing, yielding approximately 39 Mb of raw data. Tag sequencing was able to inform genus level in all 27 samples. (2) Alpha-diversity analysis showed that sputum samples of patients with VAP had significantly higher variability and richness in bacterial species (Shannon index values 1.20, Simpson index values 0.48). Rarefaction curve analysis showed that there were more species that were not detected by sequencing from some VAP sputum samples. (3) Analysis of 27 sputum samples with VAP by using 16S rDNA sequences yielded four phyla: namely Acitinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. With genus as a classification, it was found that the dominant species included Streptococcus 88.9% (24/27), Limnohabitans 77.8% (21/27), Acinetobacter 70.4% (19/27), Sphingomonas 63.0% (17/27), Prevotella 63.0% (17/27), Klebsiella 55.6% (15/27), Pseudomonas 55.6% (15/27), Aquabacterium 55.6% (15/27), and Corynebacterium 55.6% (15/27). (4) Pyrophosphate sequencing discovered that Prevotella, Limnohabitans, Aquabacterium

  7. Grateloupia tenuis Wang et Luan sp. nov. (Halymeniaceae, Rhodophyta: A New Species from South China Sea Based on Morphological Observation and rbcL Gene Sequences Analysis

    Directory of Open Access Journals (Sweden)

    Ling Yu

    2013-01-01

    Full Text Available Grateloupia tenuis Wang et Luan sp. nov. is a new species described from Lingshui, Hainan Province, South China Sea. Based on the external form and internal structure, combined with rbcL gene sequence analysis, Grateloupia tenuis is distinct from other Grateloupia species as follows: (1 thalli is slippery and cartilaginous in texture; possess fewer branches, relatively slight main axes, and two or three dichotomous branches; (2 cortex is 5-6 layers; medulla is solid when young, but hollow in old branches; reproductive structures are dispersed in main axes of thalli and lower portions of branchlets; exhibits Grateloupia-type auxiliary cell ampullae; (3 the four studied G. tenuis sequences were positioned in a large Grateloupia clade of Halymeniaceae, which included sister group generitype G. filicina with 68 bp differences; G. tenuis was determined to be a sister taxon to the G. catenata, G. ramosissima, G. orientalis, and G. filiformis subclade. The pairwise distances between G. tenuis and these species were 39 to 50 bp. The sequences of G. tenuis differed by 81–108 bp from the sequences of other samples in Grateloupia; there are 114–133 bp changes between G. tenuis and other genera of Halymeniaceae. In final analysis, we considered Grateloupia tenuis Wang et Luan sp. nov. to be a new species of genus Grateloupia.

  8. Grateloupia tenuis Wang et Luan sp. nov. (Halymeniaceae, Rhodophyta): a new species from South China Sea based on morphological observation and rbcL gene sequences analysis.

    Science.gov (United States)

    Yu, Ling; Wang, Hongwei; Luan, Rixiao

    2013-01-01

    Grateloupia tenuis Wang et Luan sp. nov. is a new species described from Lingshui, Hainan Province, South China Sea. Based on the external form and internal structure, combined with rbcL gene sequence analysis, Grateloupia tenuis is distinct from other Grateloupia species as follows: (1) thalli is slippery and cartilaginous in texture; possess fewer branches, relatively slight main axes, and two or three dichotomous branches; (2) cortex is 5-6 layers; medulla is solid when young, but hollow in old branches; reproductive structures are dispersed in main axes of thalli and lower portions of branchlets; exhibits Grateloupia-type auxiliary cell ampullae; (3) the four studied G. tenuis sequences were positioned in a large Grateloupia clade of Halymeniaceae, which included sister group generitype G. filicina with 68 bp differences; G. tenuis was determined to be a sister taxon to the G. catenata, G. ramosissima, G. orientalis, and G. filiformis subclade. The pairwise distances between G. tenuis and these species were 39 to 50 bp. The sequences of G. tenuis differed by 81-108 bp from the sequences of other samples in Grateloupia; there are 114-133 bp changes between G. tenuis and other genera of Halymeniaceae. In final analysis, we considered Grateloupia tenuis Wang et Luan sp. nov. to be a new species of genus Grateloupia.

  9. Grateloupia tenuis Wang et Luan sp. nov. (Halymeniaceae, Rhodophyta): A New Species from South China Sea Based on Morphological Observation and rbcL Gene Sequences Analysis

    Science.gov (United States)

    Wang, Hongwei; Luan, Rixiao

    2013-01-01

    Grateloupia tenuis Wang et Luan sp. nov. is a new species described from Lingshui, Hainan Province, South China Sea. Based on the external form and internal structure, combined with rbcL gene sequence analysis, Grateloupia tenuis is distinct from other Grateloupia species as follows: (1) thalli is slippery and cartilaginous in texture; possess fewer branches, relatively slight main axes, and two or three dichotomous branches; (2) cortex is 5-6 layers; medulla is solid when young, but hollow in old branches; reproductive structures are dispersed in main axes of thalli and lower portions of branchlets; exhibits Grateloupia-type auxiliary cell ampullae; (3) the four studied G. tenuis sequences were positioned in a large Grateloupia clade of Halymeniaceae, which included sister group generitype G. filicina with 68 bp differences; G. tenuis was determined to be a sister taxon to the G. catenata, G. ramosissima, G. orientalis, and G. filiformis subclade. The pairwise distances between G. tenuis and these species were 39 to 50 bp. The sequences of G. tenuis differed by 81–108 bp from the sequences of other samples in Grateloupia; there are 114–133 bp changes between G. tenuis and other genera of Halymeniaceae. In final analysis, we considered Grateloupia tenuis Wang et Luan sp. nov. to be a new species of genus Grateloupia. PMID:24455703

  10. Relationships within the Proteobacteria of plant pathogenic Acidovorax species and subspecies, Burkholderia species, and Herbaspirillum rubrisubalbicans by sequence analysis of 16S rDNA, numerical analysis and determinative tests.

    Science.gov (United States)

    Hu, F P; Young, J M; Triggs, C M; Park, D C; Saul, D J

    2001-12-01

    Sequence data for 16S rDNA of the type strains of Acidovorax avenae subsp. avenae, A. avenae subsp. cattleyae, A. avenae subsp. citrulli, A. konjaci and Herbaspirillum rubrisubalbicans were compared with GenBank library accessions of Burkholderia spp., Comamonas sp., Ralstonia solanacearum and Variovorax sp. Maximum Parsimony analysis produced two clusters: 1. Acidovorax spp., Comamonas sp., and Variovorax sp. (all in the Comamonadaceae), and 2. Burkholderia spp., Ralstonia solanacearum, and Herbaspirillum rubrisubalbicans. Maximum Likelihood analysis produced only one cluster (of the Comamonadaceae). Using nutritional and laboratory tests, all Acidovorax spp., Burkholderia spp., and Herbaspirillum rubrisubalbicans were discriminated in distinct clusters at the species level, and could be identified by selected determinative tests. There were no phenotypic tests constituted as a circumscription of the genera and which permitted the allocation of strains to genera. Strain identification as species allowed allocation to genera only by inference. The nomenclatural implications of these data are discussed.

  11. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species.

    Science.gov (United States)

    Zhang, Yanzhen; Ma, Ji; Yang, Bingxian; Li, Ruyi; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Zhang, Lin

    2014-05-01

    Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~110kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  13. Microbial species delineation using whole genome sequences.

    Science.gov (United States)

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Identification of species of viridans group streptococci in clinical blood culture isolates by sequence analysis of the RNase P RNA gene, rnpB.

    Science.gov (United States)

    Westling, Katarina; Julander, Inger; Ljungman, Per; Vondracek, Martin; Wretlind, Bengt; Jalal, Shah

    2008-03-01

    Viridans group streptococci (VGS) cause severe diseases such as infective endocarditis and septicaemia. Genetically, VGS species are very close to each other and it is difficult to identify them to species level with conventional methods. The aims of the present study were to use sequence analysis of the RNase P RNA gene (rnpB) to identify VGS species in clinical blood culture isolates, and to compare the results with the API 20 Strep system that is based on phenotypical characteristics. Strains from patients with septicaemia or endocarditis were analysed with PCR amplification and sequence analysis of the rnpB gene. Clinical data were registered as well. One hundred and thirty two VGS clinical blood culture isolates from patients with septicaemia (n=95) or infective endocarditis (n=36) were analysed; all but one were identified by rnpB. Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii strains were most common in the patients with infective endocarditis. In the isolates from patients with haematological diseases, Streptococcus mitis and S. oralis dominated. In addition in 76 of the isolates it was possible to compare the results from rnpB analysis and the API 20 Strep system. In 39/76 (51%) of the isolates the results were concordant to species level; in 55 isolates there were no results from API 20 Strep. Sequence analysis of the RNase P RNA gene (rnpB) showed that almost all isolates could be identified. This could be of importance for evaluation of the portal of entry in patients with septicaemia or infective endocarditis.

  15. Biological sequence analysis

    DEFF Research Database (Denmark)

    Durbin, Richard; Eddy, Sean; Krogh, Anders Stærmose

    This book provides an up-to-date and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Discussed methods include pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogene...

  16. Transcriptional Regulations on the Low-Temperature-Induced Floral Transition in an Orchidaceae Species, Dendrobium nobile: An Expressed Sequence Tags Analysis

    Directory of Open Access Journals (Sweden)

    Shan Liang

    2012-01-01

    Full Text Available Vernalization-induced flowering is a cold-relevant adaptation in many species, but little is known about the genetic basis behind in Orchidaceae species. Here, we reported a collection of 15017 expressed sequence tags (ESTs from the vernalized axillary buds of an Orchidaceae species, Dendrobium nobile, which were assembled for 9616 unique gene clusters. Functional enrichment analysis showed that genes in relation to the responses to stresses, especially in the form of low temperatures, and those involving in protein biosynthesis and chromatin assembly were significantly overrepresented during 40 days of vernalization. Additionally, a total of 59 putative flowering-relevant genes were recognized, including those homologous to known key players in vernalization pathways in temperate cereals or Arabidopsis, such as cereal VRN1, FT/VRN3, and Arabidopsis AGL19. Results from this study suggest that the networks regulating vernalization-induced floral transition are conserved, but just in a part, in D. nobile, temperate cereals, and Arabidopsis.

  17. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis.

    Science.gov (United States)

    Haase, Max A B; Kominek, Jacek; Langdon, Quinn K; Kurtzman, Cletus P; Hittinger, Chris Todd

    2017-05-01

    Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Identification of Giardia species and Giardia duodenalis assemblages by sequence analysis of the 5.8S rDNA gene and internal transcribed spacers.

    Science.gov (United States)

    Cacciò, Simone M; Beck, Relja; Almeida, Andre; Bajer, Anna; Pozio, Edoardo

    2010-05-01

    PCR assays have been developed mainly to assist investigations into the epidemiology of Giardia duodenalis, the only species in the Giardia genus having zoonotic potential. However, a reliable identification of all species is of practical importance, particularly when water samples and samples from wild animals are investigated. The aim of the present work was to genotype Giardia species and G. duodenalis assemblages using as a target the region spanning the 5.8S gene and the 2 flanking internal transcribed spacers (ITS1 and ITS2) of the ribosomal gene. Primers were designed to match strongly conserved regions in the 3' end of the small subunit and in the 5' end of the large subunit ribosomal genes. The corresponding region (about 310 bp) was amplified from 49 isolates of both human and animal origin, representing all G. duodenalis assemblages as well as G. muris and G. microti. Sequence comparison and phylogenetic analysis showed that G. ardeae, G. muris, G. microti as well as the 7 G. duodenalis assemblages can be easily distinguished. Since the major subgroups within the zoonotic assemblages A and B can be identified by sequence analysis, this assay is also informative for molecular epidemiological studies.

  19. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    Directory of Open Access Journals (Sweden)

    Suldbold Jargalmaa

    2017-07-01

    Full Text Available Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II. These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species.

  20. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    Science.gov (United States)

    Jargalmaa, Suldbold; Eimes, John A.; Park, Myung Soo; Park, Jae Young; Oh, Seung-Yoon

    2017-01-01

    Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II). These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species. PMID:28761785

  1. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    Science.gov (United States)

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  2. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    Science.gov (United States)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-10-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  3. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    Science.gov (United States)

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-12-08

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.

  4. Image sequence analysis

    CERN Document Server

    1981-01-01

    The processing of image sequences has a broad spectrum of important applica­ tions including target tracking, robot navigation, bandwidth compression of TV conferencing video signals, studying the motion of biological cells using microcinematography, cloud tracking, and highway traffic monitoring. Image sequence processing involves a large amount of data. However, because of the progress in computer, LSI, and VLSI technologies, we have now reached a stage when many useful processing tasks can be done in a reasonable amount of time. As a result, research and development activities in image sequence analysis have recently been growing at a rapid pace. An IEEE Computer Society Workshop on Computer Analysis of Time-Varying Imagery was held in Philadelphia, April 5-6, 1979. A related special issue of the IEEE Transactions on Pattern Anal­ ysis and Machine Intelligence was published in November 1980. The IEEE Com­ puter magazine has also published a special issue on the subject in 1981. The purpose of this book ...

  5. Molecular analysis of the genus Asparagus based on matK sequences and its application to identify A. racemosus, a medicinally phytoestrogenic species.

    Science.gov (United States)

    Boonsom, Teerawat; Waranuch, Neti; Ingkaninan, Kornkanok; Denduangboripant, Jessada; Sukrong, Suchada

    2012-07-01

    The plant Asparagus racemosus is one of the most widely used sources of phytoestrogens because of its high content of the steroidal saponins, shatavarins I-IV, in roots. The dry root of A. racemosus, known as "Rak-Sam-Sip" in Thai, is one of the most popular herbal medicines, used as an anti-inflammatory, an aphrodisiac and a galactagogue. Recently, the interest in plant-derived estrogens has increased tremendously, making A. racemosus particularly important and a possible target for fraudulent labeling. However, the identification of A. racemosus is generally difficult due to its similar morphology to other Asparagus spp. Thus, accurate authentication of A. racemosus is essential. In this study, 1557-bp nucleotide sequences of the maturase K (matK) gene of eight Asparagus taxa were analyzed. A phylogenetic relationship based on the matK gene was also constructed. Ten polymorphic sites of nucleotide substitutions were found within the matK sequences. A. racemosus showed different nucleotide substitutions to the other species. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the matK gene was developed to discriminate A. racemosus from others. Only the 650-bp PCR product from A. racemosus could be digested with BssKI into two fragments of 397 and 253-bp while the products of other species remained undigested. Ten commercially crude drugs were analyzed and revealed that eight samples were derived from A. racemosus while two samples of that were not. Thus, the PCR-RFLP analysis of matK gene was shown to be an effective method for authentication of the medicinally phytoestrogenic species, A. racemosus. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  7. Differentiation of Actinobacillus pleuropneumoniae strains by sequence analysis of 16S rDNA and ribosomal intergenic regions, and development of a species specific oligonucleotide for in situ detection

    DEFF Research Database (Denmark)

    Fussing, Vivian; Paster, Bruce J.; Dewhirst, Floyd E.

    1998-01-01

    . The larger RIS's were different between the 3 species tested. The sequence of the 16S ribosomal gene was determined for 8 serotypes of A. pleuropneumoniae. These sequences showed only minor base differences, indicating a close genetic relatedness of these serotypes within the species. An oligonucleotide DNA...... probe designed from the 16S rRNA gene sequence of A. pleuropneumoniae was specific for all strains of the target species and did not cross react with A. lignieresii, the closest known relative of A. pleuropneumoniae. This species-specific DNA probe labeled with fluorescein was used for in situ......The aims of this study were to characterize and determine intraspecies and interspecies relatedness of Actinobacillus pleuropneumoniae to Actinobacillus lignieresii and Actinobacillus suis by sequence analysis of the ribosomal operon and to find a species-specific area for in situ detection of A...

  8. Sequence analysis of the 5.8S ribosomal DNA and internal transcribed spacers (ITS1 and ITS2) from five species of the Oxalis tuberosa alliance.

    Science.gov (United States)

    Tosto, D S; Hopp, H E

    1996-01-01

    The internal transcribed spacer region (ITS1 and ITS2) of the 18S-25S nuclear ribosomal DNA sequence and the intervening 5.8S region from five species of the genus Oxalis was amplified by polymerase chain reaction and subjected to direct DNA sequencing. On the basis of cytogenetic studies some species of this genus were postulated to be related by the number of chromosomes. Sequence homologies in the ITS1, 5.8S and ITS2 among species are in good agreement with previous relationships established on the basis of chromosome numbers. We also identified a highly conserved sequence of six bp in the ITS1, reported to be present in a wide range of flowering plants, but not in the Oxalidaceae family to which the genus Oxalis belongs to.

  9. Human leptospirosis in Tanzania: sequencing and phylogenetic analysis confirm that pathogenic Leptospira species circulate among agro-pastoralists living in Katavi-Rukwa ecosystem.

    Science.gov (United States)

    Muller, Shabani K; Assenga, Justine A; Matemba, Lucas E; Misinzo, Gerald; Kazwala, Rudovick R

    2016-06-10

    Leptospirosis is a neglected zoonotic disease of worldwide public health importance. The disease affects humans, domestic animals and wildlife. However, leptospirosis is challenging in its diagnosis in humans. Culture technique, which is time consuming, is not recommended for clinical diagnosis. For these reasons, serological and molecular techniques remain the test of choice. The major objective of this study was to explore the genetic characteristic of Leptospira species which are prevalent among agro-pastoralists living in Katavi-Rukwa Ecosystem, Tanzania. A cross-sectional epidemiological study was carried out in the Katavi-Region South-west, Tanzania between August, 2013 and November, 2014. A total of 267 participants were randomly recruited for the study. Microscopic agglutination test (MAT) was used to detect antibody against six Leptospira antigens including local serogroups Icterohaemorrhagiae, Ballum, Grippotyphosa, Sejroe and reference serogroups Hebdomadis, and Australis. Samples with MAT titers ≥ 1:160 were scored as positive, samples with MAT titers ranging from 1:20 to 1:80 were scored as exposed to Leptospira, and absence of agglutination titers was scored as negative. All MAT positive samples, including the low titre samples were subjected to PCR using the respective 16S rRNA primers for the pathogenic and non-pathogenic species. Out of 267 samples tested, 80 (29.9 %) were positive with MAT. The major circulating leptospiral serogroups were Sejroe (15.7 %,), Icterohaemorrhagiae (8.9 %), Grippotyphosa (4.8 %), Hebdomadis (3.37 %), Australis (1.49 %) and Ballum (1.19 %). By using PCR, 33 (15.7 %) out of 210 samples were pathogenic Leptospira while no saprophytic Leptospira spp. was detected. Partial 16S rRNA gene sequences of Leptospira species which were obtained from this study were submitted to GenBank and acquired accession numbers KP313246 and KP313247. Phylogenetic analysis of the nucleotide sequences revealed that species

  10. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species.

    Directory of Open Access Journals (Sweden)

    Jamie-Lee Berry

    Full Text Available Natural transformation is the widespread biological process by which "competent" bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or "transformed". To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.

  11. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening

    Directory of Open Access Journals (Sweden)

    Richardson Annette C

    2008-07-01

    Full Text Available Abstract Background Kiwifruit (Actinidia spp. are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs. Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons. Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases and pathways (terpenoid biosynthesis is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.

  12. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    Science.gov (United States)

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    Science.gov (United States)

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  14. Identification of Meconopsis species by a DNA barcode sequence ...

    African Journals Online (AJOL)

    Deoxyribonucleic acid (DNA) barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Species identification is necessary for the authentication of traditional plant based medicines. Although a consensus has not been agreed regarding which DNA sequences can be used as ...

  15. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra-species

  16. Polytene chromosomes of monogenic and amphogenic Chrysomya species (Calliphoridae, Diptera): analysis of banding patterns and in situ hybridization with Drosophila sex determining gene sequences.

    Science.gov (United States)

    Puchalla, S

    1994-03-01

    Standard maps for the five banded polytene chromosomes found in trichogen cell nuclei of the monogenic blowfly Chrysomya rufifacies and the amphogenic Chrysomya pinguis are presented. The chromosomes are highly homologous in the two species; differences in banding patterns are predominantly caused by one pericentric and ten paracentric inversions. In chromosome 5 of the amphogenic Chrysomya phaonis, also analysed in this paper, an additional paracentric inversion was observed. The distribution of species specific inversions indicates that the monogenic C. rufifacies is phylogenetically older than the amphogenic species. The maternal sex realizer locus F'/f on polytene chromosome 5 of C. rufifacies is not associated with a structural heterozygosity. Chromosome pair 6 of C. rufifacies and the sex chromosome pair of C. pinguis are under-replicated in polytene nuclei; they consist of irregular chromatin granules, frequently associated with nucleolus material. Evolution of heteromorphic sex chromosomes in Chrysomya is probably correlated with heterochromatin accumulation. A search for sex determining genes in Chrysomya was initiated using sex determining sequences from Drosophila melanogaster for in situ hybridization. The polytene band 41A1 on chromosome 5 of monogenic and amphogenic Chrysomya species contains sequences homologous to the maternal sex determining gene daughterless (da). Homology to the zygotic gene Sex-lethal (Sxl) of Drosophila is detected in band 39A1 on chromosome 5 of C. rufifacies. The findings reported here are the first evidence for a possible homology between the da gene of Drosophila and the maternal sex realizer F' of C. rufifacies. An hypothesis for the evolution of the maternal effect sex determination of C. rufifacies is proposed.

  17. Direct, rapid RNA sequence analysis

    International Nuclear Information System (INIS)

    Peattie, D.A.

    1987-01-01

    The original methods of RNA sequence analysis were based on enzymatic production and chromatographic separation of overlapping oligonucleotide fragments from within an RNA molecule followed by identification of the mononucleotides comprising the oligomer. Over the past decade the field of nucleic acid sequencing has changed dramatically, however, and RNA molecules now can be sequenced in a variety of more streamlined fashions. Most of the more recent advances in RNA sequencing have involved one-dimensional electrophoretic separation of 32 P-end-labeled oligoribonucleotides on polyacrylamide gels. In this chapter the author discusses two of these methods for determining the nucleotide sequences of RNA molecules rapidly: the chemical method and the enzymatic method. Both methods are direct and degradative, i.e., they rely on fragmatic and chemical approaches should be utilized. The single-strand-specific ribonucleases (A, T 1 , T 2 , and S 1 ) provide an efficient means to locate double-helical regions rapidly, and the chemical reactions provide a means to determine the RNA sequence within these regions. In addition, the chemical reactions allow one to assign interactions to specific atoms and to distinguish secondary interactions from tertiary ones. If the RNA molecule is small enough to be sequenced directly by the enzymatic or chemical method, the probing reactions can be done easily at the same time as sequencing reactions

  18. Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning

    NARCIS (Netherlands)

    Shahib, Ali Al-; Gilbert, David; Breitling, Rainer

    2007-01-01

    Much work has been done to identify species-specific proteins in sequenced genomes and hence to determine their function. We assumed that such proteins have specific physico-chemical properties that will discriminate them from proteins in other species. In this paper, we examine the validity of this

  19. A whole genome analysis reveals the presence of a plant PR1 sequence in the potato pathogen Streptomyces scabies and other Streptomyces species.

    Science.gov (United States)

    Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina

    2017-09-01

    Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Integrated sequence analysis. Final report

    International Nuclear Information System (INIS)

    Andersson, K.; Pyy, P.

    1998-02-01

    The NKS/RAK subprojet 3 'integrated sequence analysis' (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term 'methodology' denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  1. Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil

    Directory of Open Access Journals (Sweden)

    Omotayo Opemipo Oyedara

    2018-01-01

    Full Text Available Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008 and 95–97% identity (a pairwise distance of 0.043 with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.

  2. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    Science.gov (United States)

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  3. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  4. Statistical approaches to use a model organism for regulatory sequences annotation of newly sequenced species.

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    Full Text Available A major goal of bioinformatics is the characterization of transcription factors and the transcriptional programs they regulate. Given the speed of genome sequencing, we would like to quickly annotate regulatory sequences in newly-sequenced genomes. In such cases, it would be helpful to predict sequence motifs by using experimental data from closely related model organism. Here we present a general algorithm that allow to identify transcription factor binding sites in one newly sequenced species by performing Bayesian regression on the annotated species. First we set the rationale of our method by applying it within the same species, then we extend it to use data available in closely related species. Finally, we generalise the method to handle the case when a certain number of experiments, from several species close to the species on which to make inference, are available. In order to show the performance of the method, we analyse three functionally related networks in the Ascomycota. Two gene network case studies are related to the G2/M phase of the Ascomycota cell cycle; the third is related to morphogenesis. We also compared the method with MatrixReduce and discuss other types of validation and tests. The first network is well known and provides a biological validation test of the method. The two cell cycle case studies, where the gene network size is conserved, demonstrate an effective utility in annotating new species sequences using all the available replicas from model species. The third case, where the gene network size varies among species, shows that the combination of information is less powerful but is still informative. Our methodology is quite general and could be extended to integrate other high-throughput data from model organisms.

  5. Integrated sequence analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; Pyy, P

    1998-02-01

    The NKS/RAK subprojet 3 `integrated sequence analysis` (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term `methodology` denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  6. Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs.

