WorldWideScience

Sample records for spark ignition gasoline

  1. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  2. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  3. THE EFFECT OF GASOLINE-LIKE FUEL PRODUCED FROM WASTE AUTOMOBILE TIRES ON EMISSIONS IN SPARK-IGNITION ENGINES

    OpenAIRE

    ÖZTOP, H. F.; VAROL, Y.; ALTUN, Ş.; FIRAT, M.

    2016-01-01

    In the present paper, the effect of Gasoline-Like Fuel (GLF) on emissions was investigated for direct injection spark-ignited engine. The GLF was obtained from waste automobile tires by using the pyrolysis. The tires are installed to oven without any procedure such as cutting, melding etc. Obtained GLF was then used in a four-cylinder, four-stroke, water-cooled and direct injection spark-ignited engine as blended with unleaded gasoline from 0% to 60% with an increment of 10%. Engine tests res...

  4. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine

    OpenAIRE

    Ashraf Elfasakhany

    2016-01-01

    In this study, new blended fuels were formed by adding 3–10 vol. % of acetone into a regular gasoline. According to the best of the author's knowledge, it is the first time that the influence of acetone blends has been studied in a gasoline-fueled engine. The blended fuels were tested for their energy efficiencies and pollutant emissions using SI (spark-ignition) engine with single-cylinder and 4-stroke. Experimental results showed that the AC3 (3 vol.% acetone + 97 vol.% gasoline) blended fu...

  5. Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine

    International Nuclear Information System (INIS)

    Momeni Movahed, M.; Basirat Tabrizi, H.; Mirsalim, M.

    2014-01-01

    Highlights: • Concomitant injection of gasoline and CNG is compared with gasoline and CNG modes. • BSFC, HC and CO emissions of the concomitant injection are lower than gasoline mode. • Deteriorations of the concomitant injection are negligible compared to gasoline mode. • Cylinder peak pressure and heat loss to coolant of the concomitant injection are lower than CNG mode. • Some shortcomings in CNG mode can be solved by changing the spark timing and lambda. - Abstract: Concomitant injection of gasoline and CNG is a new concept to overcome problems of bi-fueled spark ignition engines, which operate in single fuel mode, either in gasoline or in CNG mode. This experimental study indicates how some problems of gasoline mode such as retarded ignition timings for knock prevention and rich air–fuel mixture for component protection can be resolved with the concomitant injection of gasoline and CNG. Results clearly show that the concomitant injection improves thermal efficiency compared to gasoline mode. On the other hand, simultaneous injection of gasoline and CNG reduces some problems of CNG mode such as high cylinder pressure and heat loss to the engine coolant. This decreases the stringent requirements for thermal and mechanical strength of the engine components in CNG mode. In addition, it is shown that by modifying the spark advance and air fuel ratio in CNG mode, the engine operation improves in terms of NOx emissions and maximum in-cylinder pressure as the concomitant injection does. Nevertheless, new requirements such as an intercooler with higher cooling capacity are implied to the engine configuration. Finally, the most important concerns in control strategies of the engine control unit for a vehicle with concomitant injection of gasoline and CNG are discussed

  6. Wavelet analysis of cyclic variability in a spark ignition engine powered by gasoline-hydrogen fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Asok K. [Richard G. Lugar Centre for Renewable Energy, and Department of Mathematical Sciences, Indiana University, (United States)], email: asen@iupui.edu; Akif Ceviz, M.; Volkan Oner, I. [Department of Mechanical Engineering, University of Ataturk (Turkey)], email: aceviz@atauni.edu.tr

    2011-07-01

    The cycle-to-cycle variations (CCV) of the indicated mean effective pressure (IMEP) in a spark ignition engine fuelled by gasoline and gasoline-hydrogen blends is investigated. CCVs are estimated by using the coefficient of variation (COV) and the overall spectral power given by the global wavelet spectrum (GWS). It was found that the addition of hydrogen reduces the CCV of the IMEP. Analysis of the wavelet can also identify the dominant modes of variability and delineate the engine cycles over which these modes can persist. Air-fuel ratio was varied from 1.0 to 1.3, and hydrogen was added up to 7.74% by volume. The engine was operated at 2000 rpm. Results demonstrate that subject to air-fuel ratio and % of hydrogen added, IMEP time series can exhibit multiscale dynamics consisting of persistent oscillations and intermittent fluctuations. These results can help develop effective control strategies to reduce cyclic variability in a spark ignition engine fuelled by gasoline-hydrogen mixtures.

  7. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    OpenAIRE

    Elfasakhany, Ashraf

    2015-01-01

    This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.%) in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled wit...

  8. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  9. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available In this study, new blended fuels were formed by adding 3–10 vol. % of acetone into a regular gasoline. According to the best of the author's knowledge, it is the first time that the influence of acetone blends has been studied in a gasoline-fueled engine. The blended fuels were tested for their energy efficiencies and pollutant emissions using SI (spark-ignition engine with single-cylinder and 4-stroke. Experimental results showed that the AC3 (3 vol.% acetone + 97 vol.% gasoline blended fuel has an advantage over the neat gasoline in exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency by about 0.8%, 2.3%, 1.3%, 0.45% and 0.9%, respectively. As the acetone content increases in the blends, as the engine performance improved where the best performance obtained in this study at the blended fuel of AC10. In particular, exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency increase by about 5%, 10.5%, 5.2%, 2.1% and 3.2%, respectively, compared to neat gasoline. In addition, the use of acetone with gasoline fuel reduces exhaust emissions averagely by about 43% for carbon monoxide, 32% for carbon dioxide and 33% for the unburnt hydrocarbons. The enhanced engine performance and pollutant emissions are attributed to the higher oxygen content, slight leaning effect, lower knock tendency and high flame speeds of acetone, compared to the neat gasoline. Finally the mechanism of acetone combustion in gasoline-fueled engines is proposed in this work; two main pathways for acetone combustion are highlighted; furthermore, the CO, CO2 and UHC (unburnt hydrocarbons mechanisms of formation and oxidation are acknowledged. Such acetone mechanism is employed for further understanding acetone combustion in spark-ignition engines.

  10. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Edward [General Motors LLC, Pontiac, MI (United States); Gough, Charles [General Motors LLC, Pontiac, MI (United States)

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  11. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  12. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  13. 3rd Conference on Ignition Systems for Gasoline Engines

    CERN Document Server

    Sens, Marc

    2017-01-01

    The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.

  14. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    OpenAIRE

    Alfredas Rimkus; Mindaugas Melaika; Jonas Matijošius; Šarūnas Mikaliūnas; Saugirdas Pukalskas

    2016-01-01

    In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume) gasoline mixtures and additionally supplied oxygen and hydrogen (HHO) gas mixture (3.6 l/min) in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during comb...

  15. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  16. About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results

    Science.gov (United States)

    Niculae, M.; Ivan, F.; Neacsu, D.

    2017-08-01

    The paper aims to analyze and compare the environmental performances between a gasoline direct engine and a multi-point injection engine. There are analyzed the stages of emission formation during the New European Driving Cycle. The paper points out the dynamic, economic and environmental performances of spark ignition engines equipped with a GDI systems. Reason why, we believe the widespread implementation of this technology is today an immediate need.

  17. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  18. Improvement of performance and reduction of pollutant emission of a four stroke spark ignition engine fueled with hydrogen-gasoline fuel mixture

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq; Al-Janabi, Haroun Abdul-Kadim Shahad [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2000-07-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emissions of a four stroke spark ignition engine has been studied. A detailed model to simulate a four stroke cycle of a spark ignition engine fueled with hydrogen-ethyl alcohol-gasoline has been used to study the effect of hydrogen and ethyl alcohol blending on the thermodynamic cycle of the engine. The results of the study show that all engine performance parameters have been improved when operating the gasoline S.I.E. with dual addition of hydrogen and ethyl alcohol. It has been found that 4% of hydrogen and 30% of ethyl alcohol blending causes a 49% reduction in CO emission, a 39% reduction in NO{sub x} emission, a 49% reduction in specific fuel consumption and increases in the thermal efficiency and output power by 5 and 4%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporised, and this causes a reduction in both the brake power and efficiency. (Author)

  19. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  20. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  1. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    Directory of Open Access Journals (Sweden)

    Alfredas Rimkus

    2016-09-01

    Full Text Available In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume gasoline mixtures and additionally supplied oxygen and hydrogen (HHO gas mixture (3.6 l/min in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during combustion phase and decreases effective specific fuel consumption. Buthanol addition decreases the rate of heat release, the combustion temperature and pressure are lower which have an influence on lower nitrous oxide (NOx emission in exhaust gases. Buthanol lowers hydrocarbon (HC formation, but it increases carbon monoxide (CO concentration and fuel consumption. Combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced buthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved when engine is working with optimal spark timing, as it would work on gasoline fuel.

  2. Research of performance on a spark ignition engine fueled by alcohol–gasoline blends using artificial neural networks

    International Nuclear Information System (INIS)

    Kapusuz, Murat; Ozcan, Hakan; Yamin, Jehad Ahmad

    2015-01-01

    In this paper, we investigate various alcohol–unleaded gasoline mixtures that can be used with no modifications in a spark-ignition engine. The mixtures consisted of 5%, 10% and 15% ethanol, methanol together and separately. Based on the recommendations of the Jordanian Petroleum Company (JoPetrol), total alcohol content should not exceed 15–20% owing to safety and ignition hazards. Optimizations for the use of alcohol were made for the maximum torque, maximum power and minimum specific fuel consumption values. For torque 0.9906, for brake power 0.997, and for brake specific fuel consumption 0.9312 regression values for tests have been obtained from models generated by the neural network. According to the modeling and optimizations, use of fuel mixture containing 11% methanol–1% ethanol for performance, and fuel mixture containing 2% methanol for BSFC were found to have better results. Moreover, the paper demonstrates that ANN (Artificial Neural Network) can be used successfully as an alternative type of modeling technique for internal combustion engines. - Highlights: • ANN model was developed and verified. • Effects of alcohol–gasoline blends on performance of a SI engine are fairly simulated. • Effects of alcohol–gasoline blends on performance of a SI engine are optimized.

  3. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  4. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2015-12-01

    Full Text Available This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.% in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled with ethanol–methanol–gasoline blends, the concentrations of CO and UHC (unburnt hydrocarbons emissions were significantly decreased, compared to the neat gasoline. Methanol–gasoline blends presented the lowest emissions of CO and UHC among all test fuels. Ethanol–gasoline blends showed a moderate emission level between the neat gasoline and ethanol–methanol–gasoline blends, e.g., ethanol–gasoline blends presented lower CO and UHC emissions than those of the neat gasoline but higher emissions than those of the ethanol–methanol–gasoline blends. In addition, the CO and UHC decreased and CO2 increased when ethanol and/or methanol contents increased in the fuel blends. Furthermore, the effects of blended fuels on engine performance were investigated and results showed that methanol–gasoline blends presents the highest volumetric efficiency and torque; ethanol–gasoline blends provides the highest brake power, while ethanol–methanol–gasoline blends showed a moderate level of volumetric efficiency, torque and brake power between both methanol–gasoline and ethanol–gasoline blends; gasoline, on the other hand, showed the lowest volumetric efficiency, torque and brake power among all test fuels.

  5. An experimental study on regulated and unregulated pollutants from a spark ignition car fuelled on liquefied petroleum gas and Gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.; Yun-shan, G.E.; Jun-fang, W.; Jian-wei, T.; Gardezi, S.A.R.

    2010-01-01

    In the experimental study conducted on a spark ignition (SI) car running on a chassis dynamometer, fuelled on liquefied petroleum gas (LPG) and gasoline, carbon monoxide (CO) and total hydrocarbons (HC) decreased by 37.3% and 46.8%, respectively, while oxides of nitrogen (NOx) increased by 59.7% due to higher compression ratio with LPG, compared with gasoline. In case of LPG fuel, formaldehyde, acetaldehyde, propionaldehyde, 2-butanone, butyraldehyde, benzaldehyde and valeraldehyde decreased, leading to an over all decrease of about 35% and 26% in carbonyls and their ozone forming potential (OFP), respectively, compared with gasoline. Furthermore, benzene, toluene, ethyl benzene, xylene and styrene decreased, resulting in an overall decrease of 38.8% in volatile organic compounds (VOCs) and 39.2% in BTEX (benzene, toluene, ethyl benzene and xylene) species due to more complete combustion with LPG, compared with gasoline. Further, the OFP of VOCs with LPG was 6% lower than that with gasoline fuel. (author)

  6. Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation

    International Nuclear Information System (INIS)

    Scala, F.; Galloni, E.; Fontana, G.

    2016-01-01

    Highlights: • Bio-fuels will reduce the overall CO_2 emission. • The properties of butanol/gasoline–air mixtures have been determined. • A 1-D model of a SI engine has been calibrated and validated. • The butanol content reduces the combustion duration. • The optimal ignition timing slightly changes. - Abstract: In this paper, the performance of a turbocharged SI engine, firing with butanol/gasoline blends, has been investigated by means of numerical simulations of the engine behavior. When engine fueling is switched from gasoline to alcohol/gasoline mixture, engine control parameters must be adapted. The main necessary modifications in the Electronic Control Unit have been highlighted in the paper. Numerical analyses have been carried out at partial load operation and at two different engine speeds (3000 and 4000 rpm). Several n-butanol/gasoline mixtures, differing for the alcohol contents, have been analyzed. Such engine performances as torque and indicated efficiency have been evaluated. Both these characteristics decrease with the alcohol contents within the mixtures. On the contrary, when the engine is fueled by neat n-butanol, torque and efficiency reach values about 2% higher than those obtained with neat gasoline. Furthermore, the optimal spark timing, for alcohol/gasoline mixture operation, must be retarded (up to 13%) in comparison with the correspondent values of the gasoline operation. In general, engine performance and operation undergo little variations when fuel supplying is switched from gasoline to alcohol/gasoline blends.

  7. Investigation of emissions characteristics of secondary butyl alcohol-gasoline blends in a port fuel injection spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yusri I.M.

    2017-01-01

    Full Text Available Exhaust emissions especially from light duty gasoline engine are a major contributor to air pollution due to the large number of vehicles on the road. The purpose of this study is to experimentally analyse the exhaust pollutant emissions of a four-stroke port fuel spark ignition engines operating using secondary butyl alcohol–gasoline blends by percentage volume of 5% (GBu5, 10% (GBu10 and 15% (GBu15 of secondary butyl- alcohol (2-butanol additives in gasoline fuels at 50% of wide throttle open. The exhaust emissions characteristics of the engine using blended fuels was compared to the exhaust emissions of the engine with gasoline fuels (G100 as a reference fuels. Exhaust emissions analysis results show that all of the blended fuels produced lower CO by 8.6%, 11.6% and 24.8% for GBu5, GBu10 and GBu15 respectively from 2500 to 4000 RPM, while for HC, both GBu10 and GBu15 were lower than that G100 fuels at all engine speeds. In general, when the engine was operated using blended fuels, the engine produced lower CO and HC, but higher CO2.

