WorldWideScience

Sample records for spatial resolution observations

  1. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  2. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  3. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  4. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    Science.gov (United States)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  5. Particle detector spatial resolution

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs

  6. High spatial resolution observations of the T Tau system - II. Interferometry in the mid-infrared

    International Nuclear Information System (INIS)

    Ratzka, Thorsten

    2008-01-01

    Each time the resolution was improved, observations of the young low-mass star T Tau led to new insights. Initially classified as the prototype of low-mass pre-main-sequence stars, measurements with high resolution techniques in the near-infrared revealed the existence of a deeply embedded companion only 0.7 arcsec to the south. Later on, this companion itself has been resolved into two sources with a separation of only about 50 mas. We investigated both the optically bright northern component and the embedded southern binary with the MID-infrared Interferometric instrument (MIDI). The resulting visibilities of the northern component decrease with wavelength, independent of the baseline's position angle. This is a clear sign of the large face-on circumstellar disc. With a simultaneous fit of a radiative transfer model to both the interferometric results and the spectral energy distribution, the properties of this disc can be determined without the high degeneracy of fits to the spectral energy distribution alone. Since the visibilities of the southern binary are clearly dominated by the typical sinusoidal binary signal, we could for the first time in the mid-infrared derive separate spectra for both components together with a very precise relative position. This position is in excellent agreement with the orbit found from a fit to the near-infrared adaptive optics measurements. The orbit with its small periastron distance indicates tidally truncated discs, which are consistent with the interferometric measurements. The peculiar properties of the infrared companion can be explained by the model of an intermediate mass star extincted by an almost edge-on disc.

  7. Observation of spatial resolution of ECR plasma on the MM-2 magnetic mirror

    International Nuclear Information System (INIS)

    Duan Shuyun; Gu Biao; Guan Weishu; Cheng Shiqing; Liu Rong; Chen Kangwei; Shang Zhenkui

    1991-04-01

    The measuring method and results of the ECR plasma properties taken from hard X-ray pinhole camera on the MM-2 magnetic mirror are presented. This non-destructive imaging method can directly display the spatial distribution of hot electron plasma. A frame of clear picture could be taken at one shot of discharge. The relationships between emission intensity and discharge parameters are also shown by experimental pictures

  8. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Science.gov (United States)

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  9. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  10. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  11. Spatial resolution in visual memory.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.

  12. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  13. SERPENS CLUSTER B AND VV SER OBSERVED WITH HIGH SPATIAL RESOLUTION AT 70, 160, AND 350 μm

    International Nuclear Information System (INIS)

    Harvey, Paul; Dunham, Michael M.

    2009-01-01

    We report on diffraction-limited observations in the far-infrared (FIR) and submillimeter of the Cluster B region of Serpens (G3-G6 Cluster) and of the Herbig Be star to the south, VV Ser. The observations were made with the Spitzer/MIPS instrument in fine-scale mode at 70 μm, in a normal mapping mode at 160 μm (VV Ser only), and the Caltech Submillimeter Observatory (CSO) Submillimeter High Angular Resolution Camera II (SHARC-II) camera at 350 μm (Cluster B only). We use these data to define the spectral energy distributions of the tightly grouped members of Cluster B, many of whose spectral energy distribution (SED)'s peak in the FIR. We compare our results to those of the c2d survey of Serpens and to published models for the FIR emission from VV Ser. We find that values of L bol and T bol calculated with our new photometry show only modest changes from previous values, and that most source SED classifications remain unchanged.

  14. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  15. Spatial resolution in Micromegas detectors

    CERN Document Server

    Bayb, A; Giomataris, Ioanis; Zaccone, Henri; Bay, A; Perroud, Jean-Pierre; Ronga, F

    2001-01-01

    The performance of a telescope of Micromegas detectors has been studied in a pion beam at the CERN PS. With a gas filling of CF/sub 4 / and 20% isobutane and with a strip pitch of 100 mu m an accuracy of 14+or-3 mu m on the spatial resolution has been measured at normal incidence. A simulation demonstrates that the resolution is limited by the size of the holes of the mesh of the detector and could be reduced to 11 mu m in the same conditions with smaller holes. Even further improvement down to 8.5 mu m is feasible for the same gas with an optimized 75 mu m strip pitch. (5 refs).

  16. Improving the spatial and temporal resolution with quantification of uncertainty and errors in earth observation data sets using Data Interpolating Empirical Orthogonal Functions methodology

    Science.gov (United States)

    El Serafy, Ghada; Gaytan Aguilar, Sandra; Ziemba, Alexander

    2016-04-01

    There is an increasing use of process-based models in the investigation of ecological systems and scenario predictions. The accuracy and quality of these models are improved when run with high spatial and temporal resolution data sets. However, ecological data can often be difficult to collect which manifests itself through irregularities in the spatial and temporal domain of these data sets. Through the use of Data INterpolating Empirical Orthogonal Functions(DINEOF) methodology, earth observation products can be improved to have full spatial coverage within the desired domain as well as increased temporal resolution to daily and weekly time step, those frequently required by process-based models[1]. The DINEOF methodology results in a degree of error being affixed to the refined data product. In order to determine the degree of error introduced through this process, the suspended particulate matter and chlorophyll-a data from MERIS is used with DINEOF to produce high resolution products for the Wadden Sea. These new data sets are then compared with in-situ and other data sources to determine the error. Also, artificial cloud cover scenarios are conducted in order to substantiate the findings from MERIS data experiments. Secondly, the accuracy of DINEOF is explored to evaluate the variance of the methodology. The degree of accuracy is combined with the overall error produced by the methodology and reported in an assessment of the quality of DINEOF when applied to resolution refinement of chlorophyll-a and suspended particulate matter in the Wadden Sea. References [1] Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nechad, B.; Ruddick, K.G.; Beckers, J.-M. (2011). Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology. J. Sea Res. 65(1): 114-130. Dx.doi.org/10.1016/j.seares.2010.08.002

  17. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  18. Assessing Nonstationary Spatial Patterns of Extreme Droughts from Long-Term High-Resolution Observational Dataset on a Semiarid Basin (Spain

    Directory of Open Access Journals (Sweden)

    Sandra G. Garcia Galiano

    2015-10-01

    Full Text Available In basins of South-eastern Spain; such as the semiarid Segura River Basin (SRB, a strong decrease in runoff from the end of the 1970s has been observed. However, in the SRB the decreasing trend is not only related with climate variability and change, also with intensive reforestation aimed at halting desertification and erosion, whichever the reason is, the default assumption of stationarity in water resources systems cannot be guaranteed. Therefore there is an important need for improvement in the ability of monitoring and predicting the impacts associated with the change of hydrologic regimes. It is thus necessary to apply non-stationary probabilistic models, which are able to reproduce probability density functions whose parameters vary with time. From a high-resolution daily gridded rainfall dataset of more than five decades (1950−2007, the spatial distribution of lengths of maximum dry spells for several thresholds are assessed, applying Generalized Additive Models for Location Scale and Shape (GAMLSS models at the grid site. Results reveal an intensification of extreme drought events in some headbasins of the SRB important for water supply. The identification of spatial patterns of drought hazards at basin scale, associated with return periods; contribute to designing strategies of drought contingency preparedness and recovery operations, which are the leading edge of adaptation strategies.

  19. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  20. Spatial resolution requirements for digital radiology

    International Nuclear Information System (INIS)

    Seeley, G.W.; Dallas, W.J.; Guillian, J.; Ovitt, T.; Standen, J.

    1990-01-01

    This paper describes research to define the needed spatial resolution for maintaining diagnostic accuracy in digital systems. Posteroanterior images from 30 normal and 30 abnormal studies of patients with various stages of interstitial disease were digitized at 51 p/mm with 12 bits of gray level and then processed in a computer to reduce spatial resolution from 5.0 to 2.5, 1.875, and in 1.25 Ip/mm. A Kodak laser writer using a LUT devised to ensure the copies had equal densities to those measured from the original images was used to write the images back to film. These film images were then shown to radiologists (one resolution level per radiologist). They were asked to give their diagnosis and certainty for each image (receiver operating characteristic [ROC] paradigm) and also to rate each image on overall spatial and contrast resolution as well as the visibility of seven diagnostically important structures

  1. Enhanced spatial resolution on figures versus grounds.

    Science.gov (United States)

    Hecht, Lauren N; Cosman, Joshua D; Vecera, Shaun P

    2016-07-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared on either figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region's color (red or green), which was equally likely to define the figure or the ground. The results of our experiments showed that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as ground are perceptually suppressed.

  2. Enhanced spatial resolution on figures versus grounds

    Science.gov (United States)

    Hecht, Lauren N.; Cosman, Joshua D.; Vecera, Shaun P.

    2016-01-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared either on figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region’s color (red or green), which was equally likely to define the figure or the ground. The results of our experiments show that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as grounds are perceptually suppressed. PMID:27048441

  3. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  4. Tactile spatial resolution in blind braille readers.

    Science.gov (United States)

    Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A

    2000-06-27

    To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.

  5. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  6. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  7. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  8. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  9. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  10. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).

  11. Improving PET spatial resolution and detectability for prostate cancer imaging

    International Nuclear Information System (INIS)

    Bal, H; Guerin, L; Casey, M E; Conti, M; Eriksson, L; Michel, C; Fanti, S; Pettinato, C; Adler, S; Choyke, P

    2014-01-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%. (paper)

  12. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  13. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    Science.gov (United States)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  14. Spatial resolution and chest nodule detection: an interesting incidental finding

    Science.gov (United States)

    Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.

    2010-02-01

    This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.

  15. EBSD spatial resolution for detecting sigma phase in steels

    Energy Technology Data Exchange (ETDEWEB)

    Bordín, S. Fernandez; Limandri, S. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Ranalli, J.M. [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires (Argentina); Castellano, G. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2016-12-15

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20 nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75 nm and 16 nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40 h at 600 °C) and aging (284 h at 484 °C) effects—as usually occurring in nuclear reactor pressure vessels. - Highlights: • EBSD spatial resolution is studied by Monte Carlo simulation for σ-phase in steel. • The contribution of the intrinsic incident beam size was included. • A stabilized austenitic stainless steel under heat treatments was measured by EBSD. • With the transversal resolution found, small area σ-phase grains could be identified.

  16. Study of the spatial resolution for binary readout detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-07-11

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  17. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  18. Spatial resolution test of a beam diagnostic system for DESIREE

    Science.gov (United States)

    Das, Susanta; Kallberg, A.

    2010-11-01

    A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).

  19. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  20. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  1. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    NARCIS (Netherlands)

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy

  2. Change of spatial information under rescaling: A case study using multi-resolution image series

    Science.gov (United States)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features

  3. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  4. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  5. The effects of transient attention on spatial resolution and the size of the attentional cue.

    Science.gov (United States)

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  6. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  7. A study of spatial resolution in pollution exposure modelling

    Directory of Open Access Journals (Sweden)

    Gustafsson Susanna

    2007-06-01

    Full Text Available Abstract Background This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. Results The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m, denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas. To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 μg/m3 and the standard deviation 5.9 μg/m3 for the daily difference. Conclusion The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 μg/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200–400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m. This implies that we should develop a pollutant

  8. New device based on the super spatial resolution (SSR) method

    International Nuclear Information System (INIS)

    Soluri, A.; Atzeni, G.; Ucci, A.; Bellone, T.; Cusanno, F.; Rodilossi, G.; Massari, R.

    2013-01-01

    Recently it have been described that innovative methods, namely Super Spatial Resolution (SSR), can be used to improve the scintigraphic imaging. The aim of SSR techniques is the enhancement of the resolution of an imaging system, using information from several images. In this paper we describe a new experimental apparatus that could be used for molecular imaging and small animal imaging. In fact we present a new device, completely automated, that uses the SSR method and provides images with better spatial resolution in comparison to the original resolution. Preliminary small animal imaging studies confirm the feasibility of a very high resolution system in scintigraphic imaging and the possibility to have gamma cameras using the SSR method, to perform the applications on functional imaging. -- Highlights: • Super spatial resolution brings a high resolution image from scintigraphic images. • Resolution improvement depends on the signal to noise ratio of the original images. • The SSR shows significant improvement on spatial resolution in scintigraphic images. • The SSR method is potentially utilizable for all scintigraphic devices

  9. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  10. Scene Classification Using High Spatial Resolution Multispectral Data

    National Research Council Canada - National Science Library

    Garner, Jamada

    2002-01-01

    ...), High-spatial resolution (8-meter), 4-color MSI data from IKONOS provide a new tool for scene classification, The utility of these data are studied for the purpose of classifying the Elkhorn Slough and surrounding wetlands in central...

  11. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  12. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  13. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    Science.gov (United States)

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  14. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  15. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    OpenAIRE

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields, as simulations at higher spatial resolution are more capable of resolving the interaction between the topography and the atmosphere. However, most physics par...

  16. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  17. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    Science.gov (United States)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  18. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  19. High resolution or optimum resolution? Spatial analysis of the Federmesser site at Andernach, Germany

    NARCIS (Netherlands)

    Stapert, D; Street, M

    1997-01-01

    This paper discusses spatial analysis at site level. It is suggested that spatial analysis has to proceed in several levels, from global to more detailed questions, and that optimum resolution should be established when applying any quantitative methods in this field. As an example, the ring and

  20. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  1. Spatial Resolution of the ECE for JET Typical Parameters

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2000-01-01

    The purpose of this report is to obtain estimations of the spatial resolution of the electron cyclotron emission (ECE) phenomena for the typical plasmas found in JET tokamak. The analysis of the spatial resolution of the ECE is based on the underlying physical process of emission and a working definition is presented and discussed. In making these estimations a typical JET pulse is being analysed taking into account the magnetic configuration, the density and temperature profiles, obtained with the EFIT code and from the LIDAR diagnostic. Ray tracing simulations are performed for a Maxwellian plasma taking into account the antenna pattern. (Author) 5 refs

  2. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  3. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  4. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  6. Development of an Objective High Spatial Resolution Soil Moisture Index

    Science.gov (United States)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  7. Investigation of spatial resolution characteristics of an in vivo microcomputed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U. [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Zhou, Zhongxing [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); School of Precision and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Ren, Liqiang; Wong, Molly; Li, Yuhua; Zheng, Bin [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Yang, Kai [Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2016-01-21

    The spatial resolution characteristics of an in vivo microcomputed tomography (CT) system was investigated in the in-plane (x–y), cross plane (z) and projection imaging modes. The microCT system utilized in this study employs a flat panel detector with a 127 µm pixel pitch, a microfocus x-ray tube with a focal spot size ranging from 5–30 µm, and accommodates three geometric magnifications (M) of 1.72, 2.54 and 5.10. The in-plane modulation transfer function (MTF) curves were measured as a function of the number of projections, geometric magnification (M), detector binning and reconstruction magnification (M{sub Recon}). The in plane cutoff frequency (10% MTF) ranged from 2.31 lp/mm (M=1.72, 2×2 binning) to 12.56 lp/mm (M=5.10, 1×1 binning) and a bar pattern phantom validated those measurements. A slight degradation in the spatial resolution was observed when comparing the image reconstruction with 511 and 918 projections, whose effect was visible at the lower frequencies. Small value of M{sub Recon} has little or no impact on the in-plane spatial resolution owning to a stable system. Large value of M{sub Recon} has implications on the spatial resolution and it was evident when comparing the bar pattern images reconstructed with M{sub Recon}=1.25 and 2.5. The cross plane MTF curves showed that the spatial resolution increased as the slice thickness decreased. The cutoff frequencies in the projection imaging mode yielded slightly higher values as compared to the in-plane and cross plane modes at all the geometric magnifications (M). At M=5.10, the cutoff resolution of the projection and cross plane on an ultra-high contrast resolution bar chip phantom were 14.9 lp/mm and 13–13.5 lp/mm. Due to the finite focal spot size of the x-ray tube, the detector blur and the reconstruction kernel functions, the system's spatial resolution does not reach the limiting spatial resolution as defined by the Nyquist's detector criteria with an ideal point source

  8. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  9. Spatial Resolution of a Wedge Shaped MSGC Module

    CERN Document Server

    Bachmann, Sebastian

    1997-01-01

    A banana shaped closed design MSGC detector module was tested together with silicon detectors and other MSGCs in a 100 GeV muon beam. Despite of an undesirable geometry of the test setup, a spatial resolution below 40 micron m was reached. The efficiency of the module, defined by track reconstruction, shows to be 95,6 percent

  10. Study of spatial resolution in three-dimensional rotational angiography

    International Nuclear Information System (INIS)

    Enoki, Takuya; Nasada, Toshiya; Matsumoto, Kazuma; Umehara, Takayoshi

    2006-01-01

    In interventional radiology (IVR) of cerebral aneurysms, it is important to understand the form and physical relationships between the cerebral aneurysm and the surrounding vessels. However, because the vessels in the head area are highly complex, it can be difficult to comprehend the structure using conventional angiography. Therefore, three-dimensional rotational angiography (3D-RA) has been used in recent years. This article discusses studies of the spatial resolution of 3D-RA. We reconstructed 3D-RA of an acrylic slit phantom (slit widths: 0.5, 0.75, 1.0, 1.5 mm) and examined spatial resolution by visual evaluation and profile curves. When the slit phantom was arranged to avoid the effect of beam hardening, the spatial resolution of 3D-RA was found to be as high as 0.75 mm. When the slit phantom was placed orthogonal to the rotational axis of the C-arm, the spatial resolution of 3D-RA was decreased because of the cone angle effect of X-rays. However, it was considered within the allowable range for clinical study. Consequently, 3D-RA is valuable in IVR. (author)

  11. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  12. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  13. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  14. Incoherent improvement of the spatial resolution in digital holography

    International Nuclear Information System (INIS)

    Garcia-Sucerquia, J.; Herrera-Ramirez, J.; Castaneda, R.

    2005-10-01

    We report on a technique for increasing the spatial resolution of digitally recorded and reconstructed holograms of macroscopic objects, via the reduction of the contrast of the speckle noise present in the coherent imaging techniques. The contrast of the speckle noise is reduced through the superposition on an intensity basis of digitally reconstructed holograms of the same static scene. The reconstruction of a very poor contrasted object illustrates the performance of the technique. (author)

  15. Spatial resolution of wedge shaped silicon microstrip detectors

    International Nuclear Information System (INIS)

    Anticic, T.; Barnett, B.; Blumenfeld, B.; Chien, C.Y.; Fisher, P.; Gougas, A.; Krizmanic, J.; Madansky, L.; Newman, D.; Orndorff, J.; Pevsner, A.; Spangler, J.