    Science.gov (United States)

    Campbell, A J; Gasser, R B; Chilton, N B

    1995-03-01

    In the current study, molecular techniques were evaluated for the species identification of individual strongyle eggs. Adult worms of Strongylus edentatus, S. equinus and S. vulgaris were collected at necropsy from horses from Australia and the U.S.A. Genomic DNA was isolated and a ribosomal transcribed spacer (ITS-2) amplified and sequenced using polymerase chain reaction (PCR) techniques. The length of the ITS-2 sequence of S. edentatus, S. equinus and S. vulgaris ranged between 217 and 235 nucleotides. Extensive sequence analysis demonstrated a low degree (0-0.9%) of intraspecific variation in the ITS-2 for the Strongylus species examined, whereas the levels of interspecific differences (13-29%) were significantly greater. Interspecific differences in the ITS-2 sequences allowed unequivocal species identification of single worms and eggs using PCR-linked restriction fragment length polymorphism. These results demonstrate the potential of the ribosomal spacers as genetic markers for species identification of single strongyle eggs from horse faeces.

  7. MultiLocus Sequence Analysis- and Amplified Fragment Length Polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to Xanthomonas species.

    Science.gov (United States)

    Hamza, A A; Robene-Soustrade, I; Jouen, E; Lefeuvre, P; Chiroleu, F; Fisher-Le Saux, M; Gagnevin, L; Pruvost, O

    2012-05-01

    MultiLocus Sequence Analysis (MLSA) and Amplified Fragment Length Polymorphism (AFLP) were used to measure the genetic relatedness of a comprehensive collection of xanthomonads pathogenic to solaneous hosts to Xanthomonas species. The MLSA scheme was based on partial sequences of four housekeeping genes (atpD, dnaK, efp and gyrB). Globally, MLSA data unambiguously identified strains causing bacterial spot of tomato and pepper at the species level and was consistent with AFLP data. Genetic distances derived from both techniques showed a close relatedness of (i) X. euvesicatoria, X. perforans and X. alfalfae and (ii) X. gardneri and X. cynarae. Maximum likelihood tree topologies derived from each gene portion and the concatenated data set for species in the X. campestris 16S rRNA core (i.e. the species cluster comprising all strains causing bacterial spot of tomato and pepper) were not congruent, consistent with the detection of several putative recombination events in our data sets by several recombination search algorithms. One recombinant region in atpD was identified in most strains of X. euvesicatoria including the type strain. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. SNP Discovery In Marine Fish Species By 454 Sequencing

    DEFF Research Database (Denmark)

    Panitz, Frank; Nielsen, Rasmus Ory; van Houdt, Jeroen K J

    2011-01-01

    Based on the 454 Next-Generation-Sequencing technology (Roche) a high throughput screening method was devised in order to generate novel genetic markers (SNPs). SNP discovery was performed for three target species of marine fish: hake (Merluccius merluccius), herring (Clupea harengus) and sole...

  9. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...

  10. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  11. GEITLERINEMA SPECIES (OSCILLATORIALES, CYANOBACTERIA) REVEALED BY CELLULAR MORPHOLOGY, ULTRASTRUCTURE, AND DNA SEQUENCING(1).

    Science.gov (United States)

    Do Carmo Bittencourt-Oliveira, Maria; Do Nascimento Moura, Ariadne; De Oliveira, Mariana Cabral; Sidnei Massola, Nelson

    2009-06-01

    Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komárek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB-cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium. © 2009 Phycological Society of America.

  12. A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal

    Science.gov (United States)

    Gregory M. Bonito; Andrii P. Gryganskyi; James M. Trappe; Rytas. Vilgalys

    2010-01-01

    Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it...

  13. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  14. Keragaman Spesies Ikan Tuna di Pasar Ikan Kedonganan Bali dengan Analisis Sekuen Kontrol Daerah Mitokondria DNA (SPECIES DIVERSITY OF TUNA FISH USING MITOCHONDRIAL DNA CONTROL REGION SEQUENCE ANALYSIS AT KEDONGANAN FISH MARKET

    Directory of Open Access Journals (Sweden)

    Daud Steven Triyomi Hariyanto

    2015-10-01

    Full Text Available Tuna is an export commodity which has very high economic value. However, some tuna speciesare threatened with extinction. The purpose of this study was to identify the tuna species that aresold in Kedonganan Fish Market. The research method was polymerase chain reaction technique(PCR using the marker sequence mitochondrial DNA control region. Samples were obtained fromthe Fish Market tuna Kedonganan, Kuta, Badung, Bali. The total number of samples are 28specimens. Sequence from each sample was obtained through sequencing techniques. Sequencesobtained were run in BLAST (Basic Local Alignment Search Tool and subsequently analyzed withMEGA 5 for species confirmation. Three species of tuna that are identified in the Kedonganan FishMarket is: Thunnus albacares, T. obesus, and Katsuwonus pelamis. All three species have highgenetic variation HD = 1. This study needed to be continued with more number of samples todetermine the species of tuna sold in Kedonganan Fish Market.

  15. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    Science.gov (United States)

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  16. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  17. Computational analysis of sequence selection mechanisms.

    Science.gov (United States)

    Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron

    2004-04-01

    Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.

  18. [Phylogenetic relationships of the species of Oxytropis DC. subg. Oxytropis and Phacoxytropis (Fabaceae) from Asian Russia inferred from the nucleotide sequence analysis of the intergenic spacers of the chloroplast genome].

    Science.gov (United States)

    Kholina, A B; Kozyrenko, M M; Artyukova, E V; Sandanov, D V; Andrianova, E A

    2016-08-01

    The nucleotide sequence analysis of trnH–psbA, trnL–trnF, and trnS–trnG intergenic spacer regions of chloroplast DNA performed in the representatives of the genus Oxytropis from Asian Russia provided clarification of the phylogenetic relationships of some species and sections in the subgenera Oxytropis and Phacoxytropis and in the genus Oxytropis as a whole. Only the section Mesogaea corresponds to the subgenus Phacoxytropis, while the section Janthina of the same subgenus groups together with the sections of the subgenus Oxytropis. The sections Chrysantha and Ortholoma of the subgenus Oxytropis are not only closely related to each other, but together with the section Mesogaea, they are grouped into the subgenus Phacoxytropis. It seems likely that the sections Chrysantha and Ortholoma should be assigned to the subgenus Phacoxytropis, and the section Janthina should be assigned to the subgenus Oxytropis. The molecular differences were identified between O. coerulea and O. mandshurica from the section Janthina that were indicative of considerable divergence of their chloroplast genomes and the species independence of the taxa. The species independence of O. czukotica belonging to the section Arctobia was also confirmed.

  19. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  20. Sequence analysis of Leukemia DNA

    Science.gov (United States)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  1. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  2. Genome Sequencing and Analysis Conference IV

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    J. Craig Venter and C. Thomas Caskey co-chaired Genome Sequencing and Analysis Conference IV held at Hilton Head, South Carolina from September 26--30, 1992. Venter opened the conference by noting that approximately 400 researchers from 16 nations were present four times as many participants as at Genome Sequencing Conference I in 1989. Venter also introduced the Data Fair, a new component of the conference allowing exchange and on-site computer analysis of unpublished sequence data.

  3. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

    Directory of Open Access Journals (Sweden)

    Reneker Jeff

    2005-05-01

    Full Text Available Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1. SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the

  4. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  5. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  6. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    Science.gov (United States)

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  7. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  8. ITS-2 sequences-based identification of Trichogramma species in South America

    Directory of Open Access Journals (Sweden)

    R. P. Almeida

    Full Text Available Abstract ITS2 (Internal transcribed spacer 2 sequences have been used in systematic studies and proved to be useful in providing a reliable identification of Trichogramma species. DNAr sequences ranged in size from 379 to 632 bp. In eleven T. pretiosum lines Wolbachia-induced parthenogenesis was found for the first time. These thelytokous lines were collected in Peru (9, Colombia (1 and USA (1. A dichotomous key for species identification was built based on the size of the ITS2 PCR product and restriction analysis using three endonucleases (EcoRI, MseI and MaeI. This molecular technique was successfully used to distinguish among seventeen native/introduced Trichogramma species collected in South America.

  9. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  10. A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

    Science.gov (United States)

    Leung, Henry C M; Yiu, S M; Yang, Bin; Peng, Yu; Wang, Yi; Liu, Zhihua; Chen, Jingchi; Qin, Junjie; Li, Ruiqiang; Chin, Francis Y L

    2011-06-01

    With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from sequencing a sample of mixed species. This step is referred to as 'binning'. Binning algorithms that are based on sequence similarity and sequence composition markers rely heavily on the reference genomes of known microorganisms or phylogenetic markers. Due to the limited availability of reference genomes and the bias and low availability of markers, these algorithms may not be applicable in all cases. Unsupervised binning algorithms which can handle fragments from unknown species provide an alternative approach. However, existing unsupervised binning algorithms only work on datasets either with balanced species abundance ratios or rather different abundance ratios, but not both. In this article, we present MetaCluster 3.0, an integrated binning method based on the unsupervised top--down separation and bottom--up merging strategy, which can bin metagenomic fragments of species with very balanced abundance ratios (say 1:1) to very different abundance ratios (e.g. 1:24) with consistently higher accuracy than existing methods. MetaCluster 3.0 can be downloaded at http://i.cs.hku.hk/~alse/MetaCluster/.

  11. Transcriptome Sequencing of Diverse Peanut (Arachis Wild Species and the Cultivated Species Reveals a Wealth of Untapped Genetic Variability

    Directory of Open Access Journals (Sweden)

    Ratan Chopra

    2016-12-01

    Full Text Available To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32% were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.

  12. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae).

    Science.gov (United States)

    Ma, Qiuyue; Li, Shuxian; Bi, Changwei; Hao, Zhaodong; Sun, Congrui; Ye, Ning

    2017-02-01

    Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba ( http://bio.njfu.edu.cn/gb2/gbrowse/Ziziphus_jujuba_cp/ ). Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1-4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.

  13. Genetic diversity in breonadia salicina based on intra-species sequence variation of chloroplast dna spacer sequence

    International Nuclear Information System (INIS)

    Qurainy, F.A.; Gaafar, A.R.Z.

    2014-01-01

    Assessment and knowledge of the genetic diversity and variation within and between populations of rare and endangered plants is very important for effective conservation. Intergenic spacer sequences variation of psbA-trnH locus of chloroplast genome was assessed within Breonadia salicina (Rubiaceae), a critically endangered and endemic plant species to South western part of Kingdom of Saudi Arabia. The obtained sequence data from 19 individuals in three populations revealed nine haplotypes. The aligned sequences obtained from the overall Saudi accessions extended to 355 bp, revealing nine haplotypes. A high level of haplotype diversity (Hd = 0.842) and low level of nucleotide diversity (Pi = 0.0058) were detected. Consistently, both hierarchical analysis of molecular variance (AMOVA) and constructed neighbor-joining tree indicated null genetic differentiation among populations. This level of differentiation between populations or between regions in psbA-trnH sequences may be due to effects of the abundance of ancestral haplotype sharing and the presence of private haplotypes fixed for each population. Furthermore, the results revealed almost the same level of genetic diversity in comparison with Yemeni accessions, in which Saudi accessions were sharing three haplotypes from the four haplotypes found in Yemeni accessions. (author)

  14. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  15. Robustness analysis of chiller sequencing control

    International Nuclear Information System (INIS)

    Liao, Yundan; Sun, Yongjun; Huang, Gongsheng

    2015-01-01

    Highlights: • Uncertainties with chiller sequencing control were systematically quantified. • Robustness of chiller sequencing control was systematically analyzed. • Different sequencing control strategies were sensitive to different uncertainties. • A numerical method was developed for easy selection of chiller sequencing control. - Abstract: Multiple-chiller plant is commonly employed in the heating, ventilating and air-conditioning system to increase operational feasibility and energy-efficiency under part load condition. In a multiple-chiller plant, chiller sequencing control plays a key role in achieving overall energy efficiency while not sacrifices the cooling sufficiency for indoor thermal comfort. Various sequencing control strategies have been developed and implemented in practice. Based on the observation that (i) uncertainty, which cannot be avoided in chiller sequencing control, has a significant impact on the control performance and may cause the control fail to achieve the expected control and/or energy performance; and (ii) in current literature few studies have systematically addressed this issue, this paper therefore presents a study on robustness analysis of chiller sequencing control in order to understand the robustness of various chiller sequencing control strategies under different types of uncertainty. Based on the robustness analysis, a simple and applicable method is developed to select the most robust control strategy for a given chiller plant in the presence of uncertainties, which will be verified using case studies

  16. Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing

    Science.gov (United States)

    Dasgupta, Modhumita Ghosh; Dharanishanthi, Veeramuthu; Agarwal, Ishangi; Krutovsky, Konstantin V.

    2015-01-01

    The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus. PMID:25602379

  17. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing.

    Directory of Open Access Journals (Sweden)

    Modhumita Ghosh Dasgupta

    Full Text Available The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs and insertions/ deletions (InDels were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family- based QTL and association analysis in Eucalyptus.

  18. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    Science.gov (United States)

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species

  19. Delineation of the species Haemophilus influenzae by phenotype, multilocus sequence phylogeny, and detection of marker genes

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Overballe, MD; Kilian, Mogens

    2009-01-01

    To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospec......To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic...... genospecies biotype IV, and the never formally validated species "Haemophilus intermedius". Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene...

  20. Probabilistic accident sequence recovery analysis

    International Nuclear Information System (INIS)

    Stutzke, Martin A.; Cooper, Susan E.

    2004-01-01

    Recovery analysis is a method that considers alternative strategies for preventing accidents in nuclear power plants during probabilistic risk assessment (PRA). Consideration of possible recovery actions in PRAs has been controversial, and there seems to be a widely held belief among PRA practitioners, utility staff, plant operators, and regulators that the results of recovery analysis should be skeptically viewed. This paper provides a framework for discussing recovery strategies, thus lending credibility to the process and enhancing regulatory acceptance of PRA results and conclusions. (author)

  1. Detection of Cryptosporidium species in feces or gastric contents from snakes and lizards as determined by polymerase chain reaction analysis and partial sequencing of the 18S ribosomal RNA gene.

    Science.gov (United States)

    Richter, Barbara; Nedorost, Nora; Maderner, Anton; Weissenböck, Herbert

    2011-05-01

    Cryptosporidiosis is a well-known gastrointestinal disease of snakes and lizards. In the current study, 672 samples (feces and/or gastric contents or regurgitated food items) of various snakes and lizards were examined for the presence of cryptosporidia by polymerase chain reaction (PCR) assay targeting a part of the 18S ribosomal RNA gene. A consecutive sequencing reaction was used to identify the cryptosporidian species present in PCR-positive samples. Cryptosporidium varanii (saurophilum) was detected in 17 out of 106 (16%) samples from corn snakes (Pantherophis guttatus) and in 32 out of 462 (7%) samples from leopard geckos (Eublepharis macularius). Cryptosporidium serpentis was found in 8 out of 462 (2%) leopard gecko samples, but in no other reptile. The Cryptosporidium sp. "lizard genotype" was present in 1 leopard gecko sample, and 1 sample from a corn snake showed a single nucleotide mismatch to this genotype. Pseudoparasitic cryptosporidian species were identified in 5 out of 174 (3%) ophidian samples, but not in lizards. Other sequences did not show complete similarity to previously published Cryptosporidium sequences. The results stress the importance for diagnostic methods to be specific for Cryptosporidium species especially in snakes and show a relatively high prevalence of C. varanii in leopard geckos and corn snakes. © 2011 The Author(s)

  2. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  3. Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains▿

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-01-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering

  4. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-02-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the

  5. A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species

    Science.gov (United States)

    Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.

    2013-01-01

    Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. PMID:23359622

  6. Sequence-based genotyping clarifies conflicting historical morphometric and biological data for 5 Eimeria species infecting turkeys.

    Science.gov (United States)

    El-Sherry, S; Ogedengbe, M E; Hafeez, M A; Sayf-Al-Din, M; Gad, N; Barta, J R

    2015-02-01

    Unlike with Eimeria species infecting chickens, specific identification and nomenclature of Eimeria species infecting turkeys is complicated, and in the absence of molecular data, imprecise. In an attempt to reconcile contradictory data reported on oocyst morphometrics and biological descriptions of various Eimeria species infecting turkey, we established single oocyst derived lines of 5 important Eimeria species infecting turkeys, Eimeria meleagrimitis (USMN08-01 strain), Eimeria adenoeides (Guelph strain), Eimeria gallopavonis (Weybridge strain), Eimeria meleagridis (USAR97-01 strain), and Eimeria dispersa (Briston strain). Short portions (514 bp) of mitochondrial cytochrome c oxidase subunit I gene (mt COI) from each were amplified and sequenced. Comparison of these sequences showed sufficient species-specific sequence variation to recommend these short mt COI sequences as species-specific markers. Uniformity of oocyst features (dimensions and oocyst structure) of each pure line was observed. Additional morphological features of the oocysts of these species are described as useful for the microscopic differentiation of these Eimeria species. Combined molecular and morphometric data on these single species lines compared with the original species descriptions and more recent data have helped to clarify some confusing, and sometimes conflicting, features associated with these Eimeria spp. For example, these new data suggest that the KCH and KR strains of E. adenoeides reported previously represent 2 distinct species, E. adenoeides and E. meleagridis, respectively. Likewise, analysis of the Weybridge strain of E. adenoeides, which has long been used as a reference strain in various studies conducted on the pathogenicity of E. adenoeides, indicates that this coccidium is actually a strain of E. gallopavonis. We highly recommend mt COI sequence-based genotyping be incorporated into all studies using Eimeria spp. of turkeys to confirm species identifications and so

  7. Genome sequence analysis of five Canadian isolates of strawberry mottle virus reveals extensive intra-species diversity and a longer RNA2 with increased coding capacity compared to a previously characterized European isolate.

    Science.gov (United States)

    Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène

    2016-06-01

    In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.

  8. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  9. Sequence analysis by iterated maps, a review.

    Science.gov (United States)

    Almeida, Jonas S

    2014-05-01

    Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.

  10. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    Science.gov (United States)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica; Nielsen, Jens; Nielsen, Kristian Fog; Workman, Mhairi; Frisvad, Jens Christian

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. PMID:27739446

  11. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  12. In silico characterization of boron transporter (BOR1 protein sequences in Poaceae species

    Directory of Open Access Journals (Sweden)

    Ertuğrul Filiz

    2013-01-01

    Full Text Available Boron (B is essential for the plant growth and development, and its primary function is connected with formation of the cell wall. Moreover, boron toxicity is a shared problem in semiarid and arid regions. In this study, boron transporter protein (BOR1 sequences from some Poaceae species (Hordeum vulgare subsp. vulgare, Zea mays, Brachypodium distachyon, Oryza sativa subsp. japonica, Oryza sativa subsp. indica, Sorghum bicolor, Triticum aestivum were evaluated by bioinformatics tools. Physicochemical analyses revealed that most of BOR1 proteins were basic character and had generally aliphatic amino acids. Analysis of the domains showed that transmembrane domains were identified constantly and three motifs were detected with 50 amino acids length. Also, the motif SPNPWEPGSYDHWTVAKDMFNVPPAYIFGAFIPATMVAGLYYFDHSVASQ was found most frequently with 25 repeats. The phylogenetic tree showed divergence into two main clusters. B. distachyon species were clustered separately. Finally, this study contributes to the new BOR1 protein characterization in grasses and create scientific base for in silico analysis in future.

  13. Preliminary hazard analysis using sequence tree method

    International Nuclear Information System (INIS)

    Huang Huiwen; Shih Chunkuan; Hung Hungchih; Chen Minghuei; Yih Swu; Lin Jiinming

    2007-01-01

    A system level PHA using sequence tree method was developed to perform Safety Related digital I and C system SSA. The conventional PHA is a brainstorming session among experts on various portions of the system to identify hazards through discussions. However, this conventional PHA is not a systematic technique, the analysis results strongly depend on the experts' subjective opinions. The analysis quality cannot be appropriately controlled. Thereby, this research developed a system level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. Two major phases are included in this sequence tree based technique. The first phase uses a table to analyze each event in SAR Chapter 15 for a specific safety related I and C system, such as RPS. The second phase uses sequence tree to recognize what I and C systems are involved in the event, how the safety related systems work, and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. In the sequence tree, the defense-in-depth echelons, including Control echelon, Reactor trip echelon, ESFAS echelon, and Indication and display echelon, are arranged to construct the sequence tree structure. All the related I and C systems, include digital system and the analog back-up systems are allocated in their specific echelon. By this system centric sequence tree based analysis, not only preliminary hazard can be identified systematically, the vulnerability of the nuclear power plant can also be recognized. Therefore, an effective simplified D3 evaluation can be performed as well. (author)

  14. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    Science.gov (United States)

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  15. Google matrix analysis of DNA sequences.

    Science.gov (United States)

    Kandiah, Vivek; Shepelyansky, Dima L

    2013-01-01

    For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  16. Google matrix analysis of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Vivek Kandiah

    Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  17. Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    2013-11-01

    Full Text Available One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350 in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009 and geographic location (northern vs. southern. A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.

  18. Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences

    DEFF Research Database (Denmark)

    McCormack, John E.; Maley, James M.; Hird, Sarah M.

    2012-01-01

    divergence in four phylogenetically diverse avian systems using a method for quick and cost-effective generation of primary DNA sequence data using pyrosequencing. NGS data were processed using an analytical pipeline that reduces many reads into two called alleles per locus per individual. Using single...... throughout the genome. Using eight loci found in Zonotrichia and Junco lineages, we were also able to generate a species tree of these sparrow sister genera, demonstrating the potential of this method for generating data amenable to coalescent-based analysis. We discuss improvements that should enhance...

  19. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  20. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  1. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    Science.gov (United States)

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

  2. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  3. Molecular characterization of Giardia psittaci by multilocus sequence analysis.

    Science.gov (United States)

    Abe, Niichiro; Makino, Ikuko; Kojima, Atsushi

    2012-12-01

    Multilocus sequence analyses targeting small subunit ribosomal DNA (SSU rDNA), elongation factor 1 alpha (ef1α), glutamate dehydrogenase (gdh), and beta giardin (β-giardin) were performed on Giardia psittaci isolates from three Budgerigars (Melopsittacus undulates) and four Barred parakeets (Bolborhynchus lineola) kept in individual households or imported from overseas. Nucleotide differences and phylogenetic analyses at four loci indicate the distinction of G. psittaci from the other known Giardia species: Giardia muris, Giardia microti, Giardia ardeae, and Giardia duodenalis assemblages. Furthermore, G. psittaci was related more closely to G. duodenalis than to the other known Giardia species, except for G. microti. Conflicting signals regarded as "double peaks" were found at the same nucleotide positions of the ef1α in all isolates. However, the sequences of the other three loci, including gdh and β-giardin, which are known to be highly variable, from all isolates were also mutually identical at every locus. They showed no double peaks. These results suggest that double peaks found in the ef1α sequences are caused not by mixed infection with genetically different G. psittaci isolates but by allelic sequence heterogeneity (ASH), which is observed in diplomonad lineages including G. duodenalis. No sequence difference was found in any G. psittaci isolates at the gdh and β-giardin, suggesting that G. psittaci is indeed not more diverse genetically than other Giardia species. This report is the first to provide evidence related to the genetic characteristics of G. psittaci obtained using multilocus sequence analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Conservation patterns in different functional sequence categoriesof divergent Drosophila species

    Energy Technology Data Exchange (ETDEWEB)

    Papatsenko, Dmitri; Kislyuk, Andrey; Levine, Michael; Dubchak, Inna

    2005-10-01

    We have explored the distributions of fully conservedungapped blocks in genome-wide pairwise alignments of recently completedspecies of Drosophila: D.yakuba, D.ananassae, D.pseudoobscura, D.virilisand D.mojavensis. Based on these distributions we have found that nearlyevery functional sequence category possesses its own distinctiveconservation pattern, sometimes independent of the overall sequenceconservation level. In the coding and regulatory regions, the ungappedblocks were longer than in introns, UTRs and non-functional sequences. Atthe same time, the blocks in the coding regions carried 3N+2 signaturecharacteristic to synonymic substitutions in the 3rd codon positions.Larger block sizes in transcription regulatory regions can be explainedby the presence of conserved arrays of binding sites for transcriptionfactors. We also have shown that the longest ungapped blocks, or'ultraconserved' sequences, are associated with specific gene groups,including those encoding ion channels and components of the cytoskeleton.We discussed how restrained conservation patterns may help in mappingfunctional sequence categories and improving genomeannotation.

  5. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    Phylogenetic analysis suggests that our sequences are clustered with sequences reported from Japan. This is the first phylogenetic analysis of HCV core gene from Pakistani population. Our sequences and sequences from Japan are grouped into same cluster in the phylogenetic tree. Sequence comparison and ...

  6. [Complete genome sequencing and sequence analysis of BCG Tice].

    Science.gov (United States)

    Wang, Zhiming; Pan, Yuanlong; Wu, Jun; Zhu, Baoli

    2012-10-04

    The objective of this study is to obtain the complete genome sequence of Bacillus Calmette-Guerin Tice (BCG Tice), in order to provide more information about the molecular biology of BCG Tice and design more reasonable vaccines to prevent tuberculosis. We assembled the data from high-throughput sequencing with SOAPdenovo software, with many contigs and scaffolds obtained. There are many sequence gaps and physical gaps remained as a result of regional low coverage and low quality. We designed primers at the end of contigs and performed PCR amplification in order to link these contigs and scaffolds. With various enzymes to perform PCR amplification, adjustment of PCR reaction conditions, and combined with clone construction to sequence, all the gaps were finished. We obtained the complete genome sequence of BCG Tice and submitted it to GenBank of National Center for Biotechnology Information (NCBI). The genome of BCG Tice is 4334064 base pairs in length, with GC content 65.65%. The problems and strategies during the finishing step of BCG Tice sequencing are illuminated here, with the hope of affording some experience to those who are involved in the finishing step of genome sequencing. The microarray data were verified by our results.

  7. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  8. OTU analysis using metagenomic shotgun sequencing data.

    Directory of Open Access Journals (Sweden)

    Xiaolin Hao

    Full Text Available Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs. Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.

  9. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  10. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    Science.gov (United States)

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  11. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Harnessing cross-species alignment to discover SNPs and generate a draft genome sequence of a bighorn sheep (Ovis canadensis).

    Science.gov (United States)

    Miller, Joshua M; Moore, Stephen S; Stothard, Paul; Liao, Xiaoping; Coltman, David W

    2015-05-20

    Whole genome sequences (WGS) have proliferated as sequencing technology continues to improve and costs decline. While many WGS of model or domestic organisms have been produced, a growing number of non-model species are also being sequenced. In the absence of a reference, construction of a genome sequence necessitates de novo assembly which may be beyond the ability of many labs due to the large volumes of raw sequence data and extensive bioinformatics required. In contrast, the presence of a reference WGS allows for alignment which is more tractable than assembly. Recent work has highlighted that the reference need not come from the same species, potentially enabling a wide array of species WGS to be constructed using cross-species alignment. Here we report on the creation a draft WGS from a single bighorn sheep (Ovis canadensis) using alignment to the closely related domestic sheep (Ovis aries). Two sequencing libraries on SOLiD platforms yielded over 865 million reads, and combined alignment to the domestic sheep reference resulted in a nearly complete sequence (95% coverage of the reference) at an average of 12x read depth (104 SD). From this we discovered over 15 million variants and annotated them relative to the domestic sheep reference. We then conducted an enrichment analysis of those SNPs showing fixed differences between the reference and sequenced individual and found significant differences in a number of gene ontology (GO) terms, including those associated with reproduction, muscle properties, and bone deposition. Our results demonstrate that cross-species alignment enables the creation of novel WGS for non-model organisms. The bighorn sheep WGS will provide a resource for future resequencing studies or comparative genomics.

  13. Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes.

    Science.gov (United States)

    Bolsheva, Nadezhda L; Melnikova, Nataliya V; Kirov, Ilya V; Speranskaya, Anna S; Krinitsina, Anastasia A; Dmitriev, Alexey A; Belenikin, Maxim S; Krasnov, George S; Lakunina, Valentina A; Snezhkina, Anastasiya V; Rozhmina, Tatiana A; Samatadze, Tatiana E; Yurkevich, Olga Yu; Zoshchuk, Svyatoslav A; Amosova, Аlexandra V; Kudryavtseva, Anna V; Muravenko, Olga V

    2017-12-28

    The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the

  14. Sequence Matching Analysis for Curriculum Development

    Directory of Open Access Journals (Sweden)

    Liem Yenny Bendatu

    2015-06-01

    Full Text Available Many organizations apply information technologies to support their business processes. Using the information technologies, the actual events are recorded and utilized to conform with predefined model. Conformance checking is an approach to measure the fitness and appropriateness between process model and actual events. However, when there are multiple events with the same timestamp, the traditional approach unfit to result such measures. This study attempts to develop a sequence matching analysis. Considering conformance checking as the basis of this approach, this proposed approach utilizes the current control flow technique in process mining domain. A case study in the field of educational process has been conducted. This study also proposes a curriculum analysis framework to test the proposed approach. By considering the learning sequence of students, it results some measurements for curriculum development. Finally, the result of the proposed approach has been verified by relevant instructors for further development.

  15. Phylogenetic diversity analysis of Trichoderma species based on ...

    African Journals Online (AJOL)

    vi-4177/CSAU be assigned as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit ...

  16. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Science.gov (United States)

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  17. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Guy Leonard

    2009-01-01

    Full Text Available The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment fi le, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree fi les (with a user-defined combination of species name and/or database accession number. Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file and generation of species and accession number lists for use in supplementary materials or figure legends.

  18. Analysis of Pteridium ribosomal RNA sequences by rapid direct sequencing.

    Science.gov (United States)

    Tan, M K

    1991-08-01

    A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.

  19. De novo transcriptome sequencing of two cultivated jute species under salinity stress.

    Directory of Open Access Journals (Sweden)

    Zemao Yang

    Full Text Available Soil salinity, a major environmental stress, reduces agricultural productivity by restricting plant development and growth. Jute (Corchorus spp., a commercially important bast fiber crop, includes two commercially cultivated species, Corchorus capsularis and Corchorus olitorius. We conducted high-throughput transcriptome sequencing of 24 C. capsularis and C. olitorius samples under salt stress and found 127 common differentially expressed genes (DEGs; additionally, 4489 and 492 common DEGs were identified in the root and leaf tissues, respectively, of both Corchorus species. Further, 32, 196, and 11 common differentially expressed transcription factors (DTFs were detected in the leaf, root, or both tissues, respectively. Several Gene Ontology (GO terms were enriched in NY and YY. A Kyoto Encyclopedia of Genes and Genomes analysis revealed numerous DEGs in both species. Abscisic acid and cytokinin signal pathways enriched respectively about 20 DEGs in leaves and roots of both NY and YY. The Ca2+, mitogen-activated protein kinase signaling and oxidative phosphorylation pathways were also found to be related to the plant response to salt stress, as evidenced by the DEGs in the roots of both species. These results provide insight into salt stress response mechanisms in plants as well as a basis for future breeding of salt-tolerant cultivars.

  20. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  1. Neurospora ribosomal DNA sequences are indistinguishable within cell types but distinguishable among heterothallic species

    International Nuclear Information System (INIS)

    Chambers, C.; Dutta, S.K.

    1983-01-01

    High molecular nuclear DNAs were isolated from three developmental cell types of N. crassa: conidia, mycelia and germinated conidia, and from mycelial cells of two other heterothallic species, N. intermedia and N. sitophila. These nuclear DNAs were treated with several restriction enzymes: EcoR1, Bam H1, Hind III, Hinc II, Bgl II, Sma I and Pst 1. All seven restriction enzymes were tested on 0.7% agarose gels. EcoR1, Hind III, Pst 1, and Hinc II showed band differences among the species, but not among the cell types. Southern blot transfers of restricted DNA gels were then hybridized with 32 P-labelled pMF2 rDNAs (probe). This later DNA was prepared from N. crassa rDNA cloned into pBR322 plasmid, obtained from Dr. Robert Metzenberg of the University of Wisconsin. Autoradiograms of these hybrids between southern blots and probe DNA revealed similar rDNA band patterns confirming the observations on restriction gels. In the case of EcoR1 restriction analysis there were differences in fragments on 0.7% agarose gel, but after hybridization of southern blots no differences in band patterns were seen in autoradiograms. This raises the question whether the background bands were all of rDNA sequences. These studies are being continued using ITS (internal transcribed spacer) sequences of N. crassa rDNAs cloned in pBR322 plasmid

  2. Exome-wide DNA capture and next generation sequencing in domestic and wild species

    Directory of Open Access Journals (Sweden)

    Ng Sarah B

    2011-07-01

    Full Text Available Abstract Background Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses. We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus to capture (enrich for, and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison. Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. Results We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. Conclusions This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  3. Exome-wide DNA capture and next generation sequencing in domestic and wild species.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon

    2011-07-05

    Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  4. Chimera: construction of chimeric sequences for phylogenetic analysis

    NARCIS (Netherlands)

    Leunissen, J.A.M.

    2003-01-01

    Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output

  5. IDENTIFICATION OF PUTATIVE SEQUENCE SPECIFIC PCR PRIMERS FOR DETECTION OF THE TOXIGENIC FUNGAL SPECIES STACHYBOTRYS CHARTARUM

    Science.gov (United States)

    The nucleotide sequence of a c 936 bp segment of the nuclear rRNA gene operon was determined for the toxigenic fungal species Stachybotrys chartarum and for other species of Stachbotrys and the related genus Memnoniella. This information was used to infer the phylogenetic relatio...

  6. IDENTIFICATION OF SEQUENCE SPECIFIC PCR PRIMERS FOR DETECTION OF THE TOXIGENIC FUNGAL SPECIES STACHYBOTRYS CHARTARUM

    Science.gov (United States)

    The nucleotide sequence of a 936 bp segment of the nuclear rRNA gene operon was determined for the toxigenic fungal species Stachybotrys chartarum and for other species of Stachybotrys and the related genus Memnoniella. This information was used to infer the phylogenitic relati...

  7. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    Science.gov (United States)

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  8. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    OpenAIRE

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  9. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, cnidaria) using nuclear DNA sequence analyses.

    Science.gov (United States)

    Oppen, M J; Willis, B L; Vugt, H W; Miller, D J

    2000-09-01

    Although Acropora is the most species-rich genus of the scleractinian (stony) corals, only three species occur in the Caribbean: A. cervicornis, A. palmata and A. prolifera. Based on overall coral morphology, abundance and distribution patterns, it has been suggested that A. prolifera may be a hybrid between A. cervicornis and A. palmata. The species boundaries among these three morphospecies were examined using DNA sequence analyses of the nuclear Pax-C 46/47 intron and the ribosomal DNA Internal Transcribed Spacer (ITS1 and ITS2) and 5.8S regions. Moderate levels of sequence variability were observed in the ITS and 5.8S sequences (up to 5.2% overall sequence difference), but variability within species was as large as between species and all three species carried similar sequences. Since this is unlikely to represent a shared ancestral polymorphism, the data suggest that introgressive hybridization occurs among the three species. For the Pax-C intron, A. cervicornis and A. palmata had very distinct allele frequencies and A. cervicornis carried a unique allele at a frequency of 0.769 (although sequence differences between alleles were small). All A. prolifera colonies examined were heterozygous for the Pax-C intron, whereas heterozygosity was only 0.286 and 0.333 for A. cervicornis and A. palmata, respectively. These data support the hypothesis that A. prolifera is the product of hybridization between two species that have a different allelic composition for the Pax-C intron, i.e. A. cervicornis and A. palmata. We therefore suggest that A. prolifera is a hybrid between A. cervicornis and A. palmata, which backcrosses with the parental species at low frequency.

  10. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  11. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  12. Development, characterization and cross species amplification of polymorphic microsatellite markers from expressed sequence tags of turmeric (Curcuma longa L.).

    Science.gov (United States)

    Siju, S; Dhanya, K; Syamkumar, S; Sasikumar, B; Sheeja, T E; Bhat, A I; Parthasarathy, V A

    2010-02-01

    Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST-SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.

  13. Next generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species NWP2 (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  14. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  15. Bayesian Correlation Analysis for Sequence Count Data.

    Directory of Open Access Journals (Sweden)

    Daniel Sánchez-Taltavull

    Full Text Available Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low-especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities' signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.

  16. A basic analysis toolkit for biological sequences

    Directory of Open Access Journals (Sweden)

    Siragusa Enrico

    2007-09-01

    Full Text Available Abstract This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at http://www.math.unipa.it/~raffaele/BATS/ under the GNU GPL.

  17. No more non-model species: the promise of next generation sequencing for comparative immunology.

    Science.gov (United States)

    Dheilly, Nolwenn M; Adema, Coen; Raftos, David A; Gourbal, Benjamin; Grunau, Christoph; Du Pasquier, Louis

    2014-07-01

    Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; Van Der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah; Siame, Kabengele Keith; Gey Van Pittius, Nicolaas Claudius; Van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-01-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  19. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  20. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers

    Directory of Open Access Journals (Sweden)

    Gao Zhihong

    2010-07-01

    Full Text Available Abstract Background Expressed Sequence Tag (EST has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants. Results In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047, among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65% and low in the peach (46%, and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species. Conclusions We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species.

  1. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  2. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  3. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  4. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  5. Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Jianfeng WANG

    2011-08-01

    Full Text Available Aphids of the subtribe Aphidina are found mainly in the North Temperate Zone. The relative lack of diagnostic morphological characteristics has obscured the identification of species in this group. However, DNA-based taxonomic methods can clarify species relationships within this group. Sequence variation in a partial segment of the mitochondrial COI gene was highly effective for resolving species relationships within Aphidina. Forty-five species were correctly identified in a neighbor-joining tree. Mean intraspecific sequence divergence was 0.17%, with a range of 0.00% to 1.54%. Mean interspecific divergence within previously recognized genera or morphologically similar species groups was 4.54%, with variation mainly in the range of 3.50% to 8.00%. Possible reasons for anomalous levels of mean nucleotide divergence within or between some taxa are discussed.

  6. Multilocus Sequence Analysis for Typing Leptospira interrogans and Leptospira kirschneri▿ †

    Science.gov (United States)

    Leon, Albertine; Pronost, Stéphane; Fortier, Guillaume; Andre-Fontaine, Geneviève; Leclercq, Roland

    2010-01-01

    Fifty-three strains belonging to the pathogenic species Leptospira interrogans and Leptospira kirschneri were analyzed by multilocus sequence analysis. The species formed two distinct branches. In the L. interrogans branch, the phylogenetic tree clustered the strains into three subgroups. Genogroups and serogroups were superimposed but not strictly. PMID:19955271

  7. Multilocus Sequence Analysis for Typing Leptospira interrogans and Leptospira kirschneri▿ †

    OpenAIRE

    Leon, Albertine; Pronost, Stéphane; Fortier, Guillaume; Andre-Fontaine, Geneviève; Leclercq, Roland

    2009-01-01

    Fifty-three strains belonging to the pathogenic species Leptospira interrogans and Leptospira kirschneri were analyzed by multilocus sequence analysis. The species formed two distinct branches. In the L. interrogans branch, the phylogenetic tree clustered the strains into three subgroups. Genogroups and serogroups were superimposed but not strictly.

  8. Next-generation sequence analysis of cancer xenograft models.

    Directory of Open Access Journals (Sweden)

    Fernando J Rossello

    Full Text Available Next-generation sequencing (NGS studies in cancer are limited by the amount, quality and purity of tissue samples. In this situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells represents a technical challenge to their use in NGS studies. We examined this problem in an established primary xenograft model of small cell lung cancer (SCLC, a malignancy often diagnosed from small biopsy or needle aspirate samples. Using an in silico strategy that assign reads according to species-of-origin, we prospectively compared NGS data from primary xenograft models with matched cell lines and with published datasets. We show here that low-coverage whole-genome analysis demonstrated remarkable concordance between published genome data and internal controls, despite the presence of mouse genomic DNA. Exome capture sequencing revealed that this enrichment procedure was highly species-specific, with less than 4% of reads aligning to the mouse genome. Human-specific expression profiling with RNA-Seq replicated array-based gene expression experiments, whereas mouse-specific transcript profiles correlated with published datasets from human cancer stroma. We conclude that primary xenografts represent a useful platform for complex NGS analysis in cancer research for tumours with limited sample resources, or those with prominent stromal cell populations.

  9. Comparative analysis of sequences from PT 2013

    DEFF Research Database (Denmark)

    Mikkelsen, Susie Sommer

    Sheatfish and not EHNV. Generally, mistakes occurred at the ends of the sequences. This can be due to several factors. One is that the sequence has not been trimmed of the sequence primer sites. Another is the lack of quality control of the chromatogram. Finally, sequencing in just one direction can result...... diseases in Europe. As part of the EURL proficiency test for fish diseases it is required to sequence any RANA virus isolates found in any of the samples. It is also highly recommended to sequence the ISA virus to determine whether it be HPRΔ or HPR0. Furthermore, it is recommended that any VHSV and IHNV...... isolates be genotyped. As part of the evaluation of the proficiency results it was decided this year to look into the quality and similarity of the sequence results for selected viruses. Ampoule III in the proficiency test 2013 contained an EHNV isolate. The EURL received 43 sequences from 41 laboratories...

  10. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  11. SVAMP: Sequence variation analysis, maps and phylogeny

    KAUST Repository

    Naeem, Raeece

    2014-04-03

    Summary: SVAMP is a stand-alone desktop application to visualize genomic variants (in variant call format) in the context of geographical metadata. Users of SVAMP are able to generate phylogenetic trees and perform principal coordinate analysis in real time from variant call format (VCF) and associated metadata files. Allele frequency map, geographical map of isolates, Tajima\\'s D metric, single nucleotide polymorphism density, GC and variation density are also available for visualization in real time. We demonstrate the utility of SVAMP in tracking a methicillin-resistant Staphylococcus aureus outbreak from published next-generation sequencing data across 15 countries. We also demonstrate the scalability and accuracy of our software on 245 Plasmodium falciparum malaria isolates from three continents. Availability and implementation: The Qt/C++ software code, binaries, user manual and example datasets are available at http://cbrc.kaust.edu.sa/svamp. © The Author 2014.

  12. Statistical analysis of next generation sequencing data

    CERN Document Server

    Nettleton, Dan

    2014-01-01

    Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...

  13. Draft Genome Sequences of Three Novel Low-Abundance Species Strains Isolated from Kefir Grain.

    Science.gov (United States)

    Kim, Yongkyu; Blasche, Sonja; Patil, Kiran R

    2017-09-28

    We report here the genome sequences of three novel bacterial species strains- Bacillus kefirresidentii Opo, Rothia kefirresidentii KRP, and Streptococcus kefirresidentii YK-isolated from kefir grains collected in Germany. The draft genomes of these isolates were remarkably dissimilar (average nucleotide identities, 77.80%, 89.01%, and 92.10%, respectively) to those of the previously sequenced strains. Copyright © 2017 Kim et al.

  14. Movement Pattern Analysis Based on Sequence Signatures

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Chavoshi

    2015-09-01

    Full Text Available Increased affordability and deployment of advanced tracking technologies have led researchers from various domains to analyze the resulting spatio-temporal movement data sets for the purpose of knowledge discovery. Two different approaches can be considered in the analysis of moving objects: quantitative analysis and qualitative analysis. This research focuses on the latter and uses the qualitative trajectory calculus (QTC, a type of calculus that represents qualitative data on moving point objects (MPOs, and establishes a framework to analyze the relative movement of multiple MPOs. A visualization technique called sequence signature (SESI is used, which enables to map QTC patterns in a 2D indexed rasterized space in order to evaluate the similarity of relative movement patterns of multiple MPOs. The applicability of the proposed methodology is illustrated by means of two practical examples of interacting MPOs: cars on a highway and body parts of a samba dancer. The results show that the proposed method can be effectively used to analyze interactions of multiple MPOs in different domains.

  15. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  16. Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine.

    Science.gov (United States)

    Lesser, Mark R; Parchman, Thomas L; Buerkle, C Alex

    2012-05-01

    With the advent of next generation sequencing technologies, transcriptome level sequence collections are arising as prominent resources for the discovery of gene-based molecular markers. In a previous study more than 15,000 simple sequence repeats (SSRs) in expressed sequence tag (EST) sequences resulting from 454 pyrosequencing of Pinus contorta cDNA were identified. From these we developed PCR primers for approximately 4000 candidate SSRs. Here, we tested 184 of these SSRs for successful amplification across P. contorta and eight other pine species and examined patterns of polymorphism and allelic variability for a subset of these SSRs. Cross-species transferability was high, with high percentages of loci producing PCR products in all species tested. In addition, 50% of the loci we screened across panels of individuals from three of these species were polymorphic and allelically diverse. We examined levels of diversity in a subset of these SSRs by collecting genotypic data across several populations of Pinus ponderosa in northern Wyoming. Our results indicate the utility of mining pyrosequenced EST collections for gene-based SSRs and provide a source of molecular markers that should bolster evolutionary genetic investigations across the genus Pinus. © 2011 Blackwell Publishing Ltd.

  17. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

    Directory of Open Access Journals (Sweden)

    Benkman Craig W

    2010-03-01

    Full Text Available Abstract Background Massively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp. have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda, genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies. Results We obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs. A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci

  18. A likelihood ratio test for species membership based on DNA sequence data

    DEFF Research Database (Denmark)

    Matz, Mikhail V.; Nielsen, Rasmus

    2005-01-01

    DNA barcoding as an approach for species identification is rapidly increasing in popularity. However, it remains unclear which statistical procedures should accompany the technique to provide a measure of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled...... sequence is a member of an a priori specified species. We investigate the performance of the test using coalescence simulations, as well as using the real data from butterflies and frogs representing two kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence variability....

  19. BLOG 2.0: a software system for character-based species classification with DNA Barcode sequences. What it does, how to use it

    NARCIS (Netherlands)

    Weitschek, E.; Velzen, van R.; Felici, G.; Bertolazzi, P.

    2013-01-01

    BLOG (Barcoding with LOGic) is a diagnostic and character-based DNA Barcode analysis method. Its aim is to classify specimens to species based on DNA Barcode sequences and on a supervised machine learning approach, using classification rules that compactly characterize species in terms of DNA

  20. Noncoding sequence classification based on wavelet transform analysis: part I

    Science.gov (United States)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  1. simple sequence repeat (SSR) markers in genetic analysis of

    African Journals Online (AJOL)

    Yomi

    2012-08-28

    1998). Cross- species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15:1275-1287.

  2. RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    Science.gov (United States)

    Wang, Pei; Lu, Yanli; Zheng, Mingmin; Rong, Tingzhao; Tang, Qilin

    2011-01-01

    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species. PMID:21525982

  3. A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species

    Science.gov (United States)

    Holmquist, R.

    1978-01-01

    An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.

  4. Image sequence analysis workstation for multipoint motion analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  5. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis.

    Science.gov (United States)

    Kang, Sang-Ho; Lee, Jeong-Hoon; Lee, Hyun Oh; Ahn, Byoung Ohg; Won, So Youn; Sohn, Seong-Han; Kim, Jung Sun

    2017-10-06

    Glycyrrhiza uralensis and G. glabra, members of the Fabaceae, are medicinally important species that are native to Asia and Europe. Extracts from these plants are widely used as natural sweeteners because of their much greater sweetness than sucrose. In this study, the three complete chloroplast genomes and five 45S nuclear ribosomal (nr)DNA sequences of these two licorice species and an interspecific hybrid are presented. The chloroplast genomes of G. glabra, G. uralensis and G. glabra × G. uralensis were 127,895 bp, 127,716 bp and 127,939 bp, respectively. The three chloroplast genomes harbored 110 annotated genes, including 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The 45S nrDNA sequences were either 5,947 or 5,948 bp in length. Glycyrrhiza glabra and G. glabra × G. uralensis showed two types of nrDNA, while G. uralensis contained a single type. The complete 45S nrDNA sequence unit contains 18S rRNA, ITS1, 5.8S rRNA, ITS2 and 26S rRNA. We identified simple sequence repeat and tandem repeat sequences. We also developed four reliable markers for analysis of Glycyrrhiza diversity authentication.

  6. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    Science.gov (United States)

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  7. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ovacik, Meric A. [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu [Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States); Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854 (United States)

    2013-09-15

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogenetic relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.

  8. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    International Nuclear Information System (INIS)

    Ovacik, Meric A.; Androulakis, Ioannis P.

    2013-01-01

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogenetic relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy

  9. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa

    Directory of Open Access Journals (Sweden)

    Pazos-Navarro María

    2011-12-01

    Full Text Available Abstract Background Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species. Results 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total. Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2% successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme. Conclusions B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This

  10. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization.

    Science.gov (United States)

    Gcebe, Nomakorinte; Rutten, Victor; Pittius, Nicolaas Gey van; Naicker, Brendon; Michel, Anita

    2017-04-01

    Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment, and an increasing number of NTM species have been isolated and characterized from both humans and animals, highlighting the zoonotic potential of these bacteria. Host exposure to NTM may impact on cross-reactive immune responsiveness, which may affect diagnosis of bovine tuberculosis and may also play a role in the variability of the efficacy of Mycobacterium bovis BCG vaccination against tuberculosis. In this study we characterized 10 NTM isolates originating from water, soil, nasal swabs of cattle and African buffalo as well as bovine tissue samples. These isolates were previously identified during an NTM survey and were all found, using 16S rRNA gene sequence analysis to be closely related to Mycobacterium moriokaense. A polyphasic approach that included phenotypic characterization, antibiotic susceptibility profiling, mycolic acid profiling and phylogenetic analysis of four gene loci, 16S rRNA, hsp65, sodA and rpoB, was employed to characterize these isolates. Sequence data analysis of the four gene loci revealed that these isolates belong to a unique species of the genus Mycobacterium. This evidence was further supported by several differences in phenotypic characteristics between the isolates and the closely related species. We propose the name Mycobacterium malmesburyense sp. nov. for this novel species. The type strain is WCM 7299T (=ATCC BAA-2759T=CIP 110822T).

  11. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    Science.gov (United States)

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  12. Use of DNA sequences to identify forensically important fly species and their distribution in the coastal region of Central California.

    Science.gov (United States)

    Nakano, Angie; Honda, Jeff

    2015-08-01

    Forensic entomology has gained prominence in recent years, as improvements in DNA technology and molecular methods have allowed insect and other arthropod evidence to become increasingly useful in criminal and civil investigations. However, comprehensive faunal inventories are still needed, including cataloging local DNA sequences for forensically significant Diptera. This multi-year fly-trapping study was built upon and expanded a previous survey of these flies in Santa Clara County, including the addition of genetic barcoding data from collected species of flies. Flies from the families Calliphoridae, Sarcophagidae, and Muscidae were trapped in meat-baited traps set in a variety of locations throughout the county. Flies were identified using morphological features and confirmed by molecular analysis. A total of 16 calliphorid species, 11 sarcophagid species, and four muscid species were collected and differentiated. This study found more species of flies than previous area surveys and established new county records for two calliphorid species: Cynomya cadaverina and Chrysomya rufifacies. Differences were found in fly fauna in different areas of the county, indicating the importance of microclimates in the distribution of these flies. Molecular analysis supported the use of DNA barcoding as an effective method of identifying cryptic fly species. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).

    Science.gov (United States)

    Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal

    2015-10-01

    We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    Science.gov (United States)

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  15. A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species

    NARCIS (Netherlands)

    Boonsilp, Siriphan; Thaipadungpanit, Janjira; Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.

    2013-01-01

    The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. We modified the existing scheme by replacing one of the

  16. Complete Genome Sequence of a Rhodococcus Species Isolated from the Winter Skate Leucoraja ocellata.

    Science.gov (United States)

    Wiens, Julia; Ho, Ryan; Fernando, Dinesh; Kumar, Ayush; Loewen, Peter C; Brassinga, Ann Karen C; Anderson, W Gary

    2016-09-01

    We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone. Copyright © 2016 Wiens et al.

  17. Novel algorithms for protein sequence analysis

    NARCIS (Netherlands)

    Ye, Kai

    2008-01-01

    Each protein is characterized by its unique sequential order of amino acids, the so-called protein sequence. Biology”s paradigm is that this order of amino acids determines the protein”s architecture and function. In this thesis, we introduce novel algorithms to analyze protein sequences. Chapter 1

  18. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol

    2010-01-01

    preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication. CONCLUSIONS...

  19. Species delimitation and phylogenetic reconstruction of the sinipercids (Perciformes: Sinipercidae) based on target enrichment of thousands of nuclear coding sequences.

    Science.gov (United States)

    Song, Shuli; Zhao, Jinliang; Li, Chenhong

    2017-06-01

    The sinipercids are freshwater fishes endemic to East Asia, mainly in China. Phylogenetic studies on the sinipercids have made great progress in the last decades, but interspecific relationships and evolutionary history of the sinipercids remain unresolved. Lack of distinctive morphological characters leads to problems in validating of some species, such as Siniperca loona. Moreover, genetic data are needed to delimitate species pairs with explicit hypothesis testing, such as in S. chuatsi vs. S. kneri and Coreoperca whiteheadi vs. C. liui. Here we reconstructed phylogeny of the sinipercids with an unprecedented scale of data, 16,943 loci of single-copy coding sequence data from nine sinipercid species, eight putative sister taxa and two outgroups. Targeted sequences were collected using gene enrichment and Illumina sequencing, yielding thousands of protein coding sequences and single nucleotide polymorphisms (SNPs) data. Maximum likelihood and coalescent species tree analyses resulted in identical and highly supported trees. We confirmed that the centrarchids are sister to the sinipercids. A monophyletic Sinipercidae with two genera, Siniperca and Coreoperca was also supported. Different from most previous studies, S. scherzeri was found as the most basal taxon to other species of Siniperca, which consists of two clades: a clade having S. roulei sister to S. chuatsi and S. kneri, and a clade consisting S. loona sister to S. obscura and S. undulata. We found that both S. loona and C. liui are valid species using Bayes factor delimitation (BFD ∗ ) based on SNPs data. Species delimitation also provided decisive support for S. chuatsi and S. kneri being two distinct species. We calibrated a chronogram of the sinipercids based on 100 loci and three fossil calibration points using BEAST, and reconstructed ancestral ranges of the sinipercids using Lagrange Analysis (DEC model) and Statistical Dispersal-Vicariance Analysis (S-DIVA) implemented in RASP. Divergence time

  20. Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics.

    Science.gov (United States)

    Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2016-07-01

    On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.

  1. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    Science.gov (United States)

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  2. Characterization and sequence analysis of cysteine and glycine-rich ...

    African Journals Online (AJOL)

    Primers specific for CSRP3 were designed using known cDNA sequences of Bos taurus published in database with different accession numbers. Polymerase chain reaction (PCR) was performed and products were purified and sequenced. Sequence analysis and alignment were carried out using CLUSTAL W (1.83).

  3. Analysis of expressed sequence tags from the Ulva prolifera (Chlorophyta)

    Science.gov (United States)

    Niu, Jianfeng; Hu, Haiyan; Hu, Songnian; Wang, Guangce; Peng, Guang; Sun, Song

    2010-01-01

    In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera ( Ulva prolifera O. F. Müller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10 072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).

  4. Incident sequence analysis; event trees, methods and graphical symbols

    International Nuclear Information System (INIS)

    1980-11-01

    When analyzing incident sequences, unwanted events resulting from a certain cause are looked for. Graphical symbols and explanations of graphical representations are presented. The method applies to the analysis of incident sequences in all types of facilities. By means of the incident sequence diagram, incident sequences, i.e. the logical and chronological course of repercussions initiated by the failure of a component or by an operating error, can be presented and analyzed simply and clearly

  5. Computer-aided visualization and analysis system for sequence evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Mark S.; Wang, Chunwei; Jevons, Luis C.; Bernhart, Derek H.; Lipshutz, Robert J.

    2004-05-11

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  6. Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology.

    Directory of Open Access Journals (Sweden)

    Justin N Vaughn

    Full Text Available Plants from the Zingiberaceae family are a key source of spices and herbal medicines. Species identification within this group is critical in the search for known and possibly novel bioactive compounds. To facilitate precise characterization of this group, we have sequenced chloroplast genomes from species representing five major groups within Zingiberaceae. Generally, the structure of these genomes is similar to the basal angiosperm excepting an expansion of 3 kb associated with the inverted repeat A region. Portions of this expansion appear to be shared across the entire Zingiberales order, which includes gingers and bananas. We used whole plastome alignment information to develop DNA barcodes that would maximize the ability to differentiate species within the Zingiberaceae. Our computation pipeline identified regions of high variability that were flanked by highly conserved regions used for primer design. This approach yielded hitherto unexploited regions of variability. These theoretically optimal barcodes were tested on a range of species throughout the family and were found to amplify and differentiate genera and, in some cases, species. Still, though these barcodes were specifically optimized for the Zingiberaceae, our data support the emerging consensus that whole plastome sequences are needed for robust species identification and phylogenetics within this family.

  7. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  8. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi and related species

    Directory of Open Access Journals (Sweden)

    Odvody Gary N

    2008-11-01

    Peronosclerospora, Peronospora and Sclerospora spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA grouped the 34 isolates into three distinct groups (all 19 isolates of Peronosclerospora sorghi in cluster I, five isolates of P. maydis and three isolates of P. sacchari in cluster II and five isolates of Sclerospora graminicola in cluster III. Conclusion To our knowledge, this is the first attempt to extensively develop SSR markers from Peronosclerospora genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.

  9. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species.

    Science.gov (United States)

    Perumal, Ramasamy; Nimmakayala, Padmavathi; Erattaimuthu, Saradha R; No, Eun-Gyu; Reddy, Umesh K; Prom, Louis K; Odvody, Gary N; Luster, Douglas G; Magill, Clint W

    2008-11-29

    spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of Peronosclerospora sorghi in cluster I, five isolates of P. maydis and three isolates of P. sacchari in cluster II and five isolates of Sclerospora graminicola in cluster III). To our knowledge, this is the first attempt to extensively develop SSR markers from Peronosclerospora genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.

  10. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.

    Science.gov (United States)

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-08-22

    The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression

  11. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2007-08-01

    Full Text Available Abstract Background The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. Results The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c a significant reduction of RNA editing. Conclusion Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards

  12. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species.

    Science.gov (United States)

    Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V

    2017-07-21

    DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.

  13. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.

    Science.gov (United States)

    Shmakov, Sergey A; Sitnik, Vassilii; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin V; Koonin, Eugene V

    2017-09-19

    Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR "dark matter." We performed a comprehensive analysis of the spacers from all CRISPR- cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. IMPORTANCE The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers

  14. Sequence divergence of microsatellites for phylogeographic assessment of Moroccan Medicago species.

    Science.gov (United States)

    Zitouna, N; Marghali, S; Gharbi, M; Haddioui, A; Trifi-Farah, N

    2014-03-12

    Six Medicago species were investigated to characterize and valorize plant genetic resources of pastoral interest in Morocco. Samples were obtained from the core collection of the South Australian Research and Development Institute (SARDI). The transferability of single sequence repeat markers of Medicago truncatula was successful with 97.6% efficiency across the five species. A total of 283 alleles and 243 genotypes were generated using seven SSR markers, confirming the high level of polymorphism that is characteristic of the Medicago genus, despite a heterozygosity deficit (HO = 0.378; HE = 0.705). In addition, a high level of gene flow was revealed among the species analyzed with significant intra-specific variation. The unweighted pair group method with arithmetic mean dendrogram generated by the dissimilarity matrix revealed that M. polymorpha and M. orbicularis are closely related, and that M. truncatula is likely the ancestral species. The Pearson correlation index revealed no significant correlations between the geographic distribution of the Moroccan species and genetic similarities, indicating local adaptation of these species to different ecological environments independent of their topographical proximities. The substantial genetic variation observed was likely due to the predominance of selfing species, the relative proximity of prospected sites, human impacts, and the nature of the SARDI core collections, which are selected for their high genetic diversity. The results of this first report on Moroccan Medicago species will be of great interest for establishing strategies aiming at reasonable management and selection programs for local and Mediterranean germplasm in the face of increasing environmental change.

  15. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  16. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  17. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus.

    Science.gov (United States)

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus , occurring in 48 of the 61 Ilarvirus -positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus -like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus -like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus -like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the

  18. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus

    Directory of Open Access Journals (Sweden)

    Wycliff M. Kinoti

    2017-06-01

    Full Text Available The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV and Apple mosaic virus (ApMV were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples

  19. Scalable Kernel Methods and Algorithms for General Sequence Analysis

    Science.gov (United States)

    Kuksa, Pavel

    2011-01-01

    Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…

  20. Development of Microsatellite Loci for the Riparian Tree Species Melaleuca argentea (Myrtaceae Using 454 Sequencing

    Directory of Open Access Journals (Sweden)

    Paul G. Nevill

    2013-05-01

    Full Text Available Premise of the study: Microsatellite primers were developed for Melaleuca argentea (Myrtaceae to evaluate genetic diversity and population genetic structure of this broadly distributed northern Australian riparian tree species. Methods and Results: 454 GS-FLX shotgun sequencing was used to obtain 5860 sequences containing putative microsatellite motifs. Two multiplex PCRs were optimized to genotype 11 polymorphic microsatellite loci. These loci were screened for variation in individuals from two populations in the Pilbara region, northwestern Western Australia. Overall, observed heterozygosities ranged from 0.27 to 0.86 (mean: 0.52 and the number of alleles per locus ranged from two to 13 (average: 4.3. Conclusions: These microsatellite loci will be useful in future studies of the evolutionary history and population and spatial genetic structure in M. argentea, and inform the development of seed sourcing strategies for the species.

  1. Microsatellite Primers Identified by 454 Sequencing in the Floodplain Tree Species Eucalyptus victrix (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Paul G. Nevill

    2013-05-01

    Full Text Available Premise of the study: Microsatellite primers were developed for Eucalyptus victrix (Myrtaceae to evaluate the population and spatial genetic structure of this widespread northwestern Australian riparian tree species, which may be impacted by hydrological changes associated with mining activity. Methods and Results: 454 GS-FLX shotgun sequencing was used to obtain 1895 sequences containing putative microsatellite motifs. Ten polymorphic microsatellite loci were identified and screened for variation in individuals from two populations in the Pilbara region. Observed heterozygosities ranged from 0.44 to 0.91 (mean: 0.66 and the number of alleles per locus ranged from five to 25 (average: 11. Conclusions: These microsatellite loci will be useful in future studies of population and spatial genetic structure in E. victrix, and inform the development of seed sourcing strategies for the species.

  2. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    Science.gov (United States)

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.

  3. An algorithm and program for finding sequence specific oligo-nucleotide probes for species identification

    Directory of Open Access Journals (Sweden)

    Tautz Diethard

    2002-03-01

    Full Text Available Abstract Background The identification of species or species groups with specific oligo-nucleotides as molecular signatures is becoming increasingly popular for bacterial samples. However, it shows also great promise for other small organisms that are taxonomically difficult to tract. Results We have devised here an algorithm that aims to find the optimal probes for any given set of sequences. The program requires only a crude alignment of these sequences as input and is optimized for performance to deal also with very large datasets. The algorithm is designed such that the position of mismatches in the probes influences the selection and makes provision of single nucleotide outloops. Program implementations are available for Linux and Windows.

  4. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    Science.gov (United States)

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  5. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    Directory of Open Access Journals (Sweden)

    Fengnian Wu

    Full Text Available Potato psyllid (Bactericera cockerelli is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq. The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs, 2 ribosomal RNA genes (rRNAs, 22 transfer RNA genes (tRNAs, and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.

  6. Recurrence plot analysis of DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zuobing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: wuzb@lnm.imech.ac.cn

    2004-11-15

    Recurrence plot technique of DNA sequences is established on metric representation and employed to analyze correlation structure of nucleotide strings. It is found that, in the transference of nucleotide strings, a human DNA fragment has a major correlation distance, but a yeast chromosome's correlation distance has a constant increasing.

  7. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum transcriptome.

    Directory of Open Access Journals (Sweden)

    Silvan Oulion

    Full Text Available BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata, as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode. Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp. Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation

  8. Analysis of Neuronal Sequences Using Pairwise Biases

    Science.gov (United States)

    2015-08-27

    semantic memory (knowledge of facts) and implicit memory (e.g., how to ride a bike ). Evidence for the participation of the hippocampus in the formation of...hippocampal formation in an attempt to be cured of severe epileptic seizures. Although the surgery was successful in regards to reducing the frequency and...very different from each other in many ways including duration and number of spikes. Still, these sequences share a similar trend in the general order

  9. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    OpenAIRE

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A.; Druzhinina, Irina S.; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D.; Aerts, Andrea; Antal, Zsuzsanna

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocl...

  10. A phylogenetic study of ubiquinone-7 species of the genus Candida based on 18S ribosomal DNA sequence divergence.

    Science.gov (United States)

    Suzuki, Motofumi; Nakase, Takashi

    2002-02-01

    second cluster comprised C. diversa, C. silvae, 4 Saturnispora species, and P. besseyi. The third comprised C. sorboxylosa, and the fourth comprised C. vini. Based on this 18S rDNA sequence analysis, it is evident that Q7-forming Candida species and the genera Pichia and Williopsis are polyphyletic. The genus Issatchenkia is suggested to be congeneric with the genus Pichia. The genus Saturnispora is phylogenetically definable.

  11. Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences.

    Science.gov (United States)

    Koopman, W J; Guetta, E; van de Wiel, C C; Vosman, B; van den Berg, R G

    1998-11-01

    Internal transcribed spacer (ITS-1) sequences from 97 accessions representing 23 species of Lactuca and related genera were determined and used to evaluate species relationships of Lactuca sensu lato (s.l.). The ITS-1 phylogenies, calculated using PAUP and PHYLIP, correspond better to the classification of Feráková than to other classifications evaluated, although the inclusion of sect. Lactuca subsect. Cyanicae is not supported. Therefore, exclusion of subsect. Cyanicae from Lactuca sensu Feráková is proposed. The amended genus contains the entire gene pool (sensu Harlan and De Wet) of cultivated lettuce (Lactuca sativa). The position of the species in the amended classification corresponds to their position in the lettuce gene pool. In the ITS-1 phylogenies, a clade with L. sativa, L. serriola, L. dregeana, L. altaica, and L. aculeata represents the primary gene pool. L. virosa and L. saligna, branching off closest to this clade, encompass the secondary gene pool. L. virosa is possibly of hybrid origin. The primary and secondary gene pool species are classified in sect. Lactuca subsect. Lactuca. The species L. quercina, L. viminea, L. sibirica, and L. tatarica, branching off next, represent the tertiary gene pool. They are classified in Lactuca sect. Lactucopsis, sect. Phaenixopus, and sect. Mulgedium, respectively. L. perennis and L. tenerrima, classified in sect. Lactuca subsect. Cyanicae, form clades with species from related genera and are not part of the lettuce gene pool.

  12. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    Science.gov (United States)

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  13. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  14. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region.

    Science.gov (United States)

    Yao, Hui; Song, Jing-Yuan; Ma, Xin-Ye; Liu, Chang; Li, Ying; Xu, Hong-Xi; Han, Jian-Ping; Duan, Li-Sheng; Chen, Shi-Lin

    2009-05-01

    DNA barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Although a consensus has not been reached regarding which DNA sequences can be used as the best plant barcodes, the psbA-trnH spacer region has been tested extensively in recent years. In this study, we hypothesize that the psbA-trnH spacer regions are also effective barcodes for Dendrobium species. We have sequenced the chloroplast psbA-trnH intergenic spacers of 17 Dendrobium species to test this hypothesis. The sequences were found to be significantly different from those of other species, with percentages of variation ranging from 0.3 % to 2.3 % and an average of 1.2 %. In contrast, the intraspecific variation among the Dendrobium species studied ranged from 0 % to 0.1 %. The sequence difference between the psbA-trnH sequences of 17 Dendrobium species and one Bulbophyllum odoratissimum ranged from 2.0 % to 3.1 %, with an average of 2.5 %. Our results support the notion that the psbA-trnH intergenic spacer region could be used as a barcode to distinguish various Dendrobium species and to differentiate Dendrobium species from other adulterating species. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  15. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  16. Disambiguate: An open-source application for disambiguating two species in next generation sequencing data from grafted samples.

    Science.gov (United States)

    Ahdesmäki, Miika J; Gray, Simon R; Johnson, Justin H; Lai, Zhongwu

    2016-01-01

    Grafting of cell lines and primary tumours is a crucial step in the drug development process between cell line studies and clinical trials. Disambiguate is a program for computationally separating the sequencing reads of two species derived from grafted samples. Disambiguate operates on DNA or RNA-seq alignments to the two species and separates the components at very high sensitivity and specificity as illustrated in artificially mixed human-mouse samples. This allows for maximum recovery of data from target tumours for more accurate variant calling and gene expression quantification. Given that no general use open source algorithm accessible to the bioinformatics community exists for the purposes of separating the two species data, the proposed Disambiguate tool presents a novel approach and improvement to performing sequence analysis of grafted samples. Both Python and C++ implementations are available and they are integrated into several open and closed source pipelines. Disambiguate is open source and is freely available at https://github.com/AstraZeneca-NGS/disambiguate.

  17. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    Science.gov (United States)

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  18. Sequence and comparative analysis of Leuconostoc dairy bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold; Hansen, Lars Henrik; Neve, Horst

    2014-01-01

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc...

  19. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    Science.gov (United States)

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cloning and sequence analysis of benzo-a-pyreneinducible ...

    African Journals Online (AJOL)

    The phylogenetic tree based on the amino acid sequences clearly shows tilapia CYP1A and killifish CYP1A to be more closely related to each other than to the other CYP1A subfamilies. Sequence analysis of 3727 bp of genomic DNA showed that the clone obtained was the structural gene of CYP1A which consists of ...

  1. Biological sequence analysis: probabilistic models of proteins and nucleic acids

    National Research Council Canada - National Science Library

    Durbin, Richard

    1998-01-01

    ... analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference...

  2. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina.

    Directory of Open Access Journals (Sweden)

    Tingcai Cheng

    Full Text Available The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG and posterior silk gland (PSG. Three sericin genes (sericin 1, sericin 2, and sericin 3 were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25 were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs and 361 insertion-deletions (INDELs were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.

  3. Delimiting species of Protaphorura (Collembola: Onychiuridae): integrative evidence based on morphology, DNA sequences and geography.

    Science.gov (United States)

    Sun, Xin; Zhang, Feng; Ding, Yinhuan; Davies, Thomas W; Li, Yu; Wu, Donghui

    2017-08-15

    Species delimitation remains a significant challenge when the diagnostic morphological characters are limited. Integrative taxonomy was applied to the genus Protaphorura (Collembola: Onychiuridae), which is one of most difficult soil animals to distinguish taxonomically. Three delimitation approaches (morphology, molecular markers and geography) were applied providing rigorous species validation criteria with an acceptably low error rate. Multiple molecular approaches, including distance- and evolutionary model-based methods, were used to determine species boundaries based on 144 standard barcode sequences. Twenty-two molecular putative species were consistently recovered across molecular and geographical analyses. Geographic criteria were was proved to be an efficient delimitation method for onychiurids. Further morphological examination, based on the combination of the number of pseudocelli, parapseudocelli and ventral mesothoracic chaetae, confirmed 18 taxa of 22 molecular units, with six of them described as new species. These characters were found to be of high taxonomical value. This study highlights the potential benefits of integrative taxonomy, particularly simultaneous use of molecular/geographical tools, as a powerful way of ascertaining the true diversity of the Onychiuridae. Our study also highlights that discovering new morphological characters remains central to achieving a full understanding of collembolan taxonomy.

  4. Phylogenetic relationships of Palaearctic Formica species (Hymenoptera, Formicidae based on mitochondrial cytochrome B sequences.

    Directory of Open Access Journals (Sweden)

    Anna V Goropashnaya

    Full Text Available Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.

  5. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    Directory of Open Access Journals (Sweden)

    Hironobu Yanagisawa

    2016-03-01

    Full Text Available The presence of high molecular weight double-stranded RNA (dsRNA within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV, a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses.

  7. Parametric inference for biological sequence analysis.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  8. Sequence exploration reveals information bias among molecular markers used in phylogenetic reconstruction for Colletotrichum species.

    Science.gov (United States)

    Rampersad, Sephra N; Hosein, Fazeeda N; Carrington, Christine Vf

    2014-01-01

    The Colletotrichum gloeosporioides species complex is among the most destructive fungal plant pathogens in the world, however, identification of isolates of quarantine importance to the intra-specific level is confounded by a number of factors that affect phylogenetic reconstruction. Information bias and quality parameters were investigated to determine whether nucleotide sequence alignments and phylogenetic trees accurately reflect the genetic diversity and phylogenetic relatedness of individuals. Sequence exploration of GAPDH, ACT, TUB2 and ITS markers indicated that the query sequences had different patterns of nucleotide substitution but were without evidence of base substitution saturation. Regions of high entropy were much more dispersed in the ACT and GAPDH marker alignments than for the ITS and TUB2 markers. A discernible bimodal gap in the genetic distance frequency histograms was produced for the ACT and GAPDH markers which indicated successful separation of intra- and inter-specific sequences in the data set. Overall, analyses indicated clear differences in the ability of these markers to phylogenetically separate individuals to the intra-specific level which coincided with information bias.

  9. Next-generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species in East Australia (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-09-01

    In this study, the complete mitogenome sequence of a cryptic species from East Australia (Mugil sp. H) belonging to the worldwide Mugil cephalus species complex (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,845 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop consists of 1067 bp length, and is located between tRNA-Pro and tRNA-Phe. The overall base composition of East Australia M. cephalus is 28.4% for A, 29.3% for C, 15.4% for G and 26.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  10. Sequence determination and analysis of the NSs genes of two tospoviruses.

    Science.gov (United States)

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  11. Genome sequences of six Phytophthora species associated with forests in New Zealand

    Science.gov (United States)

    Studholme, D.J.; McDougal, R.L.; Sambles, C.; Hansen, E.; Hardy, G.; Grant, M.; Ganley, R.J.; Williams, N.M.

    2015-01-01

    In New Zealand there has been a long association of Phytophthora diseases in forests, nurseries, remnant plantings and horticultural crops. However, new Phytophthora diseases of trees have recently emerged. Genome sequencing has been performed for 12 Phytophthora isolates, from six species: Phytophthora pluvialis, Phytophthora kernoviae, Phytophthora cinnamomi, Phytophthora agathidicida, Phytophthora multivora and Phytophthora taxon Totara. These sequences will enable comparative analyses to identify potential virulence strategies and ultimately facilitate better control strategies. This Whole Genome Shotgun data have been deposited in DDBJ/ENA/GenBank under the accession numbers LGTT00000000, LGTU00000000, JPWV00000000, JPWU00000000, LGSK00000000, LGSJ00000000, LGTR00000000, LGTS00000000, LGSM00000000, LGSL00000000, LGSO00000000, and LGSN00000000. PMID:26981359

  12. RESEARCH NOTE Genome-based exome-sequencing analysis ...

    Indian Academy of Sciences (India)

    Navya

    2017-02-22

    Feb 22, 2017 ... Genome-based exome-sequencing analysis identifies GYG1, DIS3L, DDRGK1 genes ... Cardiology Division, Department of Internal Medicine, Severance .... with p values of <0.05 byanalyzing differences in allele distribution.

  13. Editorial: Special Issue on Algorithms for Sequence Analysis and Storage

    Directory of Open Access Journals (Sweden)

    Veli Mäkinen

    2014-03-01

    Full Text Available This special issue of Algorithms is dedicated to approaches to biological sequence analysis that have algorithmic novelty and potential for fundamental impact in methods used for genome research.

  14. The complete mitochondrial genome sequence of the world's largest fish, the whale shark (Rhincodon typus), and its comparison with those of related shark species.

    Science.gov (United States)

    Alam, Md Tauqeer; Petit, Robert A; Read, Timothy D; Dove, Alistair D M

    2014-04-10

    The whale shark (Rhincodon typus) is the largest extant species of fish, belonging to the order Orectolobiformes. It is listed as a "vulnerable" species on the International Union for Conservation of Nature (IUCN)'s Red List of Threatened Species, which makes it an important species for conservation efforts. We report here the first complete sequence of the mitochondrial genome (mitogenome) of the whale shark obtained by next-generation sequencing methods. The assembled mitogenome is a 16,875 bp circle, comprising of 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region. We also performed comparative analysis of the whale shark mitogenome to the available mitogenome sequences of 17 other shark species, four from the order Orectolobiformes, five from Lamniformes and eight from Carcharhiniformes. The nucleotide composition, number and arrangement of the genes in whale shark mitogenome are the same as found in the mitogenomes of the other members of the order Orectolobiformes and its closest orders Lamniformes and Carcharhiniformes, although the whale shark mitogenome had a slightly longer control region. The availability of mitogenome sequence of whale shark will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this species. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats.

    Science.gov (United States)

    Pissard, A; Ghislain, M; Bertin, P

    2006-01-01

    The Andean tuber-bearing species, Oxalis tuberosa Mol., is a vegetatively propagated crop cultivated in the uplands of the Andes. Its genetic diversity was investigated in the present study using the inter-simple sequence repeat (ISSR) technique. Thirty-two accessions originating from South America (Argentina, Bolivia, Chile, and Peru) and maintained in vitro were chosen to represent the ecogeographic diversity of its cultivation area. Twenty-two primers were tested and 9 were selected according to fingerprinting quality and reproducibility. Genetic diversity analysis was performed with 90 markers. Jaccard's genetic distance between accessions ranged from 0 to 0.49 with an average of 0.28 +/- 0.08 (mean +/- SD). Dendrogram (UPGMA (unweighted pair-group method with arithmetic averaging)) and factorial correspondence analysis (FCA) showed that the genetic structure was influenced by the collection site. The two most distant clusters contained all of the Peruvian accessions, one from Bolivia, none from Argentina or Chile. Analysis by country revealed that Peru presented the greatest genetic distances from the other countries and possessed the highest intra-country genetic distance (0.30 +/- 0.08). This suggests that the Peruvian oca accessions form a distinct genetic group. The relatively low level of genetic diversity in the oca species may be related to its predominating reproduction strategy, i.e., vegetative propagation. The extent and structure of the genetic diversity of the species detailed here should help the establishment of conservation strategies.

  16. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  17. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species

    DEFF Research Database (Denmark)

    Razgour, Orly; Clare, Elizabeth L.; Zeale, Matt R. K.

    2011-01-01

    Sympatric cryptic species, characterized by low morphological differentiation, pose a challenge to understanding the role of interspecific competition in structuring ecological communities. We used traditional (morphological) and novel molecular methods of diet analysis to study the diet of two...... of the cryptic bats, 60% of which were assigned to a likely species or genus. The findings from the molecular study supported the results of microscopic analyses in showing that the diets of both species were dominated by lepidopterans. However, HTS provided a sufficiently high resolution of prey identification...

  18. Estimation of a Killer Whale (Orcinus orca Population's Diet Using Sequencing Analysis of DNA from Feces.

    Directory of Open Access Journals (Sweden)

    Michael J Ford

    Full Text Available Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%. Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.

  19. Sequencing and Analysis of Neanderthal Genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith,Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Paabo,Svante; Pritchard, Jonathan K.; Rubin, Edward M.

    2006-06-13

    Recovery and analysis of multiple Neanderthal autosomalsequences using a metagenomic approach reveals that modern humans andNeanderthals split ~;400,000 years ago, without significant evidence ofsubsequent admixture.

  20. SVAMP: Sequence variation analysis, maps and phylogeny

    KAUST Repository

    Naeem, Raeece; Hidayah, Lailatul; Preston, Mark D.; Clark, Taane G.; Pain, Arnab

    2014-01-01

    Summary: SVAMP is a stand-alone desktop application to visualize genomic variants (in variant call format) in the context of geographical metadata. Users of SVAMP are able to generate phylogenetic trees and perform principal coordinate analysis

  1. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    DEFF Research Database (Denmark)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes...... confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted...... of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential...

  2. Single nucleotide polymorphism barcoding of cytochrome c oxidase I sequences for discriminating 17 species of Columbidae by decision tree algorithm.

    Science.gov (United States)

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Dahms, Hans-Uwe; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-07-01

    DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high-throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree-based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species-specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.

  3. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna

    2015-01-01

    , winter hardiness, drought tolerance and resistance to grazing. In this study we have sequenced and assembled the low copy fraction of the genomes of Lolium westerwoldicum, Lolium multiflorum, Festuca pratensis and Lolium temulentum. We have also generated de-novo transcriptome assemblies for each species......, and these have aided in the annotation of the genomic sequence. Using this data we were able to generate annotated assemblies of the gene rich regions of the four species to complement the already sequenced Lolium perenne genome. Using these gene models we have identified orthologous genes between the species...

  4. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Science.gov (United States)

    Pannekoek, Yvonne; Dickx, Veerle; Beeckman, Delphine S A; Jolley, Keith A; Keijzers, Wendy C; Vretou, Evangelia; Maiden, Martin C J; Vanrompay, Daisy; van der Ende, Arie

    2010-12-02

    Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  5. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Directory of Open Access Journals (Sweden)

    Yvonne Pannekoek

    2010-12-01

    Full Text Available Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  6. Nucleotide sequence analysis of the Legionella micdadei mip gene, encoding a 30-kilodalton analog of the Legionella pneumophila Mip protein

    DEFF Research Database (Denmark)

    Bangsborg, Jette Marie; Cianciotto, N P; Hindersson, P

    1991-01-01

    After the demonstration of analogs of the Legionella pneumophila macrophage infectivity potentiator (Mip) protein in other Legionella species, the Legionella micdadei mip gene was cloned and expressed in Escherichia coli. DNA sequence analysis of the L. micdadei mip gene contained in the plasmid p...... homology with the mip-like genes of several Legionella species. Furthermore, amino acid sequence comparisons revealed significant homology to two eukaryotic proteins with isomerase activity (FK506-binding proteins)....

  7. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.).

    Science.gov (United States)

    Wang, Hongxia; Walla, James A; Zhong, Shaobin; Huang, Danqiong; Dai, Wenhao

    2012-11-01

    Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

  8. Quantiprot - a Python package for quantitative analysis of protein sequences.

    Science.gov (United States)

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  9. Genetic differentiation between fake abalone and genuine Haliotis species using the forensically informative nucleotide sequencing (FINS) method.

    Science.gov (United States)

    Ha, Wai Y; Reid, David G; Kam, Wan L; Lau, Yuk Y; Sham, Wing C; Tam, Silvia Y K; Sin, Della W M; Mok, Chuen S

    2011-05-25

    Abalones ( Haliotis species) are a popular delicacy and commonly preserved in dried form either whole or in slices or small pieces for consumption in Asian countries. Driven by the huge profit from trading abalones, dishonest traders may substitute other molluscan species for processed abalone, of which the morphological characteristics are frequently lost in the processed form. For protection of consumer rights and law enforcement against fraud, there is a need for an effective methodology to differentiate between fake and genuine abalone. This paper describes a method (validated according to the international forensic guidelines provided by SWGDAM) for the identification of fake abalone species using forensically informative nucleotide sequence (FINS) analysis. A study of the local market revealed that many claimed "abalone slice" samples on sale are not genuine. The fake abalone samples were found to be either volutids of the genus Cymbium (93%) or the muricid Concholepas concholepas (7%). This is the first report of Cymbium species being used for the preparation and sale as "abalone" in dried sliced form in Hong Kong.

  10. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  11. Expressed sequence tags as a tool for phylogenetic analysis of placental mammal evolution.

    Directory of Open Access Journals (Sweden)

    Morgan Kullberg

    Full Text Available BACKGROUND: We investigate the usefulness of expressed sequence tags, ESTs, for establishing divergences within the tree of placental mammals. This is done on the example of the established relationships among primates (human, lagomorphs (rabbit, rodents (rat and mouse, artiodactyls (cow, carnivorans (dog and proboscideans (elephant. METHODOLOGY/PRINCIPAL FINDINGS: We have produced 2000 ESTs (1.2 mega bases from a marsupial mouse and characterized the data for their use in phylogenetic analysis. The sequences were used to identify putative orthologous sequences from whole genome projects. Although most ESTs stem from single sequence reads, the frequency of potential sequencing errors was found to be lower than allelic variation. Most of the sequences represented slowly evolving housekeeping-type genes, with an average amino acid distance of 6.6% between human and mouse. Positive Darwinian selection was identified at only a few single sites. Phylogenetic analyses of the EST data yielded trees that were consistent with those established from whole genome projects. CONCLUSIONS: The general quality of EST sequences and the general absence of positive selection in these sequences make ESTs an attractive tool for phylogenetic analysis. The EST approach allows, at reasonable costs, a fast extension of data sampling from species outside the genome projects.

  12. Analysis of Multiple Genomic Sequence Alignments: A Web Resource, Online Tools, and Lessons Learned From Analysis of Mammalian SCL Loci

    Science.gov (United States)

    Chapman, Michael A.; Donaldson, Ian J.; Gilbert, James; Grafham, Darren; Rogers, Jane; Green, Anthony R.; Göttgens, Berthold

    2004-01-01

    Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments. PMID:14718377

  13. Applications of statistical physics and information theory to the analysis of DNA sequences

    Science.gov (United States)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  14. Phylogenetic relationships in Solanaceae and related species based on cpDNA sequence from plastid trnE-trnT region

    Directory of Open Access Journals (Sweden)

    Danila Montewka Melotto-Passarin

    2008-01-01

    Full Text Available Intergenic spacers of chloroplast DNA (cpDNA are very useful in phylogenetic and population genetic studiesof plant species, to study their potential integration in phylogenetic analysis. The non-coding trnE-trnT intergenic spacer ofcpDNA was analyzed to assess the nucleotide sequence polymorphism of 16 Solanaceae species and to estimate its ability tocontribute to the resolution of phylogenetic studies of this group. Multiple alignments of DNA sequences of trnE-trnT intergenicspacer made the identification of nucleotide variability in this region possible and the phylogeny was estimated by maximumparsimony and rooted with Convolvulaceae Ipomoea batatas, the most closely related family. Besides, this intergenic spacerwas tested for the phylogenetic ability to differentiate taxonomic levels. For this purpose, species from four other families wereanalyzed and compared with Solanaceae species. Results confirmed polymorphism in the trnE-trnT region at different taxonomiclevels.

  15. Competition under high and low nutrient levels among three grassland species occupying different positions in a successional sequence

    NARCIS (Netherlands)

    Schippers, P.; Snoeijing, I.; Kropff, M.J.

    1999-01-01

    To clarify the role of seasonal change, competitive response and nutrient availability in the competitive asymmetry of grassland species a competition experiment was conducted on Holcus lanatus, Anthoxanthum odoratum and Festuca ovina, which represent a successional sequence of decreasing nutrient

  16. Mycobacterial species as case-study of comparative genome analysis.

    Science.gov (United States)

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  17. Node-based analysis of species distributions

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Rahbek, Carsten; Fjeldså, Jon

    2014-01-01

    overrepresentation score (SOS) and the geographic node divergence (GND) score, which together combine ecological and evolutionary patterns into a single framework and avoids many of the problems that characterize community phylogenetic methods in current use.This approach goes through each node in the phylogeny...... with case studies on two groups with well-described biogeographical histories: a local-scale community data set of hummingbirds in the North Andes, and a large-scale data set of the distribution of all species of New World flycatchers. The node-based analysis of these two groups generates a set...... of intuitively interpretable patterns that are consistent with current biogeographical knowledge.Importantly, the results are statistically tractable, opening many possibilities for their use in analyses of evolutionary, historical and spatial patterns of species diversity. The method is implemented...

  18. The ITS1-5.8S rRNA gene -ITS2 sequence variability during the divergence of sweet-grass species (gen us Glyceria R. Br.

    Directory of Open Access Journals (Sweden)

    Alexander V Rodionov

    2011-12-01

    Full Text Available Comparative analysis of the sequence ITS1-5.8S rRNA gene-ITS2 of the nuclear genome of 13 species of genus Glyceria, 4 species of Melica and a species of monotypic genus Pleuropogon showed that the species of the genus Glyceria have 3 haplotypes: 1 Haplotype A was found only in species of the subgenus Glyceria section Glyceria (G. septentrionalis, G. fluitans, G. declinata, G. occidentalis, G. notata, G. borealis, G. leptostachya and in Pleuropogon sabinii; 2 Haplotype C is characteristic of the subgenus Hydropoa, section Hydropoa (G. grandis, G. х amurensis, G. triflora, G. maxima and sect. Lithuanicae (G. leptolepis; 3 Haplotype B is found in the species of the subgenus Hydropoa sections Striatae (G. elata, G. striata, G. neogaea, G. canadensis, Scolochloiformes (G. alnasteretum, G. spiculosa and G. lithuanica of sect. Lithuanicae. Species carring haplotype B are located at the base of the phylogenetic tree of the genus Glyceria and/or clustered with low bootstrap indices. On the phylogenetic trees inferred by the analysis of the sequences ITS and 5.8S rDNA both sect. Glyceria and sect. Hydropoa represented two sister monophyly branches. The species Pleuropogon sabinii belong to the branch of subgenus Glyceria as a sister monotypic branch to the branch of the sect. Glyceria.

  19. Use of Whole-Genus Genome Sequence Data To Develop a Multilocus Sequence Typing Tool That Accurately Identifies Yersinia Isolates to the Species and Subspecies Levels

    Science.gov (United States)

    Hall, Miquette; Chattaway, Marie A.; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica. PMID:25339391

  20. Genomic Characterization for Parasitic Weeds of the Genus Striga by Sample Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Matt C. Estep

    2012-03-01

    Full Text Available Generation of ∼2200 Sanger sequence reads or ∼10,000 454 reads for seven Lour. DNA samples (five species allowed identification of the highly repetitive DNA content in these genomes. The 14 most abundant repeats in these species were identified and partially assembled. Annotation indicated that they represent nine long terminal repeat (LTR retrotransposon families, three tandem satellite repeats, one long interspersed element (LINE retroelement, and one DNA transposon. All of these repeats are most closely related to repetitive elements in other closely related plants and are not products of horizontal transfer from their host species. These repeats were differentially abundant in each species, with the LTR retrotransposons and satellite repeats most responsible for variation in genome size. Each species had some repetitive elements that were more abundant and some less abundant than the other species examined, indicating that no single element or any unilateral growth or decrease trend in genome behavior was responsible for variation in genome size and composition. Genome sizes were determined by flow sorting, and the values of 615 Mb [ (L. Kuntze], 1330 Mb [ (Willd. Vatke], 1425 Mb [ (Delile Benth.] and 2460 Mb ( Benth. suggest a ploidy series, a prediction supported by repetitive DNA sequence analysis. Phylogenetic analysis using six chloroplast loci indicated the ancestral relationships of the five most agriculturally important species, with the unexpected result that the one parasite of dicotyledonous plants ( was found to be more closely related to some of the grass parasites than many of the grass parasites are to each other.

  1. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS (NRRL) Culture Collection using multi-locus sequence analysis

    Science.gov (United States)

    Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...

  2. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  3. Complete Genome Sequence of Bovine Pestivirus Strain PG-2, a Second Member of the Tentative Pestivirus Species Giraffe

    OpenAIRE

    Becher, Paul; Fischer, Nicole; Grundhoff, Adam; Stalder, Hanspeter; Schweizer, Matthias; Postel, Alexander

    2014-01-01

    We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.

  4. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex

    DEFF Research Database (Denmark)

    O'Donnell, Kerry; Gueidan, C; Sink, S

    2009-01-01

    We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species compl...... of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework....

  5. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  6. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences.

    Science.gov (United States)

    Bunawan, Hamidun; Yen, Choong Chee; Yaakop, Salmah; Noor, Normah Mohd

    2017-01-26

    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus. Phylogeny reconstruction was carried out using neighbor-joining, maximum parsimony and Bayesian analyses. All the trees revealed two major clusters, a lowland group consisting of N. ampullaria, N. mirabilis, N. gracilis and N. rafflesiana, and another containing both intermediately distributed species (N. albomarginata and N. benstonei) and four highland species (N. sanguinea, N. macfarlanei, N. ramispina and N. alba). The trnL intron and ITS sequences proved to provide phylogenetic informative characters for deriving a phylogeny of Nepenthes species in Peninsular Malaysia. To our knowledge, this is the first molecular phylogenetic study of Nepenthes species occurring along an altitudinal gradient in Peninsular Malaysia.

  7. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    Science.gov (United States)

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  8. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?

    Directory of Open Access Journals (Sweden)

    Oscar Franzén

    2009-08-01

    Full Text Available Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB. The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.

  9. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  10. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.

    Science.gov (United States)

    Wyszyńska-Koko, J; Kurył, J

    2004-01-01

    MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.

  11. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.

    Science.gov (United States)

    Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

  12. Nonlinear analysis of river flow time sequences

    Science.gov (United States)

    Porporato, Amilcare; Ridolfi, Luca

    1997-06-01

    Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.

  13. Accident sequence analysis of human-computer interface design

    International Nuclear Information System (INIS)

    Fan, C.-F.; Chen, W.-H.

    2000-01-01

    It is important to predict potential accident sequences of human-computer interaction in a safety-critical computing system so that vulnerable points can be disclosed and removed. We address this issue by proposing a Multi-Context human-computer interaction Model along with its analysis techniques, an Augmented Fault Tree Analysis, and a Concurrent Event Tree Analysis. The proposed augmented fault tree can identify the potential weak points in software design that may induce unintended software functions or erroneous human procedures. The concurrent event tree can enumerate possible accident sequences due to these weak points

  14. Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species.

    Directory of Open Access Journals (Sweden)

    Haw Chuan Lim

    Full Text Available Gut bacterial communities of bumble bees are correlated with defense against pathogens. Further understanding this host-microbe association is vitally important as bumble bees are currently experiencing global population declines, potentially due in part to emergent diseases. In this study, we used pyrosequencing and community fingerprinting (ARISA to characterize the gut microbial communities of nine bumble species from across the Bombus phylogeny. Overall, we delimited 74 bacterial taxa (operational taxonomic units or OTUs belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, Actinobacteria, Flavobacteria and Alphaproteobacteria. Each bacterial community was taxonomically simple, containing an average of 1.9 common (relative abundance per sample > 5% bacterial OTUs. The most abundant and prevalent (occurring in 92% of the samples bacterial OTU, based on 16S rRNA sequences, closely matched that of the previously described Betaproteobacteria species Snodgrassella alvi. Bacteria that were first described in bee-related external environments dominated a number of gut bacterial communities, suggesting that they are not strictly dependent on the internal gut environment. The ARISA data showed a correlation between bacterial community structures and the geographic locations where the bees were sampled, suggesting that at least a subset of the bacterial species may be transmitted environmentally. Using light and fluorescent microscopy, we demonstrated that the gut bacteria form a biofilm on the internal epithelial surface of the ileum, corroborating results obtained from Apis mellifera.

  15. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  16. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  17. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study.

    Directory of Open Access Journals (Sweden)

    Emeline Deleury

    Full Text Available Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance

  18. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  19. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  20. An optimum analysis sequence for environmental gamma-ray spectrometry

    International Nuclear Information System (INIS)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L.

    2010-10-01

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced χ 2 criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  1. Comparative analysis of catfish BAC end sequences with the zebrafish genome

    Directory of Open Access Journals (Sweden)

    Abernathy Jason

    2009-12-01

    Full Text Available Abstract Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3% had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5, of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.

  2. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  3. Comparative analysis of the prion protein gene sequences in African lion.

    Science.gov (United States)

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  4. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism.

    Science.gov (United States)

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-09-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7-14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  5. Phylogenetic relationships between Sarcocystis species from reindeer and other Sarcocystidae deduced from ssu rRNA gene sequences

    DEFF Research Database (Denmark)

    Dahlgren, S.S.; Oliveira, Rodrigo Gouveia; Gjerde, B.

    2008-01-01

    any effect on previously inferred phylogenetic relationships within the Sarcocystidae. The complete small subunit (ssu) rRNA gene sequences of all six Sarcocystis species from reindeer were used in the phylogenetic analyses along with ssu rRNA gene sequences of 85 other members of the Coccidea. Trees...... the six species in phylogenetic analyses of the Sarcocystidae, and also to investigate the phylogenetic relationships between the species from reindeer and those from other hosts. The study also aimed at revealing whether the inclusion of six Sarcocystis species from the same intermediate host would have....... tarandivulpes, formed a sister group to other Sarcocystis species with a canine definitive host. The position of S. hardangeri on the tree suggested that it uses another type of definitive host than the other Sarcocystis species in this clade. Considering the geographical distribution and infection intensity...

  6. Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album.

    Science.gov (United States)

    Hong, Su-Young; Cheon, Kyeong-Sik; Yoo, Ki-Oug; Lee, Hyun-Oh; Cho, Kwang-Soo; Suh, Jong-Taek; Kim, Su-Jeong; Nam, Jeong-Hwan; Sohn, Hwang-Bae; Kim, Yul-Ho

    2017-01-01

    The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album , two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp ( C. quinoa ) and 152,167 bp ( C. album ) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 ( C. quinoa ) and 15 ( C. album ) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one ( C. quinoa ) or two ( C. album ) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium , and Chenopodium koraiense , but not in Chenopodium glaucum . A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions-14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium .

  7. Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species.

    Science.gov (United States)

    Rai, Manoj K; Phulwaria, Mahendra; Shekhawat, N S

    2013-08-01

    Present study demonstrated the cross-genera transferability of 23 simple sequence repeat (SSR) primer pairs developed for guava (Psidium guajava L.) to four new targets, two species of eucalypts (Eucalyptus citriodora, Eucalyptus camaldulensis), bottlebrush (Callistemon lanceolatus) and clove (Syzygium aromaticum), belonging to the family Myrtaceae and subfamily Myrtoideae. Off the 23 SSR loci assayed, 18 (78.2%) gave cross-amplification in E. citriodora, 14 (60.8%) in E. camaldulensis and 17-17 (73.9%) in C. lanceolatus and S. aromaticum. Eight primer pairs were found to be transferable to all four species. The number of alleles detected at each locus ranged from one to nine, with an average of 4.8, 2.6, 4.5 and 4.6 alleles in E. citriodora, E. camaldulensis, C. lanceolatus and S. aromaticum, respectively. The high levels of cross-genera transferability of guava SSRs may be applicable for the analysis of intra- and inter specific genetic diversity of target species, especially in E. citriodora, C. lanceolatus and S. aromaticum, for which till date no information about EST-derived as well as genomic SSR is available.

  8. Application of representational difference analysis to identify genomic differences between Bradyrhizobium elkanii and B. Japonicum species.

    Science.gov (United States)

    Soares, René Arderius; Passaglia, Luciane Maria Pereira

    2010-10-01

    Bradyrhizobium elkanii is successfully used in the formulation of commercial inoculants and, together with B. japonicum, it fully supplies the plant nitrogen demands. Despite the similarity between B. japonicum and B. elkanii species, several works demonstrated genetic and physiological differences between them. In this work Representational Difference Analysis (RDA) was used for genomic comparison between B. elkanii SEMIA 587, a crop inoculant strain, and B. japonicum USDA 110, a reference strain. Two hundred sequences were obtained. From these, 46 sequences belonged exclusively to the genome of B. elkanii strain, and 154 showed similarity to sequences from B. japonicum genome. From the 46 sequences with no similarity to sequences from B. japonicum, 39 showed no similarity to sequences in public databases and seven showed similarity to sequences of genes coding for known proteins. These seven sequences were divided in three groups: similar to sequences from other Bradyrhizobium strains, similar to sequences from other nitrogen-fixing bacteria, and similar to sequences from non nitrogen-fixing bacteria. These new sequences could be used as DNA markers in order to investigate the rates of genetic material gain and loss in natural Bradyrhizobium strains.

  9. The coralline genera Sporolithon and Heydrichia (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species.

    Science.gov (United States)

    Richards, Joseph L; Sauvage, Thomas; Schmidt, William E; Fredericq, Suzanne; Hughey, Jeffery R; Gabrielson, Paul W

    2017-10-01

    Interspecific systematics in the red algal order Sporolithales remains problematic. To re-evaluate its species, DNA analyses were performed on historical type material and recently collected specimens assigned to the two genera Sporolithon and Heydrichia. Partial rbcL sequences from the lectotype specimens of Sporolithon ptychoides (the generitype species) and Sporolithon molle, both from El Tor, Egypt, are exact matches to field-collected topotype specimens. Sporolithon crassum and Sporolithon erythraeum also have the same type locality; material of the former appears to no longer exist, and we were unable to PCR amplify DNA from the latter. A new species, Sporolithon eltorensis, is described from the same type locality. We have not found any morpho-anatomical characters that distinguish these three species. No sequenced specimens reported as S. ptychoides from other parts of the world represent this species, and likely reports of S. ptychoides and S. molle based on morpho-anatomy are incorrect. A partial rbcL sequence from the holotype of Sporolithon dimotum indicates it is not a synonym of S. ptychoides, and data from the holotype of S. episporum confirm its specific recognition. DNA sequences from topotype material of Heydrichia woelkerlingii, the generitype species, and isotype material of Heydrichia cerasina confirm that these are distinct species; the taxon reported to be H. woelkerlingii from New Zealand is likely an undescribed species. Type specimens of all other Sporolithon and Heydrichia species need to be sequenced to confirm that they are distinct species; morpho-anatomical studies have proved inadequate for this task. © 2017 Phycological Society of America.

  10. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  11. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Science.gov (United States)

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  12. Sequence-specific electrochemical recognition of multiple species using nanoparticle labels

    International Nuclear Information System (INIS)

    Cai Hong; Shang, Chii; Hsing, I.-Ming

    2004-01-01

    In this work, we report an electrochemical methodology that enables the rapid identification of different DNA sequences on the microfabricated electrodes. Our approach starts with an electropolymerization process on a patterned indium tin oxide (ITO)-coated glass electrode, followed by a selective immobilization of biotin-tagged probes on individually addressable spots via the biotin-streptavidin linkage. An exemplary target mixture containing E. coli and Stachybotrys Chartarum, an airborne pathogen, is then introduced. Recognition of the DNA hybridization event of the immobilized probes with the target pathogen PCR products or synthetic oligonucleotides is achieved by a novel electrochemistry-based technique utilizing the preferential catalytic silver electrodeposition process on the DNA-linked nanogold shells. The ability to selectively immobilize different oligonucleotide probes together with a sensitive electrochemistry-based detection for multiple species, as demonstrated in this study, is an important step forward for the realization of a portable bioanalytical microdevice for the rapid detection of pathogens

  13. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    Directory of Open Access Journals (Sweden)

    Arias Covadonga

    2007-06-01

    Full Text Available Abstract Background The ciliate protozoan Ichthyophthirius multifiliis (Ich is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and virulence, our goal was to generate expressed sequence tags (ESTs for the development of a powerful microarray platform for the analysis of global gene expression in this species. Here, we initiated a project to sequence and analyze over 10,000 ESTs. Results We sequenced 10,368 EST clones using a normalized cDNA library made from pooled samples of the trophont, tomont, and theront life-cycle stages, and generated 9,769 sequences (94.2% success rate. Post-sequencing processing led to 8,432 high quality sequences. Clustering analysis of these ESTs allowed identification of 4,706 unique sequences containing 976 contigs and 3,730 singletons. These unique sequences represent over two million base pairs (~10% of Plasmodium falciparum genome, a phylogenetically related protozoan. BLASTX searches produced 2,518 significant (E-value -5 hits and further Gene Ontology (GO analysis annotated 1,008 of these genes. The ESTs were analyzed comparatively against the genomes of the related protozoa Tetrahymena thermophila and P. falciparum, allowing putative identification of additional genes. All the EST sequences were deposited by dbEST in GenBank (GenBank: EG957858–EG966289. Gene discovery and annotations are presented and discussed. Conclusion This set of ESTs represents a significant proportion of the Ich transcriptome, and provides a material basis for the development of microarrays useful for gene expression studies concerning Ich development, pathogenesis, and virulence.

  14. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  15. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    Science.gov (United States)

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  16. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia.

    Science.gov (United States)

    Inokuma, H; Brouqui, P; Drancourt, M; Raoult, D

    2001-09-01

    The sequence of the citrate synthase gene (gltA) of 13 ehrlichial species (Ehrlichia chaffeensis, Ehrlichia canis, Ehrlichia muris, an Ehrlichia species recently detected from Ixodes ovatus, Cowdria ruminantium, Ehrlichia phagocytophila, Ehrlichia equi, the human granulocytic ehrlichiosis [HGE] agent, Anaplasma marginale, Anaplasma centrale, Ehrlichia sennetsu, Ehrlichia risticii, and Neorickettsia helminthoeca) have been determined by degenerate PCR and the Genome Walker method. The ehrlichial gltA genes are 1,197 bp (E. sennetsu and E. risticii) to 1,254 bp (A. marginale and A. centrale) long, and GC contents of the gene vary from 30.5% (Ehrlichia sp. detected from I. ovatus) to 51.0% (A. centrale). The percent identities of the gltA nucleotide sequences among ehrlichial species were 49.7% (E. risticii versus A. centrale) to 99.8% (HGE agent versus E. equi). The percent identities of deduced amino acid sequences were 44.4% (E. sennetsu versus E. muris) to 99.5% (HGE agent versus E. equi), whereas the homology range of 16S rRNA genes was 83.5% (E. risticii versus the Ehrlichia sp. detected from I. ovatus) to 99.9% (HGE agent, E. equi, and E. phagocytophila). The architecture of the phylogenetic trees constructed by gltA nucleotide sequences or amino acid sequences was similar to that derived from the 16S rRNA gene sequences but showed more-significant bootstrap values. Based upon the alignment analysis of the ehrlichial gltA sequences, two sets of primers were designed to amplify tick-borne Ehrlichia and Neorickettsia genogroup Ehrlichia (N. helminthoeca, E. sennetsu, and E. risticii), respectively. Tick-borne Ehrlichia species were specifically identified by restriction fragment length polymorphism (RFLP) patterns of AcsI and XhoI with the exception of E. muris and the very closely related ehrlichia derived from I. ovatus for which sequence analysis of the PCR product is needed. Similarly, Neorickettsia genogroup Ehrlichia species were specifically identified by

  17. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  18. Whole-Proteome Analysis of Twelve Species of Alphaproteobacteria Links Four Pathogens

    Directory of Open Access Journals (Sweden)

    Yunyun Zhou

    2013-11-01

    Full Text Available Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.

  19. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  20. Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of Mitis group streptococci

    DEFF Research Database (Denmark)

    Rasmusen, L. H.; Dargis, R.; Iversen, Katrine Højholt

    2016-01-01

    observed in single gene analyses. Species identification based on single gene analysis showed their limitations when more strains were included. In contrast, analyses incorporating more sequence data, like MLSA, SNPs and core-genome analyses, provided more distinct clustering. The core-genome tree showed......Identification of Mitis group streptococci (MGS) to the species level is challenging for routine microbiology laboratories. Correct identification is crucial for the diagnosis of infective endocarditis, identification of treatment failure, and/or infection relapse. Eighty MGS from Danish patients...

  1. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Science.gov (United States)

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  2. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  3. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  4. Generation and analysis of expressed sequence tags from Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    EVELYN SILVA

    2006-01-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen of a wide range of plant species, and its infection may cause enormous damage both during plant growth and in the post-harvest phase. We have constructed a cDNA library from an isolate of B. cinerea and have sequenced 11,482 expressed sequence tags that were assembled into 1,003 contigs sequences and 3,032 singletons. Approximately 81% of the unigenes showed significant similarity to genes coding for proteins with known functions: more than 50% of the sequences code for genes involved in cellular metabolism, 12% for transport of metabolites, and approximately 10% for cellular organization. Other functional categories include responses to biotic and abiotic stimuli, cell communication, cell homeostasis, and cell development. We carried out pair-wise comparisons with fungal databases to determine the B. cinerea unisequence set with relevant similarity to genes in other fungal pathogenic counterparts. Among the 4,035 non-redundant B. cinerea unigenes, 1,338 (23% have significant homology with Fusarium verticillioides unigenes. Similar values were obtained for Saccharomyces cerevisiae and Aspergillus nidulans (22% and 24%, respectively. The lower percentages of homology were with Magnaporthe grisae and Neurospora crassa (13% and 19%, respectively. Several genes involved in putative and known fungal virulence and general pathogenicity were identified. The results provide important information for future research on this fungal pathogen

  5. Sequence analysis corresponding to the PPE and PE proteins in ...

    Indian Academy of Sciences (India)

    Unknown

    AB repeats; Mycobacterium tuberculosis genome; PE-PPE domain; PPE, PE proteins; sequence analysis; surface antigens. J. Biosci. | Vol. ... bacterium tuberculosis genomes resulted in the identification of a previously uncharacterized 225 amino acid- ...... Vega Lopez F, Brooks L A, Dockrell H M, De Smet K A,. Thompson ...

  6. Molecular cloning, expression analysis and sequence prediction of ...

    African Journals Online (AJOL)

    CCAAT/enhancer-binding protein beta as an essential transcriptional factor, regulates the differentiation of adipocytes and the deposition of fat. Herein, we cloned the whole open reading frame (ORF) of bovine C/EBPβ gene and analyzed its putative protein structures via DNA cloning and sequence analysis. Then, the ...

  7. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies

    DEFF Research Database (Denmark)

    Lai, Edward Chia Cheng; Pratt, Nicole; Hsieh, Cheng Yang

    2017-01-01

    Sequence symmetry analysis (SSA) is a method for detecting adverse drug events by utilizing computerized claims data. The method has been increasingly used to investigate safety concerns of medications and as a pharmacovigilance tool to identify unsuspected side effects. Validation studies have i...

  8. DNAApp: a mobile application for sequencing data analysis.

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-11-15

    There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. The Android version of DNAApp is available in Google Play Store as 'DNAApp', and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. samuelg@bii.a-star.edu.sg. © The Author 2014. Published by Oxford University Press.

  9. DNAApp: a mobile application for sequencing data analysis

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-01-01

    Summary: There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. Availability and implementation: The Android version of DNAApp is available in Google Play Store as ‘DNAApp’, and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. Contact: samuelg@bii.a-star.edu.sg PMID:25095882

  10. Long-read sequencing data analysis for yeasts.

    Science.gov (United States)

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  11. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.)

    Science.gov (United States)

    Background: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed S...

  12. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    OpenAIRE

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remedi...

  13. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  14. Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci.

    Science.gov (United States)

    Brassac, Jonathan; Blattner, Frank R

    2015-09-01

    Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  15. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences

    OpenAIRE

    Bunawan, Hamidun; Yen, Choong Chee; Yaakop, Salmah; Noor, Normah Mohd

    2017-01-01

    Background The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus. Results Phylogeny reconstruction was carried out using neighbor-joining, maximum parsimony and Bayesian analyses. All the trees revealed two major clusters, a lowland group consi...

  16. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    Science.gov (United States)

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants.

  17. Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    Yu-Hoon Kim

    2014-01-01

    Full Text Available Identification of insect species is an important task in forensic entomology. For more convenient species identification, the nucleotide sequences of cytochrome c oxidase subunit I (COI gene have been widely utilized. We analyzed full-length COI nucleotide sequences of 10 Muscidae and 6 Sarcophagidae fly species collected in Korea. After DNA extraction from collected flies, PCR amplification and automatic sequencing of the whole COI sequence were performed. Obtained sequences were analyzed for a phylogenetic tree and a distance matrix. Our data showed very low intraspecific sequence distances and species-level monophylies. However, sequence comparison with previously reported sequences revealed a few inconsistencies or paraphylies requiring further investigation. To the best of our knowledge, this study is the first report of COI nucleotide sequences from Hydrotaea occulta, Muscina angustifrons, Muscina pascuorum, Ophyra leucostoma, Sarcophaga haemorrhoidalis, Sarcophaga harpax, and Phaonia aureola.

  18. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.

    Science.gov (United States)

    Asamizu, Erika; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2004-02-01

    To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.

  19. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  20. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  1. Cluster based on sequence comparison of homologous proteins of 95 organism species - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Cluster based on sequence comparison of homologous proteins of 95 organism spe...cies Data detail Data name Cluster based on sequence comparison of homologous proteins of 95 organism specie...istory of This Database Site Policy | Contact Us Cluster based on sequence compariso

  2. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  3. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  4. Evolutionary analysis of hepatitis C virus gene sequences from 1953

    Science.gov (United States)

    Gray, Rebecca R.; Tanaka, Yasuhito; Takebe, Yutaka; Magiorkinis, Gkikas; Buskell, Zelma; Seeff, Leonard; Alter, Harvey J.; Pybus, Oliver G.

    2013-01-01

    Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems. PMID:23938759

  5. Multilocus Sequence Analysis of Cercospora spp. from Different Host Plant Families

    Directory of Open Access Journals (Sweden)

    Floreta Fiska Yuliarni

    2014-06-01

    Full Text Available Identification of the genus Cercospora is still complicated due to the host preferences often being used as the main criteria to propose a new name. We determined the relationship between host plants and multilocus sequence variations (ITS rDNA including 5.8S rDNA, elongation factor 1-α, and calmodulin in Cercospora spp. to investigate the host specificity. We used 53 strains of Cercospora spp. infecting 12 plant families for phylogenetic analysis. The sequences of 23 strains of Cercospora spp. infecting the plant families of Asteraceae, Cucurbitaceae, and Solanaceae were determined in this study. The sequences of 30 strains of Cercospora spp. infecting the plant families of Fabaceae, Amaranthaceae, Apiaceae, Plumbaginaceae, Malvaceae, Cistaceae, Plantaginaceae, Lamiaceae, and Poaceae were obtained from GenBank. The molecular phylogenetic analysis revealed that the majority of Cercospora species lack host specificity, and only C. zinniicola, C. zeina, C. zeae-maydis, C. cocciniae, and C. mikaniicola were found to be host-specific. Closely related species of Cercospora could not be distinguished using molecular analyses of ITS, EF, and CAL gene regions. The topology of the phylogenetic tree based on the CAL gene showed a better topology and Cercospora species separation than the trees developed based on the ITS rDNA region or the EF gene.

  6. Using SQL Databases for Sequence Similarity Searching and Analysis.

    Science.gov (United States)

    Pearson, William R; Mackey, Aaron J

    2017-09-13

    Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    Science.gov (United States)

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  8. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Directory of Open Access Journals (Sweden)

    Meiler Arno

    2012-09-01

    Full Text Available Abstract Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  9. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    Science.gov (United States)

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  10. Complete genome sequence of switchgrass mosaic virus, a member of a proposed new species in the genus Marafivirus.

    Science.gov (United States)

    Agindotan, Bright O; Gray, Michael E; Hammond, Rosemarie W; Bradley, Carl A

    2012-09-01

    The complete genome sequence of a virus recently detected in switchgrass (Panicum virgatum) was determined and found to be closely related to that of maize rayado fino virus (MRFV), genus Marafivirus, family Tymoviridae. The genomic RNA is 6408 nucleotides long. It contains three predicted open reading frames (ORFs 1-3), encoding proteins of 227 kDa, 43.9 kDa, and 31.5 kDa, compared to two ORFs (1 and 2) for MRFV. The complete genome shares 76 % sequence identity with MRFV. The nucleotide sequence of ORF2 of this virus and the amino acid sequence of its encoded protein are 49 % and 77 % identical, respectively, to those of MRFV. The virus-encoded polyprotein and capsid protein aa sequences are 83 % and 74-80 % identical, respectively, to those of MRFV. Although closely related to MRFV, the amino acid sequence of its capsid protein (CP) forms a clade that is separate from that of MRFV. Based on the International Committee on Taxonomy of Viruses (ICTV) sequence-related criteria for delineation of species within the genus Marafivirus, the virus qualifies as a member of a new species, and the name Switchgrass mosaic virus (SwMV) is proposed.

  11. Characterization of four species of Trichuris (Nematoda: Enoplida) by their second internal transcribed spacer ribosomal DNA sequence.

    Science.gov (United States)

    Oliveros, R; Cutillas, C; De Rojas, M; Arias, P

    2000-12-01

    Adult worms of Trichuris ovis and T. globulosa were collected from Ovis aries (sheep) and Capra hircus (goats). T. suis was isolated from Sus scrofa domestica (swine) and T. leporis was isolated from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and a ribosomal internal transcribed spacer (ITS2) was amplified and sequenced using polymerase-chain-reaction (PCR) techniques. The ITS2 of T. ovis and T. globulosa was 407 nucleotides in length and had a GC content of about 62%. Furthermore, the ITS2 of T. suis and T. leporis was 534 and 418 nucleotides in length and had a GC content of about 64.8% and 62.4%, respectively. There was evidence of slight variation in the sequence within individuals of all species analyzed, indicating intraindividual variation in the sequence of different copies of the ribosomal DNA. Furthermore, low-level intraspecific variation was detected. Sequence analyses of ITS2 products of T. ovis and T. globulosa demonstrated no sequence difference between them. Nevertheless, differences were detected between the ITS2 sequences of T. suis, T. leporis, and T. ovis, indicating that Trichuris species can reliably be differentiated by their ITS2 sequences and PCR-linked restriction-fragment-length polymorphism (RFLP).

  12. Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS.

    Directory of Open Access Journals (Sweden)

    Melissa M L Wong

    Full Text Available Lentil (Lens culinaris ssp. culinaris is a nutritious and affordable pulse with an ancient crop domestication history. The genus Lens consists of seven taxa, however, there are many discrepancies in the taxon and gene pool classification of lentil and its wild relatives. Due to the narrow genetic basis of cultivated lentil, there is a need towards better understanding of the relationships amongst wild germplasm to assist introgression of favourable genes into lentil breeding programs. Genotyping-by-sequencing (GBS is an easy and affordable method that allows multiplexing of up to 384 samples or more per library to generate genome-wide single nucleotide Polymorphism (SNP markers. In this study, we aimed to characterize our lentil germplasm collection using a two-enzyme GBS approach. We constructed two 96-plex GBS libraries with a total of 60 accessions where some accessions had several samples and each sample was sequenced in two technical replicates. We developed an automated GBS pipeline and detected a total of 266,356 genome-wide SNPs. After filtering low quality and redundant SNPs based on haplotype information, we constructed a maximum-likelihood tree using 5,389 SNPs. The phylogenetic tree grouped the germplasm collection into their respective taxa with strong support. Based on phylogenetic tree and STRUCTURE analysis, we identified four gene pools, namely L. culinaris/L. orientalis/L. tomentosus, L. lamottei/L. odemensis, L. ervoides and L. nigricans which form primary, secondary, tertiary and quaternary gene pools, respectively. We discovered sequencing bias problems likely due to DNA quality and observed severe run-to-run variation in the wild lentils. We examined the authenticity of the germplasm collection and identified 17% misclassified samples. Our study demonstrated that GBS is a promising and affordable tool for screening by plant breeders interested in crop wild relatives.

  13. Now And Next Generation Sequencing Techniques: Future of Sequence Analysis using Cloud Computing

    Directory of Open Access Journals (Sweden)

    Radhe Shyam Thakur

    2012-12-01

    Full Text Available Advancements in the field of sequencing techniques resulted in the huge sequenced data to be produced at a very faster rate. It is going cumbersome for the datacenter to maintain the databases. Data mining and sequence analysis approaches needs to analyze the databases several times to reach any efficient conclusion. To cope with such overburden on computer resources and to reach efficient and effective conclusions quickly, the virtualization of the resources and computation on pay as you go concept was introduced and termed as cloud computing. The datacenter’s hardware and software is collectively known as cloud which when available publicly is termed as public cloud. The datacenter’s resources are provided in a virtual mode to the clients via a service provider like Amazon, Google and Joyent which charges on pay as you go manner. The workload is shifted to the provider which is maintained by the required hardware and software upgradation. The service provider manages it by upgrading the requirements in the virtual mode. Basically a virtual environment is created according to the need of the user by taking permission from datacenter via internet, the task is performed and the environment is deleted after the task is over. In this discussion, we are focusing on the basics of cloud computing, the prerequisites and overall working of clouds. Furthermore, briefly the applications of cloud computing in biological systems, especially in comparative genomics, genome informatics and SNP detection with reference to traditional workflow are discussed.

  14. Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.

    Science.gov (United States)

    Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav

    2012-01-01

    Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.

  15. SEQUENCING AND SEQUENCE ANALYSIS OF MYOSTATIN GENE IN THE EXON 1 OF THE CAMEL (CAMELUS DROMEDARIUS

    Directory of Open Access Journals (Sweden)

    M. G. SHAH, A. S. QURESHI1, M. REISSMANN2 AND H. J. SCHWARTZ3

    2006-10-01

    Full Text Available Myostatin, also called growth differentiation factor-8 (GDF-8, is a member of the mammalian growth transforming family (TGF-beta superfamily, which is expressed specifically in developing an adult skeletal muscle. Muscular hypertrophy allele (mh allele in the double muscle breeds involved mutation within the myostatin gene. Genomic DNA was isolated from the camel hair using NucleoSpin Tissue kit. Two animals of each of the six breeds namely, Marecha, Dhatti, Larri, Kohi, Sakrai and Cambelpuri were used for sequencing. For PCR amplification of the gene, a primer pair was designed from homolog regions of already published sequences of farm animals from GenBank. Results showed that camel myostatin possessed more than 90% homology with that of cattle, sheep and pig. Camel formed separate cluster from the pig in spite of having high homology (98% and showed 94% homology with cattle and sheep as reported in literature. Sequence analysis of the PCR amplified part of exon 1 (256 bp of the camel myostatin was identical among six camel breeds.

  16. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    Science.gov (United States)

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  17. Genetic Diversity of Selected Mangifera Species Revealed by Inter Simple Sequence Repeats Markers

    Directory of Open Access Journals (Sweden)

    Zulhairil Ariffin

    2015-01-01

    Full Text Available ISSR markers were employed to reveal genetic diversity and genetic relatedness among 28 Mangifera accessions collected from Yan (Kedah, Bukit Gantang (Perak, Sibuti (Sarawak, and Papar (Sabah. A total of 198 markers were generated using nine anchored primers and one nonanchored primer. Genetic variation among the 28 accessions of Mangifera species including wild relatives, landraces, and clonal varieties is high, with an average degree of polymorphism of 98% and mean Shannon index, H0=7.50. Analysis on 18 Mangifera indica accessions also showed high degree of polymorphism of 99% and mean Shannon index, H0=5.74. Dice index of genetic similarity ranged from 0.0938 to 0.8046 among the Mangifera species. The dendrogram showed that the Mangifera species were grouped into three main divergent clusters. Cluster 1 comprised 14 accessions from Kedah and Perak. Cluster II and cluster III comprised 14 accessions from Sarawak and Sabah. Meanwhile, the Dice index of genetic similarity for 18 accessions of Mangifera indica ranged from 0.2588 to 0.7742. The dendrogram also showed the 18 accessions of Mangifera indica were grouped into three main clusters. Cluster I comprised 10 landraces of Mangifera indica from Kedah. Cluster II comprised 7 landraces of Mangifera indica followed by Chokanan to form Cluster III.

  18. Species phylogeny of the subgenus parides (Lepidoptera: papilionidae) based in sequences of citochrome oxidase I gene

    International Nuclear Information System (INIS)

    Gutierrez R, Ingrid Marcela; Fagua, Giovanny

    2012-01-01

    Parides hubner is a terminal taxon of troidini, an aposematic butterfly group that is diverse in the tropics and subtropics, and a model of Mullerian and Batesian mimetic complexes. Several American species of parides are sympatric and include populations with intraspecific variation in color pattern, thus creating confusion on their taxonomic status, mainly in Colombia where the biota of North and South America converge. This work presents a phylogenetic hypothesis of these butterflies and proposes a more robust definition of some taxa. For this, 15 taxa of the subgenus parides were analyzed as ingroup; species of other two genera of troidini, closer to parides, were used as out-group. DNA was extracted using the pascual et al. (1997) protocol and quiagen dnaeasy kit. A terminal fragment of cytochrome oxidase I gen (476 bp) were amplified. We obtained a phylogenetic approximation using maximum parsimony and evaluated the branch support with jackknife and absolute bremer support. We also conducted a bayesian analysis. The resulting phylogenetic hypothesis suggested that parides is a paraphyletic group; the molecular evidence support one species and five subspecies. The analyzed taxa were divided in three principal groups coincident with the lysander (group 1) and aeneas (groups 1 and 2) groups proposed by rothschild and jordan (1906).

  19. An Imaging And Graphics Workstation For Image Sequence Analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  20. Multilocus sequence analysis of Treponema denticola strains of diverse origin

    Directory of Open Access Journals (Sweden)

    Mo Sisu

    2013-02-01

    Full Text Available Abstract Background The oral spirochete bacterium Treponema denticola is associated with both the incidence and severity of periodontal disease. Although the biological or phenotypic properties of a significant number of T. denticola isolates have been reported in the literature, their genetic diversity or phylogeny has never been systematically investigated. Here, we describe a multilocus sequence analysis (MLSA of 20 of the most highly studied reference strains and clinical isolates of T. denticola; which were originally isolated from subgingival plaque samples taken from subjects from China, Japan, the Netherlands, Canada and the USA. Results The sequences of the 16S ribosomal RNA gene, and 7 conserved protein-encoding genes (flaA, recA, pyrH, ppnK, dnaN, era and radC were successfully determined for each strain. Sequence data was analyzed using a variety of bioinformatic and phylogenetic software tools. We found no evidence of positive selection or DNA recombination within the protein-encoding genes, where levels of intraspecific sequence polymorphism varied from 18.8% (flaA to 8.9% (dnaN. Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 6,513 nucleotides for each strain using Bayesian and maximum likelihood approaches indicated that the T. denticola strains were monophyletic, and formed 6 well-defined clades. All analyzed T. denticola strains appeared to have a genetic origin distinct from that of ‘Treponema vincentii’ or Treponema pallidum. No specific geographical relationships could be established; but several strains isolated from different continents appear to be closely related at the genetic level. Conclusions Our analyses indicate that previous biological and biophysical investigations have predominantly focused on a subset of T. denticola strains with a relatively narrow range of genetic diversity. Our methodology and results establish a genetic framework for the discrimination and phylogenetic

  1. Sirius PSB: a generic system for analysis of biological sequences.

    Science.gov (United States)

    Koh, Chuan Hock; Lin, Sharene; Jedd, Gregory; Wong, Limsoon

    2009-12-01

    Computational tools are essential components of modern biological research. For example, BLAST searches can be used to identify related proteins based on sequence homology, or when a new genome is sequenced, prediction models can be used to annotate functional sites such as transcription start sites, translation initiation sites and polyadenylation sites and to predict protein localization. Here we present Sirius Prediction Systems Builder (PSB), a new computational tool for sequence analysis, classification and searching. Sirius PSB has four main operations: (1) Building a classifier, (2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Preliminary and post-prediction analysis. Sirius PSB supports all these operations via a simple and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to identify interesting features in the feature space. Secondly, instead of the conventional method of searching for similar proteins via sequence similarity, we introduced searching via features' similarity. To demonstrate the capabilities of Sirius PSB, we have built two prediction models - one for the recognition of Arabidopsis polyadenylation sites and another for the subcellular localization of proteins. Both systems are competitive against current state-of-the-art models based on evaluation of public datasets. More notably, the time and effort required to build each model is greatly reduced with the assistance of Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable to find related proteins, Sirius PSB can identify functionally related proteins based on their biophysical similarities. Sirius PSB and its related supplements are available at: http://compbio.ddns.comp.nus.edu.sg/~sirius.

  2. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  3. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with

  4. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.

    Directory of Open Access Journals (Sweden)

    Jiaqin Shi

    Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite

  5. High-resolution melting of 12S rRNA and cytochrome b DNA sequences for discrimination of species within distinct European animal families.

    Directory of Open Access Journals (Sweden)

    Jana Naue

    Full Text Available The cheap and easy identification of species is necessary within multiple fields of molecular biology. The use of high-resolution melting (HRM of DNA provides a fast closed-tube method for analysis of the sequence composition of the mitochondrial genes 12S rRNA and cytochrome b. We investigated the potential use of HRM for species identification within eleven different animal groups commonly found in Europe by animal-group-specific DNA amplification followed by DNA melting. Influence factors as DNA amount, additional single base alterations, and the existence of mixed samples were taken into consideration. Visual inspection combined with mathematical evaluation of the curve shapes did resolve nearly all species within an animal group. The assay can therefore not only be used for identification of animal groups and mixture analysis but also for species identification within the respective groups. The use of a universal 12S rRNA system additionally revealed a possible approach for species discrimination, mostly by exclusion. The use of the HRM assay showed to be a reliable, fast, and cheap method for species discrimination within a broad range of different animal species and can be used in a flexible "modular" manner depending on the question to be solved.

  6. RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing.

    Directory of Open Access Journals (Sweden)

    Fenggang Li

    Full Text Available The Chinese giant salamander, Andrias davidianus, is an important species in the course of evolution; however, there is insufficient genomic data in public databases for understanding its immunologic mechanisms. High-throughput transcriptome sequencing is necessary to generate an enormous number of transcript sequences from A. davidianus for gene discovery. In this study, we generated more than 40 million reads from samples of spleen and skin tissue using the Illumina paired-end sequencing technology. De novo assembly yielded 87,297 transcripts with a mean length of 734 base pairs (bp. Based on the sequence similarities, searching with known proteins, 38,916 genes were identified. Gene enrichment analysis determined that 981 transcripts were assigned to the immune system. Tissue-specific expression analysis indicated that 443 of transcripts were specifically expressed in the spleen and skin. Among these transcripts, 147 transcripts were found to be involved in immune responses and inflammatory reactions, such as fucolectin, β-defensins and lymphotoxin beta. Eight tissue-specific genes were selected for validation using real time reverse transcription quantitative PCR (qRT-PCR. The results showed that these genes were significantly more expressed in spleen and skin than in other tissues, suggesting that these genes have vital roles in the immune response. This work provides a comprehensive genomic sequence resource for A. davidianus and lays the foundation for future research on the immunologic and disease resistance mechanisms of A. davidianus and other amphibians.

  7. CISAPS: Complex Informational Spectrum for the Analysis of Protein Sequences

    Directory of Open Access Journals (Sweden)

    Charalambos Chrysostomou

    2015-01-01

    Full Text Available Complex informational spectrum analysis for protein sequences (CISAPS and its web-based server are developed and presented. As recent studies show, only the use of the absolute spectrum in the analysis of protein sequences using the informational spectrum analysis is proven to be insufficient. Therefore, CISAPS is developed to consider and provide results in three forms including absolute, real, and imaginary spectrum. Biologically related features to the analysis of influenza A subtypes as presented as a case study in this study can also appear individually either in the real or imaginary spectrum. As the results presented, protein classes can present similarities or differences according to the features extracted from CISAPS web server. These associations are probable to be related with the protein feature that the specific amino acid index represents. In addition, various technical issues such as zero-padding and windowing that may affect the analysis are also addressed. CISAPS uses an expanded list of 611 unique amino acid indices where each one represents a different property to perform the analysis. This web-based server enables researchers with little knowledge of signal processing methods to apply and include complex informational spectrum analysis to their work.

  8. Characterisation of peacock (Pavo cristatus) mitochondrial 12S rRNA sequence and its use in differentiation from closely related poultry species.

    Science.gov (United States)

    Saini, M; Das, D K; Dhara, A; Swarup, D; Yadav, M P; Gupta, P K

    2007-04-01

    1. Poaching of peacocks, the national bird of India, is illegal. People kill this beautiful pheasant bird for tail feathers and mix the meat with chicken or turkey. Differentiation of the meat of these species is essential in order to address the ambiguity about the origin of the sample. 2. The present study was carried out to investigate the use of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene for identification of these species. 3. Peacock mitochondrial 12S rRNA partial gene was amplified using universal primers, cloned and characterised. It was found to be 446 nucleotides long. 4. Sequence analysis revealed 86.8 and 84.1% similarity with reported turkey and chicken sequences, respectively. Sequence and phylogenetic analysis showed that the peacock is much closer to the turkey than the chicken. 5. PCR-RFLP of 446 bp amplicon using commonly available restriction enzymes AluI and Sau3AI produced a differential pattern for identifying these poultry species unambiguously.

  9. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene

    Directory of Open Access Journals (Sweden)

    Sasaki Yukako

    2008-10-01

    Full Text Available Abstract Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit. Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas. The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98 ; L: 98–100%. The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed.

  10. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization

    CSIR Research Space (South Africa)

    Gcebe, N

    2017-04-01

    Full Text Available Journal of Systematic and Evolutionary Microbiology: DOI 10.1099/ijsem.0.001678 Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization Gcebe N Rutten V Gey...

  11. Identification of morphological and molecular Aspergillus species isolated from patients based on beta-tubulin gene sequencing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kheirkhah

    2017-06-01

    Full Text Available Background: Aspergillus species are opportunistic pathogens among immunocompromised patients. In terms of pathogenesis and mycotoxin production, they are in great value. The aim of the this study was to evaluate of beta-tubulin gene for identification of clinical Aspergillus species by PCR-sequencing method compared to morphological features of clinical isolates (such as conidial shape in direct microscopic examination, colony shape in culture, and physiological tests. Materials and Methods: In this study, 465 patients referred to the Shefa laboratory of Isfahan were evaluated. Morphological and molecular identification of clinical samples were performed using culture on sabouraud agar, malt extract agar, czapekdox agar, direct microscopy, and PCR-sequencing of beta tubulin gene, respectively. Sequences were analyzed in comparison with gene bank data. Results: Thirty nine out of 465 suspected cases (8.4% had aspergillosis. The most prevalent species were Aspergillus flavus (56.4%, A. oryzae (20.5%, and A. fumigatus (10.2%, respectively. Fifty nine percent of patients were females and 49% were males. Conclusion: In comparison with phenotypic tests, sequencing of beta-tubulin gene for identification of Aspergillus species is at great value. Replacement of molecular techniques with conventional tests is recommended for precise identification of microorganism for better management of infection.

  12. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Directory of Open Access Journals (Sweden)

    Hsiao Yu-Yun

    2011-01-01

    Full Text Available Abstract Background Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC end sequences (BESs can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. Results We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively, at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6% were predicted to represent protein-encoding regions, whereas 1,272 (23.0% contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively, whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6% of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. Conclusion Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive

  13. TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data.

    Science.gov (United States)

    Liu, Wanting; Xiang, Lunping; Zheng, Tingkai; Jin, Jingjie; Zhang, Gong

    2018-01-04

    Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    Science.gov (United States)

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.

    Science.gov (United States)

    Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong

    2014-04-01

    Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.

  16. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  17. Bioeconomic analysis supports the endangered species act.

    Science.gov (United States)

    Salau, Kehinde R; Fenichel, Eli P

    2015-10-01

    The United States Endangered Species Act (ESA) was enacted to protect and restore declining fish, wildlife, and plant populations. The ESA mandates endangered species protection irrespective of costs. This translates to the restriction of activities that harm endangered populations. We discuss criticisms of the ESA in the context of public land management and examine under what circumstance banning non-conservation activity on multiple use federal lands can be socially optimal. We develop a bioeconomic model to frame the species management problem under the ESA and identify scenarios where ESA-imposed regulations emerge as optimal strategies. Results suggest that banning harmful activities is a preferred strategy when valued endangered species are in decline or exposed to poor habitat quality. However, it is not optimal to sustain such a strategy in perpetuity. An optimal plan involves a switch to land-use practices characteristic of habitat conservation plans.

  18. Multilocus sequence typing and rtxA toxin gene sequencing analysis of Kingella kingae isolates demonstrates genetic diversity and international clones.

    Directory of Open Access Journals (Sweden)

    Romain Basmaci

    Full Text Available BACKGROUND: Kingella kingae, a normal component of the upper respiratory flora, is being increasingly recognized as an important invasive pathogen in young children. Genetic diversity of this species has not been studied. METHODS: We analyzed 103 strains from different countries and clinical origins by a new multilocus sequence-typing (MLST schema. Putative virulence gene rtxA, encoding an RTX toxin, was also sequenced, and experimental virulence of representative strains was assessed in a juvenile-rat model. RESULTS: Thirty-six sequence-types (ST and nine ST-complexes (STc were detected. The main STc 6, 14 and 23 comprised 23, 17 and 20 strains respectively, and were internationally distributed. rtxA sequencing results were mostly congruent with MLST, and showed horizontal transfer events. Of interest, all members of the distantly related ST-6 (n = 22 and ST-5 (n = 4 harboured a 33 bp duplication or triplication in their rtxA sequence, suggesting that this genetic trait arose through selective advantage. The animal model revealed significant differences in virulence among strains of the species. CONCLUSION: MLST analysis reveals international spread of ST-complexes and will help to decipher acquisition and evolution of virulence traits and diversity of pathogenicity among K. kingae strains, for which an experimental animal model is now available.

  19. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  20. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  1. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    Science.gov (United States)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  2. Rapid development of microsatellite markers for the endangered fish Schizothorax biddulphi (Günther) using next generation sequencing and cross-species amplification.

    Science.gov (United States)

    Luo, Wei; Nie, Zhulan; Zhan, Fanbin; Wei, Jie; Wang, Weimin; Gao, Zexia

    2012-11-14

    Tarim schizothoracin (Schizothorax biddulphi) is an endemic fish species native to the Tarim River system of Xinjiang and has been classified as an extremely endangered freshwater fish species in China. Here, we used a next generation sequencing platform (ion torrent PGM™) to obtain a large number of microsatellites for S. biddulphi, for the first time. A total of 40577 contigs were assembled, which contained 1379 SSRs. In these SSRs, the number of dinucleotide repeats were the most frequent (77.08%) and AC repeats were the most frequently occurring microsatellite, followed by AG, AAT and AT. Fifty loci were randomly selected for primer development; of these, 38 loci were successfully amplified and 29 loci were polymorphic across panels of 30 individuals. The H(o) ranged from 0.15 to 0.83, and H(e) ranged from 0.15 to 0.85, with 3.5 alleles per locus on average. Cross-species utility indicated that 20 of these markers were successfully amplified in a related, also an endangered fish species, S. irregularis. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing microsatellite markers for non-model species and the developed microsatellite markers in this study would be useful in Schizothorax genetic analysis.

  3. Recognition of hypoxyloid and xylarioid Entonaema species and allied Xylaria species from a comparison of holomorphic morphology, HPLC profiles, andribosomal DNA sequences

    DEFF Research Database (Denmark)

    Stadler, M.; Fournier, J.; Læssøe, Thomas

    2008-01-01

    pallidum is thus regarded as a later synonym of E. mesentericum. Therefore, the latter name is transferred to Xylaria. A key to entonaemoid Xylariaceae is provided. Colour reactions (NH3, KOH) of the ectostroma were applied to a limited number of Xylaria spp., but metabolite profiles of cultures appear......The genus Entonaema comprises Xylariaceae with hollow, gelatinous stromata that accumulate liquid. Some of its species, including the type species, appear related to Daldinia from a polyphasic approach, comprising morphological studies, comparisons of ribosomal DNA sequences, and high performance...

  4. Environmental impact analysis for the main accidental sequences of ignitor

    International Nuclear Information System (INIS)

    Carpignano, A.; Francabandiera, S.; Vella, R.; Zucchetti, M.

    1996-01-01

    A safety analysis study has been applied to the Ignitor machine using Probabilistic Safety Assessment. The main initiating events have been identified, and accident sequences have been studied by means of traditional methods such as Failure Mode and Effect Analysis (FMEA), Fault Trees (FT) and Event Trees (ET). The consequences of the radioactive environmental releases have been assessed in terms of Effective Dose Equivalent (EDEs) to the Most Exposed Individuals (MEI) of the chosen site, by means of a population dose code. Results point out the low enviromental impact of the machine. 13 refs., 1 fig., 3 tabs

  5. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  6. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia.

    Directory of Open Access Journals (Sweden)

    Eduardo Crisol-Martínez

    Full Text Available Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug, considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.

  7. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia.

    Science.gov (United States)

    Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T; Wormington, Kevin R; Brown, Philip H; Stanley, Dragana

    2016-01-01

    Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.

  8. Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa.

    Science.gov (United States)

    Nguyen, Nhu H; Vellinga, Else C; Bruns, Thomas D; Kennedy, Peter G

    The genus Suillus represents one of the most recognizable groups of mushrooms in conifer forests throughout the Northern Hemisphere. Although for decades the genus has been relatively well defined morphologically, previous molecular phylogenetic assessments have provided important yet preliminary insights into its evolutionary history. We present the first large-scale phylogenetic study of the boundaries of each species in the genus Suillus based on the most current internal transcribed spacer (ITS) barcode sequences available inPUBLIC databases, as well as sequencing of 224 vouchered specimens and cultures, 15 of which were type specimens from North America. We found that species boundaries delimited by morphological data are broadly congruent with those based on ITS sequences. However, some species appear to have been described several times under different names, several species groups cannot be resolved by ITS sequences alone, and undescribed taxa are apparent, especially in Asia. Therefore, we elevated S. tomentosus var. discolor to S. discolor; proposed synonymies of S. neoalbidipes with S. glandulosipes, S. borealis with S. brunnescens, Boletus serotinus and B. solidipes with Suillus elbensis, S. lactifluus with S. granulatus, S. himalayensis with S. americanus; and proposed usage of the names S. clintonianus in the place of the North American S. grevillei, S. weaverae for North American S. granulatus, S. ampliporus in the place of the North American S. cavipes, and S. elbensis in place of the North American S. viscidus. We showed that the majority of Suillus species have strong affinities for particular host genera. Although deep node support was low, geographic differentiation was apparent, with species from North America, Eurasia, and Asia often forming their own clades. Collectively, this comprehensive genus-level phylogenetic integration of currently available Suillus ITS molecular data and metadata will aid future taxonomic and ecological work on an

  9. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    Science.gov (United States)

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are

  10. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA.

    Science.gov (United States)

    Sastre, Natalia; Ravera, Ivan; Villanueva, Sergio; Altet, Laura; Bardagí, Mar; Sánchez, Armand; Francino, Olga; Ferrer, Lluís

    2012-12-01

    The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.

  11. Using Behavior Sequence Analysis to Map Serial Killers' Life Histories.

    Science.gov (United States)

    Keatley, David A; Golightly, Hayley; Shephard, Rebecca; Yaksic, Enzo; Reid, Sasha

    2018-03-01

    The aim of the current research was to provide a novel method for mapping the developmental sequences of serial killers' life histories. An in-depth biographical account of serial killers' lives, from birth through to conviction, was gained and analyzed using Behavior Sequence Analysis. The analyses highlight similarities in behavioral events across the serial killers' lives, indicating not only which risk factors occur, but the temporal order of these factors. Results focused on early childhood environment, indicating the role of parental abuse; behaviors and events surrounding criminal histories of serial killers, showing that many had previous convictions and were known to police for other crimes; behaviors surrounding their murders, highlighting differences in victim choice and modus operandi; and, finally, trial pleas and convictions. The present research, therefore, provides a novel approach to synthesizing large volumes of data on criminals and presenting results in accessible, understandable outcomes.

  12. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.

    Science.gov (United States)

    Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F

    2017-08-01

    Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1

    NARCIS (Netherlands)

    Bakker, den H.C.; Gravendeel, B.; Kuyper, T.W.

    2004-01-01

    Phylogenetic relationships of the European species of Leccinum (Boletales, Boletaceae) were investigated by maximum parsimony, Bayesian and likelihood analyses of nrITS1-5.8S-ITS2 and 28S sequences. The separate gene trees inferred were largely concordant, and their combined analysis indicates that

  14. Field-based species identification in eukaryotes using real-time nanopore sequencing.

    OpenAIRE

    Papadopulos, Alexander; Devey, Dion; Helmstetter, Andrew; Parker, Joe

    2017-01-01

    Advances in DNA sequencing and informatics have revolutionised biology over the past four decades, but technological limitations have left many applications unexplored. Recently, portable, real-time, nanopore sequencing (RTnS) has become available. This offers opportunities to rapidly collect and analyse genomic data anywhere. However, the generation of datasets from large, complex genomes has been constrained to laboratories. The portability and long DNA sequences of RTnS offer great potenti...

  15. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple.

    Science.gov (United States)

    O'Gorman, Daniel T; Sholberg, Peter L; Stokes, Sarah C; Ginns, J

    2008-01-01

    The fungus Botrytis cinerea has been widely accepted as the species responsible for causing gray mold decay of apple, although a second species causing apple decay, B. mali, was reported in 1931. Botrytis mali was validly published in 1931, nevertheless it has always been considered a doubtful species. To study the relationship of Botrytis isolates causing gray mold on apple, DNA sequence analysis was employed. Twenty-eight Botrytis isolates consisting of 10 species were sampled, including two B. mali herbarium specimens from apple originally deposited in 1932. The DNA sequence analysis of the beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) genes placed the isolates into groupings with defined species boundaries that generally reflected the morphologically based model for Botrytis classification. The B. cinerea isolates from apple and other host plants were placed in a single clade. The B. mali herbarium specimens however always fell well outside that clade. The DNA sequence analysis reported in this study support the initial work by Ruehle (1931) describing the apple pathogen B. mali as a unique species.

  16. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  17. Massively parallel sequencing and analysis of the Necator americanus transcriptome.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    2010-05-01

    Full Text Available The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses.A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%, proteinase inhibitors (7.8% or calcium-binding EF-hand proteins (6.7%. Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%, oxidative phosphorylation (63% and/or proteases (60%; most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins or amino acid metabolism (e.g., asparagine t-RNA synthetase.This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human

  18. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    National Research Council Canada - National Science Library

    Batchelor, Roger A; Pearson, Bruce M; Friis, Lorna M; Guerry, Patricia; Wells, Jerry M

    2004-01-01

    .... Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence...

  19. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  20. Identification of Trichoderma Species Using Partial Sequencing of nrRNA and tef1α Genes with Report of Trichoderma capillare in Iran Mycoflore

    Directory of Open Access Journals (Sweden)

    mehdi Mehrabi-Koushki

    2018-01-01

    reverse primers by Macrogen Company. The Sequences were edited and assembled using BioEdit v. 7.0.9.0 (10 and DNA Baser Sequence Assembeler v4 programs (2013, Heracle BioSoft, www.DnaBaser.com, respectively. These sequences were submit-queried against the NCBI non-redundant database and related to known DNA sequences by BLASTn algorithm to assign putative identity. They also were subjected to the TrichO Key (5 and TrichoBLAST (15 for more characterization. The phylogenetic tree was constructed through maximum likelihood analysis based on tef1α sequence under K2+G model. The tree was rooted to close species of N. macroconidialis. Result and Discussion: Approximately 550 and 850 bases of the ITS and tef1α regions were sequenced from the isolates studied and then deposited in the GenBank (Table 2. The annotation of indexed sequences showed which multiple insertion-type frame shifts have interestingly occurred into the reading frame of tef1α gene belonging to isolate of T. capillare Isf-7 (Fig. 3. To identify isolates of Trichoderma, ITS and tef1α sequences were subjected to the TrichO Key (5, TrichoBLAST (15 and BLASTn Search. The analysis of ITS and tef1α sequences (Table 2, Fig. 2, in combination with morphology (Table 1, showed which the isolates place in seven species as follow: T. harzianum Rifai, T. virens (J.H. Mill., Giddens & A.A. Foster Arx, T. pleuroticola Yu & Park, T. asperellum Samuels, Lieckf & Nirenberg, T. koningiopsis Oudem., T. brevicompactum Kraus, Kubicek & Gams and T. capillare Samuels & Kubicek. In BLASTn search, ITS and tef1α regions separately provided unambiguous identification for isolates of T. virens, T. koningiopsis and T. brevicompactum while ITS region provided ambiguous identification for Isolates of Trichoderma harzianum, T. capillare, T. pleuroticola and T. asperellum. Here, tef1α region could provide more accurate identification as good DNA barcoding (Table 2. The isolates showed the sequence identity ranging from 96 to 100% for tef

  1. Swab-to-Sequence: Real-time Data Analysis Platform for the Biomolecule Sequencer

    Data.gov (United States)

    National Aeronautics and Space Administration — DNA was successfully sequenced on the ISS in 2016, but the DNA sequenced was prepared on the ground. With FY’16 IRAD funds, the same team developed a...

  2. Estimation of isolation times of the island species in the Drosophila simulans complex from multilocus DNA sequence data.

    Directory of Open Access Journals (Sweden)

    Shannon R McDermott

    2008-06-01

    Full Text Available The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the low-recombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhikingNew DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size from the multilocus DNA sequence data.In general, it appears that both island species were isolated at about the same time, here estimated at approximately 250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low and higher recombination can be reconciled by allowing a modestly larger effective population size for the ancestral population than for extant D. simulans.

  3. Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander

    2010-04-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.

  4. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection.

    Science.gov (United States)

    Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike; Khan, Arifa S

    2018-01-01

    developed a new reference viral database (RVDB) that provides a broad representation of different virus species from eukaryotes by including all viral, virus-like, and virus-related sequences (excluding bacteriophages), regardless of their size. In particular, RVDB contains endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Sequences were clustered to reduce redundancy while retaining high viral sequence diversity. A particularly useful feature of RVDB is the reduction of cellular sequences, which can enhance the run efficiency of large transcriptomic and genomic data analysis and increase the specificity of virus detection.

  5. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    Science.gov (United States)

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.

  6. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... and antisense primers, a single band of 573 base pairs .... Amino acid sequence alignment of Cluster I and Cluster II of phylogenetic tree. First ten sequences ... sequence weighting, postion-spiecific gap penalties and weight.

  7. Sequence comparison of the rDNA introns from six different species of Tetrahymena

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engberg, J

    1985-01-01

    model for the intron RNA of Cech et al. (Proc. Natl. Acad. Sci. U.S.A. 80, 3903 (83)). Most of the sequence variation in the four new sequences reported here is found in single stranded loops in the model. However, in four cases we found nucleotide substitutions in duplex stem regions, two of them...

  8. Open source tools to exploit DNA sequence data from livestock species

    Science.gov (United States)

    Next-Generation Sequencing (NGS) is a recent technological development that allows researchers to rapidly determine the DNA sequence of an individual. The decrease in cost of NGS has brought the technology into the realm of practical applications in livestock genomics, where it can be used to genera...

  9. Illumina MiSeq sequencing analysis of fungal diversity in stored dates.

    Science.gov (United States)

    Al-Bulushi, Ismail M; Bani-Uraba, Muna S; Guizani, Nejib S; Al-Khusaibi, Mohammed K; Al-Sadi, Abdullah M

    2017-03-27

    Date palm has been a major fruit tree in the Middle East over thousands of years, especially in the Arabian Peninsula. Dates are consumed fresh (Rutab) or after partial drying and storage (Tamar) during off-season. The aim of the study was to provide in-depth analysis of fungal communities associated with the skin (outer part) and mesocarp (inner fleshy part) of stored dates (Tamar) of two cultivars (Khenizi and Burny) through the use of Illumina MiSeq sequencing. The study revealed the dominance of Ascomycota (94%) in both cultivars, followed by Chytridiomycota (4%) and Zygomycota (2%). Among the classes recovered, Eurotiomycetes, Dothideomycetes, Saccharomycetes and Sordariomycetes were the most dominant. A total of 54 fungal species were detected, with species belonging to Penicillium, Alternaria, Cladosporium and Aspergillus comprising more than 60% of the fungal reads. Some potentially mycotoxin-producing fungi were detected in stored dates, including Aspergillus flavus, A. versicolor and Penicillium citrinum, but their relative abundance was very limited (PerMANOVA analysis revealed the presence of insignificant differences in fungal communities between date parts or date cultivars, indicating that fungal species associated with the skin may also be detected in the mesocarp. It also indicates the possible contamination of dates from different cultivars with similar fungal species, even though if they are obtained from different areas. The analysis shows the presence of different fungal species in dates. This appears to be the first study to report 25 new fungal species in Oman and 28 new fungal species from date fruits. The study discusses the sources of fungi on dates and the presence of potentially mycotoxin producing fungi on date skin and mesocarp.

  10. Cloning, nucleotide sequence and transcriptional analysis of the uvrA gene from Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Black, C.G.; Fyfe, J.A.M.; Davies, J.K.

    1997-01-01

    A recombinant plasmid capable of restoring UV resistance to an Escherichia coli uvrA mutant was isolated from a genomic library of Neisseria gonorrhoeae. Sequence analysis revealed an open reading frame whose deduced amino acid sequence displayed significant similarity to those of the UvrA proteins of other bacterial species. A second open reading frame (ORF259) was identified upstream from, and in the opposite orientation to the gonococcal uvrA gene. Transcriptional fusions between portions of the gonococcal uvrA upstream region and a reporter gene were used to localise promoter activity in both E. coli and N. gonorrhoeae. The transcriptional starting points of uvrA and ORF259 were mapped in E. coli by primer extension analysis, and corresponding σ 70 promoters were identified. The arrangement of the uvrA-ORF259 intergenic region is similar to that of the gonococcal recA-aroD intergenic region. Both contain inverted copies of the 10 bp neisserial DNA uptake sequence situated between divergently transcribed genes. However, there is no evidence that either the uptake sequence or the proximity of the promoters influences expression of these genes. (author)

  11. Micropathogen Community Analysis in Hyalomma rufipes via High-Throughput Sequencing of Small RNAs

    Science.gov (United States)

    Luo, Jin; Liu, Min-Xuan; Ren, Qiao-Yun; Chen, Ze; Tian, Zhan-Cheng; Hao, Jia-Wei; Wu, Feng; Liu, Xiao-Cui; Luo, Jian-Xun; Yin, Hong; Wang, Hui; Liu, Guang-Yuan

    2017-01-01

    Ticks are important vectors in the transmission of a broad range of micropathogens to vertebrates, including humans. Because of the role of ticks in disease transmission, identifying and characterizing the micropathogen profiles of tick populations have become increasingly important. The objective of this study was to survey the micropathogens of Hyalomma rufipes ticks. Illumina HiSeq2000 technology was utilized to perform deep sequencing of small RNAs (sRNAs) extracted from field-collected H. rufipes ticks in Gansu Province, China. The resultant sRNA library data revealed that the surveyed tick populations produced reads that were homologous to St. Croix River Virus (SCRV) sequences. We also observed many reads that were homologous to microbial and/or pathogenic isolates, including bacteria, protozoa, and fungi. As part of this analysis, a phylogenetic tree was constructed to display the relationships among the homologous sequences that were identified. The study offered a unique opportunity to gain insight into the micropathogens of H. rufipes ticks. The effective control of arthropod vectors in the future will require knowledge of the micropathogen composition of vectors harboring infectious agents. Understanding the ecological factors that regulate vector propagation in association with the prevalence and persistence of micropathogen lineages is also imperative. These interactions may affect the evolution of micropathogen lineages, especially if the micropathogens rely on the vector or host for dispersal. The sRNA deep-sequencing approach used in this analysis provides an intuitive method to survey micropathogen prevalence in ticks and other vector species. PMID:28861401

  12. SNPs in Multi-Species Conserved Sequences (MCS as useful markers in association studies: a practical approach

    Directory of Open Access Journals (Sweden)

    Pericak-Vance Margaret A

    2007-08-01

    Full Text Available Abstract Background Although genes play a key role in many complex diseases, the specific genes involved in most complex diseases remain largely unidentified. Their discovery will hinge on the identification of key sequence variants that are conclusively associated with disease. While much attention has been focused on variants in protein-coding DNA, variants in noncoding regions may also play many important roles in complex disease by altering gene regulation. Since the vast majority of noncoding genomic sequence is of unknown function, this increases the challenge of identifying "functional" variants that cause disease. However, evolutionary conservation can be used as a guide to indicate regions of noncoding or coding DNA that are likely to have biological function, and thus may be more likely to harbor SNP variants with functional consequences. To help bias marker selection in favor of such variants, we devised a process that prioritizes annotated SNPs for genotyping studies based on their location within Multi-species Conserved Sequences (MCSs and used this process to select SNPs in a region of linkage to a complex disease. This allowed us to evaluate the utility of the chosen SNPs for further association studies. Previously, a region of chromosome 1q43 was linked to Multiple Sclerosis (MS in a genome-wide screen. We chose annotated SNPs in the region based on location within MCSs (termed MCS-SNPs. We then obtained genotypes for 478 MCS-SNPs in 989 individuals from MS families. Results Analysis of our MCS-SNP genotypes from the 1q43 region and comparison to HapMap data confirmed that annotated SNPs in MCS regions are frequently polymorphic and show subtle signatures of selective pressure, consistent with previous reports of genome-wide variation in conserved regions. We also present an online tool that allows MCS data to be directly exported to the UCSC genome browser so that MCS-SNPs can be easily identified within genomic regions of

  13. [Analysis of COX1 sequences of Taenia isolates from four areas of Guangxi].

    Science.gov (United States)

    Yang, Yi-Chao; Ou-Yang, Yi; Su, Ai-Rong; Wan, Xiao-Ling; Li, Shu-Lin

    2012-06-01

    To analyze the COX1 sequences of Taenia isolates from four areas of Guangxi Zhuang Autonomous Region, and to understand the distribution of Taenia asiatica in Guangxi. Patients with taeniasis in Luzhai, Rongshui, Tiandong and Sanjiang in Guangxi were treated by deworming, and the Taenia isolates were collected. Cyclooxygenase-1 (COX1) sequences of these isolates were amplified by PCR, and the PCR products were sequenced by T-A clone sequencing. The homogeneities and genetic distances were calculated and analyzed, and the phylogenic trees were constructed by some softwares. Meanwhile, the COX1 sequences of the isolates from the 4 areas were compared separately with the sequences of Taenia species in GenBank. The COX1 sequence of the 5 Taenia isolates collected had the same length of 444 bp. There were 5 variable positions between the Luzhai isolate and Taenia asiatica, the homogeneity was 98.87% and their genetic distance was 0.011. The phylogenetic tree analysis revealed that the Luzhai isolate and Taenia asiatica locating at the same node had a close relationship. The homogeneity between Rongshui isolate A and Taenia solium was 100%, while the homogeneity of Rongshui isolate B with Taeniasis saginata and Taenia asiatica were 98.20% and 96.17%, respectively. The homogeneities of the Tiandong and Sanjiang isolates with Taenia solium were 99.55% and 96.40%, respectively, and the genetic distances were 0.005 and 0.037, respectively. The homogeneity between the Luzhai isolate and Taeniasis saginate was 96.40%. Taenia asiatica exists in Luzhai and Taenia solium and Taenia saginata coexist in Rongshui, Guangxi Zhuang Autonomous Region.

  14. Linear discriminant analysis of character sequences using occurrences of words

    KAUST Repository

    Dutta, Subhajit; Chaudhuri, Probal; Ghosh, Anil

    2014-01-01

    Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.

  15. Planarian homeobox genes: cloning, sequence analysis, and expression.

    Science.gov (United States)

    Garcia-Fernàndez, J; Baguñà, J; Saló, E

    1991-01-01

    Freshwater planarians (Platyhelminthes, Turbellaria, and Tricladida) are acoelomate, triploblastic, unsegmented, and bilaterally symmetrical organisms that are mainly known for their ample power to regenerate a complete organism from a small piece of their body. To identify potential pattern-control genes in planarian regeneration, we have isolated two homeobox-containing genes, Dth-1 and Dth-2 [Dugesia (Girardia) tigrina homeobox], by using degenerate oligonucleotides corresponding to the most conserved amino acid sequence from helix-3 of the homeodomain. Dth-1 and Dth-2 homeodomains are closely related (68% at the nucleotide level and 78% at the protein level) and show the conserved residues characteristic of the homeodomains identified to data. Similarity with most homeobox sequences is low (30-50%), except with Drosophila NK homeodomains (80-82% with NK-2) and the rodent TTF-1 homeodomain (77-87%). Some unusual amino acid residues specific to NK-2, TTF-1, Dth-1, and Dth-2 can be observed in the recognition helix (helix-3) and may define a family of homeodomains. The deduced amino acid sequences from the cDNAs contain, in addition to the homeodomain, other domains also present in various homeobox-containing genes. The expression of both genes, detected by Northern blot analysis, appear slightly higher in cephalic regions than in the rest of the intact organism, while a slight increase is detected in the central period (5 days) or regeneration. Images PMID:1714599

  16. Analysis of correlations between sites in models of protein sequences

    International Nuclear Information System (INIS)

    Giraud, B.G.; Lapedes, A.; Liu, L.C.

    1998-01-01

    A criterion based on conditional probabilities, related to the concept of algorithmic distance, is used to detect correlated mutations at noncontiguous sites on sequences. We apply this criterion to the problem of analyzing correlations between sites in protein sequences; however, the analysis applies generally to networks of interacting sites with discrete states at each site. Elementary models, where explicit results can be derived easily, are introduced. The number of states per site considered ranges from 2, illustrating the relation to familiar classical spin systems, to 20 states, suitable for representing amino acids. Numerical simulations show that the criterion remains valid even when the genetic history of the data samples (e.g., protein sequences), as represented by a phylogenetic tree, introduces nonindependence between samples. Statistical fluctuations due to finite sampling are also investigated and do not invalidate the criterion. A subsidiary result is found: The more homogeneous a population, the more easily its average properties can drift from the properties of its ancestor. copyright 1998 The American Physical Society

  17. Linear discriminant analysis of character sequences using occurrences of words

    KAUST Repository

    Dutta, Subhajit

    2014-02-01

    Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.

  18. Sequence analysis of PROTEOLYSIS 6 from Solanum lycopersicum

    Science.gov (United States)

    Roslan, Nur Farhana; Chew, Bee Lyn; Goh, Hoe-Han; Isa, Nurulhikma Md

    2018-04-01

    The N-end rule pathway is a protein degradation pathway that relates the protein half-life with the identity of its N-terminal residues. A destabilizing N-terminal residues is created by enzymatic reaction or chemical modifications. This destabilized substrate will be recognized by PROTEOLYSIS 6 (PRT6) protein, which encodes an E3 ligase enzyme and resulted in substrate degradation by proteasome. PRT6 has been studied in Arabidopsis thaliana and barley but not yet been studied in fleshy fruit plants. Hence, this study was carried out in tomato that is known as the model for fleshy fruit plants. BLASTX analysis identified that Solyc09g010830 which encodes for a PRT6 gene in tomato based on its sequence similarity with PRT6 in A. thaliana. In silico gene expression analysis shows that PRT6 gene was highly expressed in tomato fruits breaker +5. Co-expression analysis shows that PRT6 may not only involved in abiotic stresses but also in biotic stresses. The objective is to analyze the sequence and characterize PRT6 gene in tomato.

  19. Complete mitochondrial genome sequence of Indian medium carp, Labeo gonius (Hamilton, 1822) and its comparison with other related carp species.

    Science.gov (United States)

    Behera, Bijay Kumar; Kumari, Kavita; Baisvar, Vishwamitra Singh; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Jena, J K

    2017-01-01

    In the present study, the complete mitochondrial genome sequence of Labeo gonius is reported using PGM sequencer (Ion Torrent). The complete mitogenome of L. gonius is obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP) which is 16 614 bp in length. The mitogenome of L. gonius comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and D-loop as control region along with gene order and organization, being similar to most of other fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of Labeo fimbriatus, as reported earlier. The phylogenetic analysis of Cypriniformes depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of L. gonius would be helpful in understanding the population genetics, phylogenetics, and evolution of Indian Carps.

  20. Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.

    2007-07-01

    Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.

  1. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis

    Directory of Open Access Journals (Sweden)

    Zhao Patrick X

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L., a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1 chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

  2. Top-Down-Assisted Bottom-Up Method for Homologous Protein Sequencing: Hemoglobin from 33 Bird Species

    Science.gov (United States)

    Song, Yang; Laskay, Ünige A.; Vilcins, Inger-Marie E.; Barbour, Alan G.; Wysocki, Vicki H.

    2015-11-01

    Ticks are vectors for disease transmission because they are indiscriminant in their feeding on multiple vertebrate hosts, transmitting pathogens between their hosts. Identifying the hosts on which ticks have fed is important for disease prevention and intervention. We have previously shown that hemoglobin (Hb) remnants from a host on which a tick fed can be used to reveal the host's identity. For the present research, blood was collected from 33 bird species that are common in the U.S. as hosts for ticks but that have unknown Hb sequences. A top-down-assisted bottom-up mass spectrometry approach with a customized searching database, based on variability in known bird hemoglobin sequences, has been devised to facilitate fast and complete sequencing of hemoglobin from birds with unknown sequences. These hemoglobin sequences will be added to a hemoglobin database and used for tick host identification. The general approach has the potential to sequence any set of homologous proteins completely in a rapid manner.

  3. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    Science.gov (United States)

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population

  4. DNA sequence characterisation and phylogeography of Lymnaea cousini and related species, vectors of fascioliasis in northern Andean countries, with description of L. meridensis n. sp. (Gastropoda: Lymnaeidae

    Directory of Open Access Journals (Sweden)

    Bargues M Dolores

    2011-07-01

    Full Text Available Abstract Background Livestock fascioliasis is a problem throughout Ecuador, Colombia and Venezuela, mainly in Andean areas where the disease also appears to affect humans. Transmission patterns and epidemiological scenarios of liver fluke infection have shown to differ according to the lymnaeid vector snail species involved. These Andean countries present the vectors Lymnaea cousini, L. bogotensis and L. ubaquensis, unknown in the rest of Latin America. An exhaustive combined haplotype study of these species is performed by means of DNA sequencing of the nuclear ribosomal 18S RNA gene, ITS-2 and ITS-1, and mitochondrial DNA cox1 gene. Results The conserved 5.8S rDNA sequence corroborated that no pseudogenes are involved in the numerous non-microsatellite/minisatellite-related indels appearing between the ITS-2 and ITS-1 sequences when comparing different L. cousini - L. bogotensis populations. Sequence analyses and phylogenetic reconstruction methods including other lymnaeid vector species show that (i L. bogotensis is a synonym of L. cousini, (ii L. ubaquensis is a synonym of Pseudosuccinea columella, and (iii populations of L. cousini hitherto known from Venezuelan highlands indeed belong to a new species for which the name L. meridensis n. sp. is proposed. This new species is described and a complete phenotypic differentiation provided. Conclusions ITS-2, ITS-1 and cox1 prove to be good markers for specimen classification and haplotype characterisation of these morphologically similar lymnaeids in endemic areas. Analysis of the 18S gene and phylogenetic reconstructions indicate that L. cousini and L. meridensis n. sp. cluster in an evolutionary line different from the one of P. columella, despite their external resemblance. This suggests an evolutionary phenotypic convergence related to similar environments and which has given rise to frequent specimen misclassification. Body size and phylogenetic relationships of L. meridensis n. sp. with

  5. DNA sequence characterisation and phylogeography of Lymnaea cousini and related species, vectors of fascioliasis in northern Andean countries, with description of L. meridensis n. sp. (Gastropoda: Lymnaeidae)

    Science.gov (United States)

    2011-01-01

    Background Livestock fascioliasis is a problem throughout Ecuador, Colombia and Venezuela, mainly in Andean areas where the disease also appears to affect humans. Transmission patterns and epidemiological scenarios of liver fluke infection have shown to differ according to the lymnaeid vector snail species involved. These Andean countries present the vectors Lymnaea cousini, L. bogotensis and L. ubaquensis, unknown in the rest of Latin America. An exhaustive combined haplotype study of these species is performed by means of DNA sequencing of the nuclear ribosomal 18S RNA gene, ITS-2 and ITS-1, and mitochondrial DNA cox1 gene. Results The conserved 5.8S rDNA sequence corroborated that no pseudogenes are involved in the numerous non-microsatellite/minisatellite-related indels appearing between the ITS-2 and ITS-1 sequences when comparing different L. cousini - L. bogotensis populations. Sequence analyses and phylogenetic reconstruction methods including other lymnaeid vector species show that (i) L. bogotensis is a synonym of L. cousini, (ii) L. ubaquensis is a synonym of Pseudosuccinea columella, and (iii) populations of L. cousini hitherto known from Venezuelan highlands indeed belong to a new species for which the name L. meridensis n. sp. is proposed. This new species is described and a complete phenotypic differentiation provided. Conclusions ITS-2, ITS-1 and cox1 prove to be good markers for specimen classification and haplotype characterisation of these morphologically similar lymnaeids in endemic areas. Analysis of the 18S gene and phylogenetic reconstructions indicate that L. cousini and L. meridensis n. sp. cluster in an evolutionary line different from the one of P. columella, despite their external resemblance. This suggests an evolutionary phenotypic convergence related to similar environments and which has given rise to frequent specimen misclassification. Body size and phylogenetic relationships of L. meridensis n. sp. with well-known vectors as

  6. Chemometric analysis of ESIMS and NMR data from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Lydia F.; Freitas, Giovana C.; Yoshida, Nidia C.; Silva, Renata A.; Gaia, Anderson M.; Silva, Adalberto M.; Kato, Massuo J.; Emerenciano, Vicente de P., E-mail: majokato@iq.usp.br [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, SP (Brazil); Scotti, Marcus T. [Centro de Ciencias Aplicadas e Educacao (Campus IV), Universidade Federal da Paraiba, Rio Tinto, PB (Brazil); Guimaraes, Elsie F. [Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, RJ (Brazil); Floh, Eny I.S. [Departamento de Botanica, Instituto de Biociencias, Sao Paulo, SP (Brazil); Colombo, Carlos A.; Siqueira, Walter J. [Centro de Genetica Biologia Molecular e Fitoquimica, Instituto Agronomico de Campinas, SP (Brazil)

    2011-09-15

    The metabolomic profiling based on the application of multivariate analysis (principal component analysis, PCA) of positive mode electrospray ionization mass spectrometric (ESIMS) and {sup 1}H nuclear magnetic resonance (NMR) data of crude extracts highlighted some species characterized by lignans (P. solmsianum, P. truncatum and P. cernuum), neolignans (P. regnellii) and chromenes (P. gaudichaudianum). A specific analysis focusing on species having pendant and globular inflorescences (P. caldense, P. carniconnectivum, P. bowiei and P. permucronatum) or amides-producing species indicated higher potential of the methodology in determining similarities and establishing priorities for further phytochemical investigation. Such intraspecific analysis applied to analyzed seedling leaves of the P. solmsianum, P. regnellii and P. gaudichaudianum species revealed the production of dillapiole and apiole instead of lignans, neolignans or prenylated benzoic acid, produced by the adult leaves, respectively. In case of amides-producing species, a similar profile was observed regardless the developmental stage. (author)

  7. Chemometric analysis of ESIMS and NMR data from Piper species

    International Nuclear Information System (INIS)

    Yamaguchi, Lydia F.; Freitas, Giovana C.; Yoshida, Nidia C.; Silva, Renata A.; Gaia, Anderson M.; Silva, Adalberto M.; Kato, Massuo J.; Emerenciano, Vicente de P.; Scotti, Marcus T.; Guimaraes, Elsie F.; Floh, Eny I.S.; Colombo, Carlos A.; Siqueira, Walter J.

    2011-01-01

    The metabolomic profiling based on the application of multivariate analysis (principal component analysis, PCA) of positive mode electrospray ionization mass spectrometric (ESIMS) and 1 H nuclear magnetic resonance (NMR) data of crude extracts highlighted some species characterized by lignans (P. solmsianum, P. truncatum and P. cernuum), neolignans (P. regnellii) and chromenes (P. gaudichaudianum). A specific analysis focusing on species having pendant and globular inflorescences (P. caldense, P. carniconnectivum, P. bowiei and P. permucronatum) or amides-producing species indicated higher potential of the methodology in determining similarities and establishing priorities for further phytochemical investigation. Such intraspecific analysis applied to analyzed seedling leaves of the P. solmsianum, P. regnellii and P. gaudichaudianum species revealed the production of dillapiole and apiole instead of lignans, neolignans or prenylated benzoic acid, produced by the adult leaves, respectively. In case of amides-producing species, a similar profile was observed regardless the developmental stage. (author)

  8. Amino acid sequences of predicted proteins and their annotation for 95 organism species. - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Amino acid sequences of predicted proteins and their annotation for 95 organis...m species. Data detail Data name Amino acid sequences of predicted proteins and their annotation for 95 orga...nism species. DOI 10.18908/lsdba.nbdc00464-001 Description of data contents Amino acid sequences of predicted proteins...Database Description Download License Update History of This Database Site Policy | Contact Us Amino acid sequences of predicted prot...eins and their annotation for 95 organism species. - Gclust Server | LSDB Archive ...

  9. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Directory of Open Access Journals (Sweden)

    Maria Eguiluz

    2017-11-01

    Full Text Available Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC and 18,587 bp (SSC. The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes. Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.

  10. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Science.gov (United States)

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566

  11. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora.

    Science.gov (United States)

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.

  12. Sequence diversity, cytotoxicity and antigenic similarities of the leukotoxin of isolates of Mannheimia species from mastitis in domestic sheep.

    Science.gov (United States)

    Omaleki, Lida; Browning, Glenn F; Barber, Stuart R; Allen, Joanne L; Srikumaran, Subramaniam; Markham, Philip F

    2014-11-07

    Species within the genus Mannheimia are among the most important causes of ovine mastitis. Isolates of these species can express leukotoxin A (LktA), a primary virulence factor of these bacteria. To examine the significance of variation in the LktA, the sequences of the lktA genes in a panel of isolates from cases of ovine mastitis were compared. The cross-neutralising capacities of rat antisera raised against LktA of one Mannheimia glucosida, one haemolytic Mannheimia ruminalis, and two Mannheimia haemolytica isolates were also examined to assess the effect that variation in the lktA gene can have on protective immunity against leukotoxins with differing sequences. The lktA nucleotide distance between the M. haemolytica isolates was greater than between the M. glucosida isolates, with the M. haemolytica isolates divisible into two groups based on their lktA sequences. Comparison of the topology of phylogenetic trees of 16S rDNA and lktA sequences revealed differences in the relationships between some isolates, suggesting horizontal gene transfer. Cross neutralisation data obtained with monospecific anti-LktA rat sera were used to derive antigenic similarity coefficients for LktA from the four Mannheimia species isolates. Similarity coefficients indicated that LktA of the two M. haemolytica isolates were least similar, while LktA from M. glucosida was most similar to those for one of the M. haemolytica isolates and the haemolytic M. ruminalis isolate. The results suggested that vaccination with the M. glucosida leukotoxin would generate the greatest cross-protection against ovine mastitis caused by Mannheimia species with these alleles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence.

    Science.gov (United States)

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-06-01

    Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree

  14. Draft Genome Sequence of Catellicoccus marimammalium, a Novel Species Commonly Found in Gull Feces

    Science.gov (United States)

    Catellicoccus marimammalium is a relatively uncharacterized Gram-positive, facultative anaerobe with potential utility as an indicator of waterfowl fecal contamination. Here we report an annotated draft genome sequence that suggests this organism may be a symbiotic gut microbe.

  15. Streaming support for data intensive cloud-based sequence analysis.

    Science.gov (United States)

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  16. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Shadi A. Issa

    2013-01-01

    Full Text Available Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  17. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Science.gov (United States)

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  18. [Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants].

    Science.gov (United States)

    Boronnikova, S V; Kalendar', R N

    2010-01-01

    Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.

  19. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This geneti