  8. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2007-07-01

    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  9. Particular bi-fuel application of spark ignition engines

    Science.gov (United States)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  10. Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engi

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available The sleek of using alternatives to gasoline fuel in internal combustion engines becomes a necessity as the environmental problems of fossil fuels as well as their depleted reserves. This research presents an experimental investigation into a new blended fuel; the effects of n-butanol–methanol–gasoline fuel blends on the performance and pollutant emissions of an SI (spark-ignition engine were examined. Four test fuels (namely 0, 3, 7 and 10 volumetric percent of n-butanol–methanol blends at equal rates, e.g., 0%, 1.5%, 3.5% and 5% for n-butanol and methanol, in gasoline were investigated in an engine speed range of 2600–3400 r/min. In addition, the dual alcohol (methanol and n-butanol–gasoline blends were compared with single alcohol (n-butanol–gasoline blends (for the first time as well as with the neat gasoline fuel in terms of performance and emissions. The experimental results showed that the addition of low content rates of n-butanol–methanol to neat gasoline adversely affects the engine performance and exhaust gas emissions as compared to the results of neat gasoline and single alcohol–gasoline blends; in particular, a reduction in engine volumetric efficiency, brake power, torque, in-cylinder pressure, exhaust gas temperature and CO2 emissions and an increase in concentrations of CO and UHC (unburned hydrocarbons emissions were observed for the dual alcohols. However, higher rates of n-butanol–methanol blended in gasoline were observed to improve the SI engine performance parameters and emission concentration. Oppositely the higher rates of single alcohol–gasoline blends were observed to provide adverse results, e.g., higher emissions and lower performance than those of lower rates of single alcohol. Finally, dual alcohol–gasoline blends could exceed (i.e. provide higher performance and lower emissions single alcohol–gasoline blends and pure gasoline at higher rates (>10 vol.% in the blend and, in turn, it is

  11. Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine

    International Nuclear Information System (INIS)

    Li, Tie; Wu, Da; Xu, Min

    2013-01-01

    Highlights: • We clarified the mechanism of EGR improving fuel economy of gasoline engines. • At constant air–fuel ratio, reduction of heat transfer loss is most significant. • At full load, elimination of fuel enrichment is dominant. • Combustion irreversibility increases with EGR. • Availability in the exhaust and heat transfer losses is smaller than energy losses. - Abstract: Exhaust gas recirculation (EGR) is effective to improve fuel economy of spark-ignition gasoline engines, but the detailed mechanism needs to be further investigated. In this paper, an in-depth analysis of the effects of cooled EGR on the fuel conversion efficiency of a boosted, spark-ignited, direct-injection, gasoline engines operated at the full, medium and low loads is conducted with the engine experiment and 1-D cycle simulation based on the first and second laws of thermodynamics. For all the operating loads, EGR increases the ratio of specific heat of working gas, reduces the fraction of heat transfer through the combustion chamber walls, and improves the pumping work during the gas exchanging stroke. Besides, EGR may replace the fuel enrichment at high load, advance the combustion phasing and increase the degree of constant volume heat release at the medium and high loads. As a result, about 1.1–4.1% improvements in the brake thermal efficiency are obtained by the 12–17% EGR at different loads. Despite the increased fraction of combustion-generated irreversibility (destruction in availability or exergy), the fraction of indicated work in the total availability increases with EGR for all the operating loads. Among the influencing factors, the effect of reduction in the heat transfer loss owing to EGR is dominant in improvement of the fuel conversion efficiency at constant air–fuel ratio, while replacement of the fuel enrichment with EGR is most effective at full load

  12. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  13. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  14. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  15. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO_2) and nitrogen oxide (NO_X) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  16. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  17. Effect of Operating Conditions on Pollutants Concentration Emitted from a Spark Ignition Engine Fueled with Gasoline Bioethanol Blends

    Directory of Open Access Journals (Sweden)

    Haroun A. K. Shahad

    2015-01-01

    Full Text Available This study is an experimental investigation of the effect of bioethanol gasoline blending on exhaust emissions in terms of carbon dioxide CO2, carbon monoxide CO, unburnt hydrocarbons UHC, and nitric oxide NOx of a spark ignition engine. Tests are conducted at controlled throttle and variable speed condition over the range of 1200 to 2000 rpm with intervals 400 rpm. Different compression ratios are tested for each speed, namely (7,8,10, and 11. Pure gasoline and bioethanol gasoline blends are used. The bioethanol used is produced from Iraqi date crop (Zehdi. Blending is done on energy replacement bases. Ethanol energy ratio (EER used is 5%, 10%, and 15%. At each of the three designated engine speeds, the torque is set as 0, 3, 7, 10, and 14 N·m. It is found that ethanol blending reduces CO and UHC concentration in the exhaust gases by about 45% and 40.15%, respectively, and increases NOx and CO2 concentrations in the exhaust gases by about 16.18% and 7.5%, respectively. It is found also that load and speed increase causes an increase in CO2 and NOx concentrations and reduces CO and UHC concentrations. It is also found that increasing the compression ratio causes the emissions of CO2 and NOx to decrease and those of CO and UHC to increase.

  18. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  19. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  20. Performance enhancement of a spark ignition engine fed by different fuel types

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jbara, Abdessalem; Jedli, Hedi; Slimi, Khalifa; Stoppato, Anna

    2016-01-01

    Highlights: • Biogas mixed with hydrogen is checked for a spark ignition engine. • An engine fed by biogas, hydrogen, natural gas or liquid petroleum gas is studied. • Efficiency is optimized with respect to consumption and exhaust gas recirculation. • Combustion reaction progress is characterized in real time. - Abstract: A numerical model based on thermodynamic and kinetic analyses has been established in order to evaluate biogas, hydrogen, natural gas or liquid petroleum gas as fuels in a spark ignition engine. For each fuel type, consumption as well as efficiency have been compared to gasoline in order to generate the same engine work (in the range of 0.28–0.43 W h/cycle). It was found that the spark ignition engine can be fed by an equimolar mixture of biogas and hydrogen. Moreover, thermal efficiency has been enhanced with respect to fuel consumption and exhaust gas recirculation (EGR). It was shown that an equimolar mixture between biogas and hydrogen increases the ITE by around 2.2% and decreases the mass consumption by less than 0.01 g/cycle. In addition, the combustion reaction progresses as well as CO and CO_2 emissions have been characterized in real time.

  1. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  2. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  3. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  4. Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Li, Yuqiang; Nithyanandan, Karthik; Lee, Timothy H.; Donahue, Robert Michael; Lin, Yilu; Lee, Chia-Fon; Liao, Shengming

    2016-01-01

    Highlights: • Water-containing ABE (acetone–butanol–ethanol) was used an alternative fuel. • Water-containing ABE and gasoline blends were investigated in an SI engine. • Water-containing ABE and gasoline blends can enhance engine torque. • Water-containing ABE and gasoline blends can reduce CO, UHC and NO_x emissions. - Abstract: Bio-butanol has proved to be a promising alternative fuel in recent years; it is typically produced from ABE (acetone–butanol–ethanol) fermentation from non-edible biomass feedstock. The high costs for dehydration and recovery from dilute fermentation broth have so far prohibited bio-butanol’s use in internal combustion engines. There is an interesting in studying the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. However, most previous studies covered the use of water-containing ABE–diesel blends. In addition, previous studies on SI engines fueled with ABE did not consider the effect of water. Therefore, the evaluation of water-containing ABE gasoline blends in a port fuel-injected spark-ignition (SI) engine was carried out in this study. Effect of adding ABE and water into gasoline on combustion, performance and emissions characteristics was investigated by testing gasoline, ABE30, ABE85, ABE29.5W0.5 and ABE29W1 (29 vol.% ABE, 1 vol.% water and 70 vol.% gasoline). In addition, ABE29W1 was compared with gasoline under various equivalence ratios (Φ = 0.83–1.25) and engine loads (3 and 5 bar BMEP). It was found that ABE29W1 generally had higher engine toque (3.1–8.2%) and lower CO (9.8–35.1%), UHC (27.4–78.2%) and NO_x (4.1–39.4%) than those of gasoline. The study indicated that water-containing ABE could be used in SI engines as an alternative fuel with good engine performance and low emissions.

  5. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  6. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  7. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  8. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  9. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  10. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  11. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  12. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  13. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  14. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  15. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  16. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul; Ahmed, Ahfaz; Nasir, Ehson Fawad; Badra, Jihad; Kalghatgi, Gautam; Sarathy, Mani; Curran, Henry; Farooq, Aamir

    2017-01-01

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components

  17. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.

    2016-09-16

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited (SI) engine. Terpineol is a bio-derived oxygenated fuel obtained from pine tree resin, and has the advantage of higher calorific value than ethanol. The ignition delay time (IDT) of terpineol was first investigated in an ignition quality tester (IQT). The IQT results demonstrated a long ignition delay of 24.7 ms for terpineol and an estimated research octane number (RON) of 104, which was higher than commercial European (Euro V) gasoline. The octane boosting potential of terpineol was further investigated by blending it with a non-oxygenated gasoline (FACE F), which has a RON (94) lower than Euro V gasoline (RON = 97). The operation of a gasoline direct injection (GDI) SI engine fueled with terpineol-blended FACE F gasoline enabled spark timing advancement and improved engine combustion. The knock intensity of FACE F + 30% terpineol was lower than FACE F gasoline at both maximum brake torque (MBT) and knock limited spark advance (KLSA) operating points. Increasing proportions of terpineol in the blend caused peak heat release rate, in-cylinder pressure, CA50, and combustion duration to be closer to those of Euro V gasoline. Furthermore, FACE F + 30% terpineol displayed improved combustion characteristics when compared to Euro V gasoline. © 2016

  18. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  19. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  20. Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI Engine’s Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Suleyman Simsek

    2018-03-01

    Full Text Available With the increase of energy needs and environmental pollution, alcohol-based alternative fuels are used in spark-ignited (SI engines. Fusel oil, which is a by-product obtained through distillation of ethanol, contains some valuable alcohols. As alcohols are high-octane, they have an important place among the alternative fuels. Fusel also takes its place among those alternatives as it is high-octane and low on exhaust emissions. In this research, the effects of using blends of unleaded gasoline and improved fusel oil on engine performance and exhaust emissions were analyzed experimentally. A four-stroke, single-cylinder, spark-ignited engine was used in the experiments. The tests were conducted at a fixed speed and under different loads. The test fuels were blended supplying with fusel oil at rates incremented by 10%, up to 50%. Under each load, the engine’s performance and emissions were measured. Throughout the experiments, it has been observed that engine torque and specific fuel consumption increases as the amount of fusel oil in the blend is increased. Nitrogen oxide (NOx, carbon monoxide (CO, and hydrocarbon (HC emissions are reduced as the amount of fusel oil in the blends is increased.

  1. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  2. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    Science.gov (United States)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  3. Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Salvi, B.L.; Subramanian, K.A.

    2015-01-01

    Highlights: • Experimental measurement of the flame kernel growth rate (FKGR) in SI engine. • FKGR is the highest at MBT timing as compared with retarded and advanced timings. • FKGR decreases with increase in engine speed. • FKGR is correlated with equivalence ratio, charge density, in-cylinder pressure and engine speed. - Abstract: As flame kernel growth plays a major role in combustion of premixed-charge in spark ignition engines for higher energy efficiency and less emission, the experimental study was carried out on a single cylinder spark ignition research engine for measurement of flame kernel growth rate (FKGR) using spark plug fibre optics probe (VisioFlame sensor). The FKGR was measured on the engine at different power output with varied spark ignition timings and different engine speeds. The experimental results indicate that the FKGR was the highest with the maximum brake torque (MBT) spark timing and it decreases with increase in the engine speed. The FKGR at engine speed of 1000 RPM was the highest of 1.81 m/s with MBT timing (20° bTDC) as compared to 1.6 m/s (15° bTDC), 1.67 m/s (25° bTDC), and 1.61 m/s (30° bTDC) with retarded and advanced timing. In addition to this, a phenomenological model was developed for calculation of FKGR. It was observed from the model that FKGR is function of equivalence ratio, engine speed, in-cylinder pressure and charge density. The experimental results and methodology emerged from this study would be useful for optimization of engine parameters using the FKGR and also further development of model for alternative fuels

  4. Preliminary study on the combustion and emission in a direct injection LPG spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seungmook; Lee, Seokhwan [Korea Institute of Machinery and Materials (Korea, Republic of)

    2010-07-01

    In the energy sector, with the implementation of stringent regulations on combustion emissions and the depletion of conventional fuels, there is an important need for low carbon fuel and advanced engine technology. Korea is the country with the most LPG vehicles in the world and the aim of this study, performed by the Korea Institute of Machinery and Materials, is to compare the performance of LPG direct injection spark ignition (DISI) with gasoline DISI. Heat release analyses were conducted to determine the combustion characteristics of both systems and experiments were performed to determine gaseous and nanoparticle emissions. Results showed that LPG provides a better thermal efficiency than gasoline and that THC, NOx, and particulate emissions were lower for LPG than for gasoline. This study demonstrated that LPG DISI can provide better combustion efficiency and lower emissions than gasoline DISI.

  5. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  6. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  7. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  8. A prediction study of a spark ignition supercharged hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-12-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO{sub x} emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO{sub x} emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO{sub x} emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio. (author)

  9. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  10. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  11. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  12. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad

    2017-03-28

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  13. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad; Bhavani Shankar, Vijai Shankar; Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  14. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Naser, Nimal; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited

  15. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  16. Hydrogen-ethanol blending as an alternative fuel of spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-07-01

    The performance and pollutant emission of a four-stroke spark ignition engine using hydrogen-ethanol blends as fuel have been studied. The tests were performed using 2, 4, 6, 8, 1 0 and 12 mass% hydrogen-ethanol blends. Gasoline fuel was used as a basis for comparison. The effect of using different blends of hydrogen-ethanol on engine power, specific fuel consumption, CO and NO{sub x} emission was studied. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. The results show that the supplemental hydrogen in the ethanol-air mixture improves the combustion process and hence improves the combustion efficiency, expands the range of combustibility of the ethanol fuel, increases the power, reduces the s.f.c. and reduces toxic emissions. The important improvement of hydrogen addition is to reduce the s.f.c. of ethanol engines. Results were compared to those with gasoline fuel at 7 CR and stoichiometric equivalence ratio. (author)

  17. Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks

    Energy Technology Data Exchange (ETDEWEB)

    Marchionea, T.; Ahmeda, S.F.; Mastorakos, E. [Department of Engineering, University of Cambridge (United Kingdom)

    2009-01-15

    This paper examines ignition processes of an n-heptane spray in a flow typical of a liquid-fuelled burner. The spray is created by a hollow-cone pressure atomiser placed in the centre of a bluff body, around which swirling air induces a strong recirculation zone. Ignition was achieved by single small sparks of short duration (2 mm; 0.5 ms), located at various places inside the flow so as to identify the most ignitable regions, or larger sparks of longer duration (5 mm; 8 ms) repeated at 100 Hz, located close to the combustion chamber enclosure so as to mimic the placement and characteristics of a gas turbine combustor surface igniter. The air and droplet velocities, the droplet diameter, and the total (i.e. liquid plus vapour) equivalence ratio were measured in inert flow by phase Doppler anemometry and sampling respectively. Fast camera imaging suggested that successful ignition events were associated with flamelets that propagated back towards the spray nozzle. Measurements of ignition probability with the single spark showed that localised ignition inside the spray is more likely to result in successful flame establishment when the spark is located in a region of negative velocity, relatively small droplet Sauter mean diameter, and mean equivalence ratio within the flammability limits. Ignition with the single spark was not possible at the location where the multiple spark experiments were performed. For those, the multiple spark sequence lasted approximately 1 to 5 s. It was found that a long spark sequence increases the ignition efficiency, which reached a maximum of 100% at the axial distance where the recirculation zone had maximum width. Ignition was not feasible with the spark downstream of about two burner diameters. Visualisation showed that small flame kernels emanate very often from the spark, which can be stretched as far as 20 mm from the electrodes by the turbulent velocity fluctuations. These kernels survive very little time. Successful overall

  18. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  19. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  20. Evaluation of performance and emissions characteristics of methanol blend (gasohol) in a naturally aspirated spark ignition engine

    Science.gov (United States)

    Alexandru, Dima; Ilie, Dumitru; Dragos, Tutunea

    2017-10-01

    Alternative fuels for use in internal combustion engines have become recently in attention due the strict regulations regarding the environmental protection, emissions and to reduce the dependency of the fossil fuels. One choice is the use of methanol as it can be produce from renewable sources and blended with gasoline in any proportion. The aim of this study is to compare the effects of methanol - gasoline blends regarding performance, combustion and emission characteristics with gasoline. Five different blends M5, M10, M15, M20 and M25 were tested in a single cylinder spark ignition engine typically used in scooters applications. The experimental results in engine performance show a decrease of torque and power up to 10 %and in emissions characteristics a CO, CO2, HC. It can be concluded that gasohol is viable option to be used in gasoline engines to replace partially the fossil fuel.

  1. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.-R.S. [Babylon Univ. (Iraq). Dept. of Mechanical Engineering

    2000-10-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NO{sub x} emission with increase in the higher useful compression ratio and output power of hydrogen-supplemented engine. The addition of 8 mass% of hydrogen, with 30 vol% of ethyl alcohol into a gasoline engine operating at 9 compression ratio and 1500 rpm causes a 48.5% reduction in CO emission, 31.1% reduction in NO{sub x} emission and 58.5% reduction in specific fuel consumption. Moreover, the engine thermal efficiency and output power increased by 10.1 and 4.72%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both the break power and efficiency. (Author)

  2. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  3. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  4. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  5. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  6. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; Tekawade, Aniket; Kosiba, Graham; Alabbad, Mohammed; Singh, Eshan; Park, Sungwoo; Rashidi, Mariam Al; Chung, Suk-Ho; Roberts, William L.; Oehlschlaeger, Matthew A.; Sung, Chih-Jen; Farooq, Aamir

    2016-01-01

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  7. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  8. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani

    2018-01-01

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index

  9. Gasoline Combustion Fundamentals DOE FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics at elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.

  10. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul

    2017-08-14

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.

  11. Spark Ignition LPG for Hydrogen Gas Combustion the Reduction Furnace ME-11 Process

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Reverse engineering method for automatic spark-ignition system of LPG to burn hydrogen gaseous in the reducing process of ME-11 furnace has been successfully implemented using local materials. A qualitative study to the initial behaviour of the LPG flame system has created an idea by modification to install an automatic spark-ignition of the LPG on the reducing furnace ME-11. The automatic spark-ignition system has been tested and proved working well. (author)

  12. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  13. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation

    International Nuclear Information System (INIS)

    Galloni, E.; Fontana, G.; Staccone, S.; Scala, F.

    2016-01-01

    Highlights: • The potential of butanol has been investigated at partial load operation. • Torque and thermal efficiency slightly decrease when the alcohol content increases. • At part load, spark advance does not require changes when alcohol content increases. - Abstract: Biofuels seem to represent one of the most promising means for the limitation of the greenhouse gas emissions coming from traditional energy systems. In this paper, the performance of a “downsized” spark-ignition engine, fueled by gasoline and bio-butanol blends (20% and 40% butanol mass percentage), has been analyzed. In the first phase of this activity, the experimental tests have been carried out at operating points ranging from low to medium engine speed and load. The first investigations were aimed to assess the main differences among the different fuels in terms of output torque, thermal efficiency, combustion duration and optimal spark timing. In order to study the engine behavior in a wide range of fuel mixtures, these parameters have been evaluated for equivalence ratio values ranging from 1.25 to 0.83. The results obtained in this step show that both the engine torque and thermal efficiency slightly decrease (meanly about 4%) when the blend alcohol content increases. However, butanol increases the burning rate of lean mixtures and an interesting result is that the spark advance does not require adjustments when fueling changes from neat gasoline to bio-butanol/gasoline blends. Later, the pollutant emissions and the CO_2 emissions, for both rich and lean mixtures of pure gasoline and gasoline bio-butanol blends, have been measured. In general, firing with alcohol blends, NO_x and CO emissions remain quite the same, HC emissions slightly decrease while the CO_2 emissions slightly increase. At the end, in order to reproduce the real world urban driving cycle, stoichiometric mixtures have been analyzed. In these conditions, the engine thermal efficiency, at given speed and torque

  14. Lubricant induced pre-ignition in an optical spark-ignition engine

    OpenAIRE

    Dingle, Simon Frederick

    2014-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This work focuses on the introduction of lubricant into the combustion chamber and the effect that this has on pre-ignition. Apparently for the first time, the work presented provides detailed full-bore optical data for lubricant induced pre-ignition and improves understanding of the super-knock phenomena that affects modern downsized gasoline engines. A new single-cylinder optical r...

  15. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem; Mohamed, Samah; Dawood, Alaaeldin; Sarathy, Mani

    2016-01-01

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition

  16. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  17. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  18. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part

  19. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    Science.gov (United States)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth

  20. Near-frictionless carbon coatings for spark-ignited direct-injected fuel systems. Final report, January 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Hershberger, J.; Ozturk, O.; Ajayi, O. O.; Woodford, J. B.; Erdemir, A.; Fenske, G. R.

    2002-01-01

    This report describes an investigation by the Tribology Section of Argonne National Laboratory (ANL) into the use of near-frictionless carbon (NFC) coatings for spark-ignited, direct-injected (SIDI) engine fuel systems. Direct injection is being pursued in order to improve fuel efficiency and enhance control over, and flexibility of, spark-ignited engines. SIDI technology is being investigated by the Partnership for a New Generation of Vehicles (PNGV) as one route towards meeting both efficiency goals and more stringent emissions standards. Friction and wear of fuel injector and pump parts were identified as issues impeding adoption of SIDI by the OTT workshop on ''Research Needs Related to CIDI and SIDI Fuel Systems'' and the resulting report, Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines. The following conclusions were reached: (1) Argonne's NFC coatings consistently reduced friction and wear in existing and reformulated gasolines. (2) Compared to three commercial DLC coatings, NFC provided the best friction reduction and protection from wear in gasoline and alternative fuels. (3) NFC was successfully deposited on production fuel injectors. (4) Customized wear tests were performed to simulate the operating environment of fuel injectors. (5) Industry standard lubricity test results were consistent with customized wear tests in showing the friction and wear reduction of NFC and the lubricity of fuels. (6) Failure of NFC coatings by tensile crack opening or spallation did not occur, and issues with adhesion to steel substrates were eliminated. (7) This work addressed several of the current research needs of the OAAT SIDI program, as defined by the OTT report Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines

  1. Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method

    International Nuclear Information System (INIS)

    Galloni, Enzo

    2012-01-01

    Highlights: ► Experimental data have been analyzed by a pressure based method. ► Knock intensity level depends on a threshold varying with the engine operating point. ► A dynamic method is proposed to overcome the definition of a predetermined threshold. ► The knock intensity of each operating point is quantified by a dimensionless index. ► The knock limited spark advance can be detected by means of this index. - Abstract: In spark ignition engines, knock onset limits the maximum spark advance. An inaccurate identification of this limit penalises the fuel conversion efficiency. Thus it is very important to define a knock detection method able to assess the knock intensity of an engine operating point. Usually, in engine development, knock event is evaluated by analysing the in-cylinder pressure trace. Data are filtered and processed in order to obtain some indices correlated to the knock intensity, then the calculated value is compared to a predetermined threshold. The calibration of this threshold is complex and difficult; statistical approach should be used, but often empirical values are considered. In this paper a method that dynamically calculates the knock threshold necessary to determine the knock event is proposed. The purpose is to resolve cycle by cycle the knock intensity related to an individual engine cycle without setting a predetermined threshold. The method has been applied to an extensive set of experimental data relative to a gasoline spark-ignition engine. Results are correlated to those obtained considering a traditional method, where a statistical approach has been used to detect knock.

  2. Investigating the effects of LPG on spark ignition engine combustion and performance

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2005-01-01

    A quasi-dimensional spark ignition (SI) engine cycle model is used to predict the cycle, performance and exhaust emissions of an automotive engine for the cases of using gasoline and LPG. Governing equations of the mathematical model mainly consist of first order ordinary differential equations derived for cylinder pressure and temperature. Combustion is simulated as a turbulent flame propagation process and during this process, two different thermodynamic regions consisting of unburned gases and burned gases that are separated by the flame front are considered. A computer code for the cycle model has been prepared to perform numerical calculations over a range of engine speeds and fuel-air equivalence ratios. In the computations performed at different engine speeds, the same fuel-air equivalence ratios are selected for each fuel to make realistic comparisons from the fuel economy and fuel consumption points of view. Comparisons show that if LPG fueled SI engines are operated at the same conditions with those of gasoline fueled SI engines, significant improvements in exhaust emissions can be achieved. However, variations in various engine performance parameters and the effects on the engine structural elements are not promising

  3. Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine Évaluation de mélange butanol-essence dans un moteur à allumage commandé à injection indirecte

    Directory of Open Access Journals (Sweden)

    Dernotte J.

    2009-11-01

    Full Text Available This paper assesses different butanol–gasoline blends used in a port fuel-injection, spark-ignition engine to quantify the influence of butanol addition on the emission of unburned hydrocarbons, carbon monoxide, and nitrogen oxide. Furthermore, in-cylinder pressure was measured to quantify combustion stability and to compare the ignition delay and fully developed turbulent combustion phases as given by 0%–10% and 10%–90% Mass Fraction Burned (MFB. The main findings are: 1 a 40% butanol/60% gasoline blend by volume (B40 minimizes HC emissions; 2 no significant change in NOx emissions were observed, with the exception of the 80% butanol/20% gasoline blend; 3 the addition of butanol improves combustion stability as measured by the COV of IMEP; 4 butanol added to gasoline reduces ignition delay (0%–10% MFB; and 5 the specific fuel consumption of B40 blend is within 10% of that of pure gasoline for stoichiometric mixture. Cet article évalue le potentiel de l’utilisation de différents mélanges butanolessence dans un moteur à allumage commandé à injection indirecte afin de quantifier l’influence de l’ajout de butanol sur les émissions des hydrocarbures imbrûlés (HC, le monoxyde de carbone (CO et les oxydes d’azote (NOx. De plus, l’influence sur la stabilité de combustion, le délai d’inflammation et sur la durée de la phase de combustion turbulente développée y sont également présentés. Les principaux résultats: 1 un mélange de 40% butanol et 60% essence (B40 par volume diminue les émissions de HC; 2 aucun effet significatif sur les émissions de NOx n’a été observé à l’exception du mélange 80% butanol/20% essence; 3 l’ajout de butanol améliore la stabilité de combustion ; 4 l’ajout de butanol réduit le délai d’inflammation, quantifié par la durée pour consommer 10% de masse de gaz frais; et 5 la consommation spécifique de carburant pour un mélange stoechiométrique de B40 est 10% sup

  4. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  5. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.

    2016-04-01

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.

  6. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  7. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  8. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  9. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal; Singh, Eshan; Ahmed, Ahfaz; Sarathy, Mani

    2017-01-01

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better

  10. knock characteristics analysis of a supercharged spark ignition

    African Journals Online (AJOL)

    user

    The power output of a spark ignition engine could be improved by boosting the ... that the presence of aromatics was responsible for the better anti-knock ..... System, a Master's Thesis in the Institutionen för ... Maintenance and Reliability, Vol.

  11. Development of laser-induced fluorescence for precombustion diagnostics in spark-ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Neij, H.

    1998-11-01

    Motivated by a desire to understand and optimize combustion in spark-ignition (SI) engines, laser techniques have been developed for measurement of fuel and residual gas, respectively, in the precombustion mixture of an operating SI engine. The primary objective was to obtain two-dimensional, quantitative data in the vicinity of the spark gap at the time of ignition. A laser-induced fluorescence (LIF) technique was developed for fuel visualization in engine environments. Since the fluorescence signal from any commercial gasoline fuel would be unknown to its origin, with an unpredictable dependence on collisional partners, pressure and temperature, a non-fluorescent base fuel - isooctane - was used. For LIF detection, a fluorescent species was added to the fuel. An additive not commonly used in this context - 3-pentanone - was chosen based on its suitable vaporization characteristics and fluorescent properties. The LIF technique was applied to an optically accessible research engine. By calibration, the fluorescence signal from the additive was converted to fuel-to-air equivalence ratio ({phi}). The accuracy and precision of the acquired data were assessed. A statistical evaluation revealed that the spatially averaged equivalence ratio around the spark plug had a significant impact on the combustion event. The strong correlation between these two quantities suggested that the early combustion was sensitive to large-scale inhomogeneities in the precombustion mixture. A similar LIF technique, using acetone as a fluorescent additive in methane, was applied to a combustion cell for ion current evaluation. The local equivalence ratio around the spark gap at the time of ignition was extracted from LIF data. Useful relations were identified between different ion current parameters and the local equivalence ratio, although the impact of the flow field, the fuel type, and the electrode geometry were identified as areas for future research. A novel fuel - dimethyl ether (DME

  12. Towards constrained optimal control of spark-ignition engines

    NARCIS (Netherlands)

    Feru, E.; Luo, X.

    2015-01-01

    In this paper, the torque control problem for spark-ignition engines is considered. The objective is to provide good output torque tracking with minimum fuel consumption, while avoiding engine knock and misre. To this end, three control strategies are proposed: a feed-forward controller with

  13. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  14. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  15. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  16. Knock investigation by flame and radical species detection in spark ignition engine for different fuels

    International Nuclear Information System (INIS)

    Merola, Simona S.; Vaglieco, Bianca M.

    2007-01-01

    The present paper aims to evaluate the phenomena of normal combustion and knocking in a single cylinder, ported fuel injection, four-stroke spark-ignition engine with a four-valve production head. All the measurements were realized in an optically accessible engine equipped with a wide quartz window in the bottom of the chamber. The study was carried out using optical techniques based on flame natural emission imaging and spectroscopy from UV to visible. Radical species such as OH and HCO were detected and correlated to the onset and the duration of knock and presence of hot-spots in end-gas. Measurements were carried out at 1000 rpm with wide-open throttle and stoichiometric mixture. Pure iso-octane, suitable mixtures of iso-octane and n-heptane and commercial gasoline were used

  17. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  18. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  19. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  20. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  1. Development And Testing Of Biogas-Petrol Blend As An Alternative Fuel For Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Awogbemi

    2015-08-01

    Full Text Available Abstract This research is on the development and testing of a biogas-petrol blend to run a spark ignition engine. A2080 ratio biogaspetrol blend was developed as an alternative fuel for spark ignition engine test bed. Petrol and biogas-petrol blend were comparatively tested on the test bed to determine the effectiveness of the fuels. The results of the tests showed that biogas petrol blend generated higher torque brake power indicated power brake thermal efficiency and brake mean effective pressure but lower fuel consumption and exhaust temperature than petrol. The research concluded that a spark ignition engine powered by biogas-petrol blend was found to be economical consumed less fuel and contributes to sanitation and production of fertilizer.

  2. A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol

    Science.gov (United States)

    Stelmasiak, Zdzisław

    2011-06-01

    The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.

  3. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz; Waqas, Muhammad; Naser, Nimal; Singh, Eshan; Roberts, William L.; Chung, Suk-Ho; Sarathy, Mani

    2016-01-01

    to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion

  4. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  5. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  6. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    Science.gov (United States)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  7. Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine

    International Nuclear Information System (INIS)

    Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia; Valentino, Gerardo

    2015-01-01

    Highlights: • A new convective heat transfer correlation was developed for spark ignition engines. • Measurements in an experimental optical power unit were used for validation. • Fuel effects were correctly modeled and verified with methane and hydrogen. • Results were compared to two other widely used correlations. • Calibration was found to be easier for the proposed model. - Abstract: Internal combustion engines are still the main technology for energy conversion in automotive transport and are set to remain the main choice of propulsion solutions for some time to come. Development and design of these power units in the quest for improved efficiency and reduced environmental impact is increasingly reliant on simulations in order to reduce costs. Therefore, continuous improvement of sub-models used for numerical investigation is required so that correct and pertinent results are obtained. Convective heat transfer is receiving much attention in this respect, especially as direct injection spark ignition (DISI) engines can feature abnormal combustion phenomena such as mega-knock, mainly driven by local hot spots in the combustion chamber, that can be extremely damaging as they cannot be mitigated with existing control procedures. As a result, thermal stratification is more and more investigated through both quasi-dimensional and more complex computational fluid dynamics (CFD) codes. Alternative fuels are also extensively studied, especially as their specific properties that are different from those of gasoline can make their application challenging, thus requiring further insight in order to identify suitable injection and ignition control strategies. A new convective heat transfer correlation was developed for application in quasi-dimensional models, with a more fundamental basis combined with the application of a flow field model; results were compared to existing and extensively used empirical equations. Assessments were based on in-cylinder pressure

  8. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai; Alabbad, Mohammed; El-Rachidi, Mariam; Mohamed, Samah; Singh, Eshan; Wang, Zhandong; Farooq, Aamir; Sarathy, Mani

    2016-01-01

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high

  9. Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James; Wallner, Thomas; Pamminger, Michael; Scarcelli, Riccardo; Singleton, Dan; Sanders, Jason

    2016-05-24

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.

  10. Numerical parametric investigations of a gasoline fuelled partially-premixed compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Arash [Islamic Azad University, Miyaneh Branch, Miyaneh (Iran, Islamic Republic of); Khalilarya, Shahram; Jafarmadar, Samad; Khatamenjhad, Hassan [Department of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Fathi, Vahid [Islamic Azad University, Ajagshir Branch, Ajabshir (Iran, Islamic Republic of)

    2011-07-01

    Parametric studies of a heavy duty direct injection (DI) gasoline fueled compression ignition (CI) engine combustion are presented. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to nitrogen oxides (NOx) emission reduction. A three dimensional computational fluid dynamics (CFD) code was employed and compared with experimental data. The model results show a good agreement with experimental data. The effect of injection characteristics such as, injection duration, main SOI timing, and nozzle hole size investigated on combustion and emissions.

  11. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G.

    2018-01-01

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  12. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji

    2018-04-03

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  13. Using gasoline in an advanced compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, R.F.; Ariztegui, J.; Dubois, T.; Hamje, H.D.C.; Pellegrini, L.; Rickeard, D.J.; Rose, K.D. [CONCAWE, Brussels (Belgium); Heuser, B. [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Schnorbus, T.; Kolbeck, A.F. [FEV GmbH, Aachen (Germany)

    2013-06-01

    Future vehicles will be required to improve their efficiency, reduce both regulated and CO{sub 2} emissions, and maintain acceptable driveability, safety, and noise. To achieve this overall performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. Fuel flexibility has already been demonstrated in previous studies on a compression ignition bench engine and a demonstration vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can also operate on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels. In this study, a compression ignition bench engine having a higher compression ratio, optimised valve timing, advanced engine management system, and flexible fuel injection could be operated on a European gasoline over full to medium part loads. The combustion was sensitive to EGR rates, however, and optimising all emissions and combustion noise was a considerable challenge at lower loads. (orig.)

  14. Experimental evaluation of a spark-ignited engine using biogas as fuel

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2008-05-01

    Full Text Available Different CH4 and CO2 mixtures were used as fuel in this work; they were fed into a spark-ignited engine equipped with devices allowing spark advance, gas delivery and gas consumption to be measured. Engine bench-tests re-vealed changes in the main operation parameters and emissions. The results showed that increasing CO2 percen-tage in the mixture increased the spark angle, reduced maximum power and torque and reduced exhaust emissions (by 90% in some cases when DAMA resolution 1015/2005 was applied. The main components to be considered when an engine of this type operates with gas fuel were also recognised.

  15. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  16. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  17. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  18. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  19. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  20. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    Science.gov (United States)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  1. Part-load performance and emissions of a spark ignition engine fueled with RON95 and RON97 gasoline: Technical viewpoint on Malaysia’s fuel price debate

    International Nuclear Information System (INIS)

    Mohamad, Taib Iskandar; How, Heoy Geok

    2014-01-01

    Highlights: • Recent Malaysia’s gasoline price hike affects mass perception and vehicle sales. • Effects of RON95 and RON97 on a representative engine was experimentally studied. • RON95 produced better torque, power, fuel efficiency and lower NO x . • RON97 gasoline resulted in lower BSFC and lower emissions of CO 2 , CO and HC. • Performance-emission-price cross-analysis indicated RON95 as the better option. - Abstract: Due to world crude oil price hike in the recent years, many countries have experienced increase in gasoline price. In Malaysia, where gasoline are sold in two grades; RON95 and RON97, and fuel price are regulated by the government, gasoline price have been gradually increased since 2009. Price rise for RON97 is more significant. By 2014, its per liter price is 38% more than that of RON95. This has resulted in escalated dissatisfaction among the mass. People argued they were denied from using a better fuel (RON97). In order to evaluate the claim, there is a need to investigate engine response to these two gasoline grades. The effect of gasoline RON95 and RON97 on performance and exhaust emissions in spark ignition engine was investigated on a representative engine: 1.6L, 4-cylinder Mitsubishi 4G92 engine with CR 11:1. The engine was run at constant speed between 1500 and 3500 rpm with 500 rpm increment at various part-load conditions. The original engine ECU, a hydraulic dynamometer and control, a combustion analyzer and an exhaust gas analyzer were used to determine engine performance, cylinder pressure and emissions. Results showed that RON95 produced higher engine performance for all part-load conditions within the speed range. RON95 produced on average 4.4% higher brake torque, brake power, brake mean effective pressure as compared to RON97. The difference in engine performance was more significant at higher engine speed and loads. Cylinder pressure and ROHR were evaluated and correlated with engine output. With RON95, the engine

  2. Estimation of operational parameters for a direct injection turbocharged spark ignition engine by using regression analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Tosun Erdi

    2017-01-01

    Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.

  3. Biofuel and Hydrogen Influence for Operation Parameters of Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Martynas Damaševičius

    2016-12-01

    Full Text Available Paper presents research of efficient and ecological parameters of gasoline engine working with biobuthanol (10% and 20% by volume and addi-tionaly supplying oxygen and hydrogen (HHO gas mixture (3.6 l/min, which was obtained from from water by electrolysis. Biobuthanol addition decreases rate of heat release, the combustion temperature and pressure are lower, which has an influence on lower nitrous oxide (NOx emission in exhaust gases. However, biobuthanol increases carbon monoxide (CO concentration. Biobuthanol fuel has a simplier molecular structure, therefore the concentration of HC in the exhaust gas is decreasing. Due to lower heating value of biobuthanol fuel and slower combustion process, the engine efficiency decreases and specific fuel consumptions increase. The change of engine energetical indicators due to biobuthanol, can be compensated with advanced ignition angle. Using experimental investigation, it was determined, that negative biobuthanol influence for the combustion process and engine efficient inicators can be compensated also by additional supplied HHO gas, in which the hydrogen element iprove fuel mixture com-bustion. Fuel combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced biobuthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved, when engine is working for petrol fuel typical optimal spark timing.

  4. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  5. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 2.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  6. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 1.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  7. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  8. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  9. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Wang, Weijing; Javed, Tamour; Park, Sungwoo; Oehlschlaeger, Matthew A.; Farooq, Aamir; Pitz, William J.; Sung, Chihjen

    2015-01-01

    Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from

  10. effect of gasket of varying thickness on spark ignition engines

    African Journals Online (AJOL)

    DJFLEX

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses. (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  11. Development of a device to valuate the effect of ethanol on the vapor pressure and vaporization enthalpy of fuel gasolines

    OpenAIRE

    Cataluña, Renato; Silva, Rosângela

    2006-01-01

    The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating con...

  12. Long term durability tests of small engines fueled with bio-ethanol / gasoline blends

    International Nuclear Information System (INIS)

    Tippayawong, N.; Kundhawiworn, N.; Jompakdee, W.

    2006-01-01

    The paper presents the result of an ongoing research to evaluate performance and wear of small, single cylinder, naturally aspirated, agricultural spark ignition engines using biomass-derived ethanol and gasoline blends. The reference gasoline fuel was selected to be representative of gasoline typically available in Thailand. Long-term engine tests of 10% and 20% ethanol / gasoline blends as well as the reference fuel were performed at a constant speed of 2300 rpm under part load condition up to 200 operation hours for each fuel type. Engine brake power, specific fuel consumption, carbon deposits and surface wear were measured and compared between neat gasoline and ethanol/ gasoline blends. It was found that blended fuels appeared to affect the engine performance in a similar way and compared well with the base gasoline fuel. From the results obtained, it was found that engine brake power and specific fuel consumption changed slightly with running time and were not found to have any significant change between different fuel blends. There were carbon deposits buildup on the spark plug, the intake port and exhaust valve stem for all fuels used. Surface wear was not significantly different in the test engines between neat gasoline or ethanol/gasoline blend fuelling

  13. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan

    2014-01-01

    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  14. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  15. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  16. IIT MMAE Dept. Research project the homogeneous charge thermal ignition (HCTI) engine

    OpenAIRE

    Domenech Menal, Joan Ignasi

    2011-01-01

    Nowadays the main kinds of engines that are used in ground transportation are, gasoline Spark Ignition engines and diesel Compression Ignition engines. As every day more fuel is being used by a growing number of vehicles, fuel dependency growth and a growing concern for our environment health, it is a crucial point to gain in fuel efficiency for ground transportation engines. Many approaches are being investigated, but we will focus in one kind that we call the HCTI, homogeneous charge the...

  17. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  18. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  19. Effect of gasket of varying thickness on spark ignition engines | Ajayi ...

    African Journals Online (AJOL)

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  20. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  1. Effects of ethanol on combustion and emissions of a gasoline engine operating with different combustion modes

    OpenAIRE

    Ojapah, MM; Zhao, H; Zhang, Y

    2016-01-01

    The introduction of fuel economy and CO2 emission legislations for passenger cars in many countries and regions has spurred the research and development of more efficient gasoline engines. The pumping loss at part-load operations is a major factor for the higher fuel consumption of spark ignition (SI) gasoline engines than the diesel engines. Various approaches have been identified to reduce the pumping loss at part-load operations, leading to improved fuel economy, including Early Intake Val...

  2. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine

    International Nuclear Information System (INIS)

    Wei, Haiqiao; Feng, Dengquan; Pan, Mingzhang; Pan, JiaYing; Rao, XiaoKang; Gao, Dongzhi

    2016-01-01

    Highlights: • N-butanol shows better knock resistance characterized by improved KLST. • Bu20 blend fuel slightly degrades the knock resistance compared with gasoline. • Knock oscillation frequency depends on combustion chamber resonance modes. • Probability distribution is applied to evaluate variation of knock intensity. - Abstract: n-Butanol is a very competitive alternative biofuel for spark ignition (SI) engines given its many advantages. Current researches are mainly concentrated on the overall combustion and emissions performance concerning the feasibility of n-butanol gasoline blends in SI engines. In this work, focus was given on the knocking combustion characteristics of operation with pure n-butanol as well as a blend fuel with 20% volume content of n-butanol (Bu20), which was investigated experimentally in a direct-injection spark ignition (DISI) single cylinder engine. Operation condition is fixed at a constant engine speed of 1500 r/min, using three throttle openings with stoichiometric air–fuel ratio. Spark timing was swept to achieve different knocking levels. The results of n-butanol and Bu20 were benchmarked against those obtained by the research octane number (RON) 92 commercial gasoline. Compared with the baseline fuel gasoline, neat n-butanol shows better anti-knock ability with more advanced knock limited spark timing, whereas slightly deteriorative knock resistance can be found for Bu20. It is hypothesized Bu20 has higher end gas temperature due to its higher brake mean effective pressure (BMEP) and faster burning rate compared with gasoline, which indicates the knock tendency depends not only on the fuel octane number, but also on the factors that affect the end gas thermodynamic state. The heavier knock propensity of Bu20 is furthermore confirmed by its more advanced knock onset and higher peak oscillation pressure. Results of fast fourier transform (FFT) indicate the knocking oscillation frequencies are mainly determined by the

  3. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, M.S. [Mechanical Engineering Technology Department, Higher Institute of Technology, Banha University, 4Zagalol Street, Benha, Galubia 1235 Z (Egypt)

    2010-12-15

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the source of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio {gamma}(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating {gamma}(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio {gamma}(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and

  4. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    International Nuclear Information System (INIS)

    Shehata, M.S.

    2010-01-01

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio γ(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating γ(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio γ(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high

  5. The relative effects of fuel concentration, residual-gas fraction, gas motion, spark energy and heat losses to the electrodes on flame-kernel development in a lean-burn spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Taylor, A.M.K.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering; Ishii, K. [Honda International Technical School, Saitama (Japan); Urata, Y. [Honda R and D Co., Ltd., Tochigi (Japan). Tochigi R and D Centre

    2004-04-01

    The potential of lean combustion for the reduction in exhaust emissions and fuel consumption in spark ignition engines has long been established. However, the operating range of lean-burn spark ignition engines is limited by the level of cyclic variability in the early-flame development stage that typically corresponds to the 0-5 per cent mass fraction burned duration. In the current study, the cyclic variations in early flame development were investigated in an optical stratified-charge spark ignition engine at conditions close to stoichiometry [air-to-fuel ratio (A/F) = 15] and to the lean limit of stable operation (A/F = 22). Flame images were acquired through either a pentroof window ('tumble plane' of view) or the piston crown ('swirl plane' of view) and these were processed to calculate the intra-cycle flame-kernel radius evolution. In order to quantify the relative effects of local fuel concentration, gas motion, spark-energy release and heat losses to the electrodes on the flame-kernel growth rate, a zero-dimensional flame-kernel growth model, in conjunction with a one-dimensional spark ignition model, was employed. Comparison of the calculated flame-radius evolutions with the experimental data suggested that a variation in A/F around the spark plug of {delta}(A/F) {approx} 4 or, in terms of equivalence ratio {phi}, a variation in {delta}{phi} {approx} 0.15 at most was large enough to account for 100 per cent of the observed cyclic variability in flame-kernel radius. A variation in the residual-gas fraction of about 20 per cent around the mean was found to account for up to 30 per cent of the variability in flame-kernel radius at the timing of 5 per cent mass fraction burned. The individual effect of 20 per cent variations in the 'mean' in-cylinder velocity at the spark plug at ignition timing was found to account for no more than 20 per cent of the measured cyclic variability in flame kernel radius. An individual effect of

  6. Ignition of dust clouds by sparks and heated surfaces; Inflammation des nuages de poussieres par des etincelles et des surfaces chauffees

    Energy Technology Data Exchange (ETDEWEB)

    Proust, C.; Boudalaa, M. [Institut National de l' Environnement Industriel et des Risques, 60 - Verneuil en Halatte (INERIS) (France)

    2001-07-01

    The three types of ignition sources described in this article are the sources of mechanical origin, the heated surfaces and the sparks of electrostatic origin. These 3 categories should be at the origin of 75% of the referenced dust explosions. The approach retained is mainly experimental. Hot spots are produced by the impact of a laser beam (Nd-YAG) on a target located inside the cloud. For relatively long delays of ignition (1 to 2 mn), the characteristic ignition parameter is the thermal power supplied by the target to the mixture, at least when the hot-spot size is small enough (less than 2 or 3 mm). Above this size, the ignition parameter would rather be a critical temperature of the hot spot which can be linked to the 'standard' ignition temperature of the cloud. For electrostatic sparks, measurements of current-voltage characteristics have been performed with some measurements of dimensions. Most possible types have been examined, like the discharges between conductive materials (A), between a conductive material and an insulating material (B), and between a conductive material and an insulating material lined with a conductor connected to the ground (C). It appears that the most powerful sparks (several joules) encountered in the industrial environment are those of type A and C. Measurements have shown that the efficiency of the conversion of the energy stored on the surface of the material into electrical energy inside the spark is very high. Finally, a first approach of the examination of the ignition risk has been tempted with a hot spot created during a lapse of time compatible with a mechanical impact. This leads to an ignition criterion in the form of energy. This energy remains at least two scales of size greater than the minimum spark ignition energy. This difference should come from the absorption of heat by solid materials. (J.S.)

  7. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  8. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  9. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  10. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  11. Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Hall, Carrie M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-10-17

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.

  12. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  13. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  14. Laser ignited engines: progress, challenges and prospects.

    Science.gov (United States)

    Dearden, Geoff; Shenton, Tom

    2013-11-04

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  15. High load performance and combustion analysis of a four-valve direct injection gasoline engine running in the two-stroke cycle

    OpenAIRE

    Dalla Nora, M; Zhao, H

    2015-01-01

    With the introduction of CO2 emissions legislation or fuel economy standards in Europe and many countries, significant effort is being made to improve spark ignition gasoline engines because of their dominant market share in passenger cars and potential for better fuel economy. Amongst several approaches, the engine downsizing technology has been adopted by the automotive companies as one of the most effective methods to reduce fuel consumption of gasoline engines. However, aggressive engine ...

  16. Improvement of performance and reduction of pollutant emissions of a four-stroke spark ignition engine fuelled with a mixture of hydrogen and methane as a supplementary fuel to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bagdhadi, M.A.-R.S. [University of Babylon (Iraq). College of Engineering

    2004-05-01

    Owing to the energy crisis and pollution problems of today, investigations have concentrated on decreasing fuel consumption and on lowering the concentration of toxic components in combustion products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, hydrogen and alcohol can be coupled to renewable and sustainable energy sources. The usage of a mixture of hydrogen and methane as a supplementary fuel to an alcohol-air mixture for spark ignition engines results in a considerable improvement in engine performance and in the reduction of the toxic components in exhaust gases in comparison with the conventional spark ignition gasoline engine. In tests, the gas comprising 40 per cent H, and 60 per cent CH{sub 4} by volume was added to alcohol as 0, 2, 4, 6, 8, 10 and 12 per cent by mass. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. Gasoline fuel was used as a basis for comparison. The important improvement in methane addition reduced the specific fuel consumption (s.f.c.) and CO emission of alcohol engines. The performance of the engine is enhanced when relatively small amounts of hydrogen are present with methane. This improvement in performance, which is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value, can be attributed largely to the faster and cleaner burning characteristics of hydrogen in comparison with methane or alcohol. Moreover, the addition of hydrogen decreases the s.f.c. of the engine. The possibility of an engine power quality adjustment has also been studied. (author)

  17. Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling

    OpenAIRE

    Aris Triwiyatno

    2012-01-01

    In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using...

  18. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2016-04-05

    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  19. Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends

    International Nuclear Information System (INIS)

    Li, Yuqiang; Meng, Lei; Nithyanandan, Karthik; Lee, Timothy H.; Lin, Yilu; Lee, Chia-fon F.; Liao, Shengming

    2017-01-01

    Bio-butanol is typically produced by acetone-butanol-ethanol (ABE) fermentation, however, the recovery of bio-butanol from the ABE mixture involves high costs and energy consumption. Hence it is of interest to study the intermediate fermentation product, i.e. ABE, as a potentially alternative fuel. In this study, an experimental investigation of the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with ABE-gasoline blends was carried out. By testing different ABE-gasoline blends with varying ABE content (0 vol%, 10 vol%, 30 vol% and 60 vol% referred to as G100, ABE10, ABE30 and ABE60), ABE formulation (A:B:E of 1:8:1, 3:6:1 and 5:4:1 referred to as ABE(181), ABE(361) and ABE(541)), and water content (0.5 vol% and 1 vol% water referred to as W0.5 and W1), it was found that ABE(361)30 performed well in terms of engine performance and emissions, including brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), carbon monoxide (CO), unburned hydrocarbons (UHC) and nitrogen oxides (NO_x) emissions. Then, ABE(361)30 was compared with conventional fuels, including E30, B30 (30 vol% ethanol or butanol blended with gasoline) and pure gasoline (G100) under various equivalence ratios and engine loads. Overall, a higher BTE (0.2–1.4%) and lower CO (1.4–4.4%), UHC (0.3–9.9%) and NO_x (4.2–14.6%) emissions were observed for ABE(361)30 compared to those of G100 in some cases. Therefore, ABE could be a good alternative fuel to gasoline due to the environmentally benign manufacturing process (from non-edible biomass feedstock and without a recovery process), and the potential to improve energy efficiency and reduce pollutant emissions. - Highlights: • ABE (acetone-butanol-ethanol) was used as a green alternative fuel. • ABE-gasoline blends with various ratios of ABE, ABE component and water were test. • Combustion, performance and emissions characteristics were investigated. • Adding ABE into

  20. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Science.gov (United States)

    2013-08-19

    ... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... emission standards; enhanced evaporative emission controls for high performance sterndrive/inboard engines... requirement relating to the control of emissions from new nonroad engines which are used in construction...

  1. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.; AlRamadan, Abdullah S.; Vedharaj, S; An, Yanzhao; Sim, Jaeheon; Chang, Junseok; Johansson, Bengt

    2018-01-01

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI

  2. Increasing the octane number of gasoline using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Sara Safari [Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran (Iran, Islamic Republic of); Rashidi, Alimorad, E-mail: rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran 14665-1998 (Iran, Islamic Republic of); Aghabozorg, Hamid Reza [Catalysis Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Moradi, Leila [Faculty of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2010-03-15

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  3. Increasing the octane number of gasoline using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-01-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  4. Influence of hydrox on spark ignition engine performance

    International Nuclear Information System (INIS)

    Naude, A.F.

    2003-01-01

    An experimental investigation was performed on the influence of the addition of small quantities of Hydrox (hydrogen and oxygen) as generated through electrolysis of water on the performance of a spark ignition engine. A Mazda 1600 cc fuel injected engine connected to a Superflow SF901 dynamometer system was used in this project. The engine was also equipped with a Unichip engine management system in order to enable changes in the spark timing and the amount of fuel injected. Hydrox was generated by an electrolysis process that could either be powered by the engine's alternator or from a separate power source. This hydrox gas produced from the electrolyzer was introduced into the engine's intake manifold and the influence of this was measured on the engine's performance, emissions and fuel consumption. For these tests a typical load condition as experienced for a light passenger car vehicle driven at 100 km/h on the open road was simulated. Typical results for the change in emissions with the hydrox introduction showed a significant reduction in hydrocarbons at lean air-fuel ratio operation of the engine. Additionally with the electrolysis process being driven by the engine a small improvement in fuel consumption was experienced. (author)

  5. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  6. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  7. Nonlinear control of a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Boverie, S; Chaumerliac, V [Siemens AutomotiveSA, MIRGAS Laboratory, 31 - Toulouse (France)

    1994-12-31

    This paper describes the improvements which can be made to spark ignition engine by extensive use of automatic control. Particular emphasis is placed on fast transient phases produced by simultaneous action on the throttle and the electronic fuel injection device. The aim is to achieve better performance for the fuel/air ratio regulation system, thereby improving engine efficiency and exhaust emission during these transient phases. The authors begin by presenting an average dynamic model of the intake manifold validated on an engine test bench and goes on to develop a closed-loop system controlling average pressure in the intake manifold using the reference tracking model method. The air supply control system is combined with a predictor to compensate for delays in the injection procedure. The paper concludes with a comparison between the results obtained using simulation and those obtained experimentally from the engine. (author) 10 refs.

  8. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin

    2016-09-24

    The influence of blending n-butanol at 20% by volume on the ignition delay times for a reference gasoline was studied in a rapid compression machine (RCM) for stoichiometric fuel/air mixtures at 20 bar and 678-858 K. Delay times for the blend lay between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20% of the mixture. Under these conditions n-butanol acted as an octane enhancer over and above what might be expected from a simple linear blending law. The ability of a gasoline surrogate, based on a toluene reference fuel (TRF), to capture the main trends of the gasoline/n-butanol blending behaviour was also tested within the RCM. The 3-component TRF based on a mixture of toluene, n-heptane and iso-octane was able to capture the trends well across the temperature range studied. Simulations of ignition delay times were also performed using a detailed blended n-butanol/TRF mechanism based on the adiabatic core assumption and volume histories from the experimental data. Overall, the model captured the main features of the blending behaviour, although at the lowest temperatures, predicted ignition delays for stoichiometric n-butanol were longer than those observed. A brute-force local sensitivity analysis was performed to evaluate the main chemical processes driving the ignition behaviour of the TRF, n-butanol and blended fuels. The reactions of fuel + OH dominated the sensitivities at lower temperatures, with H abstraction from n-butanol from a and 7 sites being key for both the n-butanol and the blend. At higher temperatures the decomposition of H2O2 and reactions of HO2 and that of formaldehyde with OH became critical, in common with the ignition behaviour of other fiiels. Remaining uncertainties in the rates of these key reactions are discussed. Crown Copyright (C) 2016 Published

  9. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  10. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  11. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  12. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  13. Comparative exergy analyses of gasoline and hydrogen fuelled ices

    International Nuclear Information System (INIS)

    Nieminen, J.; Dincer, I.; Yang, Y.

    2009-01-01

    Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second laws of thermodynamics. A thorough graphical analysis of heat transfer, work, thermo mechanical, and intake charge exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a proportional exergy distribution as a fraction of the intake charge exergy. It was found that the hydrogen fuelled engine had a greater proportion of the intake charge exergy converted into work exergy, indicating a second law efficiency of 50.13% as opposed to 44.34% for a gasoline fuelled engine. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine is postulated to be a part of the reason for decreased work output of a hydrogen engine. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches. (author)

  14. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  15. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  16. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  17. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai

    2016-06-28

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high-octane bio-derived components with low octane naphtha streams is attractive. 2-phenyl ethanol (2-PE), is one such potential candidate that can be derived from lignin, a biomass component made of interconnected aromatic groups. We first ascertained the blending anti-knock quality of 2-PE by studying the effect of spark advancement on knock for various blends 2-PE, toluene, and ethanol with naphtha in a cooperative fuels research engine. The blending octane quality of 2-PE indicated an anti-knock behavior similar or slightly greater than that of toluene, and ethylbenzene, which could be attributed to either chemical kinetics or charge cooling effects. To isolate chemical kinetic effects, a model for 2-PE auto-ignition was developed and validated using ignition delay times measured in a high-pressure shock tube. Simulated ignition delay times of 2-PE were also compared to those of traditional high-octane gasoline blending components to show that the gas phase reactivity of 2-PE is lower than ethanol, and comparable to toluene, and ethylbenzene at RON, and MON relevant conditions. The gas-phase reactivity of 2-PE is largely controlled by its aromatic ring, while the effect of the hydroxyl group is minimal. The higher blending octane quality of 2-PE compared to toluene, and ethylbenzene can be attributed primarily to the effect of the hydroxyl group on increasing heat of vaporization. © 2016 The Combustion Institute.

  18. Using a spark-spread valuation to investigate the impact of corn-gasoline correlation on ethanol plant valuation

    International Nuclear Information System (INIS)

    Kirby, Natasha; Davison, Matt

    2010-01-01

    Corn ethanol plants have been criticized for a number of reasons in recent years. This paper provides another ground for criticizing these plants. Historical corn and gasoline prices are uncorrelated, but widespread adoption of corn ethanol production might reasonably lead to future correlation between these prices. We present a real options - like valuation of an ethanol plant as a spark spread between the corn price and the gasoline price. This analysis shows that the value of an ethanol plant monotonically decreases with increasing correlation and the optimal production schedule greatly depends on the correlation. Even relatively small new correlations can result in a significant proportional value decrease; a 50% correlation between corn and gasoline causes ethanol plants to lose 10% of their value. The limiting case of full correlation would lead to a 30% value loss. (author)

  19. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Du, Jiakun; Sun, Wanchen; Guo, Liang; Xiao, Senlin; Tan, Manzhi; Li, Guoliang; Fan, Luyan

    2015-01-01

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline

  20. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  1. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.; Badra, Jihad; Javed, Tamour; Alabbad, Mohammed; Bokhumseen, Nehal; Gaillard, Patrick; Babiker, Hassan; Farooq, Aamir; Sarathy, Mani

    2015-01-01

    work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range

  2. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  3. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  4. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    Directory of Open Access Journals (Sweden)

    Bulatović Željko M.

    2014-01-01

    Full Text Available This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95 than required (leaded petrol MB 86. Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41 by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers and special electronic block connected with distributor, show that the cumulative first and second theoretical phase of combustion when petrol of higher octane number (BMB 95 is used lasts slightly longer than when the low-octane petrol MB 86 is used. For new petrol (BMB 95 higher optimal angles of pre-ignition have been determined by which better performances of the engine are achieved without a danger of the combustion with detonation (also called knocking.

  5. Performance Characteristics Comparison of CNG Port and CNG Direct Injection in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    2018-03-01

    Full Text Available A comparative performance analysis is being carried out on a four cylinder, four stroke cycle, spark ignition engine having displacement volume 1297cc. The cylinder head of original gasoline based engine was modified by drilling holes from upper surfaces of head to individual combustion chamber to convert the engine in a CNG direct injection engine. The CNG port injection (CNG-PI system and CNG direct injection (CNG-DI system were incorporated with the single engine.  The engine was retrofitted to run on both CNG-PI and CNG-DI system alternately with common CNG tank and other engine loading and measurement system. The engine was equipped with electrical dynamometer having rheostat type loading. The CNG direct injection system was incorporated with various sensors and engine ECU. The operating parameters can be obtained on computer screen by loading the computer with engine through switch box. The engine was run over the speed range of 1000 rpm to 3000 rpm with incremental speed of 300 rpm. The performance parameters were calculated from observations and recorded for both CNG-PI and CNG-DI system. The experimental investigation exhibits that, the average 7-8% reduction in BSFC while the engine was running with CNG-DI system as compared to that of CNG-PI system. Also the engine produced 8-9% higher brake torque and hence higher brake power. The engine gives 6-7% higher brake thermal efficiency with CNG-DI system as compared to CNG-PI system.

  6. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  7. Performance simulation of a spark ignited free-piston engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-10-15

    Free-piston engines are under investigation by a number of research groups worldwide due to potential fuel efficiency and engine emissions advantages. The free-piston engine generator, in which a linear electric generator is fixed to the mover to produce electric power, has been proposed as an alternative prime mover for hybrid-electric vehicles. This paper investigates the performance of a spark ignited free-piston engine generator and compares it to a conventional engine using a computational fluid dynamics simulation model. The particular operating characteristics of the free-piston engine were not found to give noticeable performance advantages, and it is concluded that the main potential of this technology lies in the simplicity and flexibility of the concept. (author)

  8. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  9. OH PLIF measurement in a spark ignition engine with a tumble flow

    Science.gov (United States)

    Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team

    2017-11-01

    Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.

  10. Skip cycle system for spark ignition engines: An experimental investigation of a new type working strategy

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper T.

    2007-01-01

    A new type working strategy for spark ignition engine, named skip cycle, is examined. The main idea is to reduce the effective stroke volume of an engine by cutting off fuel injection and spark ignition in some of the classical four stroke cycles. When the cycle is skipped, additionally, a rotary valve is used in the intake to reduce pumping losses in part load conditions. The effect of this strategy is similar to that of variable displacement engines. Alternative power stroke fractions in one cycle and applicability in single cylinder engines are specific advantageous properties of the proposed system. A thermodynamic model, besides experimental results, is used to explain the skip cycle strategy in more detail. This theoretical investigation shows considerable potential to increase the efficiency at part load conditions. Experimental results obtained with this novel strategy show that the throttle valve of the engine opens wider and the minimum spark advance for maximum brake torque decreases in comparison to those of the classical operation system. The brake specific fuel consumption decreases at very low speed and load, while it increases at higher speed and load due to the increased fuel loss within the skipped cycles. In this working mode, the engine operates at lower idle speed without any stability problem; and moreover with less fuel consumption

  11. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  12. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  13. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    International Nuclear Information System (INIS)

    Mitroglou, N; Arcoumanis, C; Mori, K; Motoyama, Y

    2006-01-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine

  14. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang; Zhang, Yu; Traver, Michael; Cleary, David; Som, Sibendu

    2017-03-28

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most

  15. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  16. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  17. Chemistry Impacts in Gasoline HCCI

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  18. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance

    OpenAIRE

    Benajes Calvo, Jesus Vicente; García Martínez, Antonio; Doménech Llopis, Vicente; Durret, Russell

    2013-01-01

    Nowadays the automotive scientific community and companies are focusing part of their efforts on the investigation of new combustion modes in Compression Ignition (Cl) engines, mainly based on the use of locally lean air fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduce pollutant formation. However these combustion concepts have some shortcomings, related to combustion phasing control and combustion stability under th...

  19. Investigating the influences of liquid LPG injection on spark ignition (SI engine

    Directory of Open Access Journals (Sweden)

    Tukiman Mohd Mustaqim

    2017-01-01

    Full Text Available Liquefied petroleum gas (LPG is one of the alternative fuels that becoming popular to be use in spark ignition engine (SI. This paper briefly presents the influence of energy content to the engine output of 1.6L SI engine of Proton Gen 2. The engine was coupled to a chassis dynamometer and few related apparatus were employed in determine the engine behavior. All data collected were illustrated in graph for further analysis. The engine shows comparable engine output, however, the engine requires some tuning in order to fully utilize the energy content of LPG.

  20. Properties, performance and emissions of biofuels in blends with gasoline

    Science.gov (United States)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  1. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation

    Science.gov (United States)

    Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun

    2010-04-01

    The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.

  2. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  3. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol–gasoline

  4. Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, Rizalman; Azmi, W.H.; Najafi, G.; Sidik, N.A.C.; Awad, Omar I.

    2016-01-01

    Highlights: • 2-Butanol-gasoline blends up to 15% of volume were examined. • Combustion emissions and thermal balance for blended fuel were discussed. • Significant of improvement for energy utilisation by using blended fuels. - Abstract: An experimental investigation of butanol as an alternative fuel was conducted. A four-cylinder, four-stroke gasoline engine was used to investigate the engine combustion emissions and thermal balance characteristics using 2-butanol–gasoline blended fuels at 50% throttle wide open. In this experimental study, the gasoline engine was tested at 2-butanol–gasoline percentage volume ratios of 5:95 (GBu5), 10:90 (GBu10) and 15:85 (GBu15) of gasoline to butanol, respectively. Combustion analysis results showed that 2-butanol–gasoline blends have a lower in-cylinder pressure, rate of pressure rise and rate of heat release. However, as the 2-butanol addition increases in the blended fuels, increasing trends of in-cylinder pressure, rate of pressure rise and rate of heat release are observed, but it is still lower than G100 fuels. Moreover, even 5%, 10% and 15% additions of 2-butanol in the gasoline fuels improve the COV of IMEP by 3.7, 3.46 and 3.26, respectively, which indicates that the presence of 2-butanol stabilises the combustion process. Comparative analysis of the experimental results by exhaust emissions produced an average of 7.1%, 13.7%, and 19.8% lower NO_x for GBu5, GBu10 and GBu15, respectively, over the speed range of 1000–4000 RPM. Other emission contents indicate lower CO and HC but higher CO_2 from 2500 to 4000 RPM for the blended fuels with regard to G100. The thermal balance analysis mainly exhibits an improvement in effective power, cooling energy and exhaust energy by average differences of 3.3%, 0.8% and 2.3% for GBu15 compared with G100.

  5. Cycle-to-cycle fluctuation of combustion in a spark-ignition engine; Hibana tenka engine no nensho hendo

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Y; Yoshiyama, S; Tomita, E; Hamagami, T [Okayama University, Okayama (Japan); Otsubo, H [Yammer Diesel Engine Co. Ltd. Tokyo (Japan)

    1997-10-01

    In a homogeneous charge spark-ignition engine, the duration of early stage of combustion is a dominant factor for determining the fluctuation of mean effective pressure. And the early stage of combustion varies with the equivalence ratio and turbulence characteristics of the mixture. In this study, the fluctuations of 1% combustion duration and indicated mean effective pressure Pmi were computed as the function of fluctuations both in the equivalence ratio {phi} of the mixture and in the turbulence characteristics of the cylinder charge. And effects of the spark timing {theta}ig and {phi} on the cycle-to-cycle fluctuation in Pmi were investigated. 16 refs., 6 figs.

  6. Does charge transfer correlate with ignition probability?

    International Nuclear Information System (INIS)

    Holdstock, Paul

    2008-01-01

    Flammable or explosive atmospheres exist in many industrial environments. The risk of ignition caused by electrostatic discharges is very real and there has been extensive study of the incendiary nature of sparks and brush discharges. It is clear that in order to ignite a gas, an amount of energy needs to be delivered to a certain volume of gas within a comparatively short time. It is difficult to measure the energy released in an electrostatic discharge directly, but it is possible to approximate the energy in a spark generated from a well defined electrical circuit. The spark energy required to ignite a gas, vapour or dust cloud can be determined by passing such sparks through them. There is a relationship between energy and charge in a capacitive circuit and so it is possible to predict whether or not a spark discharge will cause an ignition by measuring the charge transferred in the spark. Brush discharges are in many ways less well defined than sparks. Nevertheless, some work has been done that has established a relationship between charge transferred in brush discharges and the probability of igniting a flammable atmosphere. The question posed by this paper concerns whether such a relationship holds true in all circumstances and if there is a universal correlation between charge transfer and ignition probability. Data is presented on discharges from textile materials that go some way to answering this question.

  7. Assessment of elliptic flame front propagation characteristics of iso-octane, gasoline, M85 and E85 in an optical engine

    OpenAIRE

    Ihracska, Balazs; Korakianitis, Theodosios P.; Ruiz, Paula; Emberson, David Robert; Crookes, Roy James; Diez, Alvaro; Wen, Dongsheng

    2014-01-01

    Premixed fuel-air flame propagation is investigated in a single-cylinder, spark-ignited, four-stroke optical test engine using high-speed imaging. Circles and ellipses are fitted onto image projections of visible light emitted by the flames. The images are subsequently analysed to statistically evaluate: flame area; flame speed; centroid; perimeter; and various flame-shape descriptors. Results are presented for gasoline, isooctane, E85 and M85. The experiments were conducted at stoichiometric...

  8. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  9. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  10. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    Science.gov (United States)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  11. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  12. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  13. Performance, emission and combustion characteristics of a branched higher mass, C3 alcohol (isopropanol blends fuelled medium duty MPFI SI engine

    Directory of Open Access Journals (Sweden)

    Harish Sivasubramanian

    2017-04-01

    Full Text Available With growing concerns about environmental pollution caused by automobiles, biofuels containing oxygen – also known as oxygenates – are being researched very rigorously. In this article, we have inspected the use of isopropanol/gasoline blends, as fuel in a 4 – cylinder Spark Ignition engine with Multi-Point Fuel Injection System. Isopropanol was mixed with Unleaded Gasoline in proportions of 10, 20 and 30% by volume (IPA10, IPA20 and IPA30. It is found that with the use of isopropanol/gasoline blends in Spark Ignition Engine, Brake Thermal Efficiency and NOx emissions increased whereas carbon monoxide and hydrocarbon emissions decreased. When the spark timing was retarded by 2 degrees, it was found that isopropanol/gasoline blends emitted lower NOx emissions than those at original spark timing. Isopropanol blends also increased the in-cylinder pressure values and heat release rate values.

  14. Exploring the stochastic and deterministic aspects of cyclic emission variability on a high speed spark-ignition engine

    International Nuclear Information System (INIS)

    Karvountzis-Kontakiotis, A.; Dimaratos, A.; Ntziachristos, L.; Samaras, Z.

    2017-01-01

    This study contributes to the understanding of cycle-to-cycle emissions variability (CEV) in premixed spark-ignition combustion engines. A number of experimental investigations of cycle-to-cycle combustion variability (CCV) exist in published literature; however only a handful of studies deal with CEV. This study experimentally investigates the impact of CCV on CEV of NO and CO, utilizing experimental results from a high-speed spark-ignition engine. Both CEV and CCV are shown to comprise a deterministic and a stochastic component. Results show that at maximum break torque (MBT) operation, the indicated mean effective pressure (IMEP) maximizes and its coefficient of variation (COV_I_M_E_P) minimizes, leading to minimum variation of NO. NO variability and hence mean NO levels can be reduced by more than 50% and 30%, respectively, at advanced ignition timing, by controlling the deterministic CCV using cycle resolved combustion control. The deterministic component of CEV increases at lean combustion (lambda = 1.12) and this overall increases NO variability. CEV was also found to decrease with engine load. At steady speed, increasing throttle position from 20% to 80%, decreased COV_I_M_E_P, COV_N_O and COV_C_O by 59%, 46%, and 6% respectively. Highly resolved engine control, by means of cycle-to-cycle combustion control, appears as key to limit the deterministic feature of cyclic variability and by that to overall reduce emission levels. - Highlights: • Engine emissions variability comprise both stochastic and deterministic components. • Lean and diluted combustion conditions increase emissions variability. • Advanced ignition timing enhances the deterministic component of variability. • Load increase decreases the deterministic component of variability. • The deterministic component can be reduced by highly resolved combustion control.

  15. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem

    2016-07-23

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  16. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.

    2016-11-10

    This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier Ltd

  17. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  18. Fuel consumption of gasoline ethanol blends at different engine rotational

    Directory of Open Access Journals (Sweden)

    Y. Barakat

    2016-09-01

    Full Text Available Fuel consumption (mf kg/h was estimated for two hydrocarbon gasolines (BG1-OE and BG2-OE and their ethanol blends which contain from 4 to 20 vol.% of ethanol. Fuel consumption experiments for sixteen fuel samples (5 L each, were conducted on a four cylinder, four stroke spark ignition test vehicle Sahin car, Type 1.45, model 2001. The engine has a swept volume of 1400 c.c., a compression ratio of 8.3:1 and a maximum power of 78 HP at 5500 rpm. The obtained data reveal that the relation between fuel consumption and ethanol concentration is linear. Six linear equations for BG1-ethanol blends and BG2-ethanol ones at the investigated rotational speeds, were developed. Fuel consumption values of the first set of gasoline-ethanol blends are lower than that of the second set. This may be attributed to the difference in the chemical composition of base gasolines BG1 in the first set which is enriched in the less volatile reformate if compared with the second set which is more enriched in isomerate, the more volatile refinery stream.

  19. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  20. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  1. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    Science.gov (United States)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-02-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  2. Performance of a hybrid hydrogen–gasoline engine under various operating conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Wang, Shuofeng; Zhang, Bo

    2012-01-01

    Highlights: ► We develop a combustion strategy for the hybrid hydrogen–gasoline engine (HHGE). ► The HHGE produced much lower HC and CO emissions at cold start. ► The H 2 -gasoline blends were effective for improving engine performance at idle and part loads. ► The HHGE could run smoothly at lean conditions. -- Abstract: This paper proposed a new combustion strategy for the spark-ignited (SI) engines. A gasoline engine was converted into a hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen injection system and a hybrid electronic control unit. Different from the conventional gasoline and hydrogen–enriched gasoline engines, the HHGE is fueled with the pure hydrogen at cold start to produce almost zero emissions, with the hydrogen–gasoline blends at idle and part loads to further improve thermal efficiency and reduce emissions, and with the pure gasoline to ensure the engine power output at high loads. Because the HHGE is fueled with the pure gasoline at high loads and speeds, experiments are only conducted at clod start, idle and part load conditions. Since lean combustion avails the further improvement of the engine performance, the HHGE was fueled with the lean mixtures in all tests. The experimental results showed that the hybrid hydrogen–gasoline engine was started successfully with the pure hydrogen, which produced 94.7% and 99.5% reductions in HC and CO emissions within 100 s from the onset of the cold start, compared with the original gasoline engine. At an excess air ratio of 1.37 and idle conditions, indicated thermal efficiency of the 3% hydrogen–blended gasoline engine was 46.3% higher than that of the original engine. Moreover, the engine cyclic variation was eased, combustion duration was shortened and HC, CO and NOx emissions were effectively reduced for the hybrid hydrogen–gasoline engines.

  3. Tool grinding and spark testing

    Science.gov (United States)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  4. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    Science.gov (United States)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  5. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  6. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  7. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  8. Future technology of the spark-ignition engine: spray-guided direct injection with piezo injector; Die Zukunftstechnologie des Ottomotors: Strahlgefuehrte Direkteinspritzung mit Piezo-Injektor

    Energy Technology Data Exchange (ETDEWEB)

    Waltner, A.; Lueckert, P.; Schaupp, U.; Rau, E.; Kemmler, R.; Weller, R. [DaimlerChrysler AG, Stuttgart (Germany)

    2006-07-01

    The completely new-style second-generation direct-injection for spark-ignition engines from Mercedes-Benz offers clear improvements in fuel consumption, power and emission levels. Faced with the necessity of further reducing fuel consumption, primarily in spark-ignition engines, the Mercedes-Benz combustion system represents a significant leap in technology. It was possible to noticeably expand the mapping range in which stratified operation can be used compared with the first generation. This significant improvement in efficiency results in more useable energy and a substantial reduction in consumption in city traffic, and also on cross-country and highway trips at roughly constant speeds. These benefits make themselves felt not only in the test cycle, but also in the real-world consumption achieved by the customer. Development proceeded from the base aspirated engine on the principle of the modular expansion of technology. Since production development of this combustion system was not possible using the hydraulic and ignition components available on the market, a new outward-opening piezo fuel injector had to be developed for production readiness, along with a 200-bar high-pressure fuel system, which is being introduced here for the first time world-wide. The injection spray stability and excellent mixture preparation that it achieves produce an optimally combustible mixture at the spark plug. The potential of multiple injection, along with stability in stratified operation, brings further benefits and possibilities for direct injection in fuel consumption and emissions. (orig.)

  9. A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions

    International Nuclear Information System (INIS)

    Kavuri, Chaitanya; Paz, Jordan; Kokjohn, Sage L.

    2016-01-01

    Highlights: • Targeting high load-low speed, optimizations of RCCI and GCI strategies were performed. • The two strategies were compared in terms of performance, controllability and stability. • The optimum cases had high gross indicated efficiency (∼47%) and low NOx emissions. • RCCI strategy showed better combustion control but had higher soot emissions. • GCI strategy was relatively more sensitive to fluctuations in charge conditions. - Abstract: Past research has shown that Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) combustion are promising approaches to improve efficiency and reduce pollutant emissions. However, the benefits have generally been confined to mid-load operating conditions. To enable practical application, these approaches must be able to operate over the entire engine map. A particularly challenging area is high load, low speed operation. Accordingly, the present work uses detailed CFD modeling and engine experiments to compare RCCI and GCI combustion strategies at a high load, low speed condition. Computational optimizations of RCCI and GCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The optimum points from the two combustion strategies were verified using engine experiments and were used to make the comparisons between RCCI and GCI combustion. The comparison showed that both the strategies had very similar combustion characteristics with a near top dead center injection initiating combustion. A parametric study was performed to identify the key input parameters that control combustion for the RCCI and GCI strategies. For both strategies, the combustion phasing could be controlled by the start of injection (SOI) timing of the near TDC injection. The short ignition delay of diesel fuel gave the RCCI strategy better control over combustion than the GCI strategy, but also had a simultaneous tradeoff with soot emissions. With the GCI

  10. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  11. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms

    International Nuclear Information System (INIS)

    Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.

    2007-01-01

    The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach

  12. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  13. Application of a hybrid breakup model for the spray simulation of a multi-hole injector used for a DISI gasoline engine

    International Nuclear Information System (INIS)

    Li, Zhi-Hua; He, Bang-Quan; Zhao, Hua

    2014-01-01

    A hybrid atomization and breakup model was developed for the simulation of the fuel injection processes of multi-hole injectors for direct injection spark ignition (DISI) gasoline engines. In modeling primary breakup, a competition between the Huh–Gosman and Kelvin–Helmholtz (KH) breakup mechanisms was adopted. In addition to the two breakup mechanisms above, the Rayleigh–Taylor (RT) model was selected as a third competing mechanism in simulating secondary breakup. The hybrid model was implemented in the Star-CD software to simulate the effect of the background and injection pressures on the breakup processes of gasoline jets in a constant volume vessel, and on the mixture stratification of a wall-guided DISI gasoline engine with a newly-designed cavity in the piston. Results indicate that a higher background pressure intensifies the aerodynamically induced breakup along the tip of spray although it tends to reduce the overall breakup of spray. The spray atomization enhanced by increasing injection pressures is more pronounced at elevated background pressures. With the retard of fuel injection timing, the inhomogeneity of mixture increases in the DISI gasoline engine. Double injection with elevated second injection pressure can reduce the overall inhomogeneity of the mixture and effectively direct the mixture towards the spark plug. - Highlights: •A hybrid breakup model was developed to simulate injection process in a DISI engine. •Higher fuel injection pressure enhances breakup and evaporation at the spray tip. •Single fuel injection leads to a narrow spark timing range. •Two-stage fuel injection improves the homogeneity of the mixture. •The second injection with higher fuel pressure decreases over-rich mixture

  14. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  15. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    Science.gov (United States)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  16. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    Science.gov (United States)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  17. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  18. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  19. Effects of various intake valve timings and spark timings on combustion, cyclic THC and NOX emissions during cold start phase with idle operation in CVVT engine

    International Nuclear Information System (INIS)

    Choi, Kwan Hee; Lee, Hyung Min; Hwang, In Goo; Myung, Cha Lee; Park, Sim Soo

    2008-01-01

    In a gasoline SI engine, valve events and spark timings put forth a major influence on overall efficiency, fuel economy, and exhaust emissions. Residual gases controlled by the valve overlap can be used to reduce NOx emissions and the spark retardation technique can be used to improve raw THC emissions and catalyst light-off performance during the cold start phase. This paper investigated the behaviors of the engine and its combustion characteristics with various intake valve timings and spark timings during the fast idle condition and cold start. And cyclic THC and NOx emissions were measured at the exhaust port and their formation mechanisms were examined with fast response gas analyzers. As a result, THCs and NOx were reduced by 35% and 23% with optimizing valve overlap and spark advance during the cold transient start phase. Consequently, the valve events and ignition timings were found to significantly affect combustion phenomena and cold-start emissions

  20. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    Science.gov (United States)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  1. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  2. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  3. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    Science.gov (United States)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  4. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  5. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  6. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  7. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  8. Mathematical Modeling of HC Emissions Released by Oil Film for Gasoline and Alcohol Fuels

    Directory of Open Access Journals (Sweden)

    M. İhsan KARAMANGİL

    2013-04-01

    Full Text Available Oil film on cylinder liner has been suggested as a major source of engine-out hydrocarbon emissions. So in the present study, the rate of absorption/desorption of the fuel in the oil film has been investigated numerically in a spark ignition engine by using gasoline, ethanol and methanol fuels. To aim this purpose, a thermodynamic cycle model has been developed and then a mathematical modeling for the rate of absorption/desorption of the fuel in the oil film has been developed and adapted for this thermodynamic cycle model.It was seen that the absorption/desorption mechanism of ethanol and methanol into the oil film were lower than gasoline. It was determined that the most dominant parameter of this difference was Henry’s constant, which was related to solubility. As interaction time of oil filmfuel vapor was longer at low engine speeds, the quantities of HC absorbed/desorbed increased. The quantities of HC absorbed/desorbed increased with increasing inlet pressure and compression ratio

  9. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  10. Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis

    Science.gov (United States)

    Saw, O. P.; Mallikarjuna, J. M.

    2017-09-01

    The mixture preparation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, with a late fuel injection strategy, piston top surface is designed in such a way that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In addition, in these engines, location of spark-plug and fuel injector, fuel injection pressure and timing are also important to create a combustible mixture near the spark plug. Therefore, understanding the mixture formation under the influence of the location of spark plug and fuel injector is very essential for the optimization of the engine parameters. In this study, an attempt is made to understand the effect of spark plug and fuel injector location on the mixture preparation in a four-stroke, four-valve and wall-guided GDI engine operating under a stratified condition by using computational fluid dynamics (CFD) analysis. All the CFD simulations are carried out at an engine speed of 2000 rev/min., and compression ratio of 10.6, at an overall equivalence ratio (ER) of about 0.65. The fuel injection and spark timings are maintained at 605 and 710 CADs respectively. Finally, it is concluded that, combination of central spark plug and side fuel injector results in better combustion and performance.

  11. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  12. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels

    DEFF Research Database (Denmark)

    Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.

    2017-01-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel...... acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel....

  13. Impact of fuel molecular structure on auto-ignition behavior – Design rules for future high performance gasolines

    KAUST Repository

    Boot, Michael D.

    2016-12-29

    At a first glance, ethanol, toluene and methyl tert-butyl ether look nothing alike with respect to their molecular structures. Nevertheless, all share a similarly high octane number. A comprehensive review of the inner workings of such octane boosters has been long overdue, particularly at a time when feedstocks for transport fuels other than crude oil, such as natural gas and biomass, are enjoying a rapidly growing market share. As high octane fuels sell at a considerable premium over gasoline, diesel and jet fuel, new entrants into the refining business should take note and gear their processes towards knock resistant compounds if they are to maximize their respective bottom lines. Starting from crude oil, the route towards this goal is well established. Starting from biomass or natural gas, however, it is less clear what dots on the horizon to aim for. The goal of this paper is to offer insight into the chemistry behind octane boosters and to subsequently distill from this knowledge, taking into account recent advances in engine technology, multiple generic design rules that guarantee good anti-knock performance. Careful analysis of the literature suggests that highly unsaturated (cyclic) compounds are the preferred octane boosters for modern spark-ignition engines. Additional side chains of any variety will dilute this strong performance. Multi-branched paraffins come in distant second place, owing to their negligible sensitivity. Depending on the type and location of functional oxygen groups, oxygenates can have a beneficial, neutral or detrimental impact on anti-knock quality.

  14. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    Science.gov (United States)

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  15. Large-Eddy Simulations of Motored Flow and Combustion in a Homogeneous-Charge Spark-Ignition Engine

    Science.gov (United States)

    Shekhawat, Yajuvendra Singh

    Cycle-to-cycle variations (CCV) of flow and combustion in internal combustion engines (ICE) limit their fuel efficiency and emissions potential. Large-eddy simulation (LES) is the most practical simulation tool to understand the nature of these CCV. In this research, multi-cycle LES of a two-valve, four-stroke, spark-ignition optical engine has been performed for motored and fired operations. The LES mesh quality is assessed using a length scale resolution parameter and a energy resolution parameter. For the motored operation, two 50-consecutive-cycle LES with different turbulence models (Smagorinsky model and dynamic structure model) are compared with the experiment. The pressure comparison shows that the LES is able to capture the wave-dynamics in the intake and exhaust ports. The LES velocity fields are compared with particle-image velocimetry (PIV) measurements at three cutting planes. Based on the structure and magnitude indices, the dynamic structure model is somewhat better than the Smagorinsky model as far as the ensemble-averaged velocity fields are concerned. The CCV in the velocity fields is assessed by proper-orthogonal decomposition (POD). The POD analysis shows that LES is able to capture the level of CCV seen in the experiment. For the fired operation, two 60-cycle LES with different combustion models (thickened frame model and coherent frame model) are compared with experiment. The in-cylinder pressure and the apparent heat release rate comparison shows higher CCV for LES compared to the experiment, with the thickened frame model showing higher CCV than the coherent frame model. The correlation analysis for the LES using thickened frame model shows that the CCV in combustion/pressure is correlated with: the tumble at the intake valve closing, the resolved and subfilter-scale kinetic energy just before spark time, and the second POD mode (shear flow near spark gap) of the velocity fields just before spark time.

  16. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  17. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  18. Development status of the ignition system for Vinci

    NARCIS (Netherlands)

    Frenken, G.; Vermeulen, E.; Bouquet, F.; Sanders, H.M.

    2002-01-01

    The development status of ignition system for the new cryogenic upper stage engine Vinci is presented. The concept differs from existing upper stage ignition systems as its functioning is engine independent. The system consists of a spark torch igniter, a highpressure igniter feed system and an

  19. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  20. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  1. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  2. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  3. A predictive model for knock onset in spark-ignition engines with cooled EGR

    International Nuclear Information System (INIS)

    Chen, Longhua; Li, Tie; Yin, Tao; Zheng, Bin

    2014-01-01

    Highlights: • Ratio of specific heats should be used as variable in development of knock model. • Increases in EGR or excess air ratio lead to increases in the ratio of specific heats. • The widely-used Douaud–Eyzat correlation fails to predict the knock onset when increasing EGR. • The newly developed model including p, T, EGR and λ as variables predicts the knock onset accurately. • Effect of temperature at intake valve closure on the predicted knock onset is relatively small. - Abstract: A predictive knock model is crucial for one dimensional (1-D) engine cycle simulation that has been proven to be a powerful tool in both optimization of the conceptual design and reduction of calibration efforts in development of spark-ignition (SI) engines. With application of advanced technologies such as exhaust gas recirculation (EGR) in modern SI engines, update of knock model is needed to give an acceptable prediction of knock onset. In this study, bench tests of a turbocharged gasoline SI engine with cooled EGR system operated under knocking conditions were conducted, the cylinder pressure traces were analyzed by the band-pass filtering technique, and the crank angle of knock onset was determined by the signal energy ratio (SER) and image processing method. A knock model considering multi-variable effects including pressure, temperature, EGR ratio and excess air ratio (λ) is formulated and calibrated with the experimental data using the multi-island genetic algorithm (GA). The calculation method of the end gas temperature, the impacts of the ratio of specific heats as well as the temperature at the intake valve closure on the end gas temperature are discussed. The performance of the new model is compared with the widely-used phenomenological knock models such as Douaud–Eyzat model and Hoepke model. While the widely-used knock models fail to give acceptable predictions when increasing EGR with fuel enrichment operations, the new model predicts the knock

  4. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  5. Pressure Indicating with Measuring Spark Plugs on a DI-Gasoline Engine - State of Technology; Druckindizierung mit Messzuendkerzen an einem DI-Ottomotor - Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Walter, T.; Brechbuehl, S.; Gossweiler, C.; Schnepf, M.; Wolfer, P. [Kistler Instrumente AG, Winterthur (Switzerland)

    2004-07-01

    For pressure indicating in gasoline engines, spark plugs with integrated pressure sensor are enabling for fast and efficient access to the combustion chamber. These socalled measuring spark plugs permit any engine to be set up for pressure-indicating within a minimum amount of time and without need for any preparation of an additional bore. Measuring spark plugs offer the user a number of immediate advantages: a) no need to modify the engine by drilling a separate bore to access the combustion chamber b) no modification of the geometry of the combustion chamber and thermal conditions c) suitable for on-board measurements, end-of-line checks and monitoring d) quick and easy installation and replacement In terms of costs, measuring spark plugs are also representing a beneficial alternative to separate indicating bores. The cost of designing, preparing and carrying out an additional bore in a cylinder head are typically many times the costs for a measuring spark plug, thus producing a significant cost saving. The main disadvantages of measuring spark plugs are as follows: 1) restricted to uncooled, low sensitivity miniature pressure sensors 2) the sensor element is exposed to an extraordinarily high thermal load 3) proximity to high voltage carries the risk of electromagnetic interference 4) the positioning between the valve seats means they are subject to heavy vibration 5) the incorporation of the pressure sensor results in more complex design. The purpose of this paper is to describe the technology as well as the dynamic behaviour of measuring spark plugs and to present the current state of technology. (orig.)

  6. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels

    International Nuclear Information System (INIS)

    Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.

    2013-01-01

    Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling

  7. Measure of the volumetric efficiency and evaporator device performance for a liquefied petroleum gas spark ignition engine

    International Nuclear Information System (INIS)

    Masi, Massimo; Gobbato, Paolo

    2012-01-01

    Highlights: ► Measure of the effect of LPG fuel on volumetric efficiency of a SI petrol ICE. ► Steady-state and transient performance of a LPG evaporator device on a SI ICE. ► Volume displaced by LPG causes slight performance loss in SI petrol engines. ► LPG reveals peak efficiency and high-efficiency range wider than petrol in SI ICE’s. ► One-stage pressure reducer for LPG performs satisfactorily during SI ICE transients. - Abstract: The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.

  8. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures

    Science.gov (United States)

    Mathis, Urs; Mohr, Martin; Forss, Anna-Maria

    Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dpefficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.

  9. Cyclic variations of fuel-droplet distribution during the early intake stroke of a lean-burn stratified-charge spark-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom); University College London, Department of Mechanical Engineering, London (United Kingdom); Hardalupas, Y.; Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom); Ishii, K. [Honda International Technical School, Saitama (Japan); Urata, Y. [Tochigi R and D Centre, Honda R and D Co., Ltd, Tochigi (Japan)

    2005-11-01

    Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, {phi} =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, {phi} =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the

  10. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  11. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine

    International Nuclear Information System (INIS)

    Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A.

    2010-01-01

    A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NO x emission over the speed range of 1500-5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O 2 and CO 2 ) were significantly lower than those of the gasoline emissions.

  12. Effect of CO_2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO_2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO_2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO_2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO_2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO_2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO_2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO_2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO_2 diluent conditions for the gasoline engine. Increasing CO_2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO_2 diluent conditions. - Highlights: • CO_2 dilution reduces cooling loss and NOx of H_2-enriched gasoline engines. • H_2-blended gasoline engine gains better efficiency after CO_2 dilution. • CoVimep of H_2-blended gasoline engine is kept at low level after CO_2 addition. • CO_2 dilution has small effect on reducing Bmep of H_2-blended gasoline engine.

  13. A Soft Sensor-Based Fault-Tolerant Control on the Air Fuel Ratio of Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Yu-Jia Zhai

    2017-01-01

    Full Text Available The air/fuel ratio (AFR regulation for spark-ignition (SI engines has been an essential and challenging control problem for engineers in the automotive industry. The feed-forward and feedback scheme has been investigated in both academic research and industrial application. The aging effect can often cause an AFR sensor fault in the feedback loop, and the AFR control performance will degrade consequently. In this research, a new control scheme on AFR with fault-tolerance is proposed by using an artificial neural network model based on fault detection and compensation, which can provide the satisfactory AFR regulation performance at the stoichiometric value for the combustion process, given a certain level of misreading of the AFR sensor.

  14. Effects of electrode geometry on transient plasma induced ignition

    International Nuclear Information System (INIS)

    Shukla, B; Gururajan, V; Eisazadeh-Far, K; Windom, B; Egolfopoulos, F N; Singleton, D; Gundersen, M A

    2013-01-01

    Achieving effective ignition of reacting mixtures using nanosecond pulsed discharge non-equilibrium transient plasma (TP), requires that the effects of several experimental parameters be quantified and understood. Among them are the electrode geometry, the discharge location especially in non-premixed systems, and the relative ignition performance by spark and TP under the same experimental conditions. In the present investigation, such issues were addressed experimentally using a cylindrical constant volume combustion chamber and a counterflow flame configuration coupled with optical shadowgraph that enables observation of how and where the ignition process starts. Results were obtained under atmospheric pressure and showed that the electrode geometry has a notable influence on ignition, with the needle-to-semicircle exhibiting the best ignition performance. Furthermore, it was determined that under non-premixed conditions discharging TP in the reactants mixing layer was most effective in achieving ignition. It was also determined that in the cases considered, the TP induced ignition initiates from the needle head where the electric field and electron densities are the highest. In the case of a spark, however, ignition was found to initiate always from the hot region between the two electrodes. Comparison of spark and TP discharges in only air (i.e. without fuel) and ignition phenomena induced by them also suggest that in the case of TP ignition is at least partly non-thermal and instead driven by the production of active species. Finally, it was determined that single pulsed TP discharges are sufficient to ignite both premixed and non-premixed flames of a variety of fuels ranging from hydrogen to heavy fuels including F-76 diesel and IFO380 bunker fuel even at room temperature. (paper)

  15. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  16. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  17. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine"

    Science.gov (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas

    2017-04-01

    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  18. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal

    2016-09-21

    A methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.

  19. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  20. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  1. An investigation of the ignition probability and data analysis for the detection of relevant parameters of mechanically generated steel sparks in explosive gas/air-mixtures; Untersuchungen zur Zuendwahrscheinlichkeit und Datenanalyse zur Erfassung der Einflussgroessen mechanisch erzeugter Stahl-Schlagfunktion in explosionsfaehigen Brenngas/Luft-Gemischen

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, Thomas; Finke, Robert; Graetz, Rainer

    2010-07-01

    Mechanically generated sparks are a potential source of ignition in highly combustible areas. A multiplicity of mechanical and reaction-kinetic influences causes a complex interaction of parameters. It is only little known about their effect on the ignition probability. The ignition probability of mechanically generated sparks with a material combination of unalloyed steel/unalloyed steel and with an kinetic impact energy between 3 and 277 Nm could be determined statistically tolerable. In addition, the explosiveness of not oxidized particles at increased temperatures in excess stoichiometric mixtures was proven. A unique correlation between impact energy and ignition probability as well as a correlation of impact energy and number of separated particles could be determined. Also, a principle component analysis considering the interaction of individual particles could not find a specific combination of measurable characteristics of the particles, which correlate with a distinct increase of the ignition probability.

  2. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  3. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    Science.gov (United States)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  4. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  5. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  6. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2018-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  7. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  8. Experimental study on SI engine fuelled with butanol–gasoline blend and H2O addition

    International Nuclear Information System (INIS)

    Feng, Renhua; Yang, Jing; Zhang, Daming; Deng, Banglin; Fu, Jianqin; Liu, Jingping; Liu, Xiaoqiang

    2013-01-01

    Highlights: • Ignition timing has been optimized. • 1% H 2 O has been added. • Positive results have been achieved in engine torque, BSEC, CO emissions and HC emissions. • NOx and CO 2 emissions go up. - Abstract: An experimental study was conducted on a single cylinder motorcycle engine for two operating modes of full load and partial load at 6500 rpm and 8500 rpm with pure gasoline and 35% volume butanol–gasoline blend. The engine ignition timing for 35% volume butanol–gasoline blend has been optimized, and 1% volume H 2 O has also been added to the butanol–gasoline blend fuel. Engine performance parameters, fuel economy and emissions have been measured and analyzed. The experimental results showed that engine torque, BSEC, CO emissions and HC emissions are better than that of pure gasoline at both full load and partial load with 35% volume butanol and 1% H 2 O addition, combined with the modified ignition timing. But NOx and CO 2 emissions are worse than that of the original level of pure gasoline

  9. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  10. Influence of swirl ratio on fuel distribution and cyclic variation under flash boiling conditions in a spark ignition direct injection gasoline engine

    International Nuclear Information System (INIS)

    Yang, Jie; Xu, Min; Hung, David L.S.; Wu, Qiang; Dong, Xue

    2017-01-01

    Highlights: • Influence of swirl on fuel distribution studied using laser induced fluorescence. • Gradient is sufficient for fuel spatial distribution variation analysis. • Close relation between fuel distribution and flame initiation/development. • Quantitative analysis shows high swirl suppresses variation of fuel distribution. • High order modes capable of identifying the distribution fluctuation patterns. - Abstract: One effective way of suppressing the cycle-to-cycle variation in engine is to design a combustion system that is robust to the root causes of engine variation over the entire engine working process. Flash boiling has been demonstrated as an ideal technique to produce stable fuel spray. But the generation of stable intake flow and fuel mixture remains challenging. In this study, to evaluate the capability of enhanced swirl flow to produce repeatable fuel mixture formation, the fuel distribution inside a single cylinder optical engine under two swirl ratios were measured using laser induced fluorescence technique. The swirl ratio was regulated by a swirl control valve installed in one of the intake ports. A 266 nm wavelength laser sheet from a frequency-quadrupled laser was directed into the optical engine through the quartz liner 15 mm below the tip of the spark plug. The fluorescence signal from the polycyclic aromatic hydrocarbon in gasoline was collected by applying a 320–420 nm band pass filter mounted in front of an intensified charge coupled device camera. Test results show that the in-cylinder fuel distribution is strongly influenced by the swirl ratio. Specifically, under high swirl condition, the fuel is mainly concentrated on the left side of the combustion chamber. While under the low swirl flow, fuel is distributed more randomly over the observing plane. This agrees well with the measurements of the stable flame location. Additionally, the cycle-to-cycle variation of the fuel distribution were analyzed. Results show that well

  11. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fouts, Lisa A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.

  12. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  13. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  14. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis

    International Nuclear Information System (INIS)

    3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" >Rios Quiroga, Luis Carlos; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Balestieri, José 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Antonio Perrella; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Ávila, Ivonete

    2017-01-01

    Highlights: • Kinetic parameters of thermal decomposition events were obtained. • Thermal analysis was used as a tool for understanding combustion processes. • Blends would be classified using thermogravimetric analysis technics. • Synergistic effect of ethanol mixed with gasoline was studied and defined. • Relative error and activation energy values were used to analyze the synergy. - Abstract: The use of ethanol as a fuel or as an additive blended with gasoline is very important for most countries, which aim to reduce the heavy dependence on fossil fuels and mitigate greenhouse gases emission. An increased use of ethanol-gasoline blends has placed great relevance on acquiring knowledge about their physical and chemical properties. Thus, knowledge of such properties favors a better understanding of the effect of the percentage of ethanol/gasoline blends on engine performance. Thence, the present study has established a correlation between activation energy and synergetic effects, obtained by a thermal analysis, and ethanol content in gasoline for different blends in order to use this technique as a tool to classify these blends in the process in order to obtain useful energy in spark ignition engines. For such a purpose, a kinetic study has been conducted through a simultaneous thermal analysis system – TGA (thermogravimetry analysis) and DTA (differential thermal analysis) by following the methodology of non-isothermal tests. Thermogravimetric tests were performed and fuel activation energies for gasoline, ethanol, and percentages of 5, 10, 15, 20, 25, 30, 50, and 75% (%v) ethanol mixed with gasoline, which was achieved by the model free kinetics. The analysis results suggest that the theoretical curves characteristics of the thermal decomposition of ethanol-gasoline blends are rather different due to their ethanol content. Furthermore, it was observed significant interactions and synergistic effects, especially regarding those with low ethanol

  15. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  16. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  17. 40 CFR 89.2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... valve timing to increase the amount of residual exhaust gas in the combustion chamber(s) that is mixed... or assembly is being carried out in a facility. Post-manufacture marinizer means a person who.... Spark-ignition means relating to a gasoline-fueled engine or other engines with a spark plug (or other...

  18. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  19. Investigation of possibilities of ignition of target plasma in conditions of inertial thermonuclear synthesis

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gus'kov, S.Yu.; Rozanov, V.B.; Il'in, D.V.; Levkovskij, A.A.; Sherman, V.E.

    2001-01-01

    On the basis of mathematical simulation of thermonuclear burning of DT-plasma of laser targets one calculated G factors of thermonuclear intensification for a space and a spark ignitions at various parameters of target plasma and igniters (both isobaric and isochoric). One calculated the critical parameters of igniters upon reaching of which the efficient thermonuclear burst with G ∼ 100 took place. It is shown that further increase of temperature and of dimensions of igniters does not practically affect the efficiency of DT-fuel burnup and independently of the way of ignition G value may be estimated using a simple asymptotic expression. At the same time the values of the critical parameters of igniters depend essentially on the way of ignition and on target parameters. One studied in detail the spark ignition with isochoric igniter. Thermal energy generated at absorption of supershort additional laser pulse is shown to be the key critical parameter for the optimal isochoric igniters. Critical parameters of this energy are calculated [ru

  20. Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-03-01

    Full Text Available Increasing on gaseous fuels as clean, economical and abundant fuels encourages the search for optimum conditions of gas-fueled internal combustion engines. This paper presents the experimental results on the lean operational limits of Recardo E6 engine using gasoline, LPG, NG and hydrogen as fuels. The first appearance of almost motoring cycle was used to define the engine lean limit after the fuel flow was reduced gradually. The effects of compression ratio, engine speed and spark timing on the engine operational limits are presented and discussed in detailed. Increasing compression ratio (CR extend the lean limits, this appears obviously with hydrogen, which has a wide range of equivalence ratios, while for hydrocarbon fuel octane number affect gasoline, so it can' t work above CR=9:1, and for LPG it reaches CR=12:1, NG reaches CR=15:1 at lean limit operation. Movement from low speeds to medium speeds extended lean misfire limits, while moving from medium to high speeds contracted the lean misfiring limits. NOx, CO and UBHC concentrations increased with CR increase for all fuels, while CO2 concentrations reduced with this increment. NOx concentration increased for medium speeds and reduced for high speeds, but the resulted concentrations were inconcedrable for these lean limits. CO and CO2 increased with engine speed increase, while UBHC reduced with this increment. The hydrogen engine runs with zero CO, CO2 and UNHC concentrations, and altra low levels of NOx concentrations at studied lean misfire limits

  1. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  2. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    International Nuclear Information System (INIS)

    Lyon, Elliott; Kuang, Zheng; Dearden, Geoff; Cheng, Hua; Page, Vincent; Shenton, Tom

    2014-01-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion – a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed. (paper)

  3. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  4. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  5. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  6. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal

    2017-11-05

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  7. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal; Sarathy, Mani; Chung, Suk-Ho

    2017-01-01

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  8. Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Liu, Yangxian; Zhu, Yuejin

    2015-01-01

    Highlights: • A 3-D simulation model based on the chemical reaction kinetics is established. • The tumble near the trailing spark plug is beneficial for the combustion rate. • The best position of the trailing spark plug is at the rear of the tumble zone. • An increase of the tumble effect time can improve the combustion rate. • Considering the rate of pressure rise, the best ignition timing is 50 °CA (BTDC). - Abstract: The side-ported rotary engine fueled with natural gas is a new, clean, efficient energy system. This work aims to numerically study the performance, combustion and emission characteristics of a side-ported rotary engine fueled with natural gas under different ignition positions and ignition timings. Simulations were performed using multi-dimensional software ANASYS Fluent. On the basis of the software, a three-dimensional dynamic simulation model was established by writing dynamic mesh programs and choosing a detailed reaction mechanism. The three-dimensional dynamic simulation model, based on the chemical reaction kinetics, was also validated by the experimental data. Meanwhile, further simulations were then conducted to investigate how to impact the combustion process by the coupling function between ignition operating parameter and the flow field inside the cylinder. Simulation results showed that in order to improve the combustion efficiency, the trailing spark plug should be located at the rear of the tumble zone and the ignition timing should be advanced properly. This was mainly caused by the trailing spark plug being located at the rear of the tumble zone, as it not only allowed the fuel in the rear of combustion chamber to be burnt without delay, but also permitted the acceleration of the flame propagation by the tumble. Meanwhile, with advanced ignition timing, the time between ignition timing and the timing of the tumble disappearance increased, which led to an increase of the tumble effect time used to improve the combustion

  9. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  10. Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng; Liu, Xiaolong

    2014-01-01

    Methanol is a promising alternative fuel for the spark-ignition engines. This paper experimentally investigated the performance of a hydrogