WorldWideScience

Sample records for spatial coherence measurements

  1. Measurement of the spatial coherence of a soft x-ray laser

    International Nuclear Information System (INIS)

    Trebes, J.E.; Mrowka, S.; London, R.A.; Barbee, T.W.; Carter, M.R.; MacGowan, B.J.; Matthews, D.L.; Da Silva, L.B.; Stone, G.F.; Feit, M.D.; Nugent, K.A.

    1991-01-01

    The spatial coherence of a neon-like selenium x-ray laser operating at 206 and 210 Angstroems has been measured using a technique based on partially coherent x-ray diffraction. The time integrated spatial coherence of the selenium x-ray laser was determined to be equivalent to that of a quasi-monochromatic spatially incoherent disk source whose diameter is comparable to the line focus of the visible light laser pumping the x-ray laser. The spatial coherence was improved by narrowing the line focus width. 20 refs., 4 figs

  2. Determination of scattering structures from spatial coherence measurements.

    Science.gov (United States)

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  3. Measurement of Spatial Coherence of Light Propagating in a Turbulent Atmosphere

    Directory of Open Access Journals (Sweden)

    P. Barcik

    2013-04-01

    Full Text Available A lot of issues have to be taken into account when designing a reliable free space optical communication link. Among these are e.g.,beam wander, fluctuation of optical intensity and loss of spatial coherence that are caused by atmospheric turbulence. This paper presents experimental measurements of spatial coherence of a laser beam. The experimental setup is based on Young's double pinhole experiment. Fringe patterns under atmospheric turbulence for four different pinhole separations are presented. From these fringe patterns, visibility is determined and the coherence radius is estimated.

  4. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  5. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  6. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  7. Mismatch removal via coherent spatial relations

    Science.gov (United States)

    Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen

    2014-07-01

    We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.

  8. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  9. Experimental evidence for partial spatial coherence in imaging Mueller polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Yoo, Sang Hyuk; Garcia-Caurel, Enric; Hingerl, Kurt

    2017-11-15

    We demonstrate experimentally the validity of the partial spatial coherence formalism in Mueller polarimetry and show that, in a finite spatial resolution experiment, the measured response is obtained through convolving the theoretical one with the instrument function. The reported results are of primary importance for Mueller imaging systems.

  10. Diffraction from the perspective of the spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Carrasquilla-Alvarez, J.; Garcia-Sucerquia, J.

    2005-10-01

    The diffraction of spatially partially coherent optical fields is analysed by using two concepts recently introduced by the authors: the spatial coherence wavelets and the effective diffracting aperture. Within this framework, the intimate link between the spatial properties of the optical field and the aperture's edges in the diffraction phenomena is studied. New insight is proposed in regard to the diffraction in the Fresnel - Fraunhofer approximation. Our ideas are supported by numerical calculations and analysis of the diffraction patterns obtained when an optical field with adjustable spatial coherence impinges upon a circular aperture (author)

  11. Retrieving of the complex degree of spatial coherence of electron beams

    International Nuclear Information System (INIS)

    Carrasquilla-Alvarez, J.; Castaneda, R.; Garcia-Sucerquia, J.; Schofield, M.; Blegiia, M.; Matteucci, G.

    2005-10-01

    We discuss the applicability of a recently developed method for two-dimensionally retrieving the complex degree of spatial coherence of laser beams, in both amplitude and phase, to the case of the electron beam provided by the source of an electron microscope. Obtaining an electron beam with the highest possible coherence is critical for successful holography experiments. Therefore, the accurate measurement of the complex degree of spatial coherence is highly desirable. The method consists of the following three steps: recording of the beam spot, determining its centered-reduced moments and inserting them as coefficients of a series. This procedure is simple, fast and of higher performance than conventional procedures such Fourier analysis or Young interferometry. Experimental results are presented. (author)

  12. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  13. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  14. A method for the coherence measurement of the supercontinuum source using Michelson interferometer

    International Nuclear Information System (INIS)

    Semenova, V A; Tsypkin, A V; Putilin, S E; Bespalov, V G

    2014-01-01

    Coherent properties of supercontinuum sources are highly significant for various applications, including low-coherence interferometry and optical frequency metrology. We propose a fast method for the spatial and temporal self-coherence of the SC measurement using Michelson interferometer without a mirror movement. Furthermore, we present self-coherence measurements of the supercontinuum, generated in microstructured fiber at 780 nm.

  15. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  16. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  17. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  18. Development and validation of a short-lag spatial coherence theory for photoacoustic imaging

    Science.gov (United States)

    Graham, Michelle T.; Lediju Bell, Muyinatu A.

    2018-02-01

    We previously derived spatial coherence theory to be implemented for studying theoretical properties of ShortLag Spatial Coherence (SLSC) beamforming applied to photoacoustic images. In this paper, our newly derived theoretical equation is evaluated to generate SLSC images of a point target and a 1.2 mm diameter target and corresponding lateral profiles. We compared SLSC images simulated solely based on our theory to SLSC images created after beamforming acoustic channel data from k-Wave simulations of 1.2 mm-diameter disc target. This process was repeated for a point target and the full width at half the maximum signal amplitudes were measured to estimate the resolution of each imaging system. Resolution as a function of lag was comparable for the first 10% of the receive aperture (i.e., the short-lag region), after which resolution measurements diverged by a maximum of 1 mm between the two types of simulated images. These results indicate the potential for both simulation methods to be utilized as independent resources to study coherence-based photoacoustic beamformers when imaging point-like targets.

  19. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  20. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  1. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  2. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  3. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise

    International Nuclear Information System (INIS)

    Zhou, Changsong; Kurths, Juergen; Hu, Bambi

    2001-01-01

    We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh--Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the array enhances the coherence. Our results have the implication that generic heterogeneity and background noise can play a constructive role to enhance the time precision of firing in neural systems

  4. Coherent Code Tracking for Spatial Transmit Diversity DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    R. W. Stewart

    2005-09-01

    Full Text Available Spatial transmit diversity schemes are now well integrated into third-generation cellular mobile communication system specifications. When DS-CDMA-based technology is deployed in typical macro- and microcell environments, multipath diversity and spatial diversity may be exploited simultaneously by a 2D RAKE receiver. The work presented in this paper focuses on taking advantage of spatial transmit diversity in synchronising the 2D RAKE structure. We investigate the use of coherent and noncoherent techniques for tracking the timing parameters of each multipath component. It is shown that both noncoherent and coherent techniques benefit from transmit diversity. Additionally the performance gap between these two techniques increases with the number of antennas.

  5. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    Science.gov (United States)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  6. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    Science.gov (United States)

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  7. Cross-coherent vector sensor processing for spatially distributed glider networks.

    Science.gov (United States)

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  8. Spatial smoothing coherence factor for ultrasound computed tomography

    Science.gov (United States)

    Lou, Cuijuan; Xu, Mengling; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    In recent years, many research studies have been carried out on ultrasound computed tomography (USCT) for its application prospect in early diagnosis of breast cancer. This paper applies four kinds of coherence-factor-like beamforming methods to improve the image quality of synthetic aperture focusing method for USCT, including the coherence-factor (CF), the phase coherence factor (PCF), the sign coherence factor (SCF) and the spatial smoothing coherence factor (SSCF) (proposed in our previous work). The performance of these methods was tested with simulated raw data which were generated by the ultrasound simulation software PZFlex 2014. The simulated phantom was set to be water of 4cm diameter with three nylon objects of different diameters inside. The ring-type transducer had 72 elements with a center frequency of 1MHz. The results show that all the methods can reveal the biggest nylon circle with the radius of 2.5mm. SSCF gets the highest SNR among the proposed methods and provides a more homogenous background. None of these methods can reveal the two smaller nylon circles with the radius of 0.75mm and 0.25mm. This may be due to the small number of elements.

  9. Robust Short-Lag Spatial Coherence Imaging.

    Science.gov (United States)

    Nair, Arun Asokan; Tran, Trac Duy; Bell, Muyinatu A Lediju

    2018-03-01

    Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not consider the content of images formed with different lags, and thus does not exploit the differences in tissue texture at each short-lag value. Our proposed method improves SLSC imaging by weighting the addition of lag values (i.e., M-weighting) and by applying robust principal component analysis (RPCA) to search for a low-dimensional subspace for projecting coherence images created with different lag values. The RPCA-based projections are considered to be denoised versions of the originals that are then weighted and added across lags to yield a final robust SLSC (R-SLSC) image. Our approach was tested on simulation, phantom, and in vivo liver data. Relative to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22 dB, 2.54, and 2.36, respectively, when averaged over simulated, phantom, and in vivo data and over all lags considered, which corresponds to mean improvements of 96.4%, 121.2%, and 120.5%, respectively. When compared with SLSC images, the corresponding mean improvements with R-SLSC images were 7.38 dB, 1.52, and 1.30, respectively (i.e., mean improvements of 14.5%, 50.5%, and 43.2%, respectively). Results show great promise for smoothing out the tissue texture of SLSC images and enhancing anechoic or hypoechoic target visibility at higher lag values, which could be useful in clinical tasks such as breast cyst visualization, liver vessel tracking, and obese patient imaging.

  10. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  11. Change in spatial coherence of light on refraction and on reflection.

    Science.gov (United States)

    Lahiri, Mayukh; Wolf, Emil

    2013-06-01

    A theory of refraction and reflection of partially coherent electromagnetic beams has been recently developed. In this paper, we apply it to study the change in spatial coherence caused by refraction and by reflection more fully. By considering a Gaussian Schell-model beam, we show that the change is, in general, dependent on the angle of incidence.

  12. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  13. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  14. Transient Aspects of Wave Propagation Connected with Spatial Coherence

    Directory of Open Access Journals (Sweden)

    Ezzat G. Bakhoum

    2013-01-01

    Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.

  15. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  16. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Science.gov (United States)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  17. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    Science.gov (United States)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  18. Spatial and spectral coherence in propagating high-intensity twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Machulka, R.; Peřina ml., Jan; Allevi, A.; Bondani, M.

    2015-01-01

    Roč. 5, Sep (2015), s. 14365 ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spatial and spectral coherence * high-intensity twin beams Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  19. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  20. Spiral Waves and Multiple Spatial Coherence Resonances Induced by Colored Noise in Neuronal Network

    International Nuclear Information System (INIS)

    Tang Zhao; Li Yuye; Xi Lei; Jia Bing; Gu Huaguang

    2012-01-01

    Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied. Each neuron is at resting state near a saddle-node bifurcation on invariant circle, coupled to its nearest neighbors by electronic coupling. Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity. By calculating spatial structure function and signal-to-noise ratio (SNR), it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered, respectively. SNR manifest multiple local maximal peaks, indicating that the colored noise can induce multiple spatial coherence resonances. The maximal SNR values decrease as the correlation time of the noise increases. These results not only provide an example of multiple resonances, but also show that Gaussian colored noise play constructive roles in neuronal network. (general)

  1. General formalism for partial spatial coherence in reflection Mueller matrix polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Hingerl, Kurt

    2016-09-01

    Starting from the first principles, we derive the expressions governing partially coherent Mueller matrix reflection polarimetry on spatially inhomogeneous samples. These are reported both in their general form and in the practically important specific form for two juxtaposed media.

  2. Function Lateralization via Measuring Coherence Laterality

    Science.gov (United States)

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  3. Plasma density fluctuation measurements from coherent and incoherent microwave reflection

    International Nuclear Information System (INIS)

    Conway, G.D.; Schott, L.; Hirose, A.

    1996-01-01

    Using the spatial coherency present in a reflected microwave signal (Conway et al 1994 Rev. Sci. Instrum. 65 2920) it is possible to measure a coherent, Γ c , and an incoherent, Γ i , reflection coefficient (proportional to the radar cross section) from a turbulent plasma cutoff layer. Results acquired with a 17 GHz reflectometer from a STOR-M tokamak edge region (r/a ∼ 0.8) give significant Γ c and Γ i , which suggests two-dimensional structure in the reflection layer. Using a 'distorted-mirror' model for the plasma fluctuations, estimates of an effective radial width, σ, and poloidal correlation length, L p , can be derived from the reflection coefficients. STOR-M results typically give a σ of a few millimetres and an L p of a couple of centimetres. (author)

  4. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  5. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  6. A spatial approach of magnitude-squared coherence applied to selective attention detection.

    Science.gov (United States)

    Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio

    2014-05-30

    Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Coherence and entanglement measures based on Rényi relative entropies

    International Nuclear Information System (INIS)

    Zhu, Huangjun; Hayashi, Masahito; Chen, Lin

    2017-01-01

    We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states. (paper)

  8. Martingale characterizations of coherent acceptability measures

    NARCIS (Netherlands)

    Roorda, Berend

    2002-01-01

    The coherent risk framework is linked to martingale valuation by adding hedgeinvariance as a fifth axiom, motivated by the concept of consistent hedging. The resulting subclass, called coherent pre-hedge (CoPr) measures, is characterized by a martingale condition on the test set that underlies a

  9. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    Science.gov (United States)

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  10. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences,

  11. Coherent acceptability measures in multiperiod models

    NARCIS (Netherlands)

    Roorda, Berend; Schumacher, Hans; Engwerda, Jacob

    2005-01-01

    The framework of coherent risk measures has been introduced by Artzner et al. (1999; Math. Finance 9, 203–228) in a single-period setting. Here, we investigate a similar framework in a multiperiod context. We add an axiom of dynamic consistency to the standard coherence axioms, and obtain a

  12. Interpreting quantum coherence through a quantum measurement process

    Science.gov (United States)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  13. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  14. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  15. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, Roger; Stadje, M.A.

    2010-01-01

    We introduce entropy coherent and entropy convex measures of risk and prove a collection of axiomatic characterization and duality results. We show in particular that entropy coherent and entropy convex measures of risk emerge as negative certainty equivalents in (the regular and a generalized

  16. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  17. Effect of spatial coherence of LED sources on image resolution in holographic displays

    NARCIS (Netherlands)

    Pourreza Ghoushchi, Vahid; Aas, Mehdi; Ulusoy, Erdem; Ürey, Hakan

    2017-01-01

    Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms (CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on interference and diffraction, thus they generally use laser light. However, laser

  18. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  19. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  20. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  1. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  2. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn; Li, Fuli [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-02-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum.

  3. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    International Nuclear Information System (INIS)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei; Li, Fuli

    2016-01-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum

  4. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  5. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics

    International Nuclear Information System (INIS)

    Saubamea, B.

    1998-12-01

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  6. The classical correlation limits the ability of the measurement-induced average coherence

    Science.gov (United States)

    Zhang, Jun; Yang, Si-Ren; Zhang, Yang; Yu, Chang-Shui

    2017-04-01

    Coherence is the most fundamental quantum feature in quantum mechanics. For a bipartite quantum state, if a measurement is performed on one party, the other party, based on the measurement outcomes, will collapse to a corresponding state with some probability and hence gain the average coherence. It is shown that the average coherence is not less than the coherence of its reduced density matrix. In particular, it is very surprising that the extra average coherence (and the maximal extra average coherence with all the possible measurements taken into account) is upper bounded by the classical correlation of the bipartite state instead of the quantum correlation. We also find the sufficient and necessary condition for the null maximal extra average coherence. Some examples demonstrate the relation and, moreover, show that quantum correlation is neither sufficient nor necessary for the nonzero extra average coherence within a given measurement. In addition, the similar conclusions are drawn for both the basis-dependent and the basis-free coherence measure.

  7. Coherent Anti-Stokes and Coherent Stokes in Raman Scattering by Superconducting Nanowire Single-Photon Detector for Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Annepu Venkata Naga Vamsi

    2016-01-01

    Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.

  8. Exploring the Ecological Coherence between the Spatial and Temporal Patterns of Bacterioplankton in Boreal Lakes

    Directory of Open Access Journals (Sweden)

    Juan Pablo Niño-García

    2017-04-01

    Full Text Available One of the major contemporary challenges in microbial ecology has been to discriminate the reactive core from the random, unreactive components of bacterial communities. In previous work we used the spatial abundance distributions of bacterioplankton across boreal lakes of Québec to group taxa into four distinct categories that reflect either hydrology-mediated dispersal along the aquatic network or environmental selection mechanisms within lakes. Here, we test whether this categorization derived from the spatial distribution of taxa is maintained over time, by analyzing the temporal dynamics of the operational taxonomic units (OTUs within those spatially derived categories along an annual cycle in the oligotrophic lake Croche (Québec, Canada, and assessing the coherence in the patterns of abundance, occurrence, and environmental range of these OTUs over space and time. We report that the temporal dynamics of most taxa within a single lake are largely coherent with those derived from their spatial distribution over large spatial scales, suggesting that these properties must be intrinsic of particular taxa. We also identified a set of rare taxa cataloged as having a random occupancy based on their spatial distribution, but which showed clear seasonality and abundance peaks along the year, yet these comprised a very small fraction of the total rare OTUs. We conclude that the presence of most rare bacterioplankton taxa in boreal lakes is random, since both their temporal and spatial dynamics suggest links to passive downstream transport and persistence in freshwater networks, rather than environmental selection.

  9. Special Properties of Coherence Scanning Interferometers for large Measurement Volumes

    International Nuclear Information System (INIS)

    Bauer, W

    2011-01-01

    In contrast to many other optical methods the uncertainty of Coherence Scanning Interferometer (CSI) in vertical direction is independent from the field of view. Therefore CSIs are ideal instruments for measuring 3D-profiles of larger areas (36x28mm 2 , e.g.) with high precision. This is of advantage for the determination of form parameters like flatness, parallelism and steps heights within a short time. In addition, using a telecentric beam path allows measurements of deep lying surfaces (<70mm) and the determination of form parameters with large step-heights. The lateral and spatial resolution, however, are reduced. In this presentation different metrological characteristics together with their potential errors are analyzed for large-scale measuring CSIs. Therefore these instruments are ideal tools in quality control for good/bad selections, e.g. The consequences for the practical use in industry and for standardization are discussed by examples of workpieces of automotive suppliers or from the steel industry.

  10. Coherence measures in automatic time-migration velocity analysis

    International Nuclear Information System (INIS)

    Maciel, Jonathas S; Costa, Jessé C; Schleicher, Jörg

    2012-01-01

    Time-migration velocity analysis can be carried out automatically by evaluating the coherence of migrated seismic events in common-image gathers (CIGs). The performance of gradient methods for automatic time-migration velocity analysis depends on the coherence measures used as the objective function. We compare the results of four different coherence measures, being conventional semblance, differential semblance, an extended differential semblance using differences of more distant image traces and the product of the latter with conventional semblance. In our numerical experiments, the objective functions based on conventional semblance and on the product of conventional semblance with extended differential semblance provided the best velocity models, as evaluated by the flatness of the resulting CIGs. The method can be easily extended to anisotropic media. (paper)

  11. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, V.; Rödel, C.; Zastrau, U., E-mail: ulf.zastrau@uni-jena.de [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Döppner, T.; Ma, T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Fletcher, L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Förster, E. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Glenzer, S. H.; Lee, H. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartley, N. J. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kazak, L.; Komar, D.; Skruszewicz, S. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-09-08

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  12. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  13. Generalized synchronization and coherent structures in spatially extended systems

    International Nuclear Information System (INIS)

    Basnarkov, Lasko; Duane, Gregory S.; Kocarev, Ljupco

    2014-01-01

    We study the synchronization of a coupled pair of one-dimensional Kuramoto–Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master–slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems

  14. Evidence for color coherence in jet events

    Energy Technology Data Exchange (ETDEWEB)

    CDF Collaboration

    1994-06-01

    Color coherence effects in p{bar p} collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multi jet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlos that are substantially different with respect to the implementation of coherence.

  15. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics; Refroidissement laser subrecul au nanokelvin. Mesure directe de la longueur de coherence spatiale. Nouveaux tests des statistiques de Levy

    Energy Technology Data Exchange (ETDEWEB)

    Saubamea, B

    1998-12-15

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  16. Participant, Rater, and Computer Measures of Coherence in Posttraumatic Stress Disorder

    Science.gov (United States)

    Rubin, David C.; Deffler, Samantha A.; Ogle, Christin M.; Dowell, Nia M.; Graesser, Arthur C.; Beckham, Jean C.

    2015-01-01

    We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without PTSD. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A MANOVA indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of PTSD and thus its treatment. PMID:26523945

  17. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  18. Coherent reflectivity using white synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panzner, Tobias; Sant, Tushar; Pietsch, Ullrich [Universitaet Siegen (Germany). Festkoerperphysik

    2008-07-01

    Using coherent white synchrotron radiation in the hard X-ray region for reflectivity experiments one have access to sample properties on a nanometer scale in principle. To extract the wanted information from the performed measurements so called phase retrieval algorithms are necessary. The authors developed a straight forward simulation program based on a spatial limited atomic flat surface to evaluate the influence of different parameters on the coherent scattered signal in the detector plane. These simulations can explain some interesting features of the measurements and shows unexpected results for the influence of the so called illumination function.

  19. Effect of spatially correlated noise on coherence resonance in a network of excitable cells

    International Nuclear Information System (INIS)

    Kwon, Okyu; Jo, Hang-Hyun; Moon, Hie-Tae

    2005-01-01

    We study the effect of spatially correlated noise on coherence resonance (CR) in a Watts-Strogatz small-world network of Fitz Hugh-Nagumo neurons, where the noise correlation decays exponentially with distance between neurons. It is found that CR is considerably improved just by a small fraction of long-range connections for an intermediate coupling strength. For other coupling strengths, an abrupt change in CR occurs following the drastic fracture of the clustered structures in the network. Our study shows that spatially correlated noise plays a significant role in the phenomenon of CR reinforcing the role of the clustered structure of the system

  20. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  1. Coherent change detection and interferometric ISAR measurements in the folded compact range

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K.W.

    1996-08-01

    A folded compact range configuration has been developed ant the Sandia National Laboratories` compact range antenna and radar-cross- section measurement facility as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc.). The folded compact range configuration has previously been used to perform coherent-change-detection (CCD) measurements, which allow disturbances to distributed targets on the order of fractions of a wavelength to be detected. This report describes follow-on CCD measurements of other distributed target samples, and also investigates the sensitivity of the CCD measurement process to changes in the relative spatial location of the SAR sensor between observations of the target. Additionally, this report describes the theoretical and practical aspects of performing interferometric inverse-synthetic-aperture-radar (IFISAR) measurements in the folded compact range environment. IFISAR measurements provide resolution of the relative heights of targets with accuracies on the order of a wavelength. Several examples are given of digital height maps that have been generated from measurements performed at the folded compact range facility.

  2. Coherent normalization of finger strontium XRF measurements: feasibility and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Zamburlini, M; Pejovic-Milic, A; Chettle, D R [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, L8S 4K1 (Canada)

    2008-08-07

    A non-invasive in vivo x-ray fluorescence (XRF) method of measuring bone strontium concentrations has previously been reported as a potential diagnostic tool able to detect strontium concentration in the finger and ankle bones. The feasibility of coherent normalization for {sup 125}I-source-based finger bone strontium x-ray fluorescence (XRF) measurements is assessed here by theoretical considerations and Monte Carlo simulations. Normalization would have several advantages, among which are the correction for the signal attenuation by the overlying soft tissue, and intersubject variability in the bone size and shape. The coherent normalization of bone strontium XRF measurements presents several challenges dictated by the behaviour of the coherent cross section and mass attenuation coefficient at the energies involved. It was found that the coherent normalization alone with either 22.1 keV or 35.5 keV photons was not successful in correcting for the overlying soft tissue attenuation. However, it was found that the coherent peak at 35.5 keV was able to correct effectively for variability in the finger bone size between people. Thus, it is suggested that, if the overlying soft tissue thickness can be obtained by means of an independent measurement, the 35.5 keV peak can be used to correct for the bone size, with an overall accuracy of the normalization process of better than 10%. (note)

  3. Bunch Length Measurements using Coherent Radiation

    CERN Document Server

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  4. Restricted Coherent Risk Measures and Actuarial Solvency

    Directory of Open Access Journals (Sweden)

    Christos E. Kountzakis

    2012-01-01

    Full Text Available We prove a general dual representation form for restricted coherent risk measures, and we apply it to a minimization problem of the required solvency capital for an insurance company.

  5. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  6. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    Science.gov (United States)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  7. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  8. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  9. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  10. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  11. Transverse coherence measurement using a folded Michelson interferometer.

    Science.gov (United States)

    Dean, Jesse; Bercx, Martin; Nantel, Marc; Marjoribanks, Robin

    2007-06-01

    The transverse coherence of a 1 ps pulsed laser beam was measured using a technique involving a modified Michelson interferometer and separate reference images. Using this technique, the transverse coherence of a selected plane in the laser beam was determined, in this case at the exit of a channel in a metal foil self-drilled by the laser. Images of each arm were used as references. Through this technique, it is possible to use the interference patterns produced with uneven intensity distributions and for pulsed lasers on a single-shot basis. The results of these measurements were then shown to be in agreement with those obtained using a Young's double-slit setup.

  12. The x-ray laser coherence experiments in neon-like yttrium

    International Nuclear Information System (INIS)

    Shimkaveg, G.M.; Carter, M.R.; Walling, R.S.; Ticehurst, J.M.; Koch, J.A.; Mrowka, S.; Trebes, J.E.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.L.; London, R.A.; Stewart, R.E.

    1992-01-01

    We present recent results from neon-like x-ray laser experiments conducted at the Nova laser's Two-Beam Facility. This begins a series of experiments aimed at the characterization and control of the degree of spatial coherece in our soft x-ray laser beams, important to planned applications areas susch as microscopy and holography. New instrumentation developed for this effort include a fully time-resolved coherence diagnostic (which records a multiple-slit diffraction pattern) and wide-angle extreme ultraviolet spectrographs and beam divergence cameras. We present new measurements of beam profiles and gain, as well as spatial coherence data such as time-resolved multi-slit diffraction patterns. This new time-resolved coherence data exhibit aperture functions which increase in size during the time of the lasing. Also, some preliminary data is given from the first ''double-foil'' experiments, involving two x-ray amplifiers spatially separated by 29 cm and shot sequentially, in an ''oscillator-amplifier'' configuration

  13. Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh

    2017-01-01

    -plane Gerchberg–Saxton algorithm and demonstrate that it is highly successful at extracting the intensity profile and wavefront of the spatially coherent part of the light from various lasers, including tapered laser diodes, at a very high fidelity despite the presence of incoherent light and noise....

  14. Coherence characteristics of random lasing in a dye doped hybrid powder

    Energy Technology Data Exchange (ETDEWEB)

    García-Revilla, S. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018, San Sebastián (Spain); Fernández, J., E-mail: wupferoj@bi.ehu.es [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018, San Sebastián (Spain); Barredo-Zuriarrain, M. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); Pecoraro, E. [Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro (Portugal); Institute of Chemisty, São Paulo State University–UNESP, 14800-900, Araraquara (Brazil); Arriandiaga, M.A. [Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, Bilbao (Spain); Iparraguirre, I.; Azkargorta, J. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013, Bilbao (Spain); and others

    2016-01-15

    The photon statistics of the random laser emission of a Rhodamine B doped di-ureasil hybrid powder is investigated to evaluate its degree of coherence above threshold. Although the random laser emission is a weighted average of spatially uncorrelated radiation emitted at different positions in the sample, a spatial coherence control was achieved due to an improved detection configuration based on spatial filtering. By using this experimental approach, which also allows for fine mode discrimination and time-resolved analysis of uncoupled modes from mode competition, an area not larger than the expected coherence size of the random laser is probed. Once the spectral and temporal behavior of non-overlapping modes is characterized, an assessment of the photon-number probability distribution and the resulting second-order correlation coefficient as a function of time delay and wavelength was performed. The outcome of our single photon counting measurements revealed a high degree of temporal coherence at the time of maximum pump intensity and at wavelengths around the Rhodamine B gain maximum. - Highlights: • The photon statistics of a diffusive random laser is explored. • The laser sample is a RhB doped di-ureasil hybrid powder. • The detection configuration allows for mode discrimination and time-resolved analysis. • The time and wavelength variation of the temporal coherence is examined. • A high degree of temporal coherence is found.

  15. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  16. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  17. Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

    International Nuclear Information System (INIS)

    Li Yuye; Jia Bing; Gu Huaguang; An Shucheng

    2012-01-01

    Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise. (general)

  18. An MLS coherence function and its performance in measurements on time-varying systems

    DEFF Research Database (Denmark)

    Liu, Jiyuan; Jacobsen, Finn

    1999-01-01

    A new MLS coherence function has been developed and tested in various room acoustic measurements. The new measure, which takes values between zero and unity just as the ordinary coherence, can be used only if averaging over several periods of the MLS signal is carried out. It indicates possible...... contamination by extraneous noise in the same manner as the the ordinary coherence function does in measurements with FFT analysers. It is also very sensitive to disturbances such as reflections caused by moving surfaces during the measurement. Very weak time-variance effects caused by a small change...

  19. Triangle inequalities in coherence measures and entanglement concurrence

    Science.gov (United States)

    Dai, Yue; You, Wenlong; Dong, Yuli; Zhang, Chengjie

    2017-12-01

    We provide detailed proofs of triangle inequalities in coherence measures and entanglement concurrence. If a rank-2 state ϱ can be expressed as a convex combination of two pure states, i.e., ϱ =p1| ψ1〉〈 ψ1|+ p2| ψ2〉〈 ψ2| , a triangle inequality can be established as |E (|Ψ1〉 )-E (|Ψ2〉 )|≤E (ϱ ) ≤E (|Ψ1〉 )+E (|Ψ2〉 ) , where | Ψ1〉= √{p1}|ψ1〉 and | Ψ2〉= √{p2}|ψ2〉 ; E can be considered either coherence measures or entanglement concurrence. This inequality displays mathematical beauty for its similarity to the triangle inequality in plane geometry. An illustrative example is given after the proof.

  20. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  1. Coherent imaging using SACLA

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Kimura, Takashi; Suzuki, Akihiro; Joti, Yasumasa; Bessho, Yoshitaka

    2017-01-01

    X-ray free-electron lasers (XFELs) with femtosecond pulse duration offer an innovative solution to transcend the spatial resolution limitation in conventional X-ray imaging for biological samples and soft matters by clearing up the radiation damage problem using the “diffraction-before-destruction” strategy. Building on this strategy, the authors are developing a method to image solution sample under controlled environment, pulsed coherent X-ray solution scattering (PCXSS), using XFELs and phase retrieval algorithms in coherent diffractive imaging (CDI). This article describes the basics of PCXSS and examples of PCXSS measurement, for a living cell and self-assemblies of gold nanoparticles, performed by the authors using SACLA. An attempt toward the industrial application of PCXSS is also described. (author)

  2. Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Archetti, Renata; Lamberti, Alberto; Martinelli, Luca

    2001-01-01

    Evaluation of spatial coherence of breaking waves is of great importance and of recent interest.......Evaluation of spatial coherence of breaking waves is of great importance and of recent interest....

  3. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  4. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Mislivec, Aaron Robert [Univ. of Rochester, NY (United States)

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  5. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    International Nuclear Information System (INIS)

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-01-01

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam

  6. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  7. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  8. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    Science.gov (United States)

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  9. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  10. Alzheimer's disease: relationship between cognitive aspects and power and coherence EEG measures

    Directory of Open Access Journals (Sweden)

    Lineu C. Fonseca

    2011-12-01

    Full Text Available OBJECTIVE: To evaluate the relationship between specific cognitive aspects and quantitative EEG measures, in patients with mild or moderate Alzheimer's disease (AD. METHOD: Thirty-eight AD patients and 31 controls were assessed by CERAD neuropsychological battery (Consortium to Establish a Registry for AD and the electroencephalogram (EEG. The absolute power and coherences EEG measures were calculated at rest. The correlations between the cognitive variables and the EEG were evaluated. RESULTS: In the AD group there were significant correlations between different coherence EEG measures and Mini-Mental State Examination, verbal fluency, modified Boston naming, word list memory with repetition, word list recall and recognition, and constructional praxis (p<0.01. These correlations were all negative for the delta and theta bands and positive for alpha and beta. There were no correlations between cognitive aspects and absolute EEG power. CONCLUSION: The coherence EEG measures reflect different forms in the relationship between regions related to various cognitive dysfunctions.

  11. Quantitative Analysis of L-Edge White Line Intensities: The Influence of Saturation and Transverse Coherence

    International Nuclear Information System (INIS)

    Hahlin, A.

    2001-01-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects

  12. Quantitative analysis of L-edge white line intensities: the influence of saturation and transverse coherence.

    Science.gov (United States)

    Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D

    2001-03-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.

  13. 3D shape measurement of moving object with FFT-based spatial matching

    Science.gov (United States)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  14. Investigation of optical currents in coherent and partially coherent vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    We present the computer simulation results of the spatial distri-bution of the Poynting vector and illustrate motion of micro and nanopar-ticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves...... by polarization characteristics of an optical field alone, using nanoscale me-tallic particles has been shown experimentally....

  15. Coherence properties of the radiation from FLASH

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2015-02-01

    FLASH is the first free electron laser user facility operating in the vacuum ultraviolet and soft x-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper we present an analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach maximum close to the FEL saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that non-azimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  16. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  17. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  18. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    Science.gov (United States)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  19. Chronic stress disrupts neural coherence between cortico-limbic structures

    Directory of Open Access Journals (Sweden)

    João Filipe Oliveira

    2013-02-01

    Full Text Available Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP and the medial prefrontal cortex (mPFC in rats subjected to short term (STS and chronic unpredictable stress (CUS. CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.

  20. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  1. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  2. Heisenberg-limited interferometry with pair coherent states and parity measurements

    International Nuclear Information System (INIS)

    Gerry, Christopher C.; Mimih, Jihane

    2010-01-01

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  3. Measurement of coherent $\\pi^{+}$ production in low energy neutrino-Carbon scattering

    CERN Document Server

    Abe, K.

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent $\\pi^{+}$ production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region.

  4. SpatEntropy: Spatial Entropy Measures in R

    OpenAIRE

    Altieri, Linda; Cocchi, Daniela; Roli, Giulia

    2018-01-01

    This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...

  5. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  6. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  7. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  8. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the

  9. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    Science.gov (United States)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas; Mikkelsen, Torben; Sjöholm, Mikael; Mann, Jakob; Hansen, Per; Angelou, Nikolas; Svardal, Benny

    2016-12-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

  10. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  11. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    Science.gov (United States)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  12. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  13. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  14. Creating von Laue patterns in crystal scattering with partially coherent sources

    NARCIS (Netherlands)

    Wang, Y.Y.D.; Kuebel, D.; Visser, T.D.; Wolf, E.

    2016-01-01

    When spatially coherent radiation is diffracted by a crystalline object, the field is scattered in specific directions, giving rise to so-called von Laue patterns. We examine the role of spatial coherence in this process. Using the first-order Born approximation, a general analytic expression for

  15. Measurement fidelity in the presence of coherent dynamics or dissipation

    Science.gov (United States)

    You, Jian-Qiang; Ashhab, S.; Nori, Franco

    2011-03-01

    We analyze the problem of a charge qubit probed by a quantum point contact when the measurement is concurrent with Hamiltonian-induced coherent dynamics or dissipation. This additional dynamics changes the state of the qubit before the measurement is completed. As a result, the measurement fidelity is reduced. We calculate the reduction in measurement fidelity in these cases. References: S. Ashhab, J. Q. You, and F. Nori, New J. Phys. 11, 083017 (2009); Phys. Scr. T137, 014005 (2009).

  16. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  17. Characterization of dynamic physiology of the bladder by optical coherence tomography

    Science.gov (United States)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  18. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Science.gov (United States)

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  19. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  1. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  2. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  3. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  4. Coherent radiation spectrum measurements at KEK LUCX facility

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, M., E-mail: mishe@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Aryshev, A., E-mail: alar@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Araki, S.; Fukuda, M. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Karataev, P. [John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Terunuma, N.; Urakawa, J. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2015-01-21

    This paper demonstrates the detailed design concept, alignment, and initial testing of a Michelson interferometer for the THz spectral range. We present the first results on the measurement of a coherent transition radiation spectrum and describe the performance of a pair of ultra-fast broadband room temperature Schottky barrier diode detectors. We discuss the main criteria of interferometer beam splitter optimization, the alignment technique, the high-precision calibration and linearity check of the motion system.

  5. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  6. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    Science.gov (United States)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  7. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    International Nuclear Information System (INIS)

    Farrow, R.L.; Rahn, L.A.

    1985-01-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile

  8. Evidence for color coherence in p bar p collisions at √s =1.8 TeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Donati, S.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Frisch, H.; Fuess, T.; Fukui, Y.; Gagliardi, G.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jensen, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.

    1994-01-01

    Color coherence effects in p bar p collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence

  9. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    DEFF Research Database (Denmark)

    Horwitz, Anna; Mortensen, Erik L.; Osler, Merete

    2017-01-01

    -task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual...... found that the difference in anterior coherence (ΔCA ) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory...

  10. Self-Mixing Demodulation for Coherent Phase-Sensitive OTDR System

    Directory of Open Access Journals (Sweden)

    Haijun He

    2016-05-01

    Full Text Available Phase-sensitive optical time domain reflectometry (Ф-OTDR attracts much attention due to its capability of telling the type and position of an intrusion simultaneously. In recent decades, coherent Ф-OTDR has been demonstrated to realize long-distance detection. For coherent Ф-OTDR, there are three typical demodulation schemes in the reported studies. However, they still cannot realize real-time monitoring to satisfy practical demands. A simple and effective demodulation method based on self-mixing has been put forward to demodulate the beat signal in coherent Ф-OTDR. It not only saves a local electrical oscillator and frequency locked loop, but also demodulates the beat signal without residual frequency. Several vibrations with different frequency were separately applied at the same location of a 42.5 km fiber. The spatial resolution of 10 m and frequency response range from 8 Hz to 980 Hz have been achieved. The precise location with signal-to-noise ratio of 21.4 dB and broadband measurement demonstrate the self-mixing scheme can demodulate the coherent Ф-OTDR signal effectively.

  11. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    Science.gov (United States)

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  12. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  13. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  14. Spatial coherence and large-scale drivers of drought

    Science.gov (United States)

    Svensson, Cecilia; Hannaford, Jamie

    2017-04-01

    Drought is a potentially widespread and generally multifaceted natural phenomenon affecting all aspects of the hydrological cycle. It mainly manifests itself at seasonal, or longer, time scales. Here, we use seasonal river flows across the climatologically and topographically diverse UK to investigate the spatial coherence of drought, and explore its oceanic and atmospheric drivers. A better understanding of the spatial characteristics and drivers will improve forecasting and help increase drought preparedness. The location of the UK in the mid-latitude belt of predominantly westerly winds, together with a pronounced topographical divide running roughly from north to south, produce strong windward and leeward effects. Weather fronts associated with storms tracking north-eastward between Scotland and Iceland typically lead to abundant precipitation in the mountainous north and west, while the south and east remain drier. In contrast, prolonged precipitation in eastern Britain tends to be associated with storms on a more southerly track, producing precipitation in onshore winds on the northern side of depressions. Persistence in the preferred storm tracks can therefore result in periods of wet/dry conditions across two main regions of the UK, a mountainous northwest region exposed to westerly winds and a more sheltered, lowland southeast region. This is reflected in cluster analyses of monthly river flow anomalies. A further division into three clusters separates out a region of highly permeable, slowly responding, catchments in the southeast. An expectation that the preferred storm tracks over seasonal time scales can be captured by atmospheric airflow indices, which in turn may be related to oceanic conditions, suggests that statistical methods may be used to describe the relationships between UK regional streamflows, and oceanic and atmospheric drivers. Such relationships may be concurrent or lagged, and the longer response time of the group of permeable

  15. Coherent Control of Four-Wave Mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2011-01-01

    "Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlin...

  16. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  17. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  18. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  19. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    Science.gov (United States)

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  20. Very long spatial and temporal spontaneous coherence of 2D polariton condensates across the parametric threshold

    DEFF Research Database (Denmark)

    Spano, R.; Cuadra, J.; Lingg, C.

    2011-01-01

    , and a relative large beam area (∅~50 μm) to obtain a true 2D condensate. Its coherence properties are measured with a Michelson interferometer. A finite correlation length is measured at an energy δE=-0.19 meV from the parametric threshold, as shown in Fig. 1(A). Once the threshold is reached, by changing...

  1. Coherence properties of exciton-polariton OPO condensates in one and two dimensions

    DEFF Research Database (Denmark)

    Spano, R.; Cuadra, J.; Anton, C.

    2012-01-01

    We give an overview of the coherence properties of exciton-polariton condensates generated by optical parametric scattering. Different aspects of the first-order coherence (g((1))) have been investigated. The spatial coherence extension of a two-dimensional (2D) polariton system, below and at the...

  2. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning

    International Nuclear Information System (INIS)

    Watanabe, Kaho; Ohshima, Masashi; Nomura, Takanori

    2014-01-01

    The simultaneous measurement method of a refractive index distribution and a thickness distribution using low-coherence digital holography with a vertical scanning is proposed. The proposed method consists of a combination of digital holography and low-coherence interferometry. The introduction of a datum plane enables the measurement of both a refractive index distribution and a thickness distribution. By the optical experiment, the potential of the proposed method is confirmed. (paper)

  3. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography

    CSIR Research Space (South Africa)

    Jonathan, E

    2008-01-01

    Full Text Available s Centre form the f th s pr t fi d id Keywords: Fourier-domain optical coherence tomography; Human sweat secretion; Sweat gland; Sweat duct; Hyperhidrosis growing list of triggers include cancer, glucose control disorder, mental stress, social..., that is, the gland, duct and pore(s). However, due to a slow imaging time, COCT is largely restricted to morphometry of human tissue and thickness measurement of biologic and biologic samples [12,13]. ARTICLE IN PRESS Fourier-domain optical coherence...

  4. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  5. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    Science.gov (United States)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  6. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  7. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  8. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  9. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  10. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  11. Time-resolved measurements of coherent structures in the turbulent boundary layer

    Science.gov (United States)

    LeHew, J. A.; Guala, M.; McKeon, B. J.

    2013-04-01

    Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.

  12. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  13. Direction-of-Arrival Estimation for Coherent Sources via Sparse Bayesian Learning

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2014-01-01

    Full Text Available A spatial filtering-based relevance vector machine (RVM is proposed in this paper to separate coherent sources and estimate their directions-of-arrival (DOA, with the filter parameters and DOA estimates initialized and refined via sparse Bayesian learning. The RVM is used to exploit the spatial sparsity of the incident signals and gain improved adaptability to much demanding scenarios, such as low signal-to-noise ratio (SNR, limited snapshots, and spatially adjacent sources, and the spatial filters are introduced to enhance global convergence of the original RVM in the case of coherent sources. The proposed method adapts to arbitrary array geometry, and simulation results show that it surpasses the existing methods in DOA estimation performance.

  14. Quantitative measures of entanglement in pair-coherent states

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    The pair-coherent states for a two-mode radiation field are known to belong to a family of states with non-Gaussian wavefunction. The nature of quantum entanglement between the two modes and some features of non-classicality are studied for such states. The existing criterion for inseparability are examined in the context of pair-coherent states

  15. Face to phase: pitfalls in time delay estimation from coherency phase

    NARCIS (Netherlands)

    Campfens, S.F.; van der Kooij, Herman; Schouten, Alfred Christiaan

    2014-01-01

    Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that

  16. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  17. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  18. Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Vantipalli, Srilatha; Han, Zhaolong; Larin, Kirill V.; Twa, Michael D.

    2017-09-01

    UV-induced collagen cross-linking is a promising treatment for keratoconus that stiffens corneal tissue and prevents further degeneration. Since keratoconus is generally localized, the efficacy of collagen cross-linking (CXL) treatments could be improved by stiffening only the weakened parts of the cornea. Here, we demonstrate that optical coherence elastography (OCE) can spatially resolve transverse variations in corneal stiffness. A short duration (≤1 ms) focused air-pulse induced low amplitude (≤10 μm) deformations in the samples that were detected using a phase-stabilized optical coherence tomography system. A two-dimensional map of material stiffness was generated by measuring the damped natural frequency (DNF) of the air-pulse induced response at various transverse locations of a heterogeneous phantom mimicking a customized CXL treatment. After validation on the phantoms, similar OCE measurements were made on spatially selective CXL-treated in situ rabbit corneas. The results showed that this technique was able to clearly distinguish the untreated and CXL-treated regions of the cornea, where CXL increased the DNF of the cornea by ˜51%. Due to the noncontact nature and minimal excitation force, this technique may be valuable for in vivo assessments of corneal biomechanical properties.

  19. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  20. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    Science.gov (United States)

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  1. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  2. Coherent structures amidst chaos: Solitons, fronts, and vortices

    International Nuclear Information System (INIS)

    Campbell, D.K.

    1996-01-01

    I introduce the concept of open-quote open-quote coherent structures close-quote close-quote emdash localized, persistent, propagating nonlinear waves emdash and argue that they are ubiquitous in spatially extended nonlinear systems. I discuss various specific forms of coherent structures emdash solitons, wave fronts, vortices emdash and illustrate how they arise in physics, chemistry, biology, and physiology. copyright 1996 American Institute of Physics

  3. Correction of the second-order degree of coherence measurement

    Institute of Scientific and Technical Information of China (English)

    Congcong Li; Xiangdong Chen; Shen Li; Fangwen Sun

    2016-01-01

    The measurement of the second-order degree of coherence [g(2)(τ)] is one of the important methods used to study the dynamical evolution of photon-matter interaction systems.Here,we use a nitrogen-vacancy center in a diamond to compare the measurement of g(2)(τ) with two methods.One is the prototype measurement process with a tunable delay.The other is a start-stop process based on the time-to-amplitude conversion (TAC) and multichannel analyzer (MCA) system,which is usually applied to achieve efficient measurements.The divergence in the measurement results is observed when the delay time is comparable with the mean interval time between two neighboring detected photons.Moreover,a correction function is presented to correct the results from the TAC-MCA system to the genuine g(2)(τ).Such a correction method will provide a way to study the dynamics in photonic systems for quantum information techniques.

  4. Cell response to quasi-monochromatic light with different coherence

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)

  5. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  6. Compressibility effect on thermal coherent structures in spatially-developing turbulent boundary layers via DNS

    Science.gov (United States)

    Araya, Guillermo; Jansen, Kenneth

    2017-11-01

    DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.

  7. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  8. Coherent scattering and matrix correction in bone-lead measurements

    International Nuclear Information System (INIS)

    Todd, A.C.

    2000-01-01

    The technique of K-shell x-ray fluorescence of lead in bone has been used in many studies of the health effects of lead. This paper addresses one aspect of the technique, namely the coherent conversion factor (CCF) which converts between the matrix of the calibration standards and those of human bone. The CCF is conventionally considered a constant but is a function of scattering angle, energy and the elemental composition of the matrices. The aims of this study were to quantify the effect on the CCF of several assumptions which may not have been tested adequately and to compare the CCFs for plaster of Paris (the present matrix of calibration standards) and a synthetic apatite matrix. The CCF was calculated, using relativistic form factors, for published compositions of bone, both assumed and assessed compositions of plaster, and the synthetic apatite. The main findings of the study were, first, that impurities in plaster, lead in the plaster or bone matrices, coherent scatter from non-bone tissues and the individual subject's measurement geometry are all minor or negligible effects; and, second, that the synthetic apatite matrix is more representative of bone mineral than is plaster of Paris. (author)

  9. High collimated coherent illumination for reconstruction of digitally calculated holograms: design and experimental realization

    Science.gov (United States)

    Morozov, Alexander; Dubinin, German; Dubynin, Sergey; Yanusik, Igor; Kim, Sun Il; Choi, Chil-Sung; Song, Hoon; Lee, Hong-Seok; Putilin, Andrey; Kopenkin, Sergey; Borodin, Yuriy

    2017-06-01

    Future commercialization of glasses-free holographic real 3D displays requires not only appropriate image quality but also slim design of backlight unit and whole display device to match market needs. While a lot of research aimed to solve computational issues of forming Computer Generated Holograms for 3D Holographic displays, less focus on development of backlight units suitable for 3D holographic display applications with form-factor of conventional 2D display systems. Thereby, we report coherent backlight unit for 3D holographic display with thickness comparable to commercially available 2D displays (cell phones, tablets, laptops, etc.). Coherent backlight unit forms uniform, high-collimated and effective illumination of spatial light modulator. Realization of such backlight unit is possible due to holographic optical elements, based on volume gratings, constructing coherent collimated beam to illuminate display plane. Design, recording and measurement of 5.5 inch coherent backlight unit based on two holographic optical elements are presented in this paper.

  10. Coherent manipulation of spin correlations in the Hubbard model

    Science.gov (United States)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  11. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  12. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  13. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  14. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  15. Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer

    Science.gov (United States)

    Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz

    2015-12-01

    In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.

  16. Influence of Coherent Structures on the Wall Shear Stress in Axial Flow Between a Cylinder and a Plane Wall

    International Nuclear Information System (INIS)

    Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros

    2009-01-01

    Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements

  17. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  18. Orthogonal decomposition of a optical random field using a spatial modulator of light of liquid crystal

    International Nuclear Information System (INIS)

    Velez Juarez, Esteban; Rodriguez Garciapinna, Jorge L.; Ostrovsky, Andrey S.

    2016-01-01

    A technique for experimental determining the coherent-mode structure of electromagnetic field is proposed. This technique is based on the coherence measurements of the field in some reference basis and represents a nontrivial vector generalization of the dual-mode field correlation method recently reported by F. Ferreira and M. Belsley. The justifiability and efficiency of the proposed technique is illustrated by an example of determining the coherent-mode structure of some specially generated and experimentally characterized secondary electromagnetic source using a spatial modulator of light of liquid crystal (SLM-LC). (Author)

  19. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    International Nuclear Information System (INIS)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-01-01

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  20. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  1. Thermodynamic limit for coherence-limited solar power conversion

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  2. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  3. Liquid sorption investigation of porous media by optical coherence tomography

    International Nuclear Information System (INIS)

    Fabritius, Tapio; Myllylae, Risto

    2006-01-01

    This paper introduces an alternative optical method to measuring liquid penetration into porous highly scattering media. Using pure glycerol, the method was tested by measuring glycerol sorption into cellulose fibre tissue with a grammage of 115 g m -2 . During the wetting process, dynamical changes in the scattering properties of the fibre tissue were detected by optical coherence tomography. Measurements were made from a single point on the front and back surface of a sample. Although the effect of penetration on the optical properties of a porous structure can be seen independent of measurement direction, the border between the dry and wetted area is detectable only in front surface measurements. In addition, the paper experimentally investigates the temporally and spatially dependent swelling behaviour of paper

  4. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  5. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  6. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  7. Color coherent radiation in multijet events from p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Abachi, S.; Ahn, S.; Baldin, B.

    1995-08-01

    We report on a study of color coherence effects in p bar p collisions based on data collected by the D0 detector during the 1992-1993 run of the Fermilab Tevatron collider at the center of mass energy √s = 1.8 TeV. We demonstrate initial-to-final state color interference effects by measuring spatial correlations between soft and hard jets in multijet events. The data are compared to Monte Carlo simulations with different color coherence implementations and to the predictions of a NLO parton level calculation

  8. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  9. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  10. Coherence and phase synchrony analyses of EEG signals in Mild Cognitive Impairment (MCI): A study of functional brain connectivity

    Science.gov (United States)

    Handayani, Nita; Haryanto, Freddy; Khotimah, Siti Nurul; Arif, Idam; Taruno, Warsito Purwo

    2018-03-01

    This paper presents an EEG study for coherence and phase synchrony in mild cognitive impairment (MCI) subjects. MCI is characterized by cognitive decline, which is an early stage of Alzheimer's disease (AD). AD is a neurodegenerative disorder with symptoms such as memory loss and cognitive impairment. EEG coherence is a statistical measure of correlation between signals from electrodes spatially separated on the scalp. The magnitude of phase synchrony is expressed in the phase locking value (PLV), a statistical measure of neuronal connectivity in the human brain. Brain signals were recorded using an Emotiv Epoc 14-channel wireless EEG at a sampling frequency of 128 Hz. In this study, we used 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects as control group. The coherence between each electrode pair was measured for all frequency bands (delta, theta, alpha and beta). In the MCI subjects, the value of coherence and phase synchrony was generally lower than in the healthy subjects especially in the beta frequency. A decline of intrahemisphere coherence in the MCI subjects occurred in the left temporo-parietal-occipital region. The pattern of decline in MCI coherence is associated with decreased cholinergic connectivity along the path that connects the temporal, occipital, and parietal areas of the brain to the frontal area of the brain. EEG coherence and phase synchrony are able to distinguish persons who suffer AD in the early stages from healthy elderly subjects.

  11. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  12. Spatial distribution measured by the modulation transfer function

    International Nuclear Information System (INIS)

    Rossi, P.; Brice, D.K.; Doyle, B.L.

    2003-01-01

    Spatial distributions in ion micro-beam and IBA experimental practice are regularly characterized through the parameters of FWHM and tail area percentage (TF, tail fraction). Linear and stationary transducer theory allows these distributions to be described in the Fourier-dual frequency space, and provides an indirect method to evaluate them through measurement of the modulation transfer function (MTF). We suggest direct measurement of MTF by employing bar pattern grids, similar to those used for calibration of radiological equipment. Assuming spatial distributions of the form exp(-(|αx|) η ), we are able to relate the MTF measurements to the more popular FWHM and TF. This new approach to determine spatial resolution can become a standard for use by the micro-beam community

  13. Quantum Fisher information on its own is not a valid measure of the coherence

    Science.gov (United States)

    Kwon, Hyukjoon; Tan, Kok Chuan; Choi, Seongjeon; Jeong, Hyunseok

    2018-06-01

    We show that contrary to the claim in Feng and Wei (2017), the quantum Fisher information itself is not a valid measure of the coherence based on the resource theory because it can increase via an incoherent operation.

  14. Self-biased broadband magnet-free linear isolator based on one-way space-time coherency

    Science.gov (United States)

    Taravati, Sajjad

    2017-12-01

    This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.

  15. Measurement of epithermal neutrons by a coherent demodulation technique

    CERN Document Server

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  16. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  17. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  18. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  19. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.; Prykä ri, T.; Alarousu, E.; Lauri, J.; Myllylä , R.

    2010-01-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  20. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  1. Evaluation of microfluidic channels with optical coherence tomography

    Science.gov (United States)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  2. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  3. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  4. Driving a mechanical resonator into coherent states via random measurements

    International Nuclear Information System (INIS)

    Garcia, Ll; Wu, L-A; Chhajlany, R W; Li, Y

    2013-01-01

    We propose dynamical schemes to engineer coherent states of a mechanical resonator (MR) coupled to an ancillary, superconducting flux qubit. The flux qubit, when repeatedly projected on to its ground state, drives the MR into a coherent state in probabilistic, albeit heralded fashion. Assuming no operations on the state of the MR during the protocol, coherent states are successfully generated only up to a certain value of the displacement parameter. This restriction can be overcome at the cost of a one-time operation on the initial state of the MR. We discuss the possibility of experimental realization of the presented schemes. (paper)

  5. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  6. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    distortions caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...... and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method...

  7. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  8. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  9. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  10. Spiking Regularity and Coherence in Complex Hodgkin–Huxley Neuron Networks

    International Nuclear Information System (INIS)

    Zhi-Qiang, Sun; Ping, Xie; Wei, Li; Peng-Ye, Wang

    2010-01-01

    We study the effects of the strength of coupling between neurons on the spiking regularity and coherence in a complex network with randomly connected Hodgkin–Huxley neurons driven by colored noise. It is found that for the given topology realization and colored noise correlation time, there exists an optimal strength of coupling, at which the spiking regularity of the network reaches the best level. Moreover, when the temporal regularity reaches the best level, the spatial coherence of the system has already increased to a relatively high level. In addition, for the given number of neurons and noise correlation time, the values of average regularity and spatial coherence at the optimal strength of coupling are nearly independent of the topology realization. Furthermore, there exists an optimal value of colored noise correlation time at which the spiking regularity can reach its best level. These results may be helpful for understanding of the real neuron world. (cross-disciplinary physics and related areas of science and technology)

  11. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  12. Color coherence in p pbar collisions at squareroot s = 1.8 TeV

    International Nuclear Information System (INIS)

    Abachi, S.

    1996-09-01

    We report on two preliminary studies of color coherence effects on p anti p collisions based on data collected by the D null detector during the 1992-1993 and 1994-1995 runs at the Fermilab Tevatron collider at a center of mass energy √s = 1. 8 TeV. Demonstration of initial-to-final state color interference effects is done in a higher energy region by measuring spatial correlations between the softer third jet and the second leading- E T jet in multi-jet events and in a lower energy regime by examining particle distribution patterns in W+Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and the predictions of an NLO parton level calculation

  13. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  14. Study on the fine control of atoms by coherent interaction

    International Nuclear Information System (INIS)

    Han, Jae Min; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Ko, K. H.; Lee, J. M.; Kim, M.K.

    2000-01-01

    Study on one dimensional atom cooling and trapping process which is basic to the development of atom manipulation technology has been performed. A Zeeman slower has been designed and manufactured for efficient cooling of atoms. The speed of atoms finally achieved is as slow as 15 m/s with proper cooling conditions. By six circularly-polarized laser beams and quadrupole magnetic field, the atoms which have been slowed down by zeeman slower have been trapped in a small spatial region inside MOT. The higher the intensity of the slowing laser is the more is the number of atoms slowed and the maximum number of atoms trapped has been 10 8 . The atoms of several tens of μK degree have been trapped by controlling the intensity of trapping laser and intensity gradient of magnetic field. EIT phenomena caused by atomic coherent interaction has been studied for the development of atom optical elements. For the investigation of the focusing phenomena induced by the coherent interaction, experimental measurements and theoretical analysis have been performed. Spatial dependency of spectrum and double distribution signal of coupling laser have been obtained. The deflection of laser beams utilizing the EIT effects has also been considered. (author)

  15. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory

    NARCIS (Netherlands)

    Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.

    2010-01-01

    We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the

  16. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Science.gov (United States)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  17. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  18. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  19. Measurement strategy for spatially encoded photonic qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2010-01-01

    We propose a measurement strategy which can, probabilistically, reproduce the statistics of any observable for spatially encoded photonic qubits. It comprises the implementation of a two-outcome positive operator-valued measure followed by a detection in a fixed transverse position, making the displacement of the detection system unnecessary, unlike previous methods. This strategy generalizes a scheme recently demonstrated by one of us and co-workers, restricted to measurement of observables with equatorial eigenvectors only. The method presented here can be implemented with the current technology of programmable multipixel liquid-crystal displays. In addition, it can be straightforwardly extended to high-dimensional qudits and may be a valuable tool in optical implementations of quantum information protocols with spatial qubits and qudits.

  20. Optimising electron holography in the presence of partial coherence and instrument instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shery L.Y., E-mail: shery.chang@fz-juelich.de; Dwyer, Christian, E-mail: c.dwyer@fz-juelich.de; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.

    2015-04-15

    Off-axis electron holography provides a direct means of retrieving the phase of the wavefield in a transmission electron microscope, enabling measurement of electric and magnetic fields at length scales from microns to nanometers. To maximise the accuracy of the technique, it is important to acquire holograms using experimental conditions that optimise the phase resolution for a given spatial resolution. These conditions are determined by a number of competing parameters, especially the spatial coherence and the instrument instabilities. Here, we describe a simple, yet accurate, model for predicting the dose rate and exposure time that give the best phase resolution in a single hologram. Experimental studies were undertaken to verify the model of spatial coherence and instrument instabilities that are required for the optimisation. The model is applicable to electron holography in both standard mode and Lorentz mode, and it is relatively simple to apply. - Highlights: • We describe a simple, yet accurate, model for predicting the best phase resolution in off-axis electron holography. • Calibration of the model requires only two series of blank holograms; an intensity sequence and a time sequence. • The model can predict the optimum dose rate and exposure time for any given combination of biprism voltage and magnification. • The model is applicable in both standard mode and Lorentz mode, using either round or elliptical illumination.

  1. On formation of a partially coherent beam in a stable-resonator laser

    International Nuclear Information System (INIS)

    Suvorov, A A

    2010-01-01

    A new method involving the expansion of the field coherence function in partially coherent modes - the eigensolutions of the problem for the second-order coherence function in a stable resonator - is proposed for the theoretical description of the process of multimode laser beam formation. The method for solving the problem for arbitrary partially coherent modes is formulated and the expressions for these modes are derived in the general form. The characteristics of the fundamental partially coherent mode, which coincides with the coherence function of a Gaussian partially coherent beam, are analysed in detail. The partially coherent modes are shown to possess two spatial scales - the effective radius and the coherence radius, which makes them a convenient tool for solving the problem of generation of a partially coherent beam. It is found that the unambiguous relation between the characteristics of partially coherent modes and the stable-resonator parameters is achieved by involving into consideration not only the process of the beam formation by the resonator mirrors but also the process of interaction of radiation with the active laser medium. (laser beams and resonators)

  2. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  3. Generation of complete coherence in Young's interference experiment with random mutually uncorrelated electromagnetic beams

    NARCIS (Netherlands)

    Agarwal, G. S.; Dogariu, A.; Visser, T.D.; Wolf, E.

    2005-01-01

    The recently developed theory that unifies the treatments of polarization and coherence of random electro-magnetic beams is applied to study field correlations in Young's interference experiment. It is found that at certain pairs of points the transmitted field is spatially fully coherent,

  4. The use of wavenumber normalization in computing spatially averaged coherencies (KRSPAC) of microtremor data from asymmetric arrays

    Science.gov (United States)

    Asten, M.W.; Stephenson, William J.; Hartzell, Stephen

    2015-01-01

    The SPAC method of processing microtremor noise observations for estimation of Vs profiles has a limitation that the array has circular or triangular symmetry in order to allow spatial (azimuthal) averaging of inter-station coherencies over a constant station separation. Common processing methods allow for station separations to vary by typically ±10% in the azimuthal averaging before degradation of the SPAC spectrum is excessive. A limitation on use of high-wavenumbers in inversions of SPAC spectra to Vs profiles has been the requirement for exact array symmetry to avoid loss of information in the azimuthal averaging step. In this paper we develop a new wavenumber-normalised SPAC method (KRSPAC) where instead of performing averaging of sets of coherency versus frequency spectra and then fitting to a model SPAC spectrum, we interpolate each spectrum to coherency versus k.r, where k and r are wavenumber and station separation respectively, and r may be different for each pair of stations. For fundamental mode Rayleigh-wave energy the model SPAC spectrum to be fitted reduces to Jo(kr). The normalization process changes with each iteration since k is a function of frequency and phase velocity and hence is updated each iteration. The method proves robust and is demonstrated on data acquired in the Santa Clara Valley, CA, (Site STGA) where an asymmetric array having station separations varying by a factor of 2 is compared with a conventional triangular array; a 300-mdeep borehole with a downhole Vs log provides nearby ground truth. The method is also demonstrated on data from the Pleasanton array, CA, where station spacings are irregular and vary from 400 to 1200 m. The KRSPAC method allows inversion of data using kr (unitless) values routinely up to 30, and occasionally up to 60. Thus despite the large and irregular station spacings, this array permits resolution of Vs as fine as 15 m for the near-surface sediments, and down to a maximum depth of 2.5 km.

  5. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  6. HF coherent backscatter in the ionosphere: In situ measurements of SuperDARN backscatter with e-POP RRI

    Science.gov (United States)

    Perry, G. W.; James, H. G.; Hussey, G. C.; Howarth, A. D.; Yau, A. W.

    2017-12-01

    We report in situ polarimetry measurements of HF scattering obtained by the Enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) during a coherent backscatter scattering event detected by the Saskatoon Super Dual Auroral Radar Network (SuperDARN). On April 1, 2015, e-POP conducted a 4 minute coordinated experiment with SuperDARN Saskatoon, starting at 3:38:44 UT (21:38:44 LT). Throughout the experiment, SuperDARN was transmitting at 17.5 MHz and e-POP's ground track moved in a northeastward direction, along SuperDARN's field-of-view, increasing in altitude from 331 to 352 km. RRI was tuned to 17.505 MHz, and recorded nearly 12,000 SuperDARN radar pulses during the experiment. In the first half of the experiment, radar pulses recorded by RRI were "well behaved": they retained their transmitted amplitude envelope, and their pulse-to-pulse polarization characteristics were coherent - Faraday rotation was easily measured. During the second half of the experiment the pulses showed clear signs of scattering: their amplitude envelopes became degraded and dispersed, and their pulse-to-pulse polarization characteristics became incoherent - Faraday rotation was difficult to quantify. While these pulses were being received by RRI, SuperDARN Saskatoon detected a latitudinal band of coherent backscatter at e-POP's location, indicating that the scattered pulses measured by RRI may be a signature of HF backscatter. In this presentation, we will outline the polarimetric details of the scattered pulses, and provide an analytic interpretation of RRI's measurements to give new insight into the nature of HF coherent backscatter mechanism taking place in the terrestrial ionosphere.

  7. Programmable and coherent crystallization of semiconductors

    KAUST Repository

    Yu, Liyang

    2017-03-04

    The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors.

  8. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  9. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang, L.-M.; Chen Zengbing; Pan Jianwei

    2007-01-01

    We propose a method to generate entangled coherent states between two spatially separated atomic Bose-Einstein condensates (BECs) via the technique of electromagnetically induced transparency (EIT). Two strong coupling laser beams and two entangled probe laser beams are used to cause two distant BECs to be in EIT states and to generate an atom-photon entangled state between probe lasers and distant BECs. The two BECs are initially in unentangled product coherent states while the probe lasers are initially in an entangled state. Entangled states of two distant BECs can be created through the performance of projective measurements upon the two outgoing probe lasers under certain conditions. Concretely, we propose two protocols to show how to generate entangled coherent states of the two distant BECs. One is a single-photon scheme in which an entangled single-photon state is used as the quantum channel to generate entangled distant BECs. The other is a multiphoton scheme where an entangled coherent state of the probe lasers is used as the quantum channel. Additionally, we also obtain some atom-photon entangled states of particular interest such as entangled states between a pair of optical Bell states (or quasi-Bell-states) and a pair of atomic entangled coherent states (or quasi-Bell-states)

  10. Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  11. Uncertainty of spatial straightness in 3D measurement

    International Nuclear Information System (INIS)

    Wang Jinxing; Jiang Xiangqian; Ma Limin; Xu Zhengao; Li Zhu

    2005-01-01

    The least-square method is commonly employed to verify the spatial straightness in actual three-dimensional measurement process, but the uncertainty of the verification result is usually not given by the coordinate measuring machines. According to the basic principle of spatial straightness least-square verification and the uncertainty propagation formula given by ISO/TS 14253-2, a calculation method for the uncertainty of spatial straightness least-square verification is proposed in this paper. By this method, the coefficients of the line equation are regarded as a statistical vector, so that the line equation, the result of the spatial straightness verification and the uncertainty of the result can be obtained after the expected value and covariance matrix of the vector are determined. The method not only assures the integrity of the verification result, but also accords with the requirement of the new generation of GPS standards, which can improve the veracity of verification

  12. Automated measurement of CT noise in patient images with a novel structure coherence feature

    International Nuclear Information System (INIS)

    Chun, Minsoo; Kim, Jong Hyo; Choi, Young Hun

    2015-01-01

    While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC  =  0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCC within   =  0.75, PCC between   =  0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. (paper)

  13. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  14. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-01

    In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.

  15. Color coherence in p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Cullen-Vidal, D.E.

    1996-09-01

    We report on two preliminary studies of color coherence effects in pp collisions based on data collected by the D OE detector during the 1992-1993 and 1994-1995 runs of the Fermilab Tevatron collider at a center of mass energy √s = 1.8 TeV. Demonstration of initial-to-final state color interference effects is done in a higher energy region by measuring spatial correlations between the softer third jet and the second leading-ET jet in multi-jet events and in a lower energy regime by examining particle distribution patterns in W+Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and to the predictions of a NLO parton-level calculation

  16. Wide-band coherent receiver development for enhanced surveillance

    International Nuclear Information System (INIS)

    Simpson, M.L.; Richards, R.K.; Hutchinson, D.P.

    1998-03-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced coherent IR heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Recent progress in wide band IR detectors and high speed electronics has significantly enhanced the measurement capabilities of coherent receivers. In addition, developments in new HgCdTe and quantum well IR photodetector (QWIP) focal plane arrays are providing the possibility of both active and passive coherent imaging. In this paper the authors discuss the implications of these new enabling technologies to the IR remote sensing community for enhanced surveillance. Coherent receivers, as opposed to direct or thermal detection, provide multiple dimensions of information about a scene or target in a single detector system. Combinations of range, velocity, temperature, and chemical species information are all available from a coherent heterodyne receiver. They present laboratory data showing measured noise equivalent power (NEP) of new QWIP detectors with heterodyne bandwidths greater than 7 GHz. For absorption measurements, a wide band coherent receiver provides the capability of looking between CO 2 lines at off-resonance peaks and thus the measurement of lines normally inaccessible with conventional heterodyne or direct detection systems. Also described are differential absorption lidar (DIAL) and Doppler laboratory measurements using an 8 x 8 HgCdTe focal plane array demonstrating the snapshot capability of coherent receiver detector arrays for enhanced chemical plume and moving hardbody capture. Finally they discuss a variety of coherent receiver configurations that can suppress (or enhance) sensitivity of present active remote sensing systems to speckle, glint, and other measurement anomalies

  17. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  18. Coherence properties of exciton polariton OPO condensates in one and two dimensions

    International Nuclear Information System (INIS)

    Spano, R; Cuadra, J; Tosi, G; Antón, C; Lingg, C A; Sanvitto, D; Martín, M D; Viña, L; Eastham, P R; Van der Poel, M; Hvam, J M

    2012-01-01

    We give an overview of the coherence properties of exciton-polariton condensates generated by optical parametric scattering. Different aspects of the first-order coherence (g (1) ) have been investigated. The spatial coherence extension of a two-dimensional (2D) polariton system, below and at the parametric threshold, demonstrates the development of a constant phase coherence over the entire condensate, once the condensate phase transition takes place. The effect on coherence of the photonic versus excitonic nature of the condensates is also examined. The coherence of a quasi-1D trap, composed of a line defect, is studied, showing the detrimental effect of reduced dimensionality on the establishment of the long range order. In addition, the temporal coherence decay, g (1) (τ), reveals a fast decay in contrast with the 2D case. The situation of a quasi-1D condensate coexisting with a 2D one is also presented. (paper)

  19. Combination of optical coherence tomography and reflectometry technique for eye measurement

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.

    2013-03-01

    A spectral domain optical coherence tomography system is integrated with an optical reflectometer to provide dualfunctional eye measurement. The system is capable of performing anterior segment imaging and tear film thickness evaluation at the same time. The axial resolution of the anterior segment imaging is 6μm while for tear film thickness measurement the resolution is about 21 nm. We use the integrated device to examine a model eye with artificial tear film. Structures such as the cornea, the ciliary muscle, and the front boundary of the crystalline lens are clearly visible. Artificial tear film thickness is determined simultaneously with anterior segment imaging. The integrated device is also flexible for separated anterior segment imaging or tear thickness evaluation.

  20. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks

    International Nuclear Information System (INIS)

    Wang Qingyun; Perc, Matjaz; Duan Zhisheng; Chen Guanrong

    2008-01-01

    We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks

  1. Comparing two self-report measures of coping--the Sense of Coherence Scale and the Defense Style Questionnaire.

    Science.gov (United States)

    Sammallahti, P R; Holi, M J; Komulainen, E J; Aalberg, V A

    1996-09-01

    Antonovsky's Sense of Coherence Scale (SOC) and Bond's Defense Style Questionnaire (DSQ) were compared in a sample of 334 community controls and 122 psychiatric outpatients. The major question was, whether the two coping inventories with different theoretical backgrounds-stress research vs. psycho-analysis-tap similar phenomena. The affinity of the two coping measures was evident: in multiple regression analysis defenses explained 68% of the variance in sense of coherence. Not surprisingly, the SOC scale-emerging out of the salutogenic orientation-showed more expertise in measuring how people manage when they do well, whereas the DSQ-with its theoretical roots deep in psychopathology-was most sensitive to how people manage when they do rather poorly.

  2. The Diamond Beamline I13L for Imaging and Coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-01-01

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  3. Optical coherence tomography of the rat cochlea

    NARCIS (Netherlands)

    Wong, B. J. F.; de Boer, JF; Park, B.H.; Chen, ZP; Nelson, JS

    2000-01-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea (ex vivo). Immediately following sacrifice, the temporal bone of a Sprague-Dawley rat was harvested. Axial OCT cross sectional images lover regions of interest, 1x1 mm-2x8 mm) were obtained with a spatial

  4. Three-dimensional spatial imaging in multiphoton ionization rate measurements

    International Nuclear Information System (INIS)

    Bredy, Richard; Camp, Howard A.; Nguyen, Hai; Awata, Takaaki; Shan Bing; Chang Zhenghu; DePaola, B.D.

    2004-01-01

    An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume

  5. Optimization of phase-variation measurements in low-coherence methods: implications for OCE

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Alexander A.; Vitkin, Alex

    2016-04-01

    Phase-resolved measurements found numerous applications in low-coherence methods, in particular in OCT-based compressional elastography, where phase-variation gradients are used for estimating strains produced by the OCT probe pressed onto the tissue. Conventionally, for the reference and deformed pixelated OCT scans, one performs comparison of phases taken from pixels with the same coordinates. This is reasonable in regions of sufficiently small sub-pixel displacements, for which the so-compared pixels contain the same scatterers. Furthermore, to avoid error-prone multiple phase unwrapping for reconstructing displacements, one have to ensure even smaller sub-wavelength displacements. This limits the allowable strains to less than ~10-4-10-3, although such weak phase gradients can be strongly corrupted by measurement noises. Here, we discuss how creation of an order of magnitude greater strains can be used for increasing the signal-to noise ratio in estimating phase gradients by obviating the phase-unwrapping procedures and reducing the influence of decorrelation noise for supra-pixel displacements. This optimized phase-variation measurement makes it possible to perform strain mapping in optical coherence elastography with exceptionally high tolerance to noises due to possibility of using significantly increased strains. We also discuss the effect of "frozen-phase zones" associated with displaced strong scatterers. This effect can result in appearance of artifacts in the form of false stiff inclusions in elastograms in the vicinity of bright scatterers in OCT scans. We present analytical arguments, numerical simulations and experimental examples illustrating the above-mentioned features of the "frozen-phase" effect and advantages of using the proposed optimized phase-variation measurement with pixel-scale displacement compensation in the compared OCT scans.

  6. Spatial and temporal interpolation of satellite-based aerosol optical depth measurements over North America using B-splines

    Science.gov (United States)

    Pfister, Nicolas; O'Neill, Norman T.; Aube, Martin; Nguyen, Minh-Nghia; Bechamp-Laganiere, Xavier; Besnier, Albert; Corriveau, Louis; Gasse, Geremie; Levert, Etienne; Plante, Danick

    2005-08-01

    Satellite-based measurements of aerosol optical depth (AOD) over land are obtained from an inversion procedure applied to dense dark vegetation pixels of remotely sensed images. The limited number of pixels over which the inversion procedure can be applied leaves many areas with little or no AOD data. Moreover, satellite coverage by sensors such as MODIS yields only daily images of a given region with four sequential overpasses required to straddle mid-latitude North America. Ground based AOD data from AERONET sun photometers are available on a more continuous basis but only at approximately fifty locations throughout North America. The object of this work is to produce a complete and coherent mapping of AOD over North America with a spatial resolution of 0.1 degree and a frequency of three hours by interpolating MODIS satellite-based data together with available AERONET ground based measurements. Before being interpolated, the MODIS AOD data extracted from different passes are synchronized to the mapping time using analyzed wind fields from the Global Multiscale Model (Meteorological Service of Canada). This approach amounts to a trajectory type of simplified atmospheric dynamics correction method. The spatial interpolation is performed using a weighted least squares method applied to bicubic B-spline functions defined on a rectangular grid. The least squares method enables one to weight the data accordingly to the measurement errors while the B-splines properties of local support and C2 continuity offer a good approximation of AOD behaviour viewed as a function of time and space.

  7. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  8. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  9. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    International Nuclear Information System (INIS)

    Rosfjord, Kristine Marie

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium

  10. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Kristine Marie [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  11. Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon

    Science.gov (United States)

    Xi, Teli; Dou, Jiazhen; Di, Jianglei; Li, Ying; Zhang, Jiwei; Ma, Chaojie; Zhao, Jianlin

    2017-06-01

    Short-coherence in-line phase-shifting digital holographic microscopy based on Michelson interferometer is proposed to measure internal structure in silicon. In the configuration, a short-coherence infrared laser is used as the light source in order to avoid the interference formed by the reference wave and the reflected wave from the front surface of specimen. At the same time, in-line phase-shifting configuration is introduced to overcome the problem of poor resolution and large pixel size of the infrared camera and improve the space bandwidth product of the system. A specimen with staircase structure is measured by using the proposed configuration and the 3D shape distribution are given to verify the effectiveness and accuracy of the method.

  12. Doppler coherence imaging of ion dynamics in VINETA.II and ASDEX-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gradic, Dorothea; Ford, Oliver; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lunt, Tilmann [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    In magnetically confining plasma experiments, diagnosis of ion flows is of great importance to measure the plasma response to the magnetic field or the exhaust particle flows in the divertor areas. Doppler coherence imaging spectroscopy (CIS) is a relatively new technique for the observation of plasma bulk ion dynamics. It is a passive optical diagnostic enabling line-integrated measurements to obtain 2D images of the ion flow and ion temperature. The general principle is similar to traditional Doppler spectroscopy, however CIS uses an imaging interferometer to perform narrow-bandwidth Fourier spectroscopy. A major advantage of the coherence imaging technique is the large amount of spatial information recovered. This allows tomographic inversion of the line-integrated measurements. With existing CIS setups, scrape-off-layer and high field side edge impurity flows could be observed in the MAST, core and edge poloidal He II flows in the WEGA stellarator and divertor impurity flows in DIII-D. The main objective of this study is the research of ion dynamics in the small linear plasma experiment VINETA.II and ASDEX-Upgrade. First Doppler CIS measurements from Ar-II plasma discharges in VINETA.II and He-II, C-III divertor flows in ASDEX-Upgrade and their preliminary interpretation will be presented.

  13. Measurement of observables sensitive to coherence effects in hadronic Z decays with the OPAL detector at LEP

    CERN Document Server

    Fischer, Nadine; Kluth, Stefan; Plätzer, Simon; Skands, Peter

    2015-01-01

    A study of QCD coherence is presented based on a sample of about 397000 $e^+e^-$ hadronic annihilation events collected at $\\sqrt{s}=91$ GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.

  14. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    Science.gov (United States)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  15. Coherence for vectorial waves and majorization

    OpenAIRE

    Luis, Alfredo

    2016-01-01

    We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.

  16. Quantum coherence in the reflection of above barrier wavepackets

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2018-02-01

    The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier

  17. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  18. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  19. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  20. Campbell and moment measures for finite sequential spatial processes

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2006-01-01

    textabstractWe define moment and Campbell measures for sequential spatial processes, prove a Campbell-Mecke theorem, and relate the results to their counterparts in the theory of point processes. In particular, we show that any finite sequential spatial process model can be derived as the vector

  1. Decreased coherent motion discrimination in autism spectrum disorder: the role of attentional zoom-out deficit.

    Directory of Open Access Journals (Sweden)

    Luca Ronconi

    Full Text Available Autism spectrum disorder (ASD has been associated with decreased coherent dot motion (CDM performance, a task that measures magnocellular sensitivity as well as fronto-parietal attentional integration processing. In order to clarify the role of spatial attention in CDM tasks, we measured the perception of coherently moving dots displayed in the central or peripheral visual field in ASD and typically developing children. A dorsal-stream deficit in children with ASD should predict a generally poorer performance in both conditions. In our study, however, we show that in children with ASD, CDM perception was selectively impaired in the central condition. In addition, in the ASD group, CDM efficiency was correlated to the ability to zoom out the attentional focus. Importantly, autism symptoms severity was related to both the CDM and attentional zooming-out impairment. These findings suggest that a dysfunction in the attentional network might help to explain decreased CDM discrimination as well as the "core" social cognition deficits of ASD.

  2. Coherent light scattering by nuclear etched tracks in the PADC (a form of CR-39)

    Energy Technology Data Exchange (ETDEWEB)

    Groetz, J.E.; Chambaudet, A. [Universite de Franche-Comte, Besancon (France). Lab. de Microanalyses Nucleaires; Lacourt, A. [Laboratoire d`Optique P.M. Duffieux, UMR 6603 CNRS, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)

    1998-08-01

    A new kind of measurement has been proposed to improve the reading of the solid state nuclear track detector CR-39. This method is based on coherent light scattering (He-Ne laser) by etched proton tracks, and is complementary to observation under an optical microscope and reading by optical density of the CR-39. The irradiated and chemically etched CR-39 sample is illuminated by a laser beam under a normal incidence angle. The light intensity diffracted by the tracks beyond the sample - defined with the bi-directional transmissive distribution functions - is measured with a photodiode. Thus, the bi-directional transmissive distribution functions depend on the characteristics of the irradiation, namely the track density, track sizes and orientations. We have performed a track light diffraction model calculation through the use of the Fraunhofer diffraction, Babinet`s principle and the spatial coherence and incoherence. We compared calculations and experimental results for the different shapes of tracks: conical, oblique and spherical-shaped. (orig.) 14 refs.

  3. Coherent light scattering by nuclear etched tracks in the PADC (a form of CR-39)

    International Nuclear Information System (INIS)

    Groetz, J.E.; Chambaudet, A.

    1998-01-01

    A new kind of measurement has been proposed to improve the reading of the solid state nuclear track detector CR-39. This method is based on coherent light scattering (He-Ne laser) by etched proton tracks, and is complementary to observation under an optical microscope and reading by optical density of the CR-39. The irradiated and chemically etched CR-39 sample is illuminated by a laser beam under a normal incidence angle. The light intensity diffracted by the tracks beyond the sample - defined with the bi-directional transmissive distribution functions - is measured with a photodiode. Thus, the bi-directional transmissive distribution functions depend on the characteristics of the irradiation, namely the track density, track sizes and orientations. We have performed a track light diffraction model calculation through the use of the Fraunhofer diffraction, Babinet's principle and the spatial coherence and incoherence. We compared calculations and experimental results for the different shapes of tracks: conical, oblique and spherical-shaped. (orig.)

  4. InSAR coherence study of unusual rain events in the Atacama Desert

    Science.gov (United States)

    Jordan, T. E.; Scott, C. P.; Lohman, R.

    2017-12-01

    The Atacama Desert (AD) occupies much of Chile at latitudes 18-27°S. The surficial materials vary, dependent on proximity to the ocean, slope, position within a surface water drainage system, mean annual rainfall, human land disturbance, and the local history of climate changes. Three major divisions of soil composition include: near coastal zone of silicate mineral soils, mostly devoid of plants; central hyperarid zone dominated by gypsum, devoid of plants; eastern zone of silicate-based soils, very sparse plants. The AD in March 2015 experienced the largest rain event of modern history, and again in June 2017 almost as much rain fell within the study area (24.2-25.7°S, coast to Andes Mountains). Those natural experiments set the stage for InSAR remote sensing of surface changes in a 24,000 square kilometer area. We used interferometric coherence of radar to measure the similarity in the reflective ground properties at the time of two SAR acquisitions, and a time series of European Space Agency's Sentinel-1A data sets acquired between January 2015 and August 2017. Date pairs lacking an intervening rain event reveal extensive regions of high coherence, and in those areas we focus on the temporal evolution of coherence across dates of, and following dates of, the major rains. Permanent change of the surface is most extensive in the eastern and western sectors, yet the degree of permanent change was small except in valley bottoms. In the sector with gypsum soil small degrees of permanent change occurred over 30% of the surface including in narrow (1-3 km) elongate (10-60 km) stripes that cross-cut topography, likely revealing rain bands. The spatial pattern of transient change in coherence differs. Over half the gypsum-dominated zone displays a transient change signal, whose spatial pattern corresponds to geomorphological forms; older landforms display greater transient coherence changes. In the silicate-dominated eastern region the transient signals are smaller

  5. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  6. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  7. Motion of organ of Corti structures in the gerbil cochlear apex, measured with a commercial optical coherence tomography (OCT) system

    Science.gov (United States)

    Ravicz, Michael E.; Cho, Nam-Hyun; Maftoon, Nima; Puria, Sunil

    2018-05-01

    Recent developments in Optical Coherence Tomography (OCT) allow measurements of cochlear motions through the bony cochlear wall without holes at spatial resolutions approaching about 10 µm. Measurements to date have been made with custom OCT systems with long development times. We present measurements made with a commercial OCT system driven by custom software (VibOCT) that facilitates near real-time frequency response measurements. The 905-nm wavelength laser and high-speed (100 kHz) camera provide higher axial resolution (3 µm in air) and temporal resolution than previous studies and a sub-nanometer noise floor in air. We gathered anatomical images of the gerbil cochlear apex in vivo at higher resolution than available previously, sufficient to resolve individual outer hair cells, pillar cells, tunnel of Corti and inner sulcus regions. Images from the 3rd apical turn show a bulging of Reissners membrane in vivo that flattened post-mortem with a concomitant reduction in the distance between the Henson cell border and the stria vascularis wall. Vibrometry of the organ of Corti shows a low-pass characteristic in-vivo and post-mortem with a traveling wave-like phase delay similar to a recent study rather than the sharp tuning seen more basally. This system can provide valuable information on cochlear function, which is also useful for the development of detailed cochlear models of the passive and active gerbil apex.

  8. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  9. Coherent versus incoherent resonant emission: an experimental method for easy discrimination and measurement

    Science.gov (United States)

    Ceccherini, S.; Colocci, M.; Gurioli, M.; Bogani, F.

    1998-11-01

    The distinction between the coherent and the incoherent component of the radiation emitted from resonantly excited material systems is difficult experimentally, particularly when ultra-short optical pulses are used for excitation. We propose an experimental procedure allowing an easy measurement of the two components. The method is completely general and applicable to any kind of physical system; its feasibility is demonstrated on the resonant emission from excitons in a semiconductor quantum well.

  10. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  11. A method for ultra-short pulse-shape measurements using far infrared coherent radiation from an undulator

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2004-01-01

    In this paper, we discuss a method for non-destructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers. The method is based on the detection of the coherent synchrotron radiation (CSR) produced by a bunch passing through an undulator. Coherent radiation energy within a central cone turns out to be proportional, per pulse, to the square modulus of the bunch form-factor at the resonant frequency of the fundamental harmonic. An attractive feature of the proposed technique is the absence of any apparent limitation which would distort measurements. Indeed, the radiation process takes place in vacuum and is described by analytical formulae. CSR propagates to the detector placed in vacuum. Since CSR energy is in the range up to a fraction of mJ, a simple bolometer is used to measure the energy with a high accuracy. The proposed technique is very sensitive and it is capable of probing the electron bunches with a resolution down to a few microns

  12. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  13. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  14. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  15. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  16. Particle creation and destruction of quantum coherence by topological change

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1988-01-01

    The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)

  17. Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors

    Directory of Open Access Journals (Sweden)

    Masaki Kando

    2018-04-01

    Full Text Available Coherent, Short X-ray pulses are demanded in material science and biology for the study of micro-structures. Currently, large-sized free-electron lasers are used; however, the available beam lines are limited because of the large construction cost. Here we review a novel method to downsize the system as well as providing fully (spatially and temporally coherent pulses. The method is based on the reflection of coherent laser light by a relativistically moving mirror (flying mirror. Due to the double Doppler effect, the reflected pulses are upshifted in frequency and compressed in time. Such mirrors are formed when an intense short laser pulse excites a strongly nonlinear plasma wave in tenuous plasma. Theory, proof-of-principle, experiments, and possible applications are addressed.

  18. Characterization of Beryllium Windows for Coherent X-ray Optics

    International Nuclear Information System (INIS)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya

    2007-01-01

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications

  19. Complex space source theory of partially coherent light wave.

    Science.gov (United States)

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  20. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  1. A method of reconstructing the spatial measurement network by mobile measurement transmitter for shipbuilding

    International Nuclear Information System (INIS)

    Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin

    2017-01-01

    The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm. (paper)

  2. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    Science.gov (United States)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  3. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  4. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.

    Science.gov (United States)

    Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra

    2015-01-01

    The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (pphotographs (pphotographs (p>0.05). All measurements were correlated (Spearman pphotographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.

  5. Temporal coherence of physical, chemical and biological variables in four tropical lakes (Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Peifer Bezerra

    2017-10-01

    Full Text Available Abstract Aim: The main objective of this study was to evaluate the presence of temporal coherence of limnological variables and pairs of lakes considering four tropical lakes of the Rio Doce State Park, using monthly data from the Long-Term Ecological Research Program (LTER between the years of 2004 to 2009. Methods Subsurface data (0.5 meters from the Carioca, Dom Helvécio, Gambazinho, and Jacaré Lakes were used in the analysis. We estimated the temporal coherence from the creation of time series for each of the variables. Through these series, we calculated the Pearson correlation coefficient between all pairs of lakes (N=6 and performed the average. We also analyzed the correlation between the temporal coherence found for the different pairs of lakes and two predictors of spatial patterns: proximity and exposure to climatic factors. The spatial proximity of the lake pairs was calculated in kilometers, and the exposure to climatic factors was estimated using two metrics: surface area and surface area/mean depth ratio. Results The largest temporal coherence levels were recorded for water temperature (0.97, pH (0.78, and dissolved organic carbon (DOC (0.74. The lowest levels were found for chlorophyll-a (0.25 and phytoplankton richness (-0.02. The average temporal coherence was 0.58. Different from other studies, no significant correlation was found between the synchronicity of the lake pairs and the differences in their exposure to climatic factors. Also, no relation was found with the spatial proximity. Conclusions Our results demonstrate the existence of temporal coherence in tropical lakes to compatible levels with those found in temperate regions. Our work contributes to the knowledge of how synchronicity works at different set of lakes and climatic regions.

  6. Capturing knowledge integration through collaborations: measures of the diversity and coherence in multiple proximity dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F.; Rafols, I.; Hopkins, M.

    2016-07-01

    This paper proposes a novel approach to determine changes that occur as a result of collaborations that is intended to support knowledge integration. The approach combines and applies indicators of proximity, diversity, coherence and has potential applications in the study and evaluation of research collaborations. The scientometric literature has been exploring the topic of knowledge integration and interdisciplinarity for more than a decade (Bordons, 2004; Zitt, 2005; Rafols, 2014). The paper builds on the line of research that seeks to develop measures of knowledge integration, namely diversity and coherence (Rafols, 2014). Successful exchange and integration of knowledge through collaboration not only requires disciplinary or cognitive diversity, as previously studied in the scientometric literature (Rafols & Meyer, 2009; Rafols, 2014) but also other dimensions linked to the social, cultural background of the individuals involved. Economic geographers have developed a framework, the proximity framework (Boschma, 2005), identifying five features that may be important for collaborative learning which are: cognitive, social, geographical, institutional, and organisational proximities. The paper therefore proposes to use the diversity and coherence measures to not only look at diversity from a cognitive standpoint, but also apply it to the other proximities proposed in the Boschma framework. These indicators will capture the relationship occurring betweenindividuals taking part in the research and the categories (proximity dimensions) that they are associated to. This paper reviews and integrates concepts from economic geography with the scientometric literature on interdisciplinarity to form a conceptual framework that the paper applies to an illustrative case study. In order to apply the framework, the paper develops indicators for diversity and coherence that can be applied to each of Boschma’s five proximities. The illustrative case study looks at

  7. Characterization of network structure in stereoEEG data using consensus-based partial coherence.

    Science.gov (United States)

    Ter Wal, Marije; Cardellicchio, Pasquale; LoRusso, Giorgio; Pelliccia, Veronica; Avanzini, Pietro; Orban, Guy A; Tiesinga, Paul He

    2018-06-06

    Coherence is a widely used measure to determine the frequency-resolved functional connectivity between pairs of recording sites, but this measure is confounded by shared inputs to the pair. To remove shared inputs, the 'partial coherence' can be computed by conditioning the spectral matrices of the pair on all other recorded channels, which involves the calculation of a matrix (pseudo-) inverse. It has so far remained a challenge to use the time-resolved partial coherence to analyze intracranial recordings with a large number of recording sites. For instance, calculating the partial coherence using a pseudoinverse method produces a high number of false positives when it is applied to a large number of channels. To address this challenge, we developed a new method that randomly aggregated channels into a smaller number of effective channels on which the calculation of partial coherence was based. We obtained a 'consensus' partial coherence (cPCOH) by repeating this approach for several random aggregations of channels (permutations) and only accepting those activations in time and frequency with a high enough consensus. Using model data we show that the cPCOH method effectively filters out the effect of shared inputs and performs substantially better than the pseudo-inverse. We successfully applied the cPCOH procedure to human stereotactic EEG data and demonstrated three key advantages of this method relative to alternative procedures. First, it reduces the number of false positives relative to the pseudo-inverse method. Second, it allows for titration of the amount of false positives relative to the false negatives by adjusting the consensus threshold, thus allowing the data-analyst to prioritize one over the other to meet specific analysis demands. Third, it substantially reduced the number of identified interactions compared to coherence, providing a sparser network of connections from which clear spatial patterns emerged. These patterns can serve as a starting

  8. Relationship between macular thickness measurement and signal strength using Stratus optical coherence tomography

    OpenAIRE

    Segal, Ori; Shapira, Yinon; Gershoni, Assaf; Vainer, Igor; Nemet, Arie Y; Geffen, Noa; Mimouni, Michael

    2016-01-01

    Ori Segal,1 Yinon Shapira,2 Assaf Gershoni,1 Igor Vainer,2 Arie Y Nemet,1 Noa Geffen,1 Michael Mimouni2 1Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel and the Sackler School of Medicine, Tel Aviv University, Tel Aviv, 2Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel Purpose: To examine the relationship between signal strength and macular thickness as measured by Stratus optical coherence tomography (OCT)’s fast macular thickness protocol...

  9. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  10. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  11. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  12. New class of uncertainty relations for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1984-01-01

    A class of uncertainty relations for partially coherent light is derived; the uncertainty relations in this class express the fact that the product of the effective widths of the space-domain intensity and the spatial-frequency-domain intensity of the light has a lower bound and that this lower

  13. Uncertainty principle and informational entropy for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1986-01-01

    It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density

  14. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    Science.gov (United States)

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  15. Particle transport across a circular shear layer with coherent structures

    International Nuclear Information System (INIS)

    Nielsen, A.H.; Lynov, J.P.; Juul Rasmussen, J.

    1998-01-01

    In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable features. The inherent quantisation of circular geometries due to the periodic boundary conditions makes it possible to design experiments in which the spatial and temporal complexity of the coherent structures can be accurately controlled. Experiments on circular shear flows demonstrating the formation of coherent structures have been performed in different physical systems, including quasi-neutral plasmas, non-neutral plasmas and rotating fluids. In this paper we investigate the evolution of such coherent structures by solving the forced incompressible Navier-Stokes equations numerically using a spectral code. The model is formulated in the context of a rotating fluid but apply equally well to low frequency electrostatic oscillations in a homogeneous magnetized plasma. In order to reveal the Lagrangian properties of the flow and in particular to investigate the transport capacity in the shear layer, passive particles are traced by the velocity field. (orig.)

  16. Macular pigment optical density spatial distribution measured in a subject with oculocutaneous albinism.

    Science.gov (United States)

    Putnam, Christopher M; Bland, Pauline J

    2014-01-01

    Previous studies of macular pigment optical density (MPOD) distribution in individuals with oculocutaneous albinism (OCA) have primarily used objective measurement techniques including fundus reflectometry and autofluorescence. We report here on a subject with OCA and their corresponding MPOD distribution assessed through heterochromatic flicker photometry (HFP). A subject with a history of OCA presented with an ocular history including strabismus surgery of the LE with persistent amblyopia and mild, latent nystagmus. Best corrected visual acuity was 20/25- RE and 20/40- LE. Spectral domain optical coherence tomography (SD-OCT) and fundus photography were also obtained. Evaluation of MPOD spatial distribution up to 8 degrees eccentricity from the fovea was performed using HFP. SD-OCT indicated a persistence of multiple inner retinal layers within the foveal region in the RE and LE including symmetric foveal thickening consistent with foveal hypoplasia. Fundus photography showed mild retinal pigmented epithelial (RPE) hypopigmentation and a poorly demarcated macula. OriginPro 9 was used to plot MPOD spatial distribution of the subject and a 33-subject sample. The OCA subject demonstrated a foveal MPOD of 0.10 with undetectable levels at 6 degrees eccentricity. The study sample showed a mean foveal MPOD of 0.34 and mean 6 degree eccentricity values of 0.03. Consistent with previous macular pigment (MP) studies of OCA, overall MPOD is reduced in our subject. Mild phenotypic expression of OCA with high functional visual acuity may represent a Henle fiber layer amenable to additional MP deposition. Further study of MP supplementation in OCA patients is warranted. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  17. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Li Lei

    2015-04-01

    Full Text Available Based on coherent accumulation matrix reconstruction, a novel Direction Of Arrival (DOA estimation decorrelation method of coherent signals is proposed using a small sample. First, the Signal to Noise Ratio (SNR is improved by performing coherent accumulation operation on an array of observed data. Then, according to the structure characteristics of the accumulated snapshot vector, the equivalent covariance matrix, whose rank is the same as the number of array elements, is constructed. The rank of this matrix is proved to be determined just by the number of incident signals, which realize the decorrelation of coherent signals. Compared with spatial smoothing method, the proposed method performs better by effectively avoiding aperture loss with high-resolution characteristics and low computational complexity. Simulation results demonstrate the efficiency of the proposed method.

  18. Unbinned model-independent measurements with coherent admixtures of multibody neutral D meson decays

    Science.gov (United States)

    Poluektov, Anton

    2018-02-01

    Various studies of Standard Model parameters involve measuring the properties of a coherent admixture of {D} ^0 and {\\overline{D}^0 states. A typical example is the determination of the Unitarity Triangle angle γ in the decays B→ DK, D→ {K^0_S} π^+ π^-. A model-independent approach to perform this measurement is proposed that has superior statistical sensitivity than the well-established method involving binning of the D→ {K^0_S} π^+ π^- decay phase space. The technique employs Fourier analysis of the complex phase difference between {D} ^0 and {\\overline{D}^0 decay amplitudes and can easily be generalised to other similar measurements, such as studies of charm mixing or determination of the angle β from {{B} ^0} → D h^0 decays.

  19. Delineating incoherent non-Markovian dynamics using quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  20. A Concept for z-Dependent Microbunching Measurements with Coherent X-ray Transition Radiation in a SASE FEL

    CERN Document Server

    Lumpkin, Alex H

    2004-01-01

    Previously, measurements in the visible to VUV regimes of z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) have provided important information about the fundamental mechanisms. In those experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed Linac Coherent Light Source (LCLS), the intense SASE emission is either too strongly transmitted at 1.5 angstroms or the needed foil thickness for blocking scatters the electron beam too much. Since coherent x-ray transition radiation (CXTR) is emitted in an annulus with opening angle 1/γ = 36 µrad for 14.09-GeV electrons, one could use a thin foil or foil stack to generate the XTR and CXTR and an annular crystal to wavelength sort the radiation. The combined selectivity will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER si...

  1. Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics

    Science.gov (United States)

    Bilbro, J. W.; Beranek, R. G.

    1987-01-01

    This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.

  2. Color Coherent Radiation in Multi - Jet Events from $p\\overline{p}$ Collisions at $\\sqrt{s}$ = 1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Cullen-Vidal, David Edward [Brown U.

    1997-01-01

    Results from a study of color coherence phenomena in multi-jet events produced by $p\\overline{p}$ collisions are presented. Approximately 13 $pb^{-1}$ of data were collected by the D0 detector during the 1992-1993 run of the Fermilab Tevatron $p\\overline{p}$ collider at a center of mass energy of $\\sqrt{s}$ = 1.8 TeV. Demonstration of initial-to-final state color interference effects is done by measuring spatial correlations between the softer third jet and the second leading-$E_{\\tau}$ jet in the events. The data are compared to several Monte Carlo simulations with different color coherence implementations and to the predictions of a Next-to-Leading Order parton level calculation.

  3. Coherent MUSIC technique for range/angle information retrieval: Application to a frequency modulated continuous wave MIMO radar

    NARCIS (Netherlands)

    Belfiori, F.; Rossum, W. van; Hoogeboom, P.

    2014-01-01

    A coherent two-dimensional (2D) multiple signal classification (MUSIC) processing for the simultaneous estimation of angular and range target positions has been presented. A 2D spatial smoothing technique is also introduced to cope with the coherent behaviour of the received echoes, which may result

  4. Frontal-posterior coherence and cognitive function in older adults.

    Science.gov (United States)

    Fleck, Jessica I; Kuti, Julia; Brown, Jessica; Mahon, Jessica R; Gayda-Chelder, Christine

    2016-12-01

    The reliable measurement of brain health and cognitive function is essential in mitigating the negative effects associated with cognitive decline through early and accurate diagnosis of change. The present research explored the relationship between EEG coherence for electrodes within frontal and posterior regions, as well as coherence between frontal and posterior electrodes and performance on standard neuropsychological measures of memory and executive function. EEG coherence for eyes-closed resting-state EEG activity was calculated for delta, theta, alpha, beta, and gamma frequency bands. Participants (N=66; mean age=67.15years) had their resting-state EEGs recorded and completed a neuropsychological battery that assessed memory and executive function, two cognitive domains that are significantly affected during aging. A positive relationship was observed between coherence within the frontal region and performance on measures of memory and executive function for delta and beta frequency bands. In addition, an inverse relationship was observed for coherence between frontal and posterior electrode pairs, particularly within the theta frequency band, and performance on Digit Span Sequencing, a measure of working memory. The present research supports a more substantial link between EEG coherence, rather than spectral power, and cognitive function. Continued study in this area may enable EEG to be applied broadly as a diagnostic measure of cognitive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  6. Spatial properties of coaxial superposition of two coherent Gaussian beams

    CSIR Research Space (South Africa)

    Boubaha, B

    2013-08-01

    Full Text Available that of the first focal point owing to its larger diameter, and subsequently decreases as K increases. 3. Interferometric Beam Shaping An interesting feature of the CGB is when the param- eter K is reduced, one observes that the number of rings shown in Fig. 1... for K . It is remarkable to notice that the beam shaping properties displayed in Fig. 5 are obtained from the interference of two coherent GBs, which are coaxially superposed by resorting to a two-wave interferom- eter or by generating the modulating...

  7. Retinal layer measurements after successful macula-off retinal detachment repair using optical coherence tomography.

    Science.gov (United States)

    Menke, Marcel N; Kowal, Jens H; Dufour, Pascal; Wolf-Schnurrbusch, Ute E; Ceklic, Lala; Framme, Carsten; Wolf, Sebastian

    2014-09-04

    Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.

  9. Modifications of the laser beam coherence inertial confinement fusion plasmas; Modifications des proprietes de coherence des faisceaux laser dans les plasmas de fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Grech, M

    2007-06-15

    Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)

  10. Coherent patterning of matter waves with subwavelength localization

    International Nuclear Information System (INIS)

    Mompart, J.; Ahufinger, V.; Birkl, G.

    2009-01-01

    We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.

  11. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  12. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  13. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  14. Spatial and temporal coherence of paleomonsoon records from ...

    Indian Academy of Sciences (India)

    assess monsoon variability, both spatial and temporal, during the past ~30ka. While 1000 ... speleothems from central India have provided proxy rainfall data for the last 10,000 years, albeit ... vations lead us to an important question whether.

  15. Coherent Spatial and Colour Blended Exemplar Inpainting

    Directory of Open Access Journals (Sweden)

    ANAM AKBAR

    2017-04-01

    Full Text Available In an image processing field the digital image recovery is termed as inpainting. Efficient retrieval of an image, especially having large objects with high curvature and complex texture is an immensely challenging problem for image inpainting researchers and practitioner. This enthused researchers and emerge various inpainting algorithms and many are in progress. Generally inpainting techniques approaches the available area source of given image(s to restore the unavailable area target by the information available at the target edge. This paper represents a novel approach BSDD (Blended Spatial and Dimensional Distances by sampling patches at each pixel of the source region. From the given sample, selection of local edge patch is gradient based without priority computation overhead as previous techniques. These local patches are searched globally by linear distance in which both spatial and dimensional distances are considered with regularization factor. The main motive of this method consists in achieving the efficiency, curvature and textural challenges of inpainting without compromising the quality of inpainted image. We have tested the proposed method in real as well as synthetic images with high curvature and complex textures in all cases results are comparable with other well-known techniques. In view of quality and optical the proposed algorithm exhibits better results.

  16. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  17. Measurement of far-infrared subpicosecond coherent radiation for pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, T. E-mail: kozawa@sanken.osaka-u.ac.jp; Mizutani, Y.; Yokoyama, K.; Okuda, S.; Yoshida, Y.; Tagawa, S

    1999-06-01

    Using a magnetic bunch compression method, a 26.5 MeV subpicosecond electron single bunch was generated with the L-band linac of Osaka University. The coherent transition radiation emitted from the subpicosecond single bunch was observed at wavelengths from 100 to 700 {mu}m. The intensity was 7.9x10{sup 9} times higher than that of the incoherent transition radiation obtained by calculation. The length of the compressed electron bunch was evaluated to be roughly 50 fs (rms) from the analysis of the spectra of the transition radiation. The coherent transition radiation has high enough intensity to be applied to pulse radiolysis as a pulsed light source.

  18. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  19. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  20. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  1. Practical applications of coherent transition radiation

    International Nuclear Information System (INIS)

    Moran, M.J.

    1987-01-01

    The predictable nature of transition radiation (TR) emissions has been demonstrated under a wide variety of experimental conditions. The reliable character of TR allows the design of specific practical applications that use emissions from the optical to the x-ray spectral regions. Applications often can be enhanced by the spatial coherence of TR, and some have become highly developed. New applications may be developed through the use of other related radiation mechanisms. 20 refs., 3 figs

  2. Spatial Cognition in Autism Spectrum Disorders: Superior, Impaired, or Just Intact?

    Science.gov (United States)

    Edgin, Jamie O.; Pennington, Bruce F.

    2005-01-01

    The profile of spatial ability is of interest across autism spectrum disorders (ASD) because of reported spatial strengths in ASD and due to the recent association of Asperger's syndrome with Nonverbal Learning Disability. Spatial functions were examined in relation to two cognitive theories in autism: the central coherence and executive function…

  3. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  4. Environmental determinants and spatial mismatch of mammal diversity measures in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Maya, J.F.; Arias-Alzate, A.; Granados-Peña, R.; Mancera-Rodriguez, N.J.; Ceballos, G.

    2016-07-01

    Including complementary diversity measures into ecological and conservation studies should improve our ability to link species assemblages to ecosystems. Recent measures such as phylogenetic and functional diversity have furthered our understanding of assemblage patterns of ecosystems and species, allowing improved inference of ecosystem function and conservation. We evaluated spatial patterns of taxonomic, phylogenetic and functional diversity of mammals in Colombia and identified their main environmental determinants, as well as interrelationships and spatial mismatch between the three measures. We found significant effects of elevation and precipitation on species richness, slope and species richness on phylogenetic diversity, and slope and phylogenetic diversity on functional diversity. We also identified a spatial mismatch of the three measures in some areas of the country: 12% of the country for species richness and 14% for phylogenetic and functional diversity. Our results highlight the importance of including species relationships within environmental drivers with biogeographical and distribution analyses and could facilitate selection of priority areas for conservation, especially when mismatch occurs between measures. (Author)

  5. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  6. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  7. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  8. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  9. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  10. Longitudinal profile monitors using Coherent Smith–Purcell radiation

    International Nuclear Information System (INIS)

    Andrews, H.L.; Bakkali Taheri, F.; Barros, J.; Bartolini, R.; Cassinari, L.; Clarke, C.; Le Corre, S.; Delerue, N.; Doucas, G.; Fuster-Martinez, N.; Konoplev, I.; Labat, M.; Perry, C.; Reichold, A.; Stevenson, S.; Vieille Grosjean, M.

    2014-01-01

    Coherent Smith–Purcell radiation has the potential of providing information on the longitudinal profile of an electron bunch. The E-203 experiment at the FACET User Facility measures bunch profiles from the SLAC linac in the hundreds of femtoseconds range and the SPESO collaboration at Synchrotron SOLEIL is planning to make an accurate 2D map of the Coherent Smith–Purcell Radiation emission. - Highlights: • Coherent Smith–Purcell radiation can be used to measure longitudinal profiles in the hundred femtoseconds range. • The current setup used by the E-203 collaboration require integration over several shots and gratings. • Reducing the integration over a single shot and a single grating still yields a meaning full result. • The SPESO experiment at SOLEIL will make a systematic study of Coherent Smith–Purcell radiation

  11. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  12. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  13. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  14. Application of Coherent Tune Shift Measurements to the Characterization of Electron Cloud Growth

    International Nuclear Information System (INIS)

    Kreinick, D.L.; Crittenden, J.A.; Dugan, G.; Holtzapple, R.L.; Randazzo, M.; Furman, M.A.; Venturini, M.; Palmer, M.A.; Ramirez, G.

    2011-01-01

    Measurements of coherent tune shifts at the Cornell Electron Storage Ring Test Accelerator (CesrTA) have been made for electron and positron beams under a wide variety of beam energies, bunch charge, and bunch train configurations. Comparing the observed tunes with the predictions of several electron cloud simulation programs allows the evaluation of important parameters in these models. These simulations will be used to predict the behavior of the electron cloud in damping rings for future linear colliders. We outline recent improvements to the analysis techniques that should improve the fidelity of the modeling.

  15. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  16. Multipion correlations induced by isospin conservation of coherent emission

    International Nuclear Information System (INIS)

    Gangadharan, Dhevan

    2016-01-01

    Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made for two, three- and four-pion correlation functions and compared to the data from the LHC.

  17. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  18. Observation of Coherent and Incoherent Dissociation Mechanisms in the Angular Distribution of Atomic Photofragment Alignment

    International Nuclear Information System (INIS)

    Bracker, A.S.; Lee, Y.T.; Bracker, A.S.; Wouters, E.R.; Suits, A.G.; Lee, Y.T.; Lee, Y.T.; Vasyutinskii, O.S.

    1998-01-01

    We have analyzed the recoil angle dependence of chlorine atom angular momentum alignment for the dissociation of chlorine molecules at 355nm. This angular distribution was isolated from ion image measurements, which map a three-dimensional velocity vector distribution of state-selectively-ionized photofragments into a two-dimensional spatial distribution. Using a general quantum mechanical method to simulate the alignment angular distribution, we show that there are clear contributions to alignment from both incoherent and coherent components of a perpendicular optical transition in the molecule. copyright 1998 The American Physical Society

  19. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    Science.gov (United States)

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  20. Unbinned model-independent measurements with coherent admixtures of multibody neutral D meson decays

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Anton [University of Warwick, Department of Physics, Coventry (United Kingdom)

    2018-02-15

    Various studies of Standard Model parameters involve measuring the properties of a coherent admixture of D{sup 0} and D{sup 0} states. A typical example is the determination of the Unitarity Triangle angle γ in the decays B → DK, D → K{sup 0}{sub S}π{sup +}π{sup -}. A model-independent approach to perform this measurement is proposed that has superior statistical sensitivity than the well-established method involving binning of the D → K{sup 0}{sub S}π{sup +}π{sup -} decay phase space. The technique employs Fourier analysis of the complex phase difference between D{sup 0} and D{sup 0} decay amplitudes and can easily be generalised to other similar measurements, such as studies of charm mixing or determination of the angle β from B{sup 0} → Dh{sup 0} decays. (orig.)

  1. Effects of virtual speaker density and room reverberation on spatiotemporal thresholds of audio-visual motion coherence.

    Directory of Open Access Journals (Sweden)

    Narayan Sankaran

    Full Text Available The present study examined the effects of spatial sound-source density and reverberation on the spatiotemporal window for audio-visual motion coherence. Three different acoustic stimuli were generated in Virtual Auditory Space: two acoustically "dry" stimuli via the measurement of anechoic head-related impulse responses recorded at either 1° or 5° spatial intervals (Experiment 1, and a reverberant stimulus rendered from binaural room impulse responses recorded at 5° intervals in situ in order to capture reverberant acoustics in addition to head-related cues (Experiment 2. A moving visual stimulus with invariant localization cues was generated by sequentially activating LED's along the same radial path as the virtual auditory motion. Stimuli were presented at 25°/s, 50°/s and 100°/s with a random spatial offset between audition and vision. In a 2AFC task, subjects made a judgment of the leading modality (auditory or visual. No significant differences were observed in the spatial threshold based on the point of subjective equivalence (PSE or the slope of psychometric functions (β across all three acoustic conditions. Additionally, both the PSE and β did not significantly differ across velocity, suggesting a fixed spatial window of audio-visual separation. Findings suggest that there was no loss in spatial information accompanying the reduction in spatial cues and reverberation levels tested, and establish a perceptual measure for assessing the veracity of motion generated from discrete locations and in echoic environments.

  2. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    Science.gov (United States)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  3. Coherence characteristics of light-emitting diodes

    International Nuclear Information System (INIS)

    Mehta, Dalip Singh; Saxena, Kanchan; Dubey, Satish Kumar; Shakher, Chandra

    2010-01-01

    We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.

  4. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  5. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  6. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    Science.gov (United States)

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  7. Environmental determinants and spatial mismatch of mammal diversity measures in Colombia

    Directory of Open Access Journals (Sweden)

    González–Maya, J. F.

    2016-02-01

    Full Text Available Including complementary diversity measures into ecological and conservation studies should improve our ability to link species assemblages to ecosystems. Recent measures such as phylogenetic and functional diversity have furthered our understanding of assemblage patterns of ecosystems and species, allowing improved inference of ecosystem function and conservation. We evaluated spatial patterns of taxonomic, phylogenetic and functional diversity of mammals in Colombia and identified their main environmental determinants, as well as interrelationships and spatial mismatch between the three measures. We found significant effects of elevation and precipitation on species richness, slope and species richness on phylogenetic diversity, and slope and phylogenetic diversity on functional diversity. We also identified a spatial mismatch of the three measures in some areas of the country: 12% of the country for species richness and 14% for phylogenetic and functional diversity. Our results highlight the importance of including species relationships within environmental drivers with biogeographical and distribution analyses and could facilitate selection of priority areas for conservation, especially when mismatch occurs between measures.

  8. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  9. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  10. Generation, amplification and propagation of partially coherent light in a Nd:glass laser driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nakano, Hitoshi; Tsubakimoto, Kouji; Miyanaga, Noriaki; Nakatsuka, Masahiro; Kanabe, Tadashi.

    1992-01-01

    A partially coherent light source has been introduced into the high power twelve beam Nd:glass laser system, Gekko XII for obtaining the smooth intensity distribution of a focused beam pattern. An amplified spontaneous emission (ASE) from Nd:glass was used as a partially coherent source. We adopted the angularly dispersed spectrum not only for beam smoothing but for efficient harmonic conversion. The temporal evolution of the speckle smoothing was experimentally evaluated and compared with a statistical model of speckle pattern. In the amplification of a partially coherent light in Gekko XII, no reduction of the energy gain was found at high power operation 1kJ level. The ASE light can be propagated using image relaying spatial filters, with maintaining the beam divergence up to 32 times diffraction limited. Irradiation nonuniformities on a spherical target were estimated from the focused beam patterns measured at an equivalent target plane. A partially coherent light is quite effective for reducing the nonuniformity from 19.7% (the coherent laser with random phase plate) to 3.8%. Doubling efficiency was found to be reduced at high intensity region due to the phase mismatching with the beam divergence of the ASE light. We discuss possible approaches to obtain the sufficient harmonic conversion with keeping the incoherency of the ASE light. (author)

  11. Accuracy of a new partial coherence interferometry analyser for biometric measurements.

    Science.gov (United States)

    Holzer, M P; Mamusa, M; Auffarth, G U

    2009-06-01

    Precise biometry is an essential preoperative measurement for refractive surgery as well as cataract surgery. A new device based on partial coherence interferometry technology was tested and evaluated for accuracy of measurements. In a prospective study 200 eyes of 100 healthy phakic volunteers were examined with a functional prototype of the new ALLEGRO BioGraph (Wavelight AG)/LENSTAR LS 900 (Haag Streit AG) biometer and with the IOLMaster V.5 (Carl Zeiss Meditec AG). As recommended by the manufacturers, repeated measurements were performed with both devices and the results compared using Spearman correlation calculations (WinSTAT). Spearman correlation showed high correlations for axial length and keratometry measurements between the two devices tested. Anterior chamber depth, however, had a lower correlation between the two biometry devices. In addition, the mean values of the anterior chamber depth differed (IOLMaster 3.48 (SD 0.42) mm versus BioGraph/LENSTAR 3.64 (SD 0.26) mm); however, this difference was not statistically different (p>0.05, t test). The new biometer provided results that correlated very well with those of the IOLMaster. The ALLEGRO BioGraph/LENSTAR LS 900 is a precise device containing additional features that will be helpful tools for any cataract or refractive surgeon.

  12. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning

  13. Beam-quality measurements using a spatial light modulator

    CSIR Research Space (South Africa)

    Schulze, C

    2012-11-01

    Full Text Available We present a fast and easy technique for measuring the beam propagation ratio, M2, of laser beams using a spatial light modulator. Our technique is based on digitally simulating the free-space propagation of light, thus eliminating the need...

  14. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    International Nuclear Information System (INIS)

    Xie, Xin; Chen, Xu; Li, Junrui; Yang, Lianxiang; Wang, Yonghong

    2015-01-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential. (paper)

  15. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  16. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  17. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  18. Program controlled system for measuring and monitoring the electron coherent radiation spectrum of Yerevan synchrotron

    International Nuclear Information System (INIS)

    Adamyan, F.V.; Vartapetyan, G.A.; Galumyan, P.I.

    1980-01-01

    An automatic system for measurement, processing and control of energy spectrum of polarized photons realized at the Yerevan electron synchrotron is described. For measuring energy spectra of intensive high energy photon beams a pair spectrometer is used which comprises an aluminium target-converter, an analizing magnet and 2 telescopes of scintillation counters for electron-positron pairs registration. the procedure of spectra measurement by the pair spectrometer is reduced to determining the converted e + e - pairs yield at certain values of the H field intensity of the analizing magnet. An algorithm of the data express-processing for operative monitoring of peak energy stability of electron coherent radiation spectrum is given. The spectra measurement results obtained under real experimental conditions are presented

  19. Coherence and chaos in the driven damped sine-Gordon equation: Measurement of the soliton spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Overman, II, E A; McLaughlin, D W; Bishop, A R; Los Alamos National Lab., NM

    1986-02-01

    A numerical procedure is developed which measures the sine-Gordon soliton and radiation content of any field (PHI, PHIsub(t)) which is periodic in space. The procedure is applied to the field generated by a damped, driven sine-Gordon equation. This field can be either temporally periodic (locked to the driver) or chaotic. In either case the numerical measurement shows that the spatial structure can be described by only a few spatially localized (soliton wave-train) modes. The numerical procedure quantitatively identifies the presence, number and properties of these soliton wave-trains. For example, an increase of spatial symmetry is accompanied by the injection of additional solitons into the field. (orig.).

  20. Reconstruction of surface morphology from coherent scattering of ''white'' synchrotron radiation in hard X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar

    2009-07-01

    Energy Dispersive Reflectometry (EDR) beamline at BESSY II provides ''white'' X-rays in the useful energy range of 5measured the coherent reflectivity data at EDR bending magnet beamline at BESSY II from various surfaces. Technologically smooth wafers of semiconducting materials of Si and GaAs are used as ''trivial'' samples to determine the so called apparatus function. In addition I measured coherent reflectivity maps from thin film of highly scattering material of Pt with high atom number, Z=78 and patterned semiconducting surface like a GaAs surface grating which provides a certain periodicity in the measured scattering intensity. Finally I measured the surface speckles from a spatially confined Si wafer under the constraint that the size of the sample is smaller than the footprint of the incoming beam at the sample position. To reconstruct surface morphology from coherent reflectivity data is a typical inverse problem. Conventional phase retrieval algorithms like Gerchberg-Saxton (GS) algorithm, error reduction (ER) algorithm, hybrid input-output (HIO) algorithm are used in earlier work by other authors. I modified the conventional GS algorithm and ER algorithm which takes into account the additional Fresnel propagator term and also the illumination function at the sample position. I tested the modified algorithm successfully for a model surface in the form of a surface grating. I used the modified algorithm to reconstruct surface morphology from various static speckle measurements I performed at EDR beamline. The surface profiles reconstructed for different samples from the data at different energies (below the critical energy for the material at a particular incident angle) show almost the same roughness behavior for surface height with mean roughness of {proportional_to}1 nm. With the static speckle data I measured I could retrieve a one-dimensional picture of the sample surface with spatial

  1. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    Science.gov (United States)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  2. Heart-rate sensitive optical coherence angiography for measuring vascular changes due to posttraumatic brain injury in mice

    Science.gov (United States)

    Tremoleda, Jordi L.; Alvarez, Karl; Aden, Abdirahman; Donnan, Robert; Michael-Titus, Adina T.; Tomlins, Peter H.

    2017-12-01

    Traumatic brain injury (TBI) results in direct vascular disruption, triggering edema, and reduction in cerebral blood flow. Therefore, understanding the pathophysiology of brain microcirculation following TBI is important for the development of effective therapies. Optical coherence angiography (OCA) is a promising tool for evaluating TBI in rodent models. We develop an approach to OCA that uses the heart-rate frequency to discriminate between static tissue and vasculature. This method operates on intensity data and is therefore not phase sensitive. Furthermore, it does not require spatial overlap of voxels and thus can be applied to pre-existing datasets for which oversampling may not have been explicitly considered. Heart-rate sensitive OCA was developed for dynamic assessment of mouse microvasculature post-TBI. Results show changes occurring at 5-min intervals within the first 50 min of injury.

  3. Investigating Coherent Structures in the Standard Turbulence Models using Proper Orthogonal Decomposition

    International Nuclear Information System (INIS)

    Eliassen, Lene; Andersen, Søren

    2016-01-01

    The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)

  4. Remote wind sensing with a CW diode laser lidar beyond the coherence regime

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical...... optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars...

  5. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  6. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  7. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.

    Science.gov (United States)

    Blomberg, Ann E A; Weber, Thomas C; Austeng, Andreas

    2018-06-25

    Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES) detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF), is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.

  8. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence

    Directory of Open Access Journals (Sweden)

    Ann E. A. Blomberg

    2018-06-01

    Full Text Available Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF, is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.

  9. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  10. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  11. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  12. A Grid of Fine Wire Thermocouples to Study the Spatial Coherence of Turbulence within Katabatic Flow through a Vineyard Canopy

    Science.gov (United States)

    Everard, K.; Christen, A.; Sturman, A.; Skaloud, P.

    2016-12-01

    Knowledge of the dynamics and thermodynamics of katabatic flow is relevant in vineyards, where grapevines are sensitive to temperature changes (frost protection and cooling). Basic understanding of the occurrence and evolution of, and turbulence within, katabatic flow is well known over bare slopes. However, little work has been completed to extend this understanding to mid-sized canopies and how the presence of a canopy affects the turbulent exchange of momentum and heat within the flow. Measurements were carried out over a 6° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The set-up consisted of an array of five vertically arranged CSAT 3D (Campbell Scientific, Inc.) ultrasonic anemometers at z = 0.45 m, 0.90 m, 1.49 m, 2.34 m, and 4.73 m above ground level (AGL), and a 2-D grid of 40 Type-E (copper-constantan) fine-wire thermocouples (FWTC) arranged at the same heights as the CSAT 3D array on 8 masts extending in the upslope (flow) direction at locations x = 0.0 m (CSAT 3D tower), 0.5 m, 1.0 m, 2.0 m, 4.0 m, 8.0 m, 16.0 m, and 32.0 m. The FWTC array formed a sheet of 40 sampling points in the upslope-vertical plane. The height of the grapevine canopy (h) was approximately 2 m AGL, and rows were aligned along the local slope direction with a row spacing of 2.45 m. CSAT-3s were sampled at 60 Hz with 20 Hz data recording, the FWTCs were sampled at 2 Hz, all synchronized by a data logger. Katabatic flow was observed on several nights during the campaign, with a wind speed maximum located within the canopy. This contribution will focus on the measurement techniques, combining ultrasonic anemometer data with the spatially synchronized FWTC array using image process techniques. We identify the dynamics and structure of the katabatic flow, relevant for heat exchange, using the spatial coherence of the temperature field given by the FWTC array. Improved knowledge of the vertical structure and the dynamics of katabatic

  13. Measuring directional urban spatial interaction in China: A migration perspective.

    Science.gov (United States)

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.

  14. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  15. Panama City 2003 Acoustic Coherence Experiments: Low Frequency Bottom Penetration Fluctuation Measurements in a Multipath Environment

    Science.gov (United States)

    Meredith, Roger W.; Kennedy, E. Ted; Malley, Dexter; Fisher, Robert A.; Brown, Robert; Stanic, Steve

    2004-11-01

    This paper is part of a series of papers describing acoustic coherence and fluctuations measurements made by the Naval Research Laboratory in the Gulf of Mexico near Panama City Beach, FL during June 2003. This paper presents low frequency (1-10 kHz) buried hydrophone measurements and preliminary results for two source-receiver ranges with grazing angles less than two degrees (realtive to the direct-path to the seafloor at the receiver location). Results focus on fluctuations after acoustic penetration into the sediment. These fluctuations are correlated with environmental influences.

  16. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    Science.gov (United States)

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.

  17. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity.

    Science.gov (United States)

    Horwitz, Anna; Mortensen, Erik L; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (Δ C ).The correlation is most pronounced for the anterior brain region (Δ C A ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of Δ C A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (Δ C ) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. Δ C in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between Δ C and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (Δ C A ) is a better predictor of memory than power in multivariate models. The sensitivity of Δ C A for detecting low memory capacity is 92%. Finally, Δ C A was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the Δ C is a predictor of memory

  18. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    Directory of Open Access Journals (Sweden)

    Anna Horwitz

    2017-12-01

    Full Text Available HIGHLIGHTSMemory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC.The correlation is most pronounced for the anterior brain region (ΔCA.The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%.Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz. The individual difference in coherence (ΔC between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory

  19. Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Gard, Bryan T.; You, Chenglong; Singh, Robinjeet; Lee, Hwang; Corbitt, Thomas R.; Dowling, Jonathan P. [Louisiana State University, Baton Rouge, LA (United States); Mishra, Devendra K. [Louisiana State University, Baton Rouge, LA (United States); V.S. Mehta College of Science, Physics Department, Bharwari, UP (India)

    2017-12-15

    The use of an interferometer to perform an ultra-precise parameter estimation under noisy conditions is a challenging task. Here we discuss nearly optimal measurement schemes for a well known, sensitive input state, squeezed vacuum and coherent light. We find that a single mode intensity measurement, while the simplest and able to beat the shot-noise limit, is outperformed by other measurement schemes in the low-power regime. However, at high powers, intensity measurement is only outperformed by a small factor. Specifically, we confirm, that an optimal measurement choice under lossless conditions is the parity measurement. In addition, we also discuss the performance of several other common measurement schemes when considering photon loss, detector efficiency, phase drift, and thermal photon noise. We conclude that, with noise considerations, homodyne remains near optimal in both the low and high power regimes. Surprisingly, some of the remaining investigated measurement schemes, including the previous optimal parity measurement, do not remain even near optimal when noise is introduced. (orig.)

  20. Arbitrarily shaped high-coherence electron bunches from cold atoms

    Science.gov (United States)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  1. Quantifying the effect of disruptions to temporal coherence on the intelligibility of compressed American Sign Language video

    Science.gov (United States)

    Ciaramello, Frank M.; Hemami, Sheila S.

    2009-02-01

    Communication of American Sign Language (ASL) over mobile phones would be very beneficial to the Deaf community. ASL video encoded to achieve the rates provided by current cellular networks must be heavily compressed and appropriate assessment techniques are required to analyze the intelligibility of the compressed video. As an extension to a purely spatial measure of intelligibility, this paper quantifies the effect of temporal compression artifacts on sign language intelligibility. These artifacts can be the result of motion-compensation errors that distract the observer or frame rate reductions. They reduce the the perception of smooth motion and disrupt the temporal coherence of the video. Motion-compensation errors that affect temporal coherence are identified by measuring the block-level correlation between co-located macroblocks in adjacent frames. The impact of frame rate reductions was quantified through experimental testing. A subjective study was performed in which fluent ASL participants rated the intelligibility of sequences encoded at a range of 5 different frame rates and with 3 different levels of distortion. The subjective data is used to parameterize an objective intelligibility measure which is highly correlated with subjective ratings at multiple frame rates.

  2. Psychological Measures of Spatial Abilities

    Directory of Open Access Journals (Sweden)

    Aurel Ion Clinciu

    2009-12-01

    Full Text Available Spatial abilities are divided into three categories: mental rotation, spatial relation and visualization. Several tests are cited in foreign literature that are frequently used in order to assess these abilities, but for Romanian specialists they are not on hand. The present paper is introducing new assessment tools for static spatial abilities that were successfully used along with already validated instruments. Data on statistical qualities of the new instruments are also discussed.

  3. Speckle-modulating optical coherence tomography in living mice and humans

    Science.gov (United States)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  4. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  5. Measurement and analysis of coherent synchrotron radiation effects at FLASH

    International Nuclear Information System (INIS)

    Beutner, B.

    2007-12-01

    The vacuum-ultra-violet Free Electron Laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are produced using magnetic bunch compression chicanes. In these magnetic chicanes, the energy distribution along an electron bunch is changed by eff ects of Coherent Synchrotron Radiation (CSR). Energy changes in dispersive bunch compressor chicanes lead to transverse displacements along the bunch. These CSR induced displacements are studied using a transverse deflecting RF-structure. Experiments and simulations concerning the charge dependence of such transverse displacements are presented and analysed. In these experiments an over-compression scheme is used which reduces the peak current downstream the bunch compressor chicanes. Therefore other self interactions like space charge forces which might complicate the measurements are suppressed. Numerical simulations are used to analyse the beam dynamics under the influence of CSR forces. The results of these numerical simulations are compared with the data obtained in the over-compression experiments at FLASH. (orig.)

  6. Measurement and analysis of coherent synchrotron radiation effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Beutner, B.

    2007-12-15

    The vacuum-ultra-violet Free Electron Laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are produced using magnetic bunch compression chicanes. In these magnetic chicanes, the energy distribution along an electron bunch is changed by eff ects of Coherent Synchrotron Radiation (CSR). Energy changes in dispersive bunch compressor chicanes lead to transverse displacements along the bunch. These CSR induced displacements are studied using a transverse deflecting RF-structure. Experiments and simulations concerning the charge dependence of such transverse displacements are presented and analysed. In these experiments an over-compression scheme is used which reduces the peak current downstream the bunch compressor chicanes. Therefore other self interactions like space charge forces which might complicate the measurements are suppressed. Numerical simulations are used to analyse the beam dynamics under the influence of CSR forces. The results of these numerical simulations are compared with the data obtained in the over-compression experiments at FLASH. (orig.)

  7. Optical Coherence Tomography (OCT for Time-Resolved Imaging of Alveolar Dynamics in Mechanically Ventilated Rats

    Directory of Open Access Journals (Sweden)

    Christian Schnabel

    2017-03-01

    Full Text Available Though artificial ventilation is an essential life-saving treatment, the mechanical behavior of lung tissue at the alveolar level is still unknown. Therefore, we need to understand the tissue response during artificial ventilation at this microscale in order to develop new and more protective ventilation methods. Optical coherence tomography (OCT combined with intravital microscopy (IVM is a promising tool for visualizing lung tissue dynamics with a high spatial and temporal resolution in uninterruptedly ventilated rats. We present a measurement setup using a custom-made animal ventilator and a gating technique for data acquisition of time-resolved sequences.

  8. Tissue imaging using full field optical coherence microscopy with short multimode fiber probe

    Science.gov (United States)

    Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2018-03-01

    In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.

  9. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  10. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  11. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  12. Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement

    Science.gov (United States)

    Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.

    2013-03-01

    We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.

  13. Subjective relevance of objective measures for spatial impression (A)

    DEFF Research Database (Denmark)

    Wang, Lily M.; Gade, Anders Christian

    2000-01-01

    Several objective measures have been proposed to describe the feeling of spatial impression in concert halls, including Lateral Energy Fraction (LF) and Interaural Cross-Correlation Coefficient (IACC). However, previous studies have shown that LF and IACC values did not highly correlate with each...... other at individual seat positions in real halls [J. S. Bradley, J. Acoust. Soc. Am. 96, 3525–3535 (1994)]. To investigate the listener envelopment aspect of spatial impression further, subjective paired-comparison tests have been run using signals which have various values for LF, early IACC (from 5...

  14. B1 gradient coherence selection using a tapered stripline.

    Science.gov (United States)

    van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M

    2018-01-01

    Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Spatial and Numerical Predictors of Measurement Performance: The Moderating Effects of Community Income and Gender

    Science.gov (United States)

    Casey, Beth M.; Dearing, Eric; Vasilyeva, Marina; Ganley, Colleen M.; Tine, Michele

    2011-01-01

    Spatial reasoning and numerical predictors of measurement performance were investigated in 4th graders from low-income and affluent communities. Predictors of 2 subtypes of measurement performance (spatial-conceptual and formula based) were assessed while controlling for verbal and spatial working memory. Consistent with prior findings, students…

  16. Measured spatial variability of beach erosion due to aeolian processes.

    NARCIS (Netherlands)

    de Vries, S.; Verheijen, A.H.; Hoonhout, B.M.; Vos, S.E.; Cohn, Nicholas; Ruggiero, P; Aagaard, T.; Deigaard, R.; Fuhrman, D.

    2017-01-01

    This paper shows the first results of measured spatial variability of beach erosion due to aeolian processes during the recently conducted SEDEX2 field experiment at Long Beach, Washington, U.S.A.. Beach erosion and sedimentation were derived using series of detailed terrestrial LIDAR measurements

  17. Audio frequency in vivo optical coherence elastography

    Science.gov (United States)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  18. Audio frequency in vivo optical coherence elastography

    International Nuclear Information System (INIS)

    Adie, Steven G; Kennedy, Brendan F; Armstrong, Julian J; Alexandrov, Sergey A; Sampson, David D

    2009-01-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  19. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  20. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  1. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    Science.gov (United States)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  2. Near optimal discrimination of binary coherent signals via atom–light interaction

    Science.gov (United States)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  3. Coherent population dynamics of a three-level atom in spacetime

    International Nuclear Information System (INIS)

    Netz, R.; Sauerbrey, R.; Feurer, T.; Roberts, G.

    2002-01-01

    This work explores temporal and spatial aspects of coherent population transfer in a three-level atom through a synergic combination of experimental measurements and theoretical calculations. Experimental measurements exploit the broad bandwidth of a femtosecond laser pulse to initiate simultaneous excitation of the 5p 2 P 1/2 2 S 1/2 and 5p 2 P 3/2 2 S 1/2 components of the doublet line of atomic rubidium. By adjusting positive or negative frequency sweeps the pump pulse favors either one of the two transitions and eventually even decouples the two excited states. The population of the excited spin-orbit levels is monitored in real time by stimulated emission probing under conditions of different intensity, chirp, and pulse width of the driving field, giving detailed information on the coupling between the three levels and their interactions with the driving and probe fields at different points in spacetime. Both pump and probe pulses are carefully characterized after the interaction region by frequency-resolved optical gating. In order to interpret and understand the experimental results it is essential to consider the close relationship between pulse propagation and time evolution of the atomic system via the coupled Maxwell-Bloch equations. This analysis highlights the importance of spatial propagation of the light fields, as well as their temporal dependence, in understanding the dynamical population evolution, and quantitatively reproduces all aspects of the experimental measurements

  4. Quantifying measurement uncertainty and spatial variability in the context of model evaluation

    Science.gov (United States)

    Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.

    2017-12-01

    In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.

  5. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    Science.gov (United States)

    Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  6. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  7. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection

    International Nuclear Information System (INIS)

    Stevendaal, U. van; Schlomka, J.-P.; Harding, A.; Grass, M.

    2003-01-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter form factor of the investigated object. Reconstruction from coherently scattered x-rays is commonly done using algebraic reconstruction techniques (ART). In this paper, we propose an alternative approach based on filtered back-projection. For the first time, a three-dimensional (3D) filtered back-projection technique using curved 3D back-projection lines is applied to two-dimensional coherent scatter projection data. The proposed algorithm is tested with simulated projection data as well as with projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry. While yielding comparable image quality as ART reconstruction, the modified 3D filtered back-projection algorithm is about two orders of magnitude faster. In contrast to iterative reconstruction schemes, it has the advantage that subfield-of-view reconstruction becomes feasible. This allows a selective reconstruction of the coherent-scatter form factor for a region of interest. The proposed modified 3D filtered back-projection algorithm is a powerful reconstruction technique to be implemented in a CSCT scanning system. This method gives coherent scatter CT the potential of becoming a competitive modality for medical imaging or nondestructive testing

  8. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner

    2012-01-01

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time......, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis...

  9. Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner.

    Science.gov (United States)

    Muthuraman, M; Galka, A; Hong, V N; Heute, U; Deuschl, G; Raethjen, J

    2013-01-01

    Simultaneous recording of electroencephalogram (EEG) and electromyogram (EMG) with magnetic resonance imaging (MRI) provides great potential for studying human brain activity with high temporal and spatial resolution. But, due to the MRI, the recorded signals are contaminated with artifacts. The correction of these artifacts is important to use these signals for further spectral analysis. The coherence can reveal the cortical representation of peripheral muscle signal in particular motor tasks, e.g. finger movements. The artifact correction of these signals was done by two different algorithms the Brain vision analyzer (BVA) and the Matlab FMRIB plug-in for EEGLAB. The Welch periodogram method was used for estimating the cortico-muscular coherence. Our analysis revealed coherence with a frequency of 5Hz in the contralateral side of the brain. The entropy is estimated for the calculated coherence to get the distribution of coherence in the scalp. The significance of the paper is to identify the optimal algorithm to rectify the MR artifacts and as a first step to use both these signals EEG and EMG in conjunction with MRI for further studies.

  10. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.

    Science.gov (United States)

    Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2008-04-02

    Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.

  11. Projective measurement onto arbitrary superposition of weak coherent state bases

    DEFF Research Database (Denmark)

    Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro

    2018-01-01

    One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...

  12. Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy

    DEFF Research Database (Denmark)

    Loudon, J. C.; Yazdi, Sadegh; Kasama, Takeshi

    2015-01-01

    We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB2, where these quantities...... vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB2 single crystal cut in the ac plane by focused ion beam milling and tilted to 45 degrees. with respect to the electron beam about...... the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence...

  13. Effects of Coherence and Relevance on Shallow and Deep Text Processing.

    Science.gov (United States)

    Lehman, Stephen; Schraw, Gregory

    2002-01-01

    Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…

  14. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  15. Spin coherence transfer in chemical transformations monitoredNMR

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Sabieh M.; Hilty, Christian; Chu, Chester; Bouchard,Louis-S.; Pierce, Kimberly L.; Pines, Alexander

    2006-07-31

    We demonstrate the use of micro-scale nuclear magneticresonance (NMR) for studying the transfer of spin coherence innon-equilibrium chemical processes, using spatially separated NMRencoding and detection coils. As an example, we provide the map ofchemical shift correlations for the amino acid alanine as it transitionsfrom the zwitterionic to the anionic form. Our method is unique in thesense that it allows us to track the chemical migration of encodednuclear spins during the course of chemical transformations.

  16. Coherency analysis of accelerograms recorded by the UPSAR array during the 2004 Parkfield earthquake

    DEFF Research Database (Denmark)

    Konakli, Katerina; Kiureghian, Armen Der; Dreger, Douglas

    2014-01-01

    Spatial variability of near-fault strong motions recorded by the US Geological Survey Parkfield Seismograph Array (UPSAR) during the 2004 Parkfield (California) earthquake is investigated. Behavior of the lagged coherency for two horizontal and the vertical components is analyzed by separately...

  17. Coherent dynamics of plasma mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Thaury, C; George, H; Quere, F; Monot, P; Martin, Ph [CEA, DSM, IRAMIS, Serv Photons Atomes and Mol, F-91191 Gif Sur Yvette, (France); Loch, R [Univ Twente, Laser Phys and Nonlinear Opt Grp, Fac Sci and Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, (Netherlands); Geindre, J P [Ecole Polytech, Lab Pour Utilisat Lasers Intenses, CNRS, F-91128 Palaiseau, (France)

    2008-07-01

    Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of atto-second light bursts, short enough to study the dynamics of electrons in matter. Shorter and more intense atto-second pulses, together with higher harmonic orders, are expected by reflecting ultra intense laser pulses on a plasma mirror - a dense (approximate to 10{sup 23} electrons cm{sup -3}) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons. (authors)

  18. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    Science.gov (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  19. Landscape generator : method to generate plausible landscape configurations for participatory spatial plan-making

    NARCIS (Netherlands)

    Slager, C.T.J.

    2011-01-01

    Contemporary regional spatial plan-making in the Netherlands is characterized as a complex process wherein multiple actors, with different levels of interests and demands, try to commonly develop a coherent and comprehensive set of future plan scenarios. The construction of the set of spatial plan

  20. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  1. Measurement of dispersion of nanoparticles in a dense suspension by high-sensitivity low-coherence dynamic light scattering

    Science.gov (United States)

    Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki

    2014-08-01

    High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.

  2. Comparison of anterior segment measurements using rotating Scheimpflug imaging and partial coherence interferometry

    Directory of Open Access Journals (Sweden)

    Akbar Fotouhi

    2013-08-01

    Full Text Available METHODS:As part of the first phase of Shahroud Eye Cohort Study with 5 190 subjects of 40 to 64 years of age, CCT and ACD were measured using Scheimpflug imaging with the Pentacam (Oculus, Inc., Lynnwood, WA, USA and partial coherence interferometry with the Allegro BioGraph (Wavelight, Erlangen, Germany.RESULTS:After applying exclusion criteria, we had data of 4 387 subjects with a mean age of 50.7±6.2 years. Mean CCT with Pentacam and BioGraph were 528.6±33.2μm and 525.6±32μm respectively; the difference was statistically significant (PPCONCLUSION:For both CCT and ACD, the BioGraph gave significantly lower values than the Pentacam (P<0.05. Despite the high inter-device correlation, the 95% limits of agreements were wide, and this may limit their interchangeability in measuring the CCT and ACD.

  3. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  4. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  5. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    Science.gov (United States)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  6. Enhanced coherent undulator radiation from bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.; Smith, T.I.

    1996-01-01

    When energetic bunches of electrons traverse an undulator field, they can spontaneously emit radiation both coherently and incoherently. Although it has generally been assumed that undulator radiation is incoherent at wavelengths short compared to the longitudinal size of the electron bunch, several recent observations have proved this assumption false. Furthermore, the appearance of coherent radiation is often accompanied by a significant increase in radiated power. Here we report observations of strongly enhanced coherent spontaneous radiation together with direct measurements, using transition radiation techniques, of the electron distributions responsible for the coherent emission. We also report demonstrated enhancements in the predicted spontaneous radiated power by as much as 6x10 4 using electron bunch compression. copyright 1996 American Institute of Physics

  7. Spatial filtering velocimetry for real-time out-of-plane displacement measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Yura, H.T.; Jakobsen, Michael Linde

    2016-01-01

    power spectrum of the photocurrent produced by this filter. This main contribution of this paper is a model, which describe the selectivity of the sensor, applied to speckle dynamics generated by an object moving out-of-plane. To motivate our interest in these filters we also present an all optical......We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally...... symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The selectivity of the sensor relates directly to the uncertainty on sensor measurements. The selectivity most be derived from a temporal...

  8. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  9. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  10. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  11. Volumetric Measurement of Subretinal Blebs Using Microscope-Integrated Optical Coherence Tomography.

    Science.gov (United States)

    Hsu, S Tammy; Gabr, Hesham; Viehland, Christian; Sleiman, Karim; Ngo, Hoan T; Carrasco-Zevallos, Oscar M; Vajzovic, Lejla; McNabb, Ryan P; Stinnett, Sandra S; Izatt, Joseph A; Kuo, Anthony N; Toth, Cynthia A

    2018-04-01

    We advance studies of subretinal treatments by developing a microscope-integrated optical coherence tomography (MIOCT) image-based method for measuring the volume of therapeutics delivered into the subretinal space. A MIOCT image-based volume measurement method was developed and assessed for accuracy and reproducibility by imaging an object of known size in model eyes. This method then was applied to subretinal blebs created by injection of diluted triamcinolone. Bleb volumes obtained from MIOCT were compared to the intended injection volume and the surgeon's estimation of leakage. Validation of the image-based volume measurement method showed accuracy to ±1.0 μL (6.0% of measured volume) with no statistically significant variation under different imaging settings. When this method was applied to subretinal blebs, four of 11 blebs without surgeon-observed leakage yielded a mean volume of 32 ± 12.5 μL, in contrast to the intended 50 μL volume injected from the delivery device. This constituted a mean difference of -18 μL (mean percent error, 36 ± 25%). For all 11 blebs, the surgeon's estimations of leakage were significantly different from and showed no correlation with the volume loss based on image-based volume measurements ( P < 0.001, paired t -test; intraclass correlation = 0). We validated an accurate and reproducible method for measuring subretinal volumes using MIOCT. Use of this method revealed that the intended volume might not be delivered into the subretinal space. MIOCT can allow for accurate assessment of subretinal dose delivered, which may have therapeutic implications in evaluating the efficacy and toxicity of subretinal therapies. Use of MIOCT can provide feedback on the accuracy of subretinal injection volumes delivered.

  12. Quantum coherence behaviors of fermionic system in non-inertial frame

    Science.gov (United States)

    Huang, Zhiming; Situ, Haozhen

    2018-04-01

    In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

  13. Optical coherence refractometry.

    Science.gov (United States)

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  14. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    International Nuclear Information System (INIS)

    Han, Su Chul; Hong, Dong Hee

    2016-01-01

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures

  15. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Dong Hee [Dept. of Radiology Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

  16. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  17. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    Science.gov (United States)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  18. Snapshot measurements used for systematic studies of the bursting threshold at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Brosi, Miriam; Blomley, Edmund; Bruendermann, Erik; Caselle, Michele; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Steinmann, Johannes L. [KIT, Karlsruhe (Germany)

    2016-07-01

    The ANKA storage ring at the Karlsruhe Institute of Technology (KIT) can generate brilliant coherent synchrotron radiation in the THz range by using a dedicated electron bunch length reducing optic. One challenge in the production of coherent THz radiation at synchrotrons is the high degree of spatial compression in this so-called low-alpha optics. The resulting complex longitudinal dynamics of the electron bunches, called micro-bunching instability, leads to time dependent fluctuations and strong bursts in the radiated THz intensity. This contribution will present a quasi instantaneous method to measure the bursting characteristics by evaluating the information of all bunches in a multi-bunch fill. The reduction of the measurement time from hours down to seconds, allows the measurement of bursting characteristics for various accelerator settings within one fill.

  19. Subfoveal choroidal thickness measured by Cirrus HD optical coherence tomography in myopia

    Directory of Open Access Journals (Sweden)

    Li-Li Chen

    2014-09-01

    Full Text Available ATM: To measure the subfoveal choroidal thickness(SFCTin myopia using Cirrus HD optical coherence tomography(OCT, and to explore the relationship between the SFCT, axial length and myopic refractive spherical equivalent.METHODS: One-hundred thirty-three eyes of 70 healthy volunteers were recruited, and were divided into emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group. SFCT were measured by Cirrus HD OCT, and the relationship between the SFCT, axial length and myopic refractive spherical equivalent were evaluated.RESULTS: 1Average SFCT was(275.91±55.74μm in normals, that in emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group were(290.03±34.82μm,(287.64±51.51μm,(274.95±56.83μm,(248.37±67.98μm; 2the SFCT of high-degree myopia group was significant thinner than that of emmetropia group(PPPCONCLUSION: the SFCT is inversely correlated with increasing axial length and myopic refractive error.

  20. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  1. Multiple shooting applied to robust reservoir control optimization including output constraints on coherent risk measures

    DEFF Research Database (Denmark)

    Codas, Andrés; Hanssen, Kristian G.; Foss, Bjarne

    2017-01-01

    The production life of oil reservoirs starts under significant uncertainty regarding the actual economical return of the recovery process due to the lack of oil field data. Consequently, investors and operators make management decisions based on a limited and uncertain description of the reservoir....... In this work, we propose a new formulation for robust optimization of reservoir well controls. It is inspired by the multiple shooting (MS) method which permits a broad range of parallelization opportunities and output constraint handling. This formulation exploits coherent risk measures, a concept...

  2. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel

    KAUST Repository

    Fortunato, Luca

    2016-11-21

    The use of optical coherence tomography (OCT) to investigate biomass in membrane systems has increased with time. OCT is able to characterize the biomass in-situ and non-destructively. In this study, a novel approach to process three-dimensional (3D) OCT scans is proposed. The approach allows obtaining spatially-resolved detailed structural biomass information. The 3D biomass reconstruction enables analysis of the biomass only, obtained by subtracting the time zero scan to all images. A 3D time series analysis of biomass development in a spacer filled channel under representative conditions (cross flow velocity) for a spiral wound membrane element was performed. The flow cell was operated for five days with monitoring of ultrafiltration membrane performance: feed channel pressure drop and permeate flux. The biomass development in the flow cell was detected by OCT before a performance decline was observed. Feed channel pressure drop continuously increased with increasing biomass volume, while flux decline was mainly affected in the initial phase of biomass accumulation. The novel OCT imaging approach enabled the assessment of spatial biomass distribution in the flow cell, discriminating the total biomass volume between the membrane, feed spacer and glass window. Biomass accumulation was stronger on the feed spacer during the early stage of biofouling, impacting the feed channel pressure drop stronger than permeate flux.

  3. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    Science.gov (United States)

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  4. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  5. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis

    2014-01-01

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  6. Emotion regulation and emotion coherence: evidence for strategy-specific effects.

    Science.gov (United States)

    Dan-Glauser, Elise S; Gross, James J

    2013-10-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, about how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multichannel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it.

  7. Emotion Regulation and Emotion Coherence: Evidence for Strategy-Specific Effects

    Science.gov (United States)

    Dan-Glauser, Elise S.; Gross, James J.

    2014-01-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, on how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multi-channel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it. PMID:23731438

  8. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical

  9. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  10. Automated measurement of stent strut coverage in intravascular optical coherence tomography

    Science.gov (United States)

    Ahn, Chi Young; Kim, Byeong-Keuk; Hong, Myeong-Ki; Jang, Yangsoo; Heo, Jung; Joo, Chulmin; Seo, Jin Keun

    2015-02-01

    Optical coherence tomography (OCT) is a non-invasive, cross-sectional imaging modality that has become a prominent imaging method in percutaneous intracoronary intervention. We present an automated detection algorithm for stent strut coordinates and coverage in OCT images. The algorithm for stent strut detection is composed of a coordinate transformation from the polar to the Cartesian domains and application of second derivative operators in the radial and the circumferential directions. Local region-based active contouring was employed to detect lumen boundaries. We applied the method to the OCT pullback images acquired from human patients in vivo to quantitatively measure stent strut coverage. The validation studies against manual expert assessments demonstrated high Pearson's coefficients ( R = 0.99) in terms of the stent strut coordinates, with no significant bias. An averaged Hausdorff distance of < 120 μm was obtained for vessel border detection. Quantitative comparison in stent strut to vessel wall distance found a bias of < 12.3 μm and a 95% confidence of < 110 μm.

  11. Understanding strong-field coherent control: Measuring single-atom versus collective dynamics

    International Nuclear Information System (INIS)

    Trallero-Herrero, Carlos; Weinacht, Thomas; Spanner, Michael

    2006-01-01

    We compare the results of two strong field coherent control experiments: one which optimizes multi-photon population transfer in atomic sodium (from the 3s to the 4s state, measured by spontaneous emission from the 3p-3s transition) with one that optimizes stimulated emission on the 3p-3s transition in an ensemble of sodium atoms. Both experiments make use of intense, shaped ultrafast laser pulses discovered by a Genetic Algorithm inside a learning control loop. Optimization leads to improvements in the spontaneous and stimulated emission yields of about 4 and 10 4 , respectively, over an unshaped pulse. We interpret these results by modeling both the single atom dynamics as well as the stimulated emission buildup through numerical integration of Schroedinger's and Maxwell's equations. Our interpretation leads to the conclusion that modest yields for controlling single quantum systems can lead to dramatic effects whenever an ensemble of such systems acts collectively following controlled impulsive excitation

  12. The effect of the spatial positioning of items on the reliability of questionnaires measuring affect

    Directory of Open Access Journals (Sweden)

    Leigh Leo

    2016-08-01

    Full Text Available Orientation: Extant research has shown that the relationship between spatial location and affect may have pervasive effects on evaluation. In particular, experimental findings on embodied cognition indicate that a person is spatially orientated to position what is positive at the top and what is negative at the bottom (vertical spatial orientation, and to a lesser extent, to position what is positive on the left and what is negative on the right (horizontal spatial orientation. It is therefore hypothesised, that when there is congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire, the reliability will be higher than in the case of incongruence. Research purpose: The principal objective of the two studies reported here was to ascertain the extent to which congruence between a respondent’s spatial orientation (related to affect and the layout of the questionnaire (spatial positioning of questionnaire items may impact on the reliability of a questionnaire measuring affect. Motivation for the study: The spatial position of items on a questionnaire measuring affect may indirectly impact on the reliability of the questionnaire. Research approach, design and method: In both studies, a controlled experimental research design was conducted using a sample of university students (n = 1825. Major findings: In both experiments, evidence was found to support the hypothesis that greater congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire leads to higher reliability on a questionnaire measuring affect. Practical implications: These findings may serve to create awareness of the influence of the spatial positioning of items as a confounding variable in questionnaire design. Contribution/value-add: Overall, this research complements previous studies by confirming the metaphorical representation of affect and

  13. Coherence in quantum estimation

    Science.gov (United States)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  14. Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering

    International Nuclear Information System (INIS)

    Adam, B; Celeste, W; Christian, H; Wolfgang, S; Norman, M

    2007-01-01

    This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d ∼ 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear

  15. Connecting coherent structures and strange attractors

    Science.gov (United States)

    Keefe, Laurence R.

    1990-01-01

    A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.

  16. Hilbert-Schmidt quantum coherence in multi-qudit systems

    Science.gov (United States)

    Maziero, Jonas

    2017-11-01

    Using Bloch's parametrization for qudits ( d-level quantum systems), we write the Hilbert-Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in R^{Π_{s=1}nds2-1}, where ds is the dimension for qudit s. Then, applying the generalized Gell-Mann's matrices to generate SU(ds), we use that result to obtain the Hilbert-Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, l1-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.

  17. Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures

    Science.gov (United States)

    Pereira, Filipe S.; Eça, Luís; Vaz, Guilherme; Girimaji, Sharath S.

    2018-06-01

    The objective of this work is to investigate the challenges encountered in Scale-Resolving Simulations (SRS) of turbulent wake flows driven by spatially-developing coherent structures. SRS of practical interest are expressly intended for efficiently computing such flows by resolving only the most important features of the coherent structures and modelling the remainder as stochastic field. The success of SRS methods depends upon three important factors: i) ability to identify key flow mechanisms responsible for the generation of coherent structures; ii) determine the optimum range of resolution required to adequately capture key elements of coherent structures; and iii) ensure that the modelled part is comprised nearly exclusively of fully-developed stochastic turbulence. This study considers the canonical case of the flow around a circular cylinder to address the aforementioned three key issues. It is first demonstrated using experimental evidence that the vortex-shedding instability and flow-structure development involves four important stages. A series of SRS computations of progressively increasing resolution (decreasing cut-off length) are performed. An a priori basis for locating the origin of the coherent structures development is proposed and examined. The criterion is based on the fact that the coherent structures are generated by the Kelvin-Helmholtz (KH) instability. The most important finding is that the key aspects of coherent structures can be resolved only if the effective computational Reynolds number (based on total viscosity) exceeds the critical value of the KH instability in laminar flows. Finally, a quantitative criterion assessing the nature of the unresolved field based on the strain-rate ratio of mean and unresolved fields is examined. The two proposed conditions and rationale offer a quantitative basis for developing "good practice" guidelines for SRS of complex turbulent wake flows with coherent structures.

  18. Quantifying quantum coherence with quantum Fisher information.

    Science.gov (United States)

    Feng, X N; Wei, L F

    2017-11-14

    Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.

  19. Results on soft gluon resummation and color coherence in p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Varelas, N.

    1995-08-01

    The author presents two QCD studies based on data collected by the D(0) detector during the 1992-1993 run and data recorded by the CDF detector during the 1988-1989 run of the Fermilab Tevatron p bar p collider at a center of mass energy of √s = 1.8 TeV. The first study by the D(0) collaboration presents preliminary results on jet-jet angular decorrelation as a function of rapidity separation. This measurement is compared to HERWIG shower-level and JETRAD NLO parton-level Monte Carlo simulations. Data are also compared to predictions based on the techniques of Balitsky, Fadin, Kuraev, and Lipatov to resum soft gluon emissions which are expected to cause decorrelation of the produced jets. The second study demonstrates initial-to-final state color coherence effects by measuring spatial correlations between soft and hard jets in multijet events. Both CDF results and D(0) preliminary measurements are presented and compared to several Monte Carlo simulations with different color coherence implementations. The D(0) data, which include both central and forward jets, are also compared to the predictions of JETRAD Monte Carlo

  20. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    via biological, electromagnetic, and nonlocal fields, it stands to reason that humans can work together in a co-creative relationship to consciously increase the coherence in the global field environment, which in turn distributes this information to all living systems within the field. GCI was established to help facilitate the shift in global consciousness from instability and discord to balance, cooperation, and enduring peace. A primary goal of GCI is to test the hypothesis that large numbers of people when in a heart-coherent state and holding a shared intention can encode information on the earth's energetic and geomagnetic fields, which act as carrier waves of this physiologically patterned and relevant information. In order to conduct this research, a global network of 12 to 14 ultrasensitive magnetic field detectors specifically designed to measure the earth's magnetic resonances is being installed strategically around the planet. More important is GCI's primary goal to motivate as many people as possible to work together in a more coherent and collaborative manner to increase the collective human consciousness. If we are persuaded that not only external fields of solar and cosmic origins but also human attention and emotion can directly affect the physical world and the mental and emotional states of others (consciousness), it broadens our view of what interconnectedness means and how it can be intentionally utilized to shape the future of the world we live in. It implies that our attitudes, emotions, and intentions matter and that coherent, cooperative intent can have positive effects. GCI hypothesizes that when enough individuals and social groups increase their coherence baseline and utilize that increased coherence to intentionally create a more coherent standing reference wave in the global field, it will help increase global consciousness. This can be achieved when an increasing number of people move towards more balanced and self-regulated emotions

  1. High-order harmonic generation: A coherent ultrashort emission in the XUV range

    International Nuclear Information System (INIS)

    Salieres, Pascal; Hergott, Jean-Francois; Le Deroff, Laurent; Merdji, Hamed; Carre, Bertrand; Auguste, Thierry; Monot, Pascal; D'Oliveira, Pascal; Joyeux, Denis; Phalippou, Daniel

    2000-01-01

    We review the recent progress in theoretical and experimental understanding of harmonic generation by intense laser pulses. We present investigations on the spatial and temporal coherence properties of the harmonic emission, showing that they can be controlled. Finally, we give some examples of current applications of this XUV source, in particular in the diagnostic of dense plasmas

  2. First measurement of coherent $\\phi$-meson photoproduction on deuteron at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Tsutomu Mibe; Haiyan Gao; Kenneth Hicks; Kevin Kramer; Stepan Stepanyan; David Tedeschi; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; G. Asryan; Gerard Audit; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; Charles Hanretty; John Hardie; F. Hersman; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; John Johnstone; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Zebulun Krahn; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Claude Marchand; Nikolai Markov; Paul Mattione; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; E. Munevar; Gordon Mutchler; P. Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; K. Park; Evgueni Pasyuk; Craig Paterson; S. Anefalos Pereira; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Dmitri Sharov; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; A. Stavinsky; Samuel Stepanyan; B.E. Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-11-01

    The cross section and decay angular distributions for the coherent \\phi meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(p_{\\gamma}-p_{\\phi})^2 =-2 GeV^2/c^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total \\phi-N cross section \\sigma_{\\phi N} at about 10 mb. If vector meson dominance is violated, a larger \\sigma_{\\phi N} is possible by introducing larger t-slope for the \\phi N \\to \\phi N process than that for the \\gamma N \\to \\phi N process. The decay angular distributions of the \\phi are consistent with helicity conservation.

  3. New methods for the measurement and alteration of quantum states

    International Nuclear Information System (INIS)

    Steuernagel, O.

    1996-01-01

    Themes of this thesis are the mathematical representation, measurement-technical reconstruction, and preparation of quantum states as well as their alteration by measurement. The main topics of the considerations are quantum-mechanical system states, the complet description of which pursues by means of density operators. The first chapter presents a general mathematical scheme for the representaion of density operators by means of projection operators. The second chapter explains a scheme for the syntehsis of Fock states by means of a linear mixer. The third chapter answers the question, whether spontaneous emitted light, which is emitted by an atom with large spatial extension, can show self-interferences and lets conclude on thee coherent structure of the c.m. wave function of the emitting atom. The last chapter reconstructs measurement results on the coherence loss of atoms in an atomic-beam experiment by spontaneous emission in the language of the density-operator formalism

  4. Checklist for One Health Epidemiological Reporting of Evidence (COHERE

    Directory of Open Access Journals (Sweden)

    Meghan F. Davis

    2017-12-01

    Full Text Available One Health is defined as the intersection and integration of knowledge regarding humans, animals, and the environment, yet as the One Health scientific literature expands, there is considerable heterogeneity of approach and quality of reporting in One Health studies. In addition, many researchers who publish such studies do not include or integrate data from all three domains of human, animal, and environmental health. This points to a critical need to unify guidelines for One Health studies. This report details the Checklist for One Health Epidemiological Reporting of Evidence (COHERE to guide the design and publication format of future One Health studies. COHERE was developed by a core writing team and international expert review group that represents multiple disciplines, including human medicine, veterinary medicine, public health, allied professionals, clinical laboratory science, epidemiology, the social sciences, ecohealth and environmental health. The twin aims of the COHERE standards are to 1 improve the quality of reporting of observational or interventional epidemiological studies that collect and integrate data from humans, animals and/or vectors, and their environments; and 2 promote the concept that One Health studies should integrate knowledge from these three domains. The 19 standards in the COHERE checklist address descriptions of human populations, animal populations, environmental assessment, spatial and temporal relationships of data from the three domains, integration of analyses and interpretation, and inclusion of expertise in the research team from disciplines related to human health, animal health, and environmental health.

  5. Search for coherent structure within tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1985-01-01

    Two-dimensional tokamak edge density turbulence data are examined for possible coherent or organized structure. The spatial patterns of density fluctuations n appear to consist of localized ''blobs'' of relatively high or low density which can move irregularly both radially and poloidally through the edge region. However, a statistical analysis of the lifetime, area, direction, speed, and amplitude of these blobs does not as yet suggest any organized structure associated with the blobs beyond that which can be described by time-averaged correlation functions

  6. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  7. Determination and optimization of spatial samples for distributed measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Xiaoming (Georgia Institute of Technology, Atlanta, GA); Tran, Hy D.; Shilling, Katherine Meghan; Kim, Heeyong (Georgia Institute of Technology, Atlanta, GA)

    2010-10-01

    There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

  8. Coherence-limited solar power conversion: the fundamental thermodynamic bounds and the consequences for solar rectennas

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-10-01

    Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.

  9. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  10. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  11. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    Science.gov (United States)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  12. Fiber Laser for Wind Speed Measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig

    This PhD thesis evaluates the practical construction and use of a Frequency Stepped Pulse Train modulated coherent Doppler wind lidar (FSPT lidar) for wind speed measurement. The concept of Doppler lidar is introduced as a means to measure line of sight wind speed by the Doppler shift of reflected...... Sweeper (LSFS) is introduced and analyzed as a light source for the FSPT lidar. The setup of the LSFS is discussed, and the necessary concepts for modeling and analyzing LSFS noise are developed. The model and measurements are then used to discuss the growth of optical noise in the LSFS and the impact...... on its use in the FSPT lidar. A complex ABCD model is developed and described as a method for calculating spatial and frequency dependency of a lidar’s signal strength. The model includes both spatial and temporal components of the lidar system, enabling a model capable of describing both CW, pulsed...

  13. Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    Science.gov (United States)

    2015-03-26

    the number of speckle samples obtained, laser power and coherence length, spot size, target reflectance, speckle size, and pixels per speckle width...gated imaging systems,” Proc. SPIE, 6542: 654218, April 2007. 90 St. Pierre, Randall J. and others. “Active Tracker Laser (ATLAS),” IEEE J. Sel...numerical model developed here and existing theory developed by Hu. A 671 nm diode laser source with coherence length of 259 +/- 7 µm is reflected

  14. Method for single-shot measurement of picosecond laser pulse-lengths without electronic time dispersion

    International Nuclear Information System (INIS)

    Kyrala, G.A.

    1987-01-01

    A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well

  15. Three-wave electron vortex lattices for measuring nanofields.

    Science.gov (United States)

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterising the large coherence length at diamond’s beamline I13L

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Rahomaki, J.; Vogt, U. [KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44 (Sweden); Rau, C. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Northwestern University, Chicago, IL 60611-3008 (United States)

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  17. Characterising the large coherence length at diamond’s beamline I13L

    International Nuclear Information System (INIS)

    Wagner, U. H.; Parsons, A.; Rahomaki, J.; Vogt, U.; Rau, C.

    2016-01-01

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  18. The onset of coherence collapse in DBR lasers

    International Nuclear Information System (INIS)

    Woodward, S.L.; Koch, T.L.; Koren, U.

    1990-01-01

    The authors investigate how the onset of coherence collapse depends on laser output power. The lasers were three-section multiquantum-well distributed-Bragg-reflector (MQW-DBR) lasers. The fraction of light reflected back into the lasing mode was varied, and the point at which the transition to coherence collapse occurred was measured. This feedback level varies approximately linearly with laser output power. For these lasers, when the output power is 1 mW, the transition to coherence collapse beings when the optical feedback into the lasing mode is below - 40 dBm; when the feedback power is - 35 dBm the laser line is completely collapsed

  19. Advantages of coherent feedback for cooling quantum oscillators.

    Science.gov (United States)

    Hamerly, Ryan; Mabuchi, Hideo

    2012-10-26

    We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

  20. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao

    2011-01-01

    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.