    1995-01-01

    Several wedge-shaped silicon microstrip detectors with pitches from 30 to 100 μm have been designed by our group and beam tested at the CERN SPS. We find the spatial resolution σ becomes larger at the rate of 0.21 μm per 1 μm increase in pitch, but the number of strips per cluster remains about the same as the pitch varies from 30 to 100 μm. (orig.)

  16. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  17. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  18. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    Science.gov (United States)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  19. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  20. SRXRF analysis with spatial resolution of dental calculus

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Perez, Carlos Alberto; Grenon, Miriam

    2000-01-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45 deg. + 45 deg.) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μmx50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm

  1. SRXRF analysis with spatial resolution of dental calculus

    Science.gov (United States)

    Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam

    2000-09-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.

  2. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  3. Neuromorphic model of magnocellular and parvocellular visual paths: spatial resolution

    International Nuclear Information System (INIS)

    Aguirre, Rolando C; Felice, Carmelo J; Colombo, Elisa M

    2007-01-01

    Physiological studies of the human retina show the existence of at least two visual information processing channels, the magnocellular and the parvocellular ones. Both have different spatial, temporal and chromatic features. This paper focuses on the different spatial resolution of these two channels. We propose a neuromorphic model, so that they match the retina's physiology. Considering the Deutsch and Deutsch model (1992), we propose two configurations (one for each visual channel) of the connection between the retina's different cell layers. The responses of the proposed model have similar behaviour to those of the visual cells: each channel has an optimum response corresponding to a given stimulus size which decreases for larger or smaller stimuli. This size is bigger for the magno path than for the parvo path and, in the end, both channels produce a magnifying of the borders of a stimulus

  4. Spatial resolution in optical transition radiation (OTR) beam diagnostics

    International Nuclear Information System (INIS)

    Castellano, M.; Verzilov, V. A.

    1998-06-01

    An evaluation of the OTR single particle image dimension is obtained using diffraction theory based on a realistic description of the radiation source. This approach allows the analysis of the effect of the finite size of the emitting screen and of the imaging system. The role of practical experimental conditions in treating the intensity tail problem is estimated. It is shown that by exploiting the polarization properties of OTR, a considerable enhancement in the spatial resolution can be achieved, which becomes very similar to that of a standard point source

  5. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  6. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  7. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  8. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Directory of Open Access Journals (Sweden)

    A. Venäläinen

    2017-07-01

    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  9. Total porosity of carbonate reservoir rocks by X-ray microtomography in two different spatial resolutions

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos R.; Marques, Leonardo C.; Fernandes, Celso P.

    2011-01-01

    Carbonate reservoir rocks contain more than 50% of world's petroleum. To know carbonate rocks' structural properties is quite important to petroleum extraction. One of their main structural properties is the total porosity, which shows the rock's capacity to stock petroleum. In recent years, the X-ray microtomography had been used to analyze the structural parameters of reservoir rocks. Such nondestructive technique generates images of the samples' internal structure, allowing the evaluation of its properties. The spatial resolution is a measurement parameter that indicates the smallest structure size observable in a sample. It is possible to measure one sample using two or more different spatial resolutions in order to evaluate the samples' pore scale. In this work, two samples of the same sort of carbonate rock were measured, and in each measurement a different spatial resolution (17 μm and 7 μm) was applied. The obtained results showed that with the better resolution it was possible to measure 8% more pores than with the poorer resolution. Such difference provides us with good expectations about such approach to study the pore scale of carbonate rocks. (author)

  10. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  11. Tactile feedback display with spatial and temporal resolutions.

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  12. Spatial resolution enhancement of satellite image data using fusion approach

    Science.gov (United States)

    Lestiana, H.; Sukristiyanti

    2018-02-01

    Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

  13. High spatial resolution infrared camera as ISS external experiment

    Science.gov (United States)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  14. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  15. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  16. APPLICABILITY OF VARIOUS INTERPOLATION APPROACHES FOR HIGH RESOLUTION SPATIAL MAPPING OF CLIMATE DATA IN KOREA

    Directory of Open Access Journals (Sweden)

    A. Jo

    2018-04-01

    Full Text Available The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA. Automatic Weather System (AWS and Automated Synoptic Observing System (ASOS data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478 and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM with 30 m resolution, inverse distance weighting (IDW, co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  17. Spatial resolution studies of a GEM-TPC

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Martin [TU Muenchen, 85748 Garching (Germany); Collaboration: GEM-TPC-Collaboration

    2015-07-01

    A GEM-TPC can exploit the intrinsic suppression of back drifting ions from the amplification stage of the GEM (Gas Electron Multiplier) foils to overcome the problem of drift-field distortions in an ungated operation. To explore the possibility of such a continuously running TPC (Time Projection Chamber) a large-size detector was built. This detector, with a drift length of 728 mm and a radius of 308 mm and a total of 10254 electronic channels, was designed as an upgrade for the FOPI experiment at GSI (Darmstadt, Germany) to improve the secondary vertex resolution especially for K{sup 0}{sub S}- and Λ-reconstruction and the PID capabilities. After commissioning a large statistics of cosmic data and beam-target reactions has been collected and the obtained tracks in the TPC have been used to improve the tracking algorithms. During the track finding and fitting procedure a clustering algorithm which takes into account the track topology as well as the full 3D spatial information is employed. The the clustering algorithm, the cluster error calculation and the tracking resolution are discussed in this contribution.

  18. Electroluminescent drift chamber with 16 μm spatial resolution

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, V.A.; Lebedenko, V.N.

    1978-01-01

    Studied are the characteristics of the dft electroluminscent chamber of an original design. For insuring high spatial resolution, the chamber has been filled with xenon to a pressure of 20 atm, which substantially decreases the electron diffusion during drift. Located at the end of the drift gap is an anode wire, 50 μm in dia. A strong electric field available near the thin wire causes electroluminescence of the electrons. The signal is localized within a small volume and contribution of the luminescence time in the total duration of a signal is small. In this case no electron multiplication occurs at all and, consequently, no space charge of positive ions takes place, which makes it possible to operate at very high loadings (2x10 6 particle/s). The characteristics of the chamber are measured in a beam of the Serpukhov accelerator. Use has been made of a model comprising two chambers, 5 mm thick, located successively along the beam with the effective area being 40x40 mm. The studies and analysis performed reveal that the drift electroluminescent chamber operates reliably in the wide range of the working gas pressure at an intensity of the incident particles up to 10 5 particle/s. The best resolution is obtained at a pressure of 20 atm and it equals 16 μm

  19. Conjunctions between motion and disparity are encoded with the same spatial resolution as disparity alone.

    Science.gov (United States)

    Allenmark, Fredrik; Read, Jenny C A

    2012-10-10

    Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.

  20. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    Science.gov (United States)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  1. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Science.gov (United States)

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-09-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10-19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  2. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  3. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  4. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    Science.gov (United States)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  5. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  6. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  7. High spatial resolution mid-infrared spectroscopy of the starburst galaxies NGC3256, IIZw 40 and Henize 2-10

    NARCIS (Netherlands)

    Martin-Hernandez, N. L.; Schaerer, D.; Peeters, E.; Tielens, A. G. G. M.; Sauvage, M.

    Aims. In order to show the importance of high spatial resolution observations of extra-galactic sources when compared to observations obtained with larger apertures such as ISO, we present N-band spectra (8-13 mu m) of some locations in three starburst galaxies. In particular, we show the two

  8. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  9. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  10. The French proposal for a high spatial resolution Hyperspectral mission

    Science.gov (United States)

    Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara

    2014-05-01

    More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.

  11. Comparative analysis of time efficiency and spatial resolution between different EIT reconstruction algorithms

    International Nuclear Information System (INIS)

    Kacarska, Marija; Loskovska, Suzana

    2002-01-01

    In this paper comparative analysis between different EIT algorithms is presented. Analysis is made for spatial and temporal resolution of obtained images by several different algorithms. Discussions consider spatial resolution dependent on data acquisition method, too. Obtained results show that conventional applied-current EIT is more powerful compared to induced-current EIT. (Author)

  12. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  13. Measurement of the spatial resolution and rate capability of an induction drift chamber

    International Nuclear Information System (INIS)

    Roderburg, E.; Broeders, R.; Dahmen, M.; Decker, G.; Kilian, K.; Kurtenbach, A.; Lippert, C.; Oelert, W.; Sehl, G.; Steinkamp, O.; Stratmann, R.; Walsh, S.; Ziolkowski, M.

    1992-01-01

    The limits of spatial resolution of an induction drift chamber (IDC) lead to the concept of an asymmetric IDC with Flash ADC readout. The construction of a chamber is described. The results of two measurements concerning the spatial resolution and the rate capability are reported. (orig.)

  14. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  15. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Garrett, John; Ge, Yongshuai [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  16. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  17. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    OpenAIRE

    Xueke Li; Taixia Wu; Kai Liu; Yao Li; Lifu Zhang

    2016-01-01

    The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1) opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, ...

  18. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem

    Directory of Open Access Journals (Sweden)

    Hamlyn G. Jones

    2014-07-01

    Full Text Available The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves, accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed.

  19. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J

    2011-07-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America

  20. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    Science.gov (United States)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  1. Imaging of hard X-rays with sub-millimetre spatial resolution by means of a xenon filled MWPC

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1979-11-01

    Results are presented showing that a beam of Eu K X-rays (41.5 keV) can be imaged in a xenon filled (NTP) MWPC with sub-millimetre spatial resolution. In the best case (at low data rates) the predicted physical limit of 0.5 mm fwhm is observed. (author)

  2. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  3. Positron flight in human tissues and its influence on PET image spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Crespo, Alejandro; Larsson, Stig A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital, 176 76, Stockholm (Sweden); Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden); Andreo, Pedro [Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden)

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For {sup 18}F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for {sup 82}Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with {sup 18}F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  4. Positron flight in human tissues and its influence on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.; Andreo, Pedro

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18 F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82 Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with 18 F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  5. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    OpenAIRE

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...

  6. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  7. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  8. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  9. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Science.gov (United States)

    Jia, Peng; Anderson, John D; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of greater needs when

  10. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Directory of Open Access Journals (Sweden)

    Peng Jia

    Full Text Available Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals.The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation.The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing.There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of

  11. An evaluation for spatial resolution, using a single target on a medical image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)

    2016-12-15

    Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

  12. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  13. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  14. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  15. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    International Nuclear Information System (INIS)

    Santos, J.A.M.; Sarmento, S.; Alves, P.; Torres, M.C.; Bastos, A.L.; Ponte, F.

    2008-01-01

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector

  16. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe; Castruccio, Stefano; Genton, Marc G.

    2017-01-01

    recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article

  17. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  18. Improving the spatial resolution of the multiple multiwire proportional chamber gamma camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-03-01

    Results are presented showing how the spatial resolution of the multiple multiwire proportional chamber (MMPC) gamma camera may be improved. Under the best conditions 1.6 mm bars can be resolved. (author)

  19. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  20. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    controlled by the composition and content of various foliar pigments (chlorophylls, xanthophylls, etc.). Additionally, the high spectral resolution reflectance together with the narrow bandwidth allows retrieving the steady state chlorophyll fluorescence, which indicates the actual moss photosynthetic activity. A first airborne imaging spectroscopy acquisition with the mini-Hyperspec sensor on-board a low-flying remote-controlled multi-rotor helicopter (known as micro Unmanned Aerial Systems - UAS) will be performed during the summer 2013. The aim of the UAS observations is to generate high spatial resolution maps of actual physiological state of several moss beds located within the Australian Antarctic Territory. The regular airborne monitoring is expected to reveal spatio-temporal changes in the Antarctic moss ecosystems, indicating the impact of the global climate change in Antarctica.

  1. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    Science.gov (United States)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  2. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  3. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  4. The spatial resolution of silicon-based electron detectors in beta-autoradiography.

    Science.gov (United States)

    Cabello, Jorge; Wells, Kevin

    2010-03-21

    Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.

  5. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  6. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  7. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  8. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  9. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  10. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  11. Improving spatial resolution in quantum imaging beyond the Rayleigh diffraction limit using multiphoton W entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jianming, E-mail: jianming.wen@gmail.co [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); Du, Shengwang [Department of Physics, Hong Kong University of Science and Technology, Clear Bay (Hong Kong); Xiao Min [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); School of Modern Engineering and Applied Science, Nanjing University, Nanjing 210093 (China)

    2010-08-23

    Using multiphoton entangled states, we demonstrate improving spatial imaging resolution beyond the Rayleigh diffraction limit in the quantum imaging process. In particular, we examine resolution enhancement using triphoton W state and a factor of 2 is achievable as with the use of the Greenberger-Horne-Zeilinger state, compared to using a classical-light source.

  12. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Science.gov (United States)

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  13. Good is up – Spatial metaphors in action observation

    Directory of Open Access Journals (Sweden)

    Janna Marleen Gottwald

    2015-10-01

    Full Text Available Positive objects or actions are associated with physical highness, whereas negative objects or actions are related to physical lowness. Previous research suggests that metaphorical connection (good is up or bad is down between spatial experience and evaluation of objects is grounded in actual experience with the body. Prior studies investigated effects of spatial metaphors with respect to verticality of either static objects or self-performed actions. By presenting videos of object placements, the current three experiments combined vertically-located stimuli with observation of vertically-directed actions. As expected, participants’ ratings of emotionally-neutral objects were systematically influenced by the observed vertical positioning, that is, ratings were more positive for objects that were observed being placed up as compared to down. Moreover, effects were slightly more pronounced for bad is down, because only the observed downward, but not the upward, action led to different ratings as compared to a medium-positioned action. Last, some ratings were even affected by observing only the upward/downward action, without seeing the final vertical placement of the object. Thus, both, a combination of observing a vertically-directed action and seeing a vertically-located object, and observing a vertically-directed action alone, affected participants’ evaluation of emotional valence of the involved object. The present findings expand the relevance of spatial metaphors to action observation, thereby giving new impetus to embodied-cognition research.

  14. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  15. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  16. Multiwire proportional chambers with a high spatial resolution for X radiation detection and localization

    International Nuclear Information System (INIS)

    Algre, J.-L.

    1975-01-01

    A multiwire proportional counter, with a high spatial resolution has been developed, and some basic characteristics of this type of detector specified. A method of calculating the potential and consequently the field at each point of the volume limited by the counter was defined. The method allows the problems of the outer wires to be solved, and the consequences of a wire displacement predicted. The analysis of the pulses observed on both cathode and anode showed that they were hardly formed from the only ion migration from the cathode to the anode. An estimation of the formation time duration established that in argon mixtures with a low percentage of methane, Ar + ions are in majority. Then it can be predicted that anode wires are not to be spaced by less than 1mm when a conventional electronics is used. The study of the multiplication factor as a function of the main geometric parameters of the counter gave a relation between the multiplication coefficient and the geometric parameters of the chamber; consequently the optimal operation conditions can be predicted. Especially, the diameter of the multiplying wires must be as weak as possible to improve the energy resolution of the detector. A localization method showed that an interpolation may be done between two wires so that, with 1mm spaced wires, the two-dimensional position of an event can be determined with a resolution better than 0.5mm for both directions [fr

  17. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  18. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    Directory of Open Access Journals (Sweden)

    Xueke Li

    2016-05-01

    Full Text Available The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1 opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, China, by comparing the TG-1 (with a spatial resolution of 10 m to EO-1 Hyperion (with a spatial resolution of 30 m. The spectral feature of TG-1 was first analyzed and, thus, finding out optimal hyperspectral wavebands useful for the discrimination of urban areas. Based on this, the pixel-based maximum likelihood classifier (PMLC, pixel-based support vector machine (PSVM, hybrid maximum likelihood classifier (HMLC, and hybrid support vector machine (HSVM were implemented, as well as compared in the application of mapping urban land cover types. The hybrid classifier approach, which integrates the pixel-based classifier and the object-based segmentation approach, was demonstrated as an effective alternative to the conventional pixel-based classifiers for processing the satellite hyperspectral data, especially the fine spatial resolution data. For TG-1 imagery, the pixel-based urban classification was obtained with an average overall accuracy of 89.1%, whereas the hybrid urban classification was obtained with an average overall accuracy of 91.8%. For Hyperion imagery, the pixel-based urban classification was obtained with an average overall accuracy of 85.9%, whereas the hybrid urban classification was obtained with an average overall accuracy of 86.7%. Overall, it can be concluded that the fine spatial resolution satellite hyperspectral data TG-1 is promising in delineating complex urban scenes, especially when using an appropriate classifier, such as the

  19. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  20. Study and optimization of the spatial resolution for detectors with binary readout

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-09-11

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  1. Optimizing Spatial Resolution of Imagery for Urban Form Detection—The Cases of France and Vietnam

    Directory of Open Access Journals (Sweden)

    Christiane Weber

    2011-09-01

    Full Text Available The multitude of satellite data products available offers a large choice for urban studies. Urban space is known for its high heterogeneity in structure, shape and materials. To approach this heterogeneity, finding the optimal spatial resolution (OSR is needed for urban form detection from remote sensing imagery. By applying the local variance method to our datasets (pan-sharpened images, we can identify OSR at two levels of observation: individual urban elements and urban districts in two agglomerations in West Europe (Strasbourg, France and in Southeast Asia (Da Nang, Vietnam. The OSR corresponds to the minimal variance of largest number of spectral bands. We carry out three categories of interval values of spatial resolutions for identifying OSR: from 0.8 m to 3 m for isolated objects, from 6 m to 8 m for vegetation area and equal or higher than 20 m for urban district. At the urban district level, according to spatial patterns, form, size and material of elements, we propose the range of OSR between 30 m and 40 m for detecting administrative districts, new residential districts and residential discontinuous districts. The detection of industrial districts refers to a coarser OSR from 50 m to 60 m. The residential continuous dense districts effectively need a finer OSR of between 20 m and 30 m for their optimal identification. We also use fractal dimensions to identify the threshold of homogeneity/heterogeneity of urban structure at urban district level. It seems therefore that our approaches are robust and transferable to different urban contexts.

  2. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  3. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  4. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  5. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  6. Patient dose rate: An ultimate limit for spatial and density resolution of scanning systems

    International Nuclear Information System (INIS)

    Kowalski, G.; Wagner, W.

    1979-01-01

    In X-ray scanning systems, picture quality of the reconstructed slices is limited to a maximum spatial as well as density resolution by the applied radiation dose. Density resolution can be improved in proportion to the root of the patient dose, whereas a doubled spatial resolving power requires an eight times higher patient dose, assuming a fixed slice thickness. Only a careful trade-off between the applied patient dose, density resolution and spatial resolution yields a maximal diagnostic value for the physician. Specifications of a scanning system have to take into account these ultimate restrictions, so that picture quality really is limited by the patient's dose rather than by technical constraints. In addition a method is given by which the applied dose can be reduced by focusing the main intensity onto the region of interest, in case that region is known a priori. (orig.) [de

  7. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  8. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Gao, Feng

    2015-01-01

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  10. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  11. Synopsis Session-I 'Chemical information under high spatial resolution'

    International Nuclear Information System (INIS)

    2013-01-01

    High spatial resolution in this research field is a prerequisite for a better understanding of governing processes, as individual clay particles are very small in dimension (clay size fraction typically defined as < 2μm). The phenomena that have been looked at under this resolution are narrow alteration zones either due to relatively short term laboratory experiments compared to the repository evolution time scale and/or due to the low reaction rates observed for clay minerals at ambient temperature. Another challenge in the field of chemical information to be extracted from compacted clay systems is that mostly the research is focused on the potential contaminants released from the repository near-field, which will be in the trace element concentration and analytical systems have to be tuned to increase the sensitivity under this high spatial resolution. Therefore, chemical information in form of element maps or correlation maps were shown on the initial clay material composition and its heterogeneities (e.g. phase assemblages), the water composition, sorption and migration effects of trace elements, reaction products of geochemical perturbation/alteration and the surface speciation/binding environment of the radionuclides or their chemical homologues. Overall, six invited presentation were given in this session plus additional poster presentations. Beside this, a number of presentations in the other sessions showed a great overlap presenting also chemical data under high spatial resolution. All these oral contributions have shown the progress in this field focusing on the current resolution limits set by the physics and instrumentation available (C. Jacobsen, APS), the micro-focusing instrumentation available at the Karlsruhe Institute of Technology (KIT) synchrotron light source ANKA (J. Goettlicher, KIT-ISS), the application of nano-SIMS to retrieve elemental/isotope maps on complex organo-mineral structures (C. Hoeschen, TU Muenchen), the application of a

  12. Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method

    Science.gov (United States)

    Jones, R. E.; Ward, D. K.; Templeton, J. A.

    2014-11-01

    We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance.

  13. High spatial resolution imaging of some of the distant 3CR galaxies

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Jones, J.

    1988-01-01

    Deep, high spatial resolution imaging of several sources from the high-redshift 3CR galaxy sample is presented. Very complex and unexpected morphologies are found. All the galaxies observed so far are resolved, and most of them show multimodal sources. Significant color differences for the components of each galaxy are measured. An interpretation in terms of gravitational amplification/lensing by foreground galaxies or galactic clusters is proposed for 3C 238, 3C 241, and 3C 305.1, 3C 238 being the strongest candidate. The complexity of the 3CR galaxies like 3C 356, which includes a compact object, and 3C 326.1 shows that they are not normal ellipticals and their use as standard candles to test for galaxy evolution is therefore questionable. 29 references

  14. Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method.

    Science.gov (United States)

    Jones, R E; Ward, D K; Templeton, J A

    2014-11-14

    We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance.

  15. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  16. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  17. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  18. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  19. High spatial and time resolutions with gas ionization detectors

    International Nuclear Information System (INIS)

    Pouthas, J.

    2001-09-01

    This document presents the principles and the characteristics of the gaseous ionisation detectors used in position and timing measurements. The first two parts recall the main notions (electron and ion motions, gaseous amplification, signal formation) and their applications to the proportional counter and the wire chamber. The explanation of the signal formation makes use of the Ramo theorem. The third part is devoted to the different types of wire chambers: drift or cathode strip chambers, TPC (time projection chamber). Some aspects on construction and ageing are also presented. Part 4 is on the detectors in which the multiplication is performed by a 'Parallel Plate' system (PPAC, Pestov counter). Special attention is paid to the RPCs (Resistive Plate Chambers) and their timing resolutions. Part 5 concentrates on 'Micro-pattern detectors' which use different kinds of microstructure for gaseous amplification. The new detectors MICROMEGAS, CAT (compteur a trous) and GEM (gas electron multiplier) and some of their applications are presented. The last part is a bibliography including some comments on the documents. (author)

  20. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  1. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  2. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  3. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  4. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    Science.gov (United States)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  5. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    Science.gov (United States)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  6. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  7. Predicting detection performance with model observers: Fourier domain or spatial domain?

    Science.gov (United States)

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  8. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  9. HIGH SPATIAL-RESOLUTION IMAGING OF TE INCLUSIONS IN CZT MATERIAL

    International Nuclear Information System (INIS)

    CAMARDA, G.S.; BOLOTNIKOV, A.E.; CARINI, G.A.; CUI, Y.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-01-01

    We present new results from our studies of defects in current single-crystal CdZnTe material. Our previous measurements, carried out on thin (∼1 mm) and long (>12 mm) CZT detectors, indicated that small (1-20 (micro)m) Te inclusions can significantly degrade the device's energy resolution and detection efficiency. We are conducting detailed studies of the effects of Te inclusions by employing different characterization techniques with better spatial resolution, such as quantitative fluorescence mapping, X-ray micro-diffraction, and TEM. Also, IR microscopy and gamma-mapping with pulse-shape analysis with higher spatial resolution generated more accurate results in the areas surrounding the micro-defects (Te inclusions). Our results reveal how the performance of CdZnTe detectors is influenced by Te inclusions, such as their spatial distribution, concentration, and size. We also discuss a model of charge transport through areas populated with Te inclusions

  10. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    Science.gov (United States)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  11. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  12. Crowding in Visual Working Memory Reveals Its Spatial Resolution and the Nature of Its Representations.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Fintzi, Anat R; Marois, René

    2015-09-01

    Spatial resolution fundamentally limits any image representation. Although this limit has been extensively investigated for perceptual representations by assessing how neighboring flankers degrade the perception of a peripheral target with visual crowding, the corresponding limit for representations held in visual working memory (VWM) is unknown. In the present study, we evoked crowding in VWM and directly compared resolution in VWM and perception. Remarkably, the spatial resolution of VWM proved to be no worse than that of perception. However, mixture modeling of errors caused by crowding revealed the qualitatively distinct nature of these representations. Perceptual crowding errors arose from both increased imprecision in target representations and substitution of flankers for targets. By contrast, VWM crowding errors arose exclusively from substitutions, which suggests that VWM transforms analog perceptual representations into discrete items. Thus, although perception and VWM share a common resolution limit, exceeding this limit reveals distinct mechanisms for perceiving images and holding them in mind. © The Author(s) 2015.

  13. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  14. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

    Directory of Open Access Journals (Sweden)

    C. Berndt

    2018-02-01

    New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.

  15. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    Science.gov (United States)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  16. PIV study of flow field in Rushton turbine stirred vessel influenced by spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Kotek, M.; Jašíková, D.; Kysela, Bohuš; Šulc, R.; Kopecký, V.

    2017-01-01

    Roč. 2, č. 2017 (2017), s. 79-84 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * PIV measurement * spatial resolution Subject RIV: JP - Industrial Processing OBOR OECD: Fluids and plasma physics (including surface physics) http://www.iaras.org/iaras/home/caijtam/piv-study-of-flow-field-in-rushton-turbine-stirred-vessel-influenced-by-spatial-resolution

  17. Prevalence of Pure Versus Mixed Snow Cover Pixels across Spatial Resolutions in Alpine Environments

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz

    2014-12-01

    Full Text Available Remote sensing of snow-covered area (SCA can be binary (indicating the presence/absence of snow cover at each pixel or fractional (indicating the fraction of each pixel covered by snow. Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days

  18. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  19. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    Science.gov (United States)

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  20. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Science.gov (United States)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  1. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  2. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    OpenAIRE

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In t...

  3. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    C. M. R. Mateo; C. M. R. Mateo; D. Yamazaki; D. Yamazaki; H. Kim; A. Champathong; J. Vaze; T. Oki; T. Oki

    2017-01-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development...

  4. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-01-01

    Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction,...

  5. Effects of limited spatial resolution on fluctuation measurements (invited)

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1995-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work, the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical---not only does it reduce the measured fluctuation amplitude and increase the correlation length (as does an extent perpendicular to the propagation direction), but it also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  6. Effects of limited spatial resolution on fluctuation measurements

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1994-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical - not only does it reduce the measured fluctuation amplitude and correlation length (as does an extent perpendicular to the propagation direction), but also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  7. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  8. Pushing the limits of spatial resolution with the Kuiper Airborne observatory

    Science.gov (United States)

    Lester, Daniel

    1994-01-01

    The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.

  9. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  10. High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins

    Science.gov (United States)

    Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.

    2015-06-01

    The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.

  11. Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution

    Directory of Open Access Journals (Sweden)

    L. A. Remer

    2012-07-01

    Full Text Available The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions using the standard MODIS aerosol cloud mask applied to MODIS data and supplemented with a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol product availability is not the same as the cloud free fraction and takes into account the techniques used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5×0.5 km for MODIS and 1×1 km for GOES, is systematically degraded to 1×1, 2×2, 1×4, 4×4 and 8×8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8×8 km. The analysis is repeated, separately, for near-nadir pixels and those at larger view angles to investigate the effect of pixel growth at oblique angles on aerosol retrieval availability. The results show that as nominal pixel size increases, availability decreases until at 8×8 km 70% to 85% of the retrievals available at 0.5 km, nadir, have been lost. The effect at oblique angles is to further decrease availability over land but increase availability over ocean, because sun glint is found at near-nadir view angles. Finer resolution sensors (i.e., 1×1, 2×2 or even 1×4 km will retrieve aerosols in partly cloudy scenes significantly more often than sensors with nadir views of 4×4 km or coarser. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and

  12. Electron energy-loss spectrometry at the frontier of spatial and energy resolution

    International Nuclear Information System (INIS)

    Hofer, F.; Grogger, W.; Kothleitner, G.

    2004-01-01

    Full text: Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) is now used routinely as a means of measuring chemical and structural properties of very small regions of a thin specimen. The power of this technique depends significantly on two parameters: its spatial resolution and the energy resolution available in the spectrum and in the energy-filtered TEM (EFTEM) image. The cold field emission source and the Schottky emitter have made an energy resolution below 1 eV possible and it is now feasible to obtain data with a spatial resolution close to atomic dimensions, given the right instrumentation and specimen. EFTEM allows to record elemental maps at sub-nanometre resolution, being mainly limited by chromatic and spherical aberration of the objective lens and by delocalization of inelastic scattering. Recently the possibility of correcting spherical and even chromatic aberrations of electron lenses has become a practical reality thus improving the point resolution of the TEM to below 0.1 nm. The other limiting factor for EFTEM resolution is delocalization. However, recent measurements show that resolution values in the range of 1 nm and below can be achieved, even for energy-losses of only a few eV. In terms of energy-resolution, EELS and EFTEM compare less favourably with other spectroscopies. For common TEMs, the overall energy-resolution is mainly determined by the energy width of the electron source, typically between 0.5 and 1.5 eV. For comparison, synchrotron x-ray sources and beam line spectrometers, provide a resolution well below 0.1 eV for absorption spectroscopy. During the early sixties, the energy spread of an electron beam could be reduced by incorporating an energy-filter into the illumination system, but the system lacked spatial resolution. Later developments combined high energy resolution in the range of 0.1 eV with improved spatial resolution. Recently, FEI introduced a new high resolution EELS system based

  13. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    Science.gov (United States)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  14. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    Science.gov (United States)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  15. Spatial resolution requirements in digital radiography of scaphoid fractures. An ROC analysis

    International Nuclear Information System (INIS)

    Jonsson, A.; Laurin, S.; Karner, G.; Herrlin, K.; Hochbergs, P.; Jonsson, K.; Rudling, O.; Sandstroem, S.; Sloth, M.; Svahn, G.; Pettersson, H.

    1996-01-01

    Purpose: To investigate the spatial resolution requirements in digital radiography of scaphoid fractures. Material and Methods: Included in the study were 60 scaphoid radiographs with and 60 without fractures of the scaphoid bone. The film-screen images were digitized using pixel sizes of 115, 170, and 340 μm along with 170 μm with a 10:1 wavelet compression. The digital images were displayed on a 1280 x 1024 x 8 bits monitor, and 5 observers evaluated the images in 5 randomized sessions. The results for each pixel size were then compared to the film-screen images by ROC analysis. Results: The mean area under the ROC curves was larger for the film-screen images than for the digital images at all resolutions. However, this difference was not significant when the areas under the ROC curves for the film-screen images were compared to the digital images of 115, 170, and 170 μm with 10:1 compression. There was a significant difference for the 340-μm pixel size in favour of the film-screen images. The mean ROC curves for the digital images were very similar for the 115 and 170 μm pixel sizes, although slightly better for 115 μm. At 170 μm, the compression seemed to have a relatively small negative effect on the diagnostic performance; the deterioration was greater when the pixel size was increased to 340 μm. There was no obvious correlation between diagnostic performance and the experience of the observers in using workstations. Conclusions: The pixel size of 170 μm is adequate for the detection of subtle fractures, even after wavelet compression by a ratio of 10:1. (orig.)

  16. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  17. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  18. Spatial resolution influence on the identification of land cover classes in the Amazon environment

    Directory of Open Access Journals (Sweden)

    PONZONI FLÁVIO J.

    2002-01-01

    Full Text Available To evaluate the role played by the spatial resolution in distinguishing land cover classes in the Amazon region, different levels of spatial resolution (60, 100, 120, 200 and 250 meters were simulated from a Landsat_5 Thematic Mapper (TM image. Thematic maps were produced by visual interpretation from the original (30 x 30 meters and simulated set of images. The map legend included primary forest, old and young woody secondary succession, and non-forest. The results indicated that for the discrimination between primary forest and non-forest, spatial resolution did not have great influence for pixel size equal or lower than 200 meters. The contrary was verified for the identification of old and young woody secondary vegetation due to their occurrence in small polygons. To avoid significant changes in the calculated area of these land cover types, a spatial resolution better than 100 meters is required. This result is an indication that the use of the future Brazilian remote sensing satellite (SSR-1 for secondary succession identification may be unreliable, especially for latitudes between S10degrees and S15degrees where critical areas of deforestation are located and pixel size is expected to vary within the same scene from 100 meters (S10degrees to 200 meters (S15degrees.

  19. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Kiilgaard, Jens Folke; Scherfig, Erik

    2008-01-01

    This study aimed to investigate the spatial resolution of a porcine multifocal electroretinogram (mfERG) protocol by testing its ability to detect laser-induced retinal lesions. Furthermore, we wanted to describe time-dependent changes in implicit time and amplitude of the different mfERG peaks...

  20. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  1. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  2. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  3. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    International Nuclear Information System (INIS)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-01-01

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm 3 achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm 3 voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm 3 to 0.43 × 0.43 × 2 mm 3 has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain

  4. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  5. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  6. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  7. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  8. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  9. Analysis of laser-printed spatial resolution for mammographic microcalcification detection

    International Nuclear Information System (INIS)

    Smathers, R.L.; Kowarski, D.

    1987-01-01

    The detectability of microcalfications in mammograms was compared in Kodak Min-R screen-film mammograms versus digitized laser-printed films. Pulverized bone specks were used as the phantoms to produce the original mammograms. The mammograms were then digitized to a spatial resolution of 2,048 x, 2048 with 4,096 gray levels and laser-printed at spatial resolutions of 512 x 512, 1,024 x 1,024, and 2,048 x 2,048 with 256 gray levels. The number of bone specks was determined on a region-by region basis. The 512 x 512 resolution laser-printed images were nondiagnostic, 1,024 x 1,024 images were better, and 2,048 x 2,048 images were quite comparable to the original screen-film mammograms

  10. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  11. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  12. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    Science.gov (United States)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  13. Patient-specific quantification of image quality: An automated method for measuring spatial resolution in clinical CT images

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Jeremiah, E-mail: jeremiah.sanders@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 (United States); Hurwitz, Lynne [Department of Radiology, Duke University, Durham, North Carolina 27710 (United States); Samei, Ehsan [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 and Departments of Physics, Biomedical Engineering, Electrical and Computer Engineering, Duke University, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: To develop and validate an automated technique for evaluating the spatial resolution characteristics of clinical computed tomography (CT) images. Methods: Twenty one chest and abdominopelvic clinical CT datasets were examined in this study. An algorithm was developed to extract a CT resolution index (RI) analogous to the modulation transfer function from clinical CT images by measuring the edge-spread function (ESF) across the patient’s skin. A polygon mesh of the air-skin boundary was created. The faces of the mesh were then used to measure the ESF across the air-skin interface. The ESF was differentiated to obtain the line-spread function (LSF), and the LSF was Fourier transformed to obtain the RI. The algorithm’s ability to detect the radial dependence of the RI was investigated. RIs measured with the proposed method were compared with a conventional phantom-based method across two reconstruction algorithms (FBP and iterative) using the spatial frequency at 50% RI, f{sub 50}, as the metric for comparison. Three reconstruction kernels were investigated for each reconstruction algorithm. Finally, an observer study was conducted to determine if observers could visually perceive the differences in the measured blurriness of images reconstructed with a given reconstruction method. Results: RI measurements performed with the proposed technique exhibited the expected dependencies on the image reconstruction. The measured f{sub 50} values increased with harder kernels for both FBP and iterative reconstruction. Furthermore, the proposed algorithm was able to detect the radial dependence of the RI. Patient-specific measurements of the RI were comparable to the phantom-based technique, but the patient data exhibited a large spread in the measured f{sub 50}, indicating that some datasets were blurrier than others even when the projection data were reconstructed with the same reconstruction algorithm and kernel. Results from the observer study substantiated this

  14. Limits of a spatial resolution of the cascaded GEM based detectors

    International Nuclear Information System (INIS)

    Kudryavtsev, V.N.; Maltsev, T.V.; Shekhtman, L.I.

    2017-01-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10–20 μm can be achieved with a gas mixture of Ar-CO 2 (75%–25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70–100 μm at a pitch of 450–500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  15. Limits of a spatial resolution of the cascaded GEM based detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-06-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10-20 μm can be achieved with a gas mixture of Ar-CO2 (75%-25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70-100 μm at a pitch of 450-500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  16. Student Moon Observations and Spatial-Scientific Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei

    2015-07-01

    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.

  17. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    Science.gov (United States)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model

  18. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  19. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    Science.gov (United States)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  20. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  1. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  2. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system.

    Science.gov (United States)

    Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S

    2010-11-01

    This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.

  3. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  4. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  5. Study of the spatial resolution of low-material GEM tracking detectors

    Directory of Open Access Journals (Sweden)

    Kudryavtsev V.N.

    2018-01-01

    Full Text Available The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity. The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10−3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  6. Study of the spatial resolution of low-material GEM tracking detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2018-02-01

    The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity). The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10-3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  7. High Resolution Active Optics Observations from the Kepler Follow-up Observation Program

    Science.gov (United States)

    Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.

    2014-01-01

    The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.

  8. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    Science.gov (United States)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  9. Modeling Change of Topographic Spatial Structures with DEM Resolution Using Semi-Variogram Analysis and Filter Bank

    Directory of Open Access Journals (Sweden)

    Chunmei Wang

    2016-06-01

    Full Text Available In this paper, the way topographic spatial information changes with resolution was investigated using semi-variograms and an Independent Structures Model (ISM to identify the mechanisms involved in changes of topographic parameters as resolution becomes coarser or finer. A typical Loess Hilly area in the Loess Plateau of China was taken as the study area. DEMs with resolutions of 2.5 m and 25 m were derived from topographic maps with map scales of 1:10,000 using ANUDEM software. The ISM, in which the semi-variogram was modeled as the sum of component semi-variograms, was used to model the measured semi-variogram of the elevation surface. Components were modeled using an analytic ISM model and corresponding landscape components identified using Kriging and filter bank analyses. The change in the spatial components as resolution became coarser was investigated by modeling upscaling as a low pass linear filter and applying a general result to obtain an analytic model for the scaling process in terms of semi-variance. This investigation demonstrated how topographic structures could be effectively characterised over varying scales using the ISM model for the semi-variogram. The loss of information in the short range components with resolution is a major driver for the observed change in derived topographic parameters such as slope. This paper has helped to quantify how information is distributed among scale components and how it is lost in natural terrain surfaces as resolution becomes coarser. It is a basis for further applications in the field of geomorphometry.

  10. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  11. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  12. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Liang, Yicheng; Peng, Hao

    2015-01-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  13. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  14. High spatial resolution gamma imaging detector based on a 5 inch diameter R3292 Hamamatsu PSPMT

    International Nuclear Information System (INIS)

    Wojcik, R.; Majewski, S.; Kross, B.; Weisenberger, A.G.; Steinbach, D.

    1998-01-01

    High resolution imaging gamma-ray detectors were developed using Hamamatsu's 5 inch diameter R3292 position sensitive PMT (PSPMT) and a variety of crystal scintillator arrays. Special readout techniques were used to maximize the active imaging area while reducing the number of readout channels. Spatial resolutions approaching 1 mm were obtained in a broad energy range from 20 to 511 keV. Results are also presented of coupling the scintillator arrays to the PMT via imaging light guides consisting of acrylic optical fibers

  15. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  16. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  17. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  18. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    International Nuclear Information System (INIS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    2017-01-01

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.

  19. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  20. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  1. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  2. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  3. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, A. M., E-mail: shaikham@barc.gov.in [Physics Group, Bhabha Atomic Research Centre, Mumbai-400085 (India); Romesh, C.; Kolage, T. S.; Sharma, Archana [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  4. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    Science.gov (United States)

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  5. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  6. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  7. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  8. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    González González, G.R.; Nijholt, Antinus

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply

  9. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  10. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  11. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  12. Sensitive rapid analysis of iodine-labelled protein mixture on flat substrates with high spatial resolution

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Ivanov, A.B.; Movchan, S.A.; Peshekhonov, V.D.; Chan Dyk Tkhan'; Chernenko, S.P.; Kaminir, L.B.; Krejndlin, Eh.Ya.; Chernyj, A.A.

    1983-01-01

    Usability of rapid analysis by electrophoresis of the admixture of I 125 -labelled proteins on flat samples by means of URAN type installation developed using a multiwire proportional chamber is studied. The sensitivity of the method is better than 200 cpm/cm 2 and the spatial resolution is approximately 1 mm. The procedure of the rapid analysis is no longer than several tens of minutes

  13. Resolution of spatial and temporal visual attention in infants with fragile X syndrome

    OpenAIRE

    Farzin, Faraz; Rivera, Susan M.; Whitney, David

    2011-01-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal–parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual def...

  14. Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr; Bok, Jan

    2013-01-01

    Roč. 308, 1 August (2013), s. 68-73 ISSN 0168-583X R&D Projects: GA TA ČR TE01020118; GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : Spatial resolution * Imaging screen * Electron microscope * Cathodoluminescence * YAG:Ce single crystal * Line spread function * Modulation transfer function Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.186, year: 2013

  15. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  16. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region.

    Directory of Open Access Journals (Sweden)

    Vít Penížek

    Full Text Available The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area.

  17. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region

    Science.gov (United States)

    Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš

    2016-01-01

    The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230

  18. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  19. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  20. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  1. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  2. Study and design of a very high spatial resolution beta imaging system

    International Nuclear Information System (INIS)

    Donnard, J.

    2008-01-01

    The b autoradiography is a widely used technique in pharmacology or biological fields. It is able to locate in two dimensions molecules labeled with beta emitters. The development of a gaseous detector incorporating micro-mesh called PIM in the Subatech laboratory leads to the construction of a very high spatial resolution apparatus dedicated to b imaging. This device is devoted to small analysis surface of a half microscope slide in particular of 3 H or 14 C and the measured spatial resolution is 20 μm FWHM. The recent development of a new reconstruction method allows enlarging the field of investigation to high energy beta emitters such as 131 I, 18 F or 46 Sc. A new device with a large active area of 18*18 cm 2 has been built with a user friendly design. This allows to image simultaneously 10 microscope slides. Thanks to a multi-modality solution, it retains the good characteristics of spatial resolution obtained previously on a small surface. Moreover, different kinds of samples, like microscope slides or scotches can be analysed. The simulation and experimentation work achieved during this thesis led to an optimal disposition of the inner structure of the detector. These results and characterization show that the PIM structure has to be considered for a next generation of b-Imager. (author)

  3. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  4. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    International Nuclear Information System (INIS)

    Konovalov, A B; Vlasov, V V

    2014-01-01

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)

  5. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet

    Science.gov (United States)

    Ryan, Jonathan C.; Hubbard, Alun; Box, Jason E.; Brough, Stephen; Cameron, Karen; Cook, Joseph M.; Cooper, Matthew; Doyle, Samuel H.; Edwards, Arwyn; Holt, Tom; Irvine-Fynn, Tristram; Jones, Christine; Pitcher, Lincoln H.; Rennermalm, Asa K.; Smith, Laurence C.; Stibal, Marek; Snooke, Neal

    2017-05-01

    Measurements of albedo are a prerequisite for modelling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimetre resolution albedo products with accuracies of 5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique will likely become increasingly attractive in field studies and used in a wide range of applications for high temporal and spatial resolution surface mapping of debris, dust, cryoconite and bioalbedo and for directly constraining surface energy balance models.

  6. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  7. High-resolution backscatter power observations of 440-MHz E region coherent echoes at Millstone Hill

    International Nuclear Information System (INIS)

    Foster, J.C.; Tetenbaum, D.

    1991-01-01

    A 40-μs pulse length has been used to provide 10-s temporal and 6-km range resolution observations of E region coherent backscatter from the premidnight eastward electrojet region to the north of Millstone Hill. The observations can be divided into two categories: strong events in which the backscattered amplitude nears saturation and weak events in which spatial structure and large-amplitude variations are common. Calibrated observations find a typical volume scattering coefficient of ∼10 -11 m -1 at 440 MHz during strong events with a maximum level of 9 x 10 -10 m -1 observed for brief intervals. During less intense events the radar backscatter is modulated by ∼30dB in amplitude at Pc 5 frequencies (150-500 s) by waves with spatial wavelength 50-100 km. The observations support the premise that the weak irregularities grow linearly with electric field strength and reach a saturation amplitude beyond which the oscillating electric field of the Pc pulsation has little effect. The observed variation of backscattered power with range is interpreted using a geometrical model which accounts for the detailed antenna beam pattern, a magnetic aspect angle sensitivity of -10 dB per degree, and a thin layer of irregularities centered at 110 km altitude. For strongly driven conditions a comparison of the range variation of backscattered power with the thin layer model suggests that the signal power becomes increasingly dominated by strong scatters confined to a narrower altitude range. The apparent altitude extent of the strongest irregularities decreases by a factor of 2 as the amplitude of the backscattered signal increases by a factor of 10

  8. THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, M. L.; Schrijver, C. J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304 (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Leka, K. D.; Barnes, G. [NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301 (United States); Amari, T.; Canou, A. [CNRS, Centre de Physique Théorique de l’École Polytechnique, F-91128, Palaiseau Cedex (France); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Valori, G. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Wiegelmann, T. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany); Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Régnier, S. [Department of Mathematics and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST (United Kingdom)

    2015-10-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.

  9. High-resolution observation by double-biprism electron holography

    International Nuclear Information System (INIS)

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-01-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes

  10. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    Science.gov (United States)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  11. High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment

    Science.gov (United States)

    Onken, Reiner; Fiekas, Heinz-Volker; Beguery, Laurent; Borrione, Ines; Funk, Andreas; Hemming, Michael; Hernandez-Lasheras, Jaime; Heywood, Karen J.; Kaiser, Jan; Knoll, Michaela; Mourre, Baptiste; Oddo, Paolo; Poulain, Pierre-Marie; Queste, Bastien Y.; Russo, Aniello; Shitashima, Kiminori; Siderius, Martin; Thorp Küsel, Elizabeth

    2018-04-01

    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from 𝒪(101 m) to 𝒪(105 m), and the time series from the moored instruments cover a spectral range of 5 orders from 𝒪(101 s) to 𝒪(106 s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders.

  12. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  13. Dynamics of Saturn’s 2010 Great White Spot from high-resolution Cassini ISS observations

    Science.gov (United States)

    Hueso, Ricardo; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.

    2012-10-01

    On December 5th 2010 a storm erupted in Saturn’s North Temperate latitudes which were experiencing early spring season. The storm quickly developed to a planet-wide disturbance of the Great White Spot type. The ISS instrument onboard Cassini acquired its first images of the storm on 23th December 2010 and performed repeated observations with a variety of spatial resolutions over the nearly 10 months period the storm continued active. Here we present an analysis of two of the image sequences with better spatial resolution of the mature storm when it was fully developed and very active. We used an image correlation algorithm to measure the cloud motions obtained from images separated 20 minutes and obtained 16,000 wind tracers in a domain of 60 degrees longitude per 20 degrees in latitude. Intense zonal and meridional motions accompanied the storm and reached values of 120 m/s in particular regions of the active storm. The storm released a chain of anticyclonic and cyclonic vortices at planetocentric latitudes of 36° and 32° respectively. The short time difference between the images results in estimated wind uncertainties of 15 m/s that did not allow to perform a complete analysis of the turbulence and kinetic spectrum of the motions. We identify locations of the updrafts and link those with the morphology in different observing filters. The global behaviour of the storm was examined in images separated by 10 hours confirming the intensity of the winds and the global behaviour of the vortices. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  14. A Spatial Data Infrastructure for the Global Mercury Observation System

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available The Global Mercury Observation System (GMOS Project includes a specific Work Package aimed at developing tools (i.e. databases, catalogs, services to collect GMOS datasets, harvest mercury databases, and offer services like search, view, and download spatial datasets from the GMOS portal (www.gmos.eu. The system will be developed under the framework of the Infrastructure for Spatial Information in the European Community (INSPIRE Directive and the Directive 2003/4/EC on public access to environmental information, which both aim to make relevant, harmonized, high-quality geographic information available to support the formulation, implementation, monitoring, and evaluation of policies and activities that have a direct or indirect impact on the environment. Three databases have been proposed (on emissions, field data and model results, and each will be equipped with state-of-the-art, open-source software to allow for the highest performance possible. Web-based user-interfaces and prototype applications will be developed to demonstrate the potential of blending different datasets from different servers for environmental assessment studies. Several services (i.e. catalog browsers, WMS and WCS services, web GIS services will be developed to facilitate data integration, data re-use, and data exchange within and beyond the GMOS project. Different types of measurement and model datasets provided by project partners and other sources will be integrated into PostgreSQL-PostGIS, harmonized by creating INSPIRE-compliant metadata and made available to a larger community of stakeholders, policy makers, scientists, and NGOs (as well as to other public and private institutions, as dictated by the Directive 2003/4/EC. Since interoperability is a central concept for the Global Earth Observation System of Systems (GEOSS, the Global Monitoring for Environmental and Security (GMES and the INSPIRE Directive, guidelines developed in these three frameworks will be

  15. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  16. Design and study of a coplanar grid array CdZnTe detector for improved spatial resolution

    International Nuclear Information System (INIS)

    Ma, Yuedong; Xiao, Shali; Yang, Guoqiang; Zhang, Liuqiang

    2014-01-01

    Coplanar grid (CPG) CdZnTe detectors have been used as gamma-ray spectrometers for years. Comparing with pixelated CdZnTe detectors, CPG CdZnTe detectors have either no or poor spatial resolution, which directly limits its use in imaging applications. To address the issue, a 2×2 CPG array CdZnTe detector with dimensions of 7×7×5 mm 3 was fabricated. Each of the CPG pairs in the detector was moderately shrunk in size and precisely designed to improve the spatial resolution while maintaining good energy resolution, considering the charge loss at the surface between the strips of each CPG pairs. Preliminary measurements were demonstrated at an energy resolution of 2.7–3.9% for the four CPG pairs using 662 keV gamma rays and with a spatial resolution of 3.3 mm, which is the best spatial resolution ever achieved for CPG CdZnTe detectors. The results reveal that the CPG CdZnTe detector can also be applied to imaging applications at a substantially higher spatial resolution. - Highlights: • A novel structure of coplanar grid CdZnTe detector was designed to evaluate the possibility of applying the detector to gamma-ray imaging applications. • The best spatial resolution of coplanar grid CdZnTe detectors ever reported has been achieved, along with good spectroscopic performance. • Depth correction of the energy spectra using a new algorithm is presented

  17. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  18. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  19. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  20. Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.

    2018-05-01

    We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

  1. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  2. Assessing uncertainty in high-resolution spatial climate data across the US Northeast.

    Science.gov (United States)

    Bishop, Daniel A; Beier, Colin M

    2013-01-01

    Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.

  3. Two-dimensional high spatial-resolution dosimeter using europium doped potassium chloride: a feasibility study

    International Nuclear Information System (INIS)

    Li, H Harold; Yang, Deshan; Xiao, Zhiyan; Driewer, Joseph P; Han, Zhaohui; Low, Daniel A

    2014-01-01

    Recent research has shown that KCl:Eu 2+  has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors’ attempts to fabricate 2D KCl:Eu 2+  storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X-ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had been completely incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl − ) centers were the electron storage centers post x-ray irradiation and that Eu 2+  cations acted as luminescence centers in the photostimulation process. The 150 µm thick casted KCl:Eu 2+  SPF showed sub-millimeter spatial-resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu 2+  and 80% low Z polymer binder exhibited almost no energy-dependence in a 6 MV beam. KCl:Eu 2+  pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl's intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu 2+ -based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. (paper)

  4. The surface renewal method for better spatial resolution of evapotranspiration measurements

    Science.gov (United States)

    Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.

    2017-12-01

    Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.

  5. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  6. High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience

    International Nuclear Information System (INIS)

    Quick, H.H.; Vogt, F.M.; Madewald, S.; Herborn, C.U.; Bosk, S.; Goehde, S.; Debatin, J.F.; Ladd, M.E.

    2004-01-01

    Materials and methods: whole-body multi-station MRA was performed with a rolling table platform (AngioSURF) on 5 volunteers in two imaging series: 1) standard imaging protocol, 2) modified high-resolution protocol employing PAT using the generalized autocalibrating partially parallel acquisitions (GRAPPA) algorithm with an acceleration factor of 3. For an intra-individual comparison of the two MR examinations, the arterial vasculature was divided into 30 segments. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were calculated for all 30 arterial segments of each subject. Vessel segment depiction was qualitatively assessed applying a 5-point scale to each of the segments. Image reconstruction times were recorded for the standard as well as the PAT protocol. Results: compared to the standard protocol, PAT allowed for increased spatial resolution through a 3-fold reduction in mean voxel size for each of the 5 stations. Mean SNR and CNR values over all specified vessel segments decreased by a factor of 1.58 and 1.56, respectively. Despite the reduced SNR and CNR, the depiction of all specified vessel segments increased in PAT images, reflecting the increased spatial resolution. Qualitative comparison of standard and PAT images showed an increase in vessel segment conspicuity with more detailed depiction of intramuscular arterial branches in all volunteers. The time for image data reconstruction of all 5 stations was significantly increased from about 10 minutes to 40 minutes when using the PAT acquisition. (orig.) [de

  7. The measurement of the presampled MTF of a high spatial resolution neutron imaging system

    International Nuclear Information System (INIS)

    Cao, Raymond Lei; Biegalski, Steven R.

    2007-01-01

    A high spatial resolution neutron imaging device was developed at the Mark II TRIGA reactor at University of Texas at Austin. As the modulation transfer function (MTF) is recognized as a well-established parameter for evaluation of imaging system resolution, the aliasing associated with digital sampling adds complexity to its measurement. Aliasing is especially problematic when using a high spatial resolution micro-channel plate (MCP) neutron detector that has a pixel grid size similar to that of a CCD array. To compensate for the aliasing an angulated edge method was used to evaluate the neutron imaging facility, overcoming aliasing by obtaining an oversampled edge spread function (ESF). Baseline correction was applied to the ESF to remove the noticeable trends and the LSF was multiplied by Hann window to obtain a smoothed version of presampled MTF. The computing procedure is confirmed by visual inspection of a testing phantom; in addition, it is confirmed by comparison to the MTF measurement of a scintillation screen with a known MTF curve

  8. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    Science.gov (United States)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  9. Development and applications of coherent imaging with improved temporal and spatial resolution

    International Nuclear Information System (INIS)

    Mokso, Rajmund

    2006-01-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied

  10. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  11. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    Science.gov (United States)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  12. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    Science.gov (United States)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  13. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe

    2017-12-06

    Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article presents the first multi-resolution spatial model inspired by the skew-t distribution, where a large-scale effect follows a multivariate normal distribution and the fine-scale effects follow a multivariate skew-normal distributions. The resulting marginal distribution for each region is skew-t, thereby allowing for greater flexibility in capturing skewness and heavy tails characterizing many environmental datasets. Likelihood-based inference is performed using a Monte Carlo EM algorithm. The model is applied as a stochastic generator of daily wind speeds over Saudi Arabia.

  14. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    Science.gov (United States)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  15. High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas

    International Nuclear Information System (INIS)

    Siegel, J.; Epurescu, G.; Perea, A.; Gordillo-Vazquez, F.J.; Gonzalo, J.; Afonso, C.N.

    2005-01-01

    We report a technique that is able to achieve high spatial resolution in the measurement of the temporal and spectral emission characteristics of laser-induced expanding plasmas. The plasma is imaged directly onto the slit of an imaging spectrograph coupled to a time-gated intensified camera, with the plasma expansion direction being parallel to the slit extension. In this way, a single hybrid detection system is used to acquire the spatial, spectral and temporal characteristics of the laser induced plasma. The parallel acquisition approach of this technique ensures a much better spatial resolution in the expansion direction, reproducibility and data acquisition speed than commonly obtained by sequential measurements at different distances from the target. We have applied this technique to study the laser-induced plasma in LiNbO 3 and Bi 12 Ge 1 O 20 , revealing phenomena not seen in such detail with standard instruments. These include extreme line broadening up to a few nanometers accompanied by self-absorption near the target surface, as well as different ablation and expansion dynamics for the different species ejected. Overall, the high precision and wealth of quantitative information accessible with this technique open up new possibilities for the study of fundamental plasma expansion processes during pulsed laser ablation

  16. Identifying Spatial Units of Human Occupation in the Brazilian Amazon Using Landsat and CBERS Multi-Resolution Imagery

    OpenAIRE

    Dal’Asta, Ana Paula; Brigatti, Newton; Amaral, Silvana; Escada, Maria Isabel Sobral; Monteiro, Antonio Miguel Vieira

    2012-01-01

    Every spatial unit of human occupation is part of a network structuring an extensive process of urbanization in the Amazon territory. Multi-resolution remote sensing data were used to identify and map human presence and activities in the Sustainable Forest District of Cuiabá-Santarém highway (BR-163), west of Pará, Brazil. The limits of spatial units of human occupation were mapped based on digital classification of Landsat-TM5 (Thematic Mapper 5) image (30m spatial resolution). High-spatial-...

  17. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    have a surface inferior to 10 ha (0.1 km2). Temporal analyses, over the year 2010, show that only five lakes offer a strong surface dynamic (from 21% to 125% of evolution). The weak signal observed over all the other lakes are due to the banks of lakes (steep slope). The long term analyses, from 2003 to middle of 2011, show alternation of wet and dry years due to rainfalls variations. Annual cycle are also well marked showing filling and emptying phases respectively occurring in spring and at the end of summer. Filling phase is both attributed to runoff contributions over the watershed and to pumping effects. Irrigation and evaporation are the main factors during emptying phases. Two examples of water storages estimates are presented over one specific watershed. To conclude, high spatial resolution images appear suitable for mapping water bodies at fine scale. Limitations come from the form of the edge of the lake (steep or slight slope) and only 3% of lakes can be monitored over the studied area. In the following, interferometric approaches will be evaluated to estimate the height of water bodies, improving the estimate of water storage.

  18. Spatial and temporal relations in conditioned reinforcement and observing behavior

    OpenAIRE

    Bowe, Craig A.; Dinsmoor, James A.

    1983-01-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Exp...

  19. Long-term Observations of Intense Precipitation Small-scale Spatial Variability in a Semi-arid Catchment

    Science.gov (United States)

    Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.

    2017-12-01

    In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

  20. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  1. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    Science.gov (United States)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  2. Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication

    International Nuclear Information System (INIS)

    Yun, W.B.; Howells, M.R.

    1987-01-01

    In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed

  3. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    Science.gov (United States)

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  4. Sub-spatial resolution position estimation for optical fibre sensing applications

    DEFF Research Database (Denmark)

    Zibar, Darko; Werzinger, Stefan; Schmauss, Bernhard

    2017-01-01

    Methods from machine learning community are employed for estimating the position of fibre Bragg gratings in an array. Using the conventional methods for position estimation, based on inverse discrete Fourier transform (IDFT), it is required that two-point spatial resolution is less than gratings...... of reflection coefficients and the positions is performed. From the practical point of view, we can demonstrate the reduction of the interrogator's bandwidth by factor of 2. The technique is demonstrated for incoherent optical frequency domain reflectometry (IOFDR). However, the approach is applicable to any...

  5. MMSW. A large-size micromegas quadruplet prototype. Reconstruction efficiency and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Hua; Duedder, Andreas; Schott, Matthias; Valderanis, Chrysostomos [Johannes Gutenberg-Universitaet, Mainz (Germany); Bianco, Michele; Danielsson, Hans; Degrange, Jordan; De Oliveira, Rui; Farina, Edoardo; Kuger, Fabian; Iengo, Paolo; Perez Gomez, Francisco; Sekhniaidze, Givi; Sidiropoulou, Ourania; Vergain, Maurice; Wotschack, Joerg [CERN, Geneva (Switzerland)

    2016-07-01

    One of the upgrades of the ATLAS detector for Run III and beyond is the replacement of the inner part of end cap muon tracking spectrometer with eight layers of resistive micromegas detectors. The performance of two prototype detectors, MMSW (MicroMegas Small Wheel), that adopt the design foreseen for this upgrade was studied. The prototype detectors were tested at the Mainz Microtron for the spatial resolution, with cosmic rays for the reconstruction efficiency and for high rate tests in the new Gamma Irradiation Facility (GIF++) at CERN. These measurements with analysis methods and results will be presented. First performance results are consistent with the ATLAS New Small Wheel requirements.

  6. Calculations of hydrophysical fields in the coastal regions of the Black Sea with high spatial resolution

    Science.gov (United States)

    Evstigneeva, N.

    2017-09-01

    Numerical experiments have been carried out using a hydrodynamical model with nonlinear equations of motion and heat and salt advection to reconstruct the fields of hydrophysical parameters in the coastal regions of the Black Sea taking into account the real atmospheric forcing and river discharges for the winter and summer seasons of 2006. A higher spatial resolution allowed to get a detailed meso- and submesoscale structure of hydrophysical fields in the upper and deep layers of the Southern Coast of Crimea and the north-western shelf and to obtain quantitative and qualitative characteristics of the eddies and jets more accurately in comparison with previous calculations.

  7. Development of high-spatial resolution TV Thomson scattering system for JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Kozawa, Teruo; Ishige, Youichi.

    1996-01-01

    The JFT-2M TV Thomson scattering system (TVTS) with high spatial resolution was completed in the cooperation of the fusion research and development for the DOE-JAERI collaborative program, and has been operated for 3 years. The system is composed of six subsystems; vacuum components, optics, detector, control and data acquisition, software and laser subsystems. TVTS was totally tested in the JFT-2M tokamak and the electron temperature and density profiles are measured with good reproducibility, and the increase of electron temperature by increasing toroidal magnetic field is also measured with TVTS. (author)

  8. High Resolution Mapping of Drought Impacts on Small Waterbodies using Sentinel 1 SAR and Landsat Observations

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    Drought in semi-arid areas can have substantial impact on ephemeral and small water bodies, which provide critical ecological habitat and have important socio-economic value. This is particularly true in the pastoral areas of East Africa, where these ecosystems provide local communities with water for human and animal consumption and pasture for livestock. However, monitoring the impact of drought on ephemeral and small water bodies in East Africa is challenging because of sparse in situ observational systems. Satellite remote sensing observations have been shown to be a viable option for monitoring surface water change in data-poor regions. Landsat data is widely used to detect open water, but the use of Landsat data in small waterbody studies is limited by its 30-meter spatial resolution. New remote sensing-based tools are necessary to better understand the vulnerability of ephemeral and small waterbodies in semi-arid areas to drought and to monitor drought impacts. This study combines Landsat and Sentinel 1 SAR observations to create a series of monthly waterbody maps over the Awash River basin in Ethiopia depicting the change in surface water from October 2014 to March 2017. The study time period corresponds with a major drought event in the area. Waterbody maps were generated using a 10-meter resolution and utilized to monitor drought impacts on ephemeral and small waterbodies in the Awash River basin over the course of the drought event. Initial results show that surface waterbodies in the lower catchments of the Awash basin were more severely impacted by the drought event than the upper catchments. It is anticipated that the new information provided by this tool will inform decisions affecting the water, energy, agriculture and other sectors in East Africa reliant on water resources, enabling water authorities to better manage future drought events.

  9. Pilot tone as a key to improving the spatial resolution of eBPMs

    Energy Technology Data Exchange (ETDEWEB)

    Brajnik, G., E-mail: gabriele.brajnik@elettra.eu; Carrato, S. [Università degli Studi di Trieste, Trieste (Italy); Bassanese, S.; Cautero, G.; De Monte, R. [Elettra-Sincrotrone Trieste, Trieste (Italy)

    2016-07-27

    At Elettra, the Italian synchrotron light source, an internal project has been started to develop an electron beam position monitor capable of achieving sub-micron resolution with a self-compensation feature. In order to fulfil these requirements, a novel RF front end has been designed. A high isolation coupler combines the input signals with a known pilot tone which is generated by the readout system. This allows the parameters of the four channels to be continuously calibrated, by compensating the different responses of each channel. A similar technique is already known, but for the first time experimental results have shown the improvement in resolution due to this method. The RF chain was coupled with a 4-channel digitizer based on 160 MHz, 16 bits ADCs and an Altera Stratix FPGA. At first, no additional processing was done in the FPGA, collecting only the raw data from the ADCs; the position was calculated through the FFT of each signal. A simulation was also performed to verify the analytic relation between spatial resolution and signal-to-noise ratio; this was very useful to better understand the behaviour of the system with different sources of noise (aperture jitter, thermal noise, etc.). The experimental data were compared with the simulation, showing indeed a perfect agreement with the latter and confirming the capability of the system to reach sub-micrometric accuracy. Therefore, the use of the pilot tone greatly improves the quality of the system, correcting the drifts and increasing the spatial resolution by a factor of 4 in a time window of 24 hours.

  10. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  11. High-resolution molecular line observations of active galaxies

    Science.gov (United States)

    García-Burillo, S.; Combes, F.; Usero, A.; Graciá-Carpio, J.

    2008-10-01

    The study of the content, distribution and kinematics of interstellar gas is a key to understand the origin and maintenance of both starburst and nuclear (AGN) activity in galaxies. The processes involved in AGN fueling encompass a wide range of scales, both spatial and temporal, which have to be studied. Probing the gas flow from the outer disk down to the central engine of an AGN host, requires the use of specific tracers of the interstellar medium adapted to follow the change of phase of the gas as a function of radius. Current mm-interferometers can provide a sharp view of the distribution and kinematics of molecular gas in the circumnuclear disks of galaxies through extensive CO line mapping. As such, CO maps are an essential tool to study AGN feeding mechanisms in the local universe. This is the scientific driver of the NUclei of GAlaxies (NUGA) survey, whose latest results are here reviewed. On the other hand, the use of specific molecular tracers of the dense gas phase can probe the feedback influence of activity on the chemistry and energy balance/redistribution in the interstellar medium of nearby galaxies. Millimeter interferometers are able to unveil the strong chemical differentiation present in the molecular gas disks of nearby starbursts and AGNs. Nearby active galaxies can be used as local templates to address the study of more distant galaxies where both star formation and AGN activity are deeply embedded.

  12. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  13. Calibrating a numerical model's morphology using high-resolution spatial and temporal datasets from multithread channel flume experiments.

    Science.gov (United States)

    Javernick, L.; Bertoldi, W.; Redolfi, M.

    2017-12-01

    Accessing or acquiring high quality, low-cost topographic data has never been easier due to recent developments of the photogrammetric techniques of Structure-from-Motion (SfM). Researchers can acquire the necessary SfM imagery with various platforms, with the ability to capture millimetre resolution and accuracy, or large-scale areas with the help of unmanned platforms. Such datasets in combination with numerical modelling have opened up new opportunities to study river environments physical and ecological relationships. While numerical models overall predictive accuracy is most influenced by topography, proper model calibration requires hydraulic data and morphological data; however, rich hydraulic and morphological datasets remain scarce. This lack in field and laboratory data has limited model advancement through the inability to properly calibrate, assess sensitivity, and validate the models performance. However, new time-lapse imagery techniques have shown success in identifying instantaneous sediment transport in flume experiments and their ability to improve hydraulic model calibration. With new capabilities to capture high resolution spatial and temporal datasets of flume experiments, there is a need to further assess model performance. To address this demand, this research used braided river flume experiments and captured time-lapse observed sediment transport and repeat SfM elevation surveys to provide unprecedented spatial and temporal datasets. Through newly created metrics that quantified observed and modeled activation, deactivation, and bank erosion rates, the numerical model Delft3d was calibrated. This increased temporal data of both high-resolution time series and long-term temporal coverage provided significantly improved calibration routines that refined calibration parameterization. Model results show that there is a trade-off between achieving quantitative statistical and qualitative morphological representations. Specifically, statistical

  14. High resolution observations using adaptive optics: Achievements and future needs

    Science.gov (United States)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  15. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  16. Pituitary gland and its stalk observed by high resolution CT

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Fukami, Tsuneharu; Matsumoto, Keizo.

    1982-01-01

    It seemed to be important to recognize the CT findings of normal pituitary gland and the stalk for the acurate morphological diagnosis of pituitary microadenoma. In a consecutive series of normal 103 cases, the CT scans obtained by high resolution CT (CE-CT, Metrizamide CT) were analized and compared with 6 cases of microadenoma. The pituitary stalk demonstrated by the reconstructed coronal CT was examined and the inclination of the stalk was measured. The mean value of the inclination of pituitary stalk was 1.4 +- 1.7 0 in normal group and 9.3 +- 2.4 0 in microadenoma group. The form of the pituitary gland demonstrated by a reconstructed mid-saggital CT were classified into the following 3 types. Type I : The gland filling the whole pituitary fossa. Type II : The gland filled with small CSF space localized in the upper-anterior part in the pituitary fossa. Type III : The enlarged CSF space of more than half of the depth of pituitary fossa and the gland localized in the retro-lower part. As for the shape of pituitary gland, type I was revealed in 26 cases (7 cases in male and 19 cases in female), Type II was revealed in 31 cases (12 cases in male and 19 cases in female), Type III was revealed in 46 cases (25 cases in male and 21 cases in female). Type I was shown in female, especially in 10 years old young female. In 19 cases of 30 years to 40 years female, Type II was shown in 9 cases. In 44 male cases, Type I and Type II were shown in all ages. In the aged, Type III was shown in more than the other types. On the other hand, Type I was noted in 5 out of 6 cases of microadenoma group. (author)

  17. Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants

    Directory of Open Access Journals (Sweden)

    Taeseong Woo

    2017-05-01

    Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.

  18. High-Spatial-Resolution OH PLIF Visualization in a Cavity-Stabilized Ethylene-Air Turbulent Flame

    Science.gov (United States)

    Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.

    2017-01-01

    High-spatial-resolution OH planar laser-induced fluorescence was measured for a premixed ethylene-air turbulent flame in an electrically-heated Mach 2 continuous-flow facility (University of Virginia Supersonic Combustion Facility, Configuration E.) The facility comprised a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with optical access, and an extender. The flame was anchored at a cavity flameholder with a backward-facing step of height 9 mm. The temperature-insensitive Q1(8) transition of OH was excited using laser light of wavelength 283.55 nm. A spatial filter was used to create a laser sheet approximately 25 microns thick based on full-width at half maximum (FWHM). Extension tubes increased the magnification of an intensified camera system, achieving in-plane resolution of 40 microns based on a 50% modulation transfer function (MTF). The facility was tested with total temperature 1200 K, total pressure 300 kPa, local fuel/air equivalence ratios of approximately 0.4, and local Mach number of approximately 0.73 in the combustor. A test case with reduced total temperature and another with reduced equivalence ratio were also tested. PLIF images were acquired along a streamwise plane bisecting the cavity flameholder, from the backward facing step to 120 mm downstream of the step. The smallest observed features in the flow had width of approximately 110 microns. Flame surface density was calculated for OH PLIF images.

  19. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão

    Directory of Open Access Journals (Sweden)

    Ran Goldblatt

    2017-12-01

    Full Text Available Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3–0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes—trees, shrubs/grasses, and bare land—across 1000 km 2 of the semi-arid Sertão region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses. This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.

  20. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  1. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Science.gov (United States)

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  2. Monte-Carlo simulation of spatial resolution of an image intensifier in a saturation mode

    Science.gov (United States)

    Xie, Yuntao; Wang, Xi; Zhang, Yujun; Sun, Xiaoquan

    2018-04-01

    In order to investigate the spatial resolution of an image intensifier which is irradiated by high-energy pulsed laser, a three-dimensional electron avalanche model was built and the cascade process of the electrons was numerically simulated. The influence of positive wall charges, due to the failure of replenishing charges extracted from the channel during the avalanche, was considered by calculating its static electric field through particle-in-cell (PIC) method. By tracing the trajectory of electrons throughout the image intensifier, the energy of the electrons at the output of the micro channel plate and the electron distribution at the phosphor screen are numerically calculated. The simulated energy distribution of output electrons are in good agreement with experimental data of previous studies. In addition, the FWHM extensions of the electron spot at phosphor screen as a function of the number of incident electrons are calculated. The results demonstrate that the spot size increases significantly with the increase in the number of incident electrons. Furthermore, we got the MTFs of the image intensifier by Fourier transform of a point spread function at phosphor screen. Comparison between the MTFs in our model and the MTFs by analytic method shows that spatial resolution of the image intensifier decreases significantly as the number of incident electrons increases, and it is particularly obvious when incident electron number greater than 100.

  3. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  4. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  5. Super-resolution with an optically-addressable liquid crystal spatial light modulator

    International Nuclear Information System (INIS)

    McOrist, J.; Sharma, M.D.; Sheppard, C.J.R.

    2002-01-01

    Full text: An optically-addressable liquid crystal spatial light modulator has been used to generate super-resolving masks. This approach avoids problems of low efficiency and coupling between amplitude and phase modulation, that occur when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. The device used is not pixellated, with a spatial resolution of 30 line pairs/mm over an area 18mm X 18mm, and can achieve continuously-variable phase modulation up to 1.5 wavelengths. The system consists of a write-beam that is collimated from a white-light source. An input mask was used in our experiments determines the modulation pattern of the read-beam. The read-beam from a HeNe laser reflects from the modulator and is focused by a microscope objective. The value of the phase change induced by the transparent regions of the mask can be altered continuously by adjusting the brightness of the write-beam. We have used this system to attain super-resolution by simple Toraldo filters, consisting of arrays of rings. Copyright (2002) Australian Society for Electron Microscopy Inc

  6. Investigation of spatial resolution dependent variability in transcutaneous oxygen saturation using point spectroscopy system

    Science.gov (United States)

    Philimon, Sheena P.; Huong, Audrey K. C.; Ngu, Xavier T. I.

    2017-08-01

    This paper aims to investigate the variation in one’s percent mean transcutaneous oxygen saturation (StO2) with differences in spatial resolution of data. This work required the knowledge of extinction coefficient of hemoglobin derivatives in the wavelength range of 520 - 600 nm to solve for the StO2 value via an iterative fitting procedure. A pilot study was conducted on three healthy subjects with spectroscopic data collected from their right index finger at different arbitrarily selected distances. The StO2 value estimated by Extended Modified Lambert Beer (EMLB) model revealed a higher mean StO2 of 91.1 ± 1.3% at a proximity distance of 30 mm compared to 60.83 ± 2.8% at 200 mm. The results showed a high correlation between data spatial resolution and StO2 value, and revealed a decrease in StO2 value as the sampling distance increased. The preliminary findings from this study contribute to the knowledge of the appropriate distance range for consistent and high repeatability measurement of skin oxygenation.

  7. SAMSI: An orbiting spatial interferometer for micro-arc second astronomical observations. [Spacecraft Array for Michelson Spatial Interferometry (SAMSI)

    Science.gov (United States)

    Stachnik, R. V.; Gezari, D. Y.

    1985-01-01

    The concept and performance of (SAMSI) Spacecraft Array for Michelson Spatial Interferometry, an orbiting spatial interferometer comprised of three free-flying spacecraft, two collector telescopes and a central mixing station are described. In the one-dimensional interferometry mode orbits exist which provide natural scanning of the baseline. These orbits place extremely small demands on thrusters and fuel consumption. Resolution of 0.00001 arcsecond and magnitude limits of mv = 15 to 20 are achievable in a single orbit. In the imaging mode, SAMSI could synthesize images equivalent to those produced by equal diameter filled apertures in space, making use of the fuel resupply capability of a space station. Simulations indicate that image reconstruction can be performed with milliarcsecond resolution to a visual magnitude 12 in 12 hr of spiral scanning integration time.

  8. Spatial and temporal relations in conditioned reinforcement and observing behavior.

    Science.gov (United States)

    Bowe, C A; Dinsmoor, J A

    1983-03-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Experiment 2, pigeons that were allowed to produce combined spatial and temporal information did not acquire the perch pressing any faster or maintain it at a higher level than pigeons allowed to produce only temporal information. Later, when perching produced only spatial information, the time spent depressing the perch eventually declined. The results are not those implied by the statement that information concerning biologically important events is reinforcing but are consistent with an interpretation in terms of the acquisition of reinforcing properties by a stimulus associated with a higher density of primary reinforcement.

  9. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  10. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  11. The Analysis of Burrows Recognition Accuracy in XINJIANG'S Pasture Area Based on Uav Visible Images with Different Spatial Resolution

    Science.gov (United States)

    Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.

    2018-04-01

    The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.

  12. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    Science.gov (United States)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  13. Design trade-off between spatial resolution and power consumption in CMOS biosensor circuit based on millimeter-wave LC oscillator array

    Science.gov (United States)

    Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    In this paper, we describe a trade-off between spatial resolution and power consumption in an LC oscillator-based CMOS biosensor, which can detect biomolecules by observing the resonance frequency shift due to changes in the complex permittivity of the biomolecules. The optimal operating frequency and improvement in the image resolution of the sensor output require a reduction in the size of the inductor. However, it is necessary to increase the transconductance of the cross-coupling transistor to achieve the oscillation condition, although the power consumption increases. We confirmed the trade-off between the spatial resolution and the power consumption of this sensor using SPICE simulation. A test chip was fabricated using a 65 nm CMOS process, and the transition in the peak frequency and the power consumption were measured. When the outer diameter of the inductor was 46 µm, the power consumption was 31.2 mW, which matched well with the simulation results.

  14. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  15. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Honda, Eiichi; Tetsumura, Akemi; Kurabayashi, Tohru

    2011-01-01

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  16. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  17. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Morel, C.; Castro, H. F.

    2016-10-01

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source "2"2Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source "2"2Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  18. WE-DE-207B-05: Measuring Spatial Resolution in Digital Breast Tomosynthesis: Update of AAPM Task Group 245

    Energy Technology Data Exchange (ETDEWEB)

    Scaduto, DA; Hu, Y-H; Zhao, W [Stony Brook Medicine, Stony Brook, NY (United States); Goodsitt, M; Chan, H-P [University Michigan, Ann Arbor, MI (United States); Olafsdottir, H [Image Owl, 105 Reykjavik (Iceland); Das, M [University Houston, Houston, TX (United States); Fredenberg, E [Philips Healthcare, Solna (Sweden); Geiser, W [UT MD Anderson Cancer Center, Houston, TX (United States); Goodenough, D [The George Washington University, Washington, DC (United States); Heid, P [ARCADES, Marseille (France); Liu, B [Massachusetts General Hospital, Boston, MA (United States); Mainprize, J [Sunnybrook Health Sciences Centre, North York, ON (Canada); Reiser, I [The University of Chicago, Chicago, IL (United States); Van Engen, R [LRCB, Nijmegen (Netherlands); Varchena, V [CIRS Inc., Norfolk, VA (United States); Vecchio, S [I.M.S., Pontecchio Marconi (Italy); Glick, S [Food and Drug Administration, Silver Spring, MD (United States)

    2016-06-15

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spread function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object

  19. Derivation of High Spatial Resolution Albedo from UAV Digital Imagery: Application over the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    Jonathan C. Ryan

    2017-05-01

    Full Text Available Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ±5% using consumer-grade digital camera and unmanned aerial vehicle (UAV technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique could become increasingly common in field studies and used for a wide range of applications. These include the mapping of debris, dust, cryoconite and bioalbedo, and directly constraining surface energy balance models.

  20. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  1. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  2. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.

    2006-04-01

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  3. Souk: Spatial Observation of hUman Kinetics

    OpenAIRE

    Killijian , Marc-Olivier; Pasqua , Roberto; Roy , Matthieu; Trédan , Gilles; Zanon , Christophe

    2016-01-01

    International audience; Simulating human-centered pervasive systems requires accurate assumptions on the behavior of human groups. Recent models consider this behavior as a combination of both social and spatial factors. Yet, establishing accurate traces of human groups is difficult: current techniques capture either positions, or contacts, with a limited accuracy. In this paper, we introduce a new technique to capture such behaviors. The interest of this approach lies in the unprecedented ac...

  4. Exploiting MISR products at the full spatial resolution (275m) to document changes in land properties in and around the Kruger National Park, South Africa

    Science.gov (United States)

    Verstraete, M. M.; Hunt, L. A.; Pinty, B.; Clerici, M.; Scholes, R. J.

    2009-12-01

    The MISR instrument on NASA's Terra platform has been acquiring data globally and continuously for almost 10 years. A wide range of atmospheric and land products are operationally generated at the LaRC ASDC, at spatial resolutions of 1.1 km or coarser. Yet, the intrinsic spatial resolution of that sensor is 275m and 12 out of the 36 spectro-directional data channels are transmitted to the ground segment at that resolution. Recent algorithmic developments have permitted us to reconstruct reasonable estimates of the other 24 channels and to account for atmospheric effects at the full original spatial resolution. Spectro-directional reflectances have been processed to characterize the anisotropy of observed land surfaces and then optimally estimate various geophysical properties of the environment such as the fluxes of radiation in and out of plant canopies, the albedo, FAPAR, etc. These detailed products allow us to investigate ecological and environmental changes in much greater spatial and thematic detail than was previously possible. The paper outlines the various methodological steps implemented and exhibits concrete results for a region of moderate size (280 by 380 km) in South Africa. Practical downstream applications of this approach include monitoring desertification and biomass burning, documenting urbanization or characterizing the phenology of vegetation.

  5. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    Science.gov (United States)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  6. Identifying Spatial Units of Human Occupation in the Brazilian Amazon Using Landsat and CBERS Multi-Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Maria Isabel Sobral Escada

    2012-01-01

    Full Text Available Every spatial unit of human occupation is part of a network structuring an extensive process of urbanization in the Amazon territory. Multi-resolution remote sensing data were used to identify and map human presence and activities in the Sustainable Forest District of Cuiabá-Santarém highway (BR-163, west of Pará, Brazil. The limits of spatial units of human occupation were mapped based on digital classification of Landsat-TM5 (Thematic Mapper 5 image (30m spatial resolution. High-spatial-resolution CBERS-HRC (China-Brazil Earth Resources Satellite-High-Resolution Camera images (5 m merged with CBERS-CCD (Charge Coupled Device images (20 m were used to map spatial arrangements inside each populated unit, describing intra-urban characteristics. Fieldwork data validated and refined the classification maps that supported the categorization of the units. A total of 133 spatial units were individualized, comprising population centers as municipal seats, villages and communities, and units of human activities, such as sawmills, farmhouses, landing strips, etc. From the high-resolution analysis, 32 population centers were grouped in four categories, described according to their level of urbanization and spatial organization as: structured, recent, established and dependent on connectivity. This multi-resolution approach provided spatial information about the urbanization process and organization of the territory. It may be extended into other areas or be further used to devise a monitoring system, contributing to the discussion of public policy priorities for sustainable development in the Amazon.

  7. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  8. Examination about the Spatial Representation of PM2.5 Obtained from Limited Stations Using a Network Observation

    Science.gov (United States)

    Shi, X.; Zhao, C.

    2017-12-01

    Haze aerosol pollution has been a focus issue in China, and its characteristics is highly demanded. With limited observation sites, aerosol properties obtained from a single site is frequently used to represent the haze condition over a large domain, such as tens of kilometers. This could result in high uncertainties in the haze characteristics due to their spatial variation. Using a network observation from November 2015 to February 2016 over an urban city in North China with high spatial resolution, this study examines the spatial representation of ground site observations. A method is first developed to determine the representative area of measurements from limited stations. The key idea of this method is to determine the spatial variability of particulate matter with diameters less than 2.5 μm (PM2.5) concentration using a variance function in 2km x 2km grids. Based on the high spatial resolution (0.5km x 0.5km) measurements of PM2.5, the grids in which PM2.5 have high correlations and weak value differences are determined as the representation area of measurements at these grids. Note that the size representation area is not exactly a circle region. It shows that the size representation are for the study region and study period ranges from 0.25 km2 to 16.25 km2. The representation area varies with locations. For the 20 km x 20 km study region, 10 station observations would have a good representation of the PM2.5 observations obtained from current 169 stations at the four-month time scale.

  9. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed...... in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne, high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 m to 25 m, keeping the number of looks constant....... The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded...

  10. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    Science.gov (United States)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  11. High resolution solar observations in the context of space weather prediction

    Science.gov (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  12. High spatial resolution measurement of depth-of-interaction of a PET LSO crystal

    International Nuclear Information System (INIS)

    Simon, A.; Kalinka, G.; Novak, D.; Sipos, A.; Vegh, J.; Molnar, J.

    2004-01-01

    Complete text of publication follows. A new type of experimental technique to investigate the depth-of-interaction (DOI) dependence in small scintillator elements designed for high-resolution animal PET [1] has been introduced at our institute, recently. A lutetium oxyorthosilicate (LSO) crystal (2x2x10 mm 3 ) was irradiated with a highly focused 2 MeV He + beam at the ATOMKI nuclear microprobe laboratory. Pulse height spectra from a photomultiplier (PMT) attached to one end of the LSO crystal were collected in list mode. Sequential scans of 1000x1000 μm 2 areas along the 10 mm long crystal were made to get high lateral resolution images of pulse height spectra at different distances from the window of the PMT. A mean pulse height algorithm was applied to each pixel to generate two dimensional intensity images and the corresponding spectra of 100 μmx1 mm areas. Representative pulse height spectra are shown in Fig. 1 for different distances between the position of irradiation and the PMT. The mean value of the pulse height spectrum describing the position of the full energy peak is a way to measure DOI effects. It is seen that the closer the DOI to the PMT-end of the crystal the higher the energy of the peak. The centre of the detected peak varies about 30 % along the lateral side of the crystal. This effect is due to the increasing number of reflections with associated loss of light when the distance between the DOI position and the light collecting PMT grows. Further these results, no difference in the light intensity was found depending on which position across (perpendicular to the length of) the crystal was irradiated with the microbeam. The obtained results of the overall DOI dependence confirm previous measurements on LSO crystals with similar geometry and wrapping but based on collimated gamma-ray irradiation. Since the present experimental setup allows obtaining data with several orders of magnitude better spatial resolution (from μm up to mm) than with

  13. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  14. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    Science.gov (United States)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C

  15. A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model

    Directory of Open Access Journals (Sweden)

    S. Kolberg

    2006-01-01

    Full Text Available A method for assimilating remotely sensed snow covered area (SCA into the snow subroutine of a grid distributed precipitation-runoff model (PRM is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC, which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for this prior distribution, and include similarities and dependencies among the grid cells. Used to represent the PRM simulated snow cover state, our joint prior model regards two elevation gradients and a degree-day factor as global variables, rather than describing their effect separately for each cell. This transformation results in smooth normalised surfaces for the two related mass balance variables, supporting a strong inter-cell dependency in their joint prior model. The global features and spatial interdependency in the prior model cause each SCA observation to provide information for many grid cells. The spatial approach similarly facilitates the utilisation of observed discharge. Assimilation of SCA data using the proposed spatial model is evaluated in a 2400 km2 mountainous region in central Norway (61° N, 9° E, based on two Landsat 7 ETM+ images generalized to 1 km2 resolution. An image acquired on 11 May, a week before the peak flood, removes 78% of the variance in the remaining snow storage. Even an image from 4 May, less than a week after the melt onset, reduces this variance by 53%. These results are largely improved compared to a cell-by-cell independent assimilation routine previously reported. Including observed discharge in the updating information improves the 4 May results, but has weak effect on 11 May. Estimated elevation gradients are shown to be sensitive to informational deficits occurring at high altitude, where snowmelt has not started

  16. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  17. Design considerations for a high-spatial-resolution positron camera with dense-drift-space MWPC's

    International Nuclear Information System (INIS)

    Del Guerra, A.; Perez-Mendez, V.; Schwartz, G.; Nelson, W.R.

    1982-10-01

    A multiplane Positron Cameris is proposed, made of six MWPC modules arranged to form the lateral surface of a hexagonal prism. Each module (50 x 50 cm 2 ) has a 2 cm thick lead-glass tube converter on both sides of a MWPC pressurized to 2 atm. Experimental measurements are presented to show how to reduce the parallax error by determining in which of the two converter layers the photon has interacted. The results of a detailed Monte Carlo calculation for the efficiency of this type of converter are shown to be in excellent agreement with the experimental measurements. The expected performance of the Positron Camera is presented: a true coincidence rate of 56,000 counts/s (with an equal accidental coincidence rate and a 30% Compton scatter contamination) and a spatial resolution better than 5.0 mm (FWHM) for a 400 μ Ci point-like source embedded in a 10 cm radius water phantom

  18. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution.

    Science.gov (United States)

    Etoc, Fred; Vicario, Chiara; Lisse, Domenik; Siaugue, Jean-Michel; Piehler, Jacob; Coppey, Mathieu; Dahan, Maxime

    2015-05-13

    Tools for controlling the spatial organization of proteins are a major prerequisite for deciphering mechanisms governing the dynamic architecture of living cells. Here, we have developed a generic approach for inducing and maintaining protein gradients inside living cells by means of biofunctionalized magnetic nanoparticles (MNPs). For this purpose, we tailored the size and surface properties of MNPs in order to ensure unhindered mobility in the cytosol. These MNPs with a core diameter below 50 nm could be rapidly relocalized in living cells by exploiting biased diffusion at weak magnetic forces in the femto-Newton range. In combination with MNP surface functionalization for specific in situ capturing of target proteins as well as efficient delivery into the cytosplasm, we here present a comprehensive technology for controlling intracellular protein gradients with a temporal resolution of a few tens of seconds.

  19. Spatial resolution in depth-controlled surface sensitive x-ray techniques

    International Nuclear Information System (INIS)

    Yun, W.B.; Viccaro, P.J.

    1992-01-01

    The spatial resolution along the surface normal and the total depth probed are two important parameters in depth-controlled surface sensitive X-ray techniques employing grazing incidence geometry. The two parameters are analyzed in terms of optical properties (refractive indices) of the media involved and parameters of the incident X-ray beam: beam divergence, X-ray energy, and spectral bandwidth. We derive analytical expressions of the required beam divergence and spectral bandwidth of the incident beam as a function of the two parameters. Sample calculations are made for X-ray energies between 0.1 and 100 keV and for solid Be, Cu, and Au, representing material matrices consisting of low, medium, and high atomic number elements. A brief discussion on obtaining the required beam divergence and spectral bandwidth from present X-ray sources and optics is given

  20. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization

    International Nuclear Information System (INIS)

    Perez, Pedro; Malano, Francisco; Valente, Mauro

    2012-01-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  1. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  2. High Spatial Resolution Analysis of Fungal Cell Biochemistry: Bridging the Analytical Gap using Synchrotron FTIR Spectromicroscopy

    International Nuclear Information System (INIS)

    Kaminskyj, S.; Konstantin, J.; Szeghalmi, A.; Gough, K.

    2008-01-01

    Fungi impact humans and the environment in many ways, for good and ill. Some fungi support the growth of terrestrial plants or are used in biotechnology, and yet others are established or emerging pathogens. In some cases, the same organism may play different roles depending on the context or the circumstance. A better understanding of the relationship between fungal biochemical composition as related to the fungal growth environment is essential if we are to support or control their activities. Synchrotron FTIR (sFTIR) spectromicroscopy of fungal hyphae is a major new tool for exploring cell composition at a high spatial resolution. Brilliant synchrotron light is essential for this analysis due to the small size of fungal hyphae. sFTIR biochemical characterization of subcellular variation in hyphal composition will allow detailed exploration of fungal responses to experimental treatments and to environmental factors.

  3. A new formulation of the linear sampling method: spatial resolution and post-processing

    International Nuclear Information System (INIS)

    Piana, M; Aramini, R; Brignone, M; Coyle, J

    2008-01-01

    A new formulation of the linear sampling method is described, which requires the regularized solution of a single functional equation set in a direct sum of L 2 spaces. This new approach presents the following notable advantages: it is computationally more effective than the traditional implementation, since time consuming samplings of the Tikhonov minimum problem and of the generalized discrepancy equation are avoided; it allows a quantitative estimate of the spatial resolution achievable by the method; it facilitates a post-processing procedure for the optimal selection of the scatterer profile by means of edge detection techniques. The formulation is described in a two-dimensional framework and in the case of obstacle scattering, although generalizations to three dimensions and penetrable inhomogeneities are straightforward

  4. High spatial and temporal resolution visible spectroscopy of the plasma edge in DIII-D

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Seraydarian, R.P.

    1990-10-01

    In DIII-D, visible spectroscopic measurements of the He II 468.6 nm and C VI 529.2 nm Doppler broadened spectral lines, resulting from charge exchange recombination interactions between beam neutral atoms and plasma ions, are performed to determine ion temperatures, and toroidal and poloidal rotation velocities. The diagnostics system comprises 32 viewing chords spanning a typical minor radius of 63 cm across the midplane, of which 16 spatial chords span 11 cm of the plasma edge just within the separatrix. A temporal resolution of 260 μs per time slice can be obtained as a result of using MCP phosphors with short decay times and fast camera readout electronics. Results from this system will be used in radial electric field comparisons with theory at the L-H transition and ion transport analysis. 6 refs., 3 figs

  5. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    Science.gov (United States)

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  6. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    Science.gov (United States)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale

  7. The measurement and calculation of the X-ray spatial resolution obtained in the analytical electron microscope

    International Nuclear Information System (INIS)

    Michael, J.R.; Williams, D.B.

    1990-01-01

    The X-ray microanalytical spatial resolution is determined experimentally in various analytical electron microscopes by measuring the degradation of an atomically discrete composition profile across an interphase interface in a thin-foil of Ni-Cr-Fe. The experimental spatial resolutions are then compared with calculated values. The calculated spatial resolutions are obtained by the mathematical convolution of the electron probe size with an assumed beam-broadening distribution and the single-scattering model of beam broadening. The probe size is measured directly from an image of the probe in a TEM/SETEM and indirectly from dark-field signal changes resulting from scanning the probe across the edge of an MgO crystal in a dedicated STEM. This study demonstrates the applicability of the convolution technique to the calculation of the microanalytical spatial resolution obtained in the analytical electron microscope. It is demonstrated that, contrary to popular opinion, the electron probe size has a major impact on the measured spatial resolution in foils < 150 nm thick. (author)

  8. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  9. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  10. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube

    Directory of Open Access Journals (Sweden)

    Hai Huy Nguyen Pham

    2017-05-01

    Full Text Available The terahertz (THz, 0.1–10 THz region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation—by the dielectric cuboid—of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imaging system, regardless of the numerical aperture (NA. The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1 in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card’s inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using

  11. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS

    Science.gov (United States)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.; Nicholson, Philip D.

    2017-08-01

    Particle properties of individual fissure eruptions within Enceladus' plume have been analyzed using high spatial resolution Visible and Infrared Mapping Spectrometer (VIMS) observations from the Cassini mission. To first order, the spectra of the materials emerging from Cairo, Baghdad and Damascus sulci are very similar, with a strong absorption band around 3 μm due to water-ice. The band minimum position indicates that the ice grains emerging from all the fissures are predominantly crystalline, which implies that the water-ice particles' formation temperatures are likely above 130 K. However, there is also evidence for subtle variations in the material emerging from the different source fissures. Variations in the spectral slope between 1-2.5 μm are observed and probably reflect differences in the size distributions of particles between 0.5 and 5 μm in radius. We also note variations in the shape of the 3 μm water-ice absorption band, which are consistent with differences in the relative abundance of > 5 μm particles. These differences in the particle size distribution likely reflect variations in the particle formation conditions and/or their transport within the fissures. These observations therefore provide strong motivation for detailed modeling to help place important constraints on the diversity of the sub-surface environmental conditions at the geologically active south-pole of Enceladus.

  12. Interaction of image noise, spatial resolution, and low contrast fine detail preservation in digital image processing

    Science.gov (United States)

    Artmann, Uwe; Wueller, Dietmar

    2009-01-01

    We present a method to improve the validity of noise and resolution measurements on digital cameras. If non-linear adaptive noise reduction is part of the signal processing in the camera, the measurement results for image noise and spatial resolution can be good, while the image quality is low due to the loss of fine details and a watercolor like appearance of the image. To improve the correlation between objective measurement and subjective image quality we propose to supplement the standard test methods with an additional measurement of the texture preserving capabilities of the camera. The proposed method uses a test target showing white Gaussian noise. The camera under test reproduces this target and the image is analyzed. We propose to use the kurtosis of the derivative of the image as a metric for the texture preservation of the camera. Kurtosis is a statistical measure for the closeness of a distribution compared to the Gaussian distribution. It can be shown, that the distribution of digital values in the derivative of the image showing the chart becomes the more leptokurtic (increased kurtosis) the stronger the noise reduction has an impact on the image.

  13. Improved Spatial Resolution in Thick, Fully-Depleted CCDs withEnhanced Red Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Fairfield, Jessamyn A.; Groom, Donald E.; Bailey, Stephen J.; Bebek, Christopher J.; Holland, Stephen E.; Karcher, Armin; Kolbe,William F.; Lorenzon, Wolfgang; Roe, Natalie A.

    2006-03-09

    The point spread function (PSF) is an important measure of spatial resolution in CCDs for point-like objects, since it affects image quality and spectroscopic resolution. We present new data and theoretical developments for lateral charge diffusion in thick, fully-depleted charge-coupled devices (CCDs) developed at Lawrence Berkeley National Laboratory (LBNL). Because they can be over-depleted, the LBNL devices have no field-free region and diffusion is controlled through the application of an external bias voltage. We give results for a 3512 x 3512 format, 10.5 {micro}m pixel back-illuminated p-channel CCD developed for the SuperNova/Acceleration Probe (SNAP), a proposed satellite-based experiment designed to study dark energy. The PSF was measured at substrate bias voltages between 3 V and 115 V. At a bias voltage of 115 V, we measure an rms diffusion of 3.7 {+-} 0.2 {micro}m. Lateral charge diffusion in LBNL CCDs will meet the SNAP requirements.

  14. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  15. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  16. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  17. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  18. A high resolution spatial population database of Somalia for disease risk mapping.

    Science.gov (United States)

    Linard, Catherine; Alegana, Victor A; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2010-09-14

    Millions of Somali have been deprived of basic health services due to the unstable political situation of their country. Attempts are being made to reconstruct the health sector, in particular to estimate the extent of infectious disease burden. However, any approach that requires the use of modelled disease rates requires reasonable information on population distribution. In a low-income country such as Somalia, population data are lacking, are of poor quality, or become outdated rapidly. Modelling methods are therefore needed for the production of contemporary and spatially detailed population data. Here land cover information derived from satellite imagery and existing settlement point datasets were used for the spatial reallocation of populations within census units. We used simple and semi-automated methods that can be implemented with free image processing software to produce an easily updatable gridded population dataset at 100 × 100 meters spatial resolution. The 2010 population dataset was matched to administrative population totals projected by the UN. Comparison tests between the new dataset and existing population datasets revealed important differences in population size distributions, and in population at risk of malaria estimates. These differences are particularly important in more densely populated areas and strongly depend on the settlement data used in the modelling approach. The results show that it is possible to produce detailed, contemporary and easily updatable settlement and population distribution datasets of Somalia using existing data. The 2010 population dataset produced is freely available as a product of the AfriPop Project and can be downloaded from: http://www.afripop.org.

  19. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  20. The influence of spatial resolution on human health risk co-benefit estimates for global climate policy assessments.

    Science.gov (United States)

    Shih, Hsiu-Ching; Crawford-Brown, Douglas; Ma, Hwong-wen

    2015-03-15

    Assessment of the ability of climate policies to produce desired improvements in public health through co-benefits of air pollution reduction can consume resources in both time and research funds. These resources increase significantly as the spatial resolution of models increases. In addition, the level of spatial detail available in macroeconomic models at the heart of climate policy assessments is much lower than that available in traditional human health risk modeling. It is therefore important to determine whether increasing spatial resolution considerably affects risk-based decisions; which kinds of decisions might be affected; and under what conditions they will be affected. Human health risk co-benefits from carbon emissions reductions that bring about concurrent reductions in Particulate Matter (PM10) emissions is therefore examined here at four levels of spatial resolution (Uniform Nation, Uniform Region, Uniform County/city, Health Risk Assessment) in a case study of Taiwan as one of the geographic regions of a global macroeceonomic model, with results that are representative of small, industrialized nations within that global model. A metric of human health risk mortality (YOLL, years of life lost in life expectancy) is compared under assessments ranging from a "uniform simulation" in which there is no spatial resolution of changes in ambient air concentration under a policy to a "highly spatially resolved simulation" (called here Health Risk Assessment). PM10 is chosen in this study as the indicator of air pollution for which risks are assessed due to its significance as a co-benefit of carbon emissions reductions within climate mitigation policy. For the policy examined, the four estimates of mortality in the entirety of Taiwan are 747 YOLL, 834 YOLL, 984 YOLL and 916 YOLL, under Uniform Taiwan, Uniform Region, Uniform County and Health Risk Assessment respectively; or differences of 18%, 9%, 7% if the HRA methodology is taken as the baseline. While

  1. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    International Nuclear Information System (INIS)

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-01-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 μm 3 ) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 μm. Very fine periodic dose modulations of a 60 Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems

  3. The influence of photon depth of interaction and non-collinear spread of annihilation photons on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.

    2006-01-01

    The quality of PET imaging is impaired by parallax errors. These errors produce misalignment between the projected location of the true origin of the annihilation event and the line of response determined by the coincidence detection system. Parallax errors are due to the varying depths of photon interaction (DOI) within the scintillator and the non-collinear (NC) emission of the annihilation photons. The aim of this work was to address the problems associated with the DOI and the NC spread of annihilation photons and to develop a quantitative model to assess their impact on image spatial resolution losses for various commonly used scintillators and PET geometries. A theoretical model based on Monte Carlo simulations was developed to assess the relative influence of DOI and the NC spread of annihilation photons on PET spatial resolution for various scintillator materials (BGO, LSO, LuAP, GSO, NaI) and PET geometries. The results demonstrate good agreement between simulated, experimental and published overall spatial resolution for some commercial systems, with maximum differences around 1 mm in both 2D and 3D mode. The DOI introduces an impairment of non-stationary spatial resolution along the radial direction, which can be very severe at peripheral positions. As an example, the radial spatial resolution loss due to DOI increased from 1.3 mm at the centre to 6.7 mm at 20 cm from the centre of a BGO camera with a 412-mm radius in 2D mode. Including the NC, the corresponding losses were 3.0 mm at the centre and 7.3 mm 20 cm from the centre. Without a DOI detection technique, it seems difficult to improve PET spatial resolution and increase sensitivity by reducing the detector ring radius or by extending the detector in the axial direction. Much effort is expended on the design and configuration of smaller detector elements but more effort should be devoted to the DOI complexity. (orig.)

  4. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    Science.gov (United States)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  5. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....

  6. Flare Energy Release: Internal Conflict, Contradiction with High Resolution Observations, Possible Solutions

    Science.gov (United States)

    Pustilnik, L.

    2017-06-01

    All accepted paradigm of solar and stellar flares energy release based on 2 whales: 1. Source of energy is free energy of non-potential force free magnetic field in atmosphere above active region; 2. Process of ultrafast dissipation of magnetic fields is Reconnection in Thin Turbulent Current Sheet (RTTCS). Progress in observational techniques in last years provided ultra-high spatial resolution and in physics of turbulent plasma showed that real situation is much more complicated and standard approach is in contradiction both with observations and with problem of RTTCS stability. We present critical analysis of classic models of pre-flare energy accumulation and its dissipation during flare energy release from pioneer works Giovanelli (1939, 1947) up to topological reconnection. We show that all accepted description of global force-free fields as source of future flare cannot be agreed with discovered in last years fine and ultra-fine current-magnetic structure included numerouse arcs-threads with diameters up to 100 km with constant sequence from photosphere to corona. This magnetic skeleton of thin current magnetic threads with strong interaction between them is main source of reserved magnetic energy insolar atmosphere. Its dynamics will be controlled by percolation of magnetic stresses through network of current-magnetic threads with transition to flare state caused by critical value of global current. We show that thin turbulent current sheet is absolutely unstable configuration both caused by splitting to numerous linear currents by dissipative modes like to tearing, and as sequence of suppress of plasma turbulence caused by anomalous heating of turbulent plasma. In result of these factors primary RTTCS will be disrupted in numerous turbulent and normal plasma domains like to resistors network. Current propagation through this network will have percolation character with all accompanied properties of percolated systems: self-organization with formation power

  7. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    Science.gov (United States)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  8. Inverse modeling applied to Scanning Capacitance Microscopy for improved spatial resolution and accuracy

    International Nuclear Information System (INIS)

    McMurray, J. S.; Williams, C. C.

    1998-01-01

    Scanning Capacitance Microscopy (SCM) is capable of providing two-dimensional information about dopant and carrier concentrations in semiconducting devices. This information can be used to calibrate models used in the simulation of these devices prior to manufacturing and to develop and optimize the manufacturing processes. To provide information for future generations of devices, ultra-high spatial accuracy (<10 nm) will be required. One method, which potentially provides a means to obtain these goals, is inverse modeling of SCM data. Current semiconducting devices have large dopant gradients. As a consequence, the capacitance probe signal represents an average over the local dopant gradient. Conversion of the SCM signal to dopant density has previously been accomplished with a physical model which assumes that no dopant gradient exists in the sampling area of the tip. The conversion of data using this model produces results for abrupt profiles which do not have adequate resolution and accuracy. A new inverse model and iterative method has been developed to obtain higher resolution and accuracy from the same SCM data. This model has been used to simulate the capacitance signal obtained from one and two-dimensional ideal abrupt profiles. This simulated data has been input to a new iterative conversion algorithm, which has recovered the original profiles in both one and two dimensions. In addition, it is found that the shape of the tip can significantly impact resolution. Currently SCM tips are found to degrade very rapidly. Initially the apex of the tip is approximately hemispherical, but quickly becomes flat. This flat region often has a radius of about the original hemispherical radius. This change in geometry causes the silicon directly under the disk to be sampled with approximately equal weight. In contrast, a hemispherical geometry samples most strongly the silicon centered under the SCM tip and falls off quickly with distance from the tip's apex. Simulation

  9. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  10. Simulation study of spatial resolution in phase-contrast X-ray imaging with Takagi-Taupin equation

    International Nuclear Information System (INIS)

    Koyama, Ichiro; Momose, Atsushi

    2003-01-01

    To evaluate attainable spatial resolution of phase-contrast X-ray imaging using an LLL X-ray interferometer with a thin crystal wafer, a computer simulation study with Takagi-Taupin equation was performed. Modulation transfer function of the wafer for X-ray phase was evaluated. For a polyester film whose thickness is 0.1 mm, it was concluded that the spatial resolution can be improved up to 3 μm by thinning the wafer, under our experimental condition

  11. Extraction of prospecting information of uranium deposit based on high spatial resolution satellite data. Taking bashibulake region as an example

    International Nuclear Information System (INIS)

    Yang Xu; Liu Dechang; Zhang Jielin

    2008-01-01

    In this study, the signification and content of prospecting information of uranium deposit are expounded. Quickbird high spatial resolution satellite data are used to extract the prospecting information of uranium deposit in Bashibulake area in the north of Tarim Basin. By using the pertinent methods of image processing, the information of ore-bearing bed, ore-control structure and mineralized alteration have been extracted. The results show a high consistency with the field survey. The aim of this study is to explore practicability of high spatial resolution satellite data for prospecting minerals, and to broaden the thinking of prospectation at similar area. (authors)

  12. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    International Nuclear Information System (INIS)

    Michaelides, Michael; Papas, Stylianos; Pantziara, Maria; Ioannidis, Kleanthis

    2014-01-01

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD

  13. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus); Papas, Stylianos, E-mail: vascular@drpapas.com [Ygia Polyclinic Hospital, Vascular Surgery Department (Cyprus); Pantziara, Maria, E-mail: mgpantziara@gmail.com; Ioannidis, Kleanthis, E-mail: aktinodiagnostis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus)

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  14. Technique for evaluation of spatial resolution and microcalcifications in digital and scanned images of a standard breast phantom

    International Nuclear Information System (INIS)

    Santana, Priscila do C.; Gomes, Danielle S.; Oliveira, Marcio A.; Oliveira, Paulo Marcio C. de; Meira-Belo, Luiz C.; Nogueira-Tavares, Maria S.

    2011-01-01

    In this work, an automated methodology to evaluate digital and scanned images of a standard phantom (Phantom Mama) was studied. The Phantom Mama was used as an important tool to check the quality of mammographs. The scanned images were digitized using a ScanMaker 9800XL, with resolution of 900 dpi. The aim of this work is to test an automatic methodology for evaluation of spatial resolution and microcalcifications group of phantom mama images acquired with the same parameters in the same equipment. In order to analyze the images we have used the ImageJ software (in Java) which is public domain. We have used the Fast Fourier transform technique to evaluate the spatial resolution and used the ImageJ function Subtract Background and the Light Background plus Sliding Paraboloid on the evaluation of the five groups of microcalcifications on the breast phantom to assess the viability of using automated methods for both types of images. The methodology was adequate for evaluated the microcalcifications group and the spatial resolution in scanned and digital images, but the Phantom Mama doesn't provide sufficient parameters to evaluate the spatial resolution in this images. (author)

  15. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    OpenAIRE

    Chandi Witharana; Heather J. Lynch

    2016-01-01

    The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA) methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR) satellite imagery and closely examined the transferability of knowle...

  16. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions

    OpenAIRE

    Claverie, Martin; Vermote, Eric; Franch, Belen; He, Tao; Hagolle, Olivier; Kadiri, Mohamed; Masek, Jeff

    2015-01-01

    High-resolution sensor Surface Reflectance (SR) data are affected by surface anisotropy but are difficult to adjust because of the low temporal frequency of the acquisitions and the low angular sampling. This paper evaluates five high spatial resolution Bidirectional Reflectance Distribution Function (BRDF) adjustment techniques. The evaluation is based on the noise level of the SR Time Series (TS) corrected to a normalized geometry (nadir view, 45° sun zenith angle) extracted from the multi-...

  17. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Directory of Open Access Journals (Sweden)

    A. K. Thorpe

    2017-10-01

    Full Text Available At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  18. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Science.gov (United States)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  19. Observations on the spatial variability of the Prut river discharges

    Directory of Open Access Journals (Sweden)

    Emil-Andrei BRICIU

    2011-06-01

    Full Text Available Liquid and solid discharges of the Prut River were analysed based on measurementsperformed in 7 points from the Romanian national network of water monitoring during aperiod of 30 years. The analyses were performed on flows for the period after theconstruction of the Stânca-Costeşti dam and show the influence of the dam for the entireanalysed time. The analysis from upstream to downstream of the spatial variability of thePrut River annual discharges showed their steady increase downstream and then adecrease in the sector next to Oancea station. A statistical minority of the annualdischarges showed a continuous increase of them until the flowing of Prut into Danube.Knowing that the lower basin of the river is characterized by a low amount of rainfall anda higher evapo(transpiration than the remaining basin, the decreasing flows to the rivermouth is explicable; but the increasing flows to the river mouth cannot be justified, underthese conditions of water balance, than by certain climatological parameters of thermodynamicalnature which generate, with increased frequency, more intense and rich rainfall, with a torrential character. The analyses on couples of three months showed thatthe Oancea flows are higher than the upstream stations (opposite than usual in yearswhen the flows of the upstream hydrometrical stations are lower than the multiannualaverage and that supports the mentioned pluviometrical character. A plausible cause for"Oancea phenomenon" is the increase and the decrease of the sunspots number, whosecycles are relatively well fold on the increase and decrease of annual average flow atOancea hydrometrical station. The strongest increased discharges of the Prut River overthe discharges at the upstream stations occur from May to July (MJJ, the months with thehighest amount of rainfall. Seasonal analysis of MJJ and other couples of 3 monthsshowed that there are also growing flows at Prisăcani station relative to the adjacentstations, but

  20. Spatial resolution limit study of a CCD camera and scintillator based neutron imaging system according to MTF determination and analysis

    International Nuclear Information System (INIS)

    Kharfi, F.; Denden, O.; Bourenane, A.; Bitam, T.; Ali, A.

    2012-01-01

    Spatial resolution limit is a very important parameter of an imaging system that should be taken into consideration before examination of any object. The objectives of this work are the determination of a neutron imaging system's response in terms of spatial resolution. The proposed procedure is based on establishment of the Modulation Transfer Function (MTF). The imaging system being studied is based on a high sensitivity CCD neutron camera (2×10 −5 lx at f1.4). The neutron beam used is from the horizontal beam port (H.6) of the Algerian Es-Salam research reactor. Our contribution is on the MTF determination by proposing an accurate edge identification method and a line spread function undersampling problem-resolving procedure. These methods and procedure are integrated into a MatLab code. The methods, procedures and approaches proposed in this work are available for any other neutron imaging system and allow for judging the ability of a neutron imaging system to produce spatial (internal details) properties of any object under examination. - Highlights: ► Determination of spatial response of a neutron imaging system. ► Ability of a neutron imaging system to reproduce spatial properties of any object. ► Spatial resolution limits measurement using MTF with the slanted edge method. ► Accurate edge identification and line spread function sampling improvement. ► Development of a MatLab code to compute automatically the MTF.

  1. Time-varying spatial data integration and visualization: 4 Dimensions Environmental Observations Platform (4-DEOS)

    Science.gov (United States)

    Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio

    2014-05-01

    In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows

  2. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  3. Influence of spatial resolution on precipitation simulations for the central Andes Mountains

    Science.gov (United States)

    Trachte, Katja; Bendix, Jörg

    2013-04-01

    analyze the impact of spatial resolution and thus, the representation of the terrain on the result.

  4. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  5. Improving the spatial resolution in CZT detectors using charge sharing effect and transient signal analysis: Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoqing; Cheng, Zeng [Department of Electrical and Computer Engineering, McMaster University (Canada); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Peng, Hao, E-mail: penghao@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Department of Medical Physics, McMaster University, Ontario L8S 4K1, Hamilton (Canada)

    2016-02-01

    Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 µm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 µm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 µm and ~250 µm for the charge sharing and transient signal analysis methods

  6. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Science.gov (United States)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  7. HIGH-RESOLUTION HELIOSEISMIC IMAGING OF SUBSURFACE STRUCTURES AND FLOWS OF A SOLAR ACTIVE REGION OBSERVED BY HINODE

    International Nuclear Information System (INIS)

    Zhao Junwei; Kosovichev, Alexander G.; Sekii, Takashi

    2010-01-01

    We analyze a solar active region observed by the Hinode Ca II H line using the time-distance helioseismology technique, and infer wave-speed perturbation structures and flow fields beneath the active region with a high spatial resolution. The general subsurface wave-speed structure is similar to the previous results obtained from Solar and Heliospheric Observatory/Michelson Doppler Imager observations. The general subsurface flow structure is also similar, and the downward flows beneath the sunspot and the mass circulations around the sunspot are clearly resolved. Below the sunspot, some organized divergent flow cells are observed, and these structures may indicate the existence of mesoscale convective motions. Near the light bridge inside the sunspot, hotter plasma is found beneath, and flows divergent from this area are observed. The Hinode data also allow us to investigate potential uncertainties caused by the use of phase-speed filter for short travel distances. Comparing the measurements with and without the phase-speed filtering, we find out that inside the sunspot, mean acoustic travel times are in basic agreement, but the values are underestimated by a factor of 20%-40% inside the sunspot umbra for measurements with the filtering. The initial acoustic tomography results from Hinode show a great potential of using high-resolution observations for probing the internal structure and dynamics of sunspots.

  8. Using Process Observation to Teach Alternative Dispute Resolution: Alternatives to Simulation.

    Science.gov (United States)

    Bush, Robert A. Barush

    1987-01-01

    A method of teaching alternative dispute resolution (ADR) involves sending students to observe actual ADR sessions, by agreement with the agencies conducting them, and then analyzing the students' observations in focused discussions to improve student insight and understanding of the processes involved. (MSE)

  9. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment

    Directory of Open Access Journals (Sweden)

    Oleg Andrejev

    2011-05-01

    Full Text Available The paper addresses the sensitivity of a novel method for quantifying the environmental risks associated with the current-driven transport of adverse impacts released from offshore sources (e.g. ship traffic with respect to the spatial resolution of the underlying hydrodynamic model. The risk is evaluated as the probability of particles released in different sea areas hitting the coast and in terms of the time after which the hit occurs (particle age on the basis of a statistical analysis of large sets of 10-day long Lagrangian trajectories calculated for 1987-1991 for the Gulf of Finland, the Baltic Sea. The relevant 2D maps are calculated using the OAAS model with spatial resolutions of 2, 1 and 0.5 nautical miles (nm and with identical initial, boundary and forcing conditions from the Rossby Centre 3D hydrodynamic model (RCO, Swedish Meteorological and Hydrological Institute. The spatially averaged values of the probability and particle age display hardly any dependence on the resolution. They both reach almost identical stationary levels (0.67-0.69 and ca 5.3 days respectively after a few years of simulations. Also, the spatial distributions of the relevant fields are qualitatively similar for all resolutions. In contrast, the optimum locations for fairways depend substantially on the resolution, whereas the results for the 2 nm model differ considerably from those obtained using finer-resolution models. It is concluded that eddy-permitting models with a grid step exceeding half the local baroclinic Rossby radius are suitable for a quick check of whether or not any potential gain from this method is feasible, whereas higher-resolution simulations with eddy-resolving models are necessary for detailed planning. The asymptotic values of the average probability and particle age are suggested as an indicator of the potential gain from the method in question and also as a new measure of the vulnerability of the nearshore of water bodies to

  10. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution

    International Nuclear Information System (INIS)

    Heemskerk, Jan W T; Westra, Albert H; Linotte, Peter M; Ligtvoet, Kees M; Zbijewski, Wojciech; Beekman, Freek J

    2007-01-01

    Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high-resolution imaging with x-rays and gamma rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by a real-time image analysis of the scintillation light flashes ('photon-counting mode'). The electron-multiplying CCD (EMCCD) is well suited for fast read out, since even at high frame rates it has extremely low read-out noise. Back-illuminated (BI) EMCCDs have much higher quantum efficiency than front-illuminated (FI) EMCCDs. Here we compare the spatial and energy resolution of gamma cameras based on FI and BI EMCCDs. The CCDs are coupled to a 1000 μm thick columnar CsI(Tl) crystal for the purpose of Tc-99m and I-125 imaging. Intrinsic spatial resolutions of 44 μm for I-125 and 49 μm for Tc-99m were obtained when using a BI EMCCD, which is an improvement by a factor of about 1.2-2 over the FI EMCCD. Furthermore, in the energy spectrum of the BI EMCCD, the I-125 signal could be clearly separated from the background noise, which was not the case for the FI EMCCD. The energy resolution of a BI EMCCD for Tc-99m was estimated to be approximately 36 keV, full width at half maximum, at 141 keV. The excellent results for the BI EMCCD encouraged us to investigate the cooling requirements for our setup. We have found that for the BI EMCCD, the spatial and energy resolution, as well as image noise, remained stable over a range of temperatures from -50 deg. C to -15 deg. C. This is a significant advantage over the FI EMCCD, which suffered from loss of spatial and especially energy resolution at temperatures as low as -40 deg. C. We conclude that the use of BI EMCCDs may significantly improve the imaging capabilities and the cost efficiency of CCD-based high-resolution gamma cameras. (note)

  11. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  12. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R. [NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Lisse, C. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Boden, A. F. [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Dodson-Robinson, S. E.; Salyk, C. [University of Texas, Astronomy Department, Austin, TX 78712 (United States); Wyatt, M. C., E-mail: chas@pop.jpl.nasa.gov [Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA (United Kingdom)

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  13. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  14. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  15. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet Thet Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F.A.; Akatsuka, T.; Itai, Y

    2001-07-21

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  16. Diagnosis of spatial resolution for microbeam scanning PIXE using STIM method and CR-39 track detector in PASTA

    International Nuclear Information System (INIS)

    Hamano, T.; Imaseki, H.; Yukawa, M.; Ishikawa, T.; Iso, H.; Matsumoto, K.

    2003-01-01

    In PIXE analysis system and Tandem Accelerator facility (PASTA) of NIRS, we are using Scanning Transmission Ion Microscopy (STIM) method and solid track detector to diagnose the spatial resolution of scanning microbeam PIXE analysis system. These methods are widely used by many microbeam facilities. (author)

  17. Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions

    Science.gov (United States)

    Liao, C.; Zhuang, Q.

    2017-12-01

    Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.

  18. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    Science.gov (United States)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  19. Improved Spatial Resolution in Thick, Fully-Depleted CCDs with Enhanced Red Sensitivity

    International Nuclear Information System (INIS)

    Fairfield, Jessamyn A.

    2005-01-01

    The point spread function (PSF) is an important measure of spatial resolution in CCDs for point-like objects, since it can affect use in imaging and spectroscopic applications. We present new data and theoretical developments in the study of lateral charge diffusion in thick, fully-depleted charge-coupled devices (CCDs) developed at Lawrence Berkeley National Laboratory (LBNL). Because they are fully depleted, the LBNL devices have no field-free region, and diffusion can be controlled through the application of an external bias voltage. We give results for a 3512x3512 format, 10.5 ?m pixel back-illuminated p-channel CCD developed for the SuperNova/Acceleration Probe (SNAP), a proposed satellite-based experiment designed to study dark energy. The PSF was measured at substrate bias voltages between 3 V and 115 V. At a bias voltage of 115V, we measure an rms diffusion of 3.7 ± 0.2 (micro)m. Lateral charge diffusion in LBNL CCDs is thus expected to meet the SNAP requirements

  20. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  1. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  2. Relationship between image quality and changes in spatial resolution for the gamma camera

    International Nuclear Information System (INIS)

    Ikeda, Hozumi; Kishimoto, Kenji; Shimonishi, Yoshihiro; Ohmura, Masahiro; Kosakai, Kazuhisa; Hamada, Kunio; Ochi, Hironobu.

    1989-01-01

    The purpose of this study is to examine quantitatively the relationship between visual image quality and degradation in spatial resolution for a gamma camera by the increase in distance from collimator. The relationship between the proportion (p) of images identified the difference of image quality and the difference (δFWHM) in FWHM between paired images was showed in a sigmoid curve. Using Dendy's method, minimum level to be correctly identified the difference of image quality on three out of four occasions (p=0.75) was corresponded to 0.4 mm in δFWHM. Using fuzzy theory, the level to be identified the difference of image quality was examind under various conditions. The truth-value of fuzzy sets-degraded or slightly degraded and not-degraded in image quality between paired images-was gained the peak at 0.5 mm of δFWHM. It was founded that changes of 0.4-0.5 mm in FWHM-corresponding about 2 cm distance from collimator-could be sufficiently identified in the difference of image quality. (author)

  3. Faster-Than-Real-Time Simulation of Lithium Ion Batteries with Full Spatial and Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sandip Mazumder

    2013-01-01

    Full Text Available A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in a LixC6-LiyMn2O4 battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.

  4. Spatial probabilistic approach on landslide susceptibility assessment from high resolution sensors derived parameters

    International Nuclear Information System (INIS)

    Aman, S N A; Latif, Z Abd; Pradhan, B

    2014-01-01

    Landslide occurrence depends on various interrelating factors which consequently initiate to massive mass of soil and rock debris that move downhill due to the gravity action. LiDAR has come with a progressive approach in mitigating landslide by permitting the formation of more accurate DEM compared to other active space borne and airborne remote sensing techniques. The objective of this research is to assess the susceptibility of landslide in Ulu Klang area by investigating the correlation between past landslide events with geo environmental factors. A high resolution LiDAR DEM was constructed to produce topographic attributes such as slope, curvature and aspect. These data were utilized to derive second deliverables of landslide parameters such as topographic wetness index (TWI), surface area ratio (SAR) and stream power index (SPI) as well as NDVI generated from IKONOS imagery. Subsequently, a probabilistic based frequency ratio model was applied to establish the spatial relationship between the landslide locations and each landslide related factor. Factor ratings were summed up to obtain Landslide Susceptibility Index (LSI) to construct the landslide susceptibility map

  5. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lifeng, E-mail: yu.lifeng@mayo.edu; Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  6. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  7. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  8. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    Science.gov (United States)

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  9. SU-F-I-54: Spatial Resolution Studies in Proton CT Using a Phase-II Prototype Head Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A. [University of California, Santa Cruz, Santa Cruz, CA (United States); Bashkirov, V.; Hurley, R. F.; Schulte, R. W. [Loma Linda University, Loma Linda, CA (United States); Piersimoni, P. [University of California, San Francisco, San Francisco, CA (United States); Giacometti, V. [University of Wollongong, Wollongong, NSW (Australia)

    2016-06-15

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated paths of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.

  10. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  11. High-resolution observation of phase contrast at 1MeV. Amorphous or crystalline objects

    International Nuclear Information System (INIS)

    Bourret, A.; Desseaux, J.

    1975-01-01

    Many authors have stressed the possibilities of high voltage to improve resolution, but owing to numerous experimental difficulties the resolution limit at 1MeV, which lies around 1A for conventional lenses, has so far been unattainable. Thus the phase contrast at 1MeV has not been studied on evaporated objects. On the other hand the fringes of crystal planes have been observed at 1MeV. the CEN-G microscope having been considerably modified it has been possible to observe the phase contrast of amorphous or crystalline objects [fr

  12. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis.

    Science.gov (United States)

    Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M

    2016-06-01

    MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-linearity and spatial resolution in a cellular automaton model of a small upland basin

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    1998-01-01

    Full Text Available The continuing development of computational fluid dynamics is allowing the high resolution study of hydraulic and sediment transport processes but, due to computational complexities, these are rarely applied to areas larger than a reach. Existing approaches, based upon linked cross sections, can give a quasi two-dimensional view, effectively simulating sediment transport for a single river reach. However, a basin represents a whole discrete dynamic system within which channel, floodplain and slope processes operate over a wide range of space and time scales. Here, a cellular automaton (CA approach has been used to overcome some of these difficulties, in which the landscape is represented as a series of fixed size cells. For every model iteration, each cell acts only in relation to the influence of its immediate neighbours in accordance with appropriate rules. The model presented here takes approximations of existing flow and sediment transport equations, and integrates them, together with slope and floodplain approximations, within a cellular automaton framework. This method has been applied to the basin of Cam Gill Beck (4.2 km2 above Starbotton, upper Wharfedale, a tributary of the River Wharfe, North Yorkshire, UK. This approach provides, for the first time, a workable model of the whole basin at a 1 m resolution. Preliminary results show the evolution of bars, braids, terraces and alluvial fans which are similar to those observed in the field, and examples of large and small scale non-linear behaviour which may have considerable implications for future models.

  14. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  15. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  16. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.

  17. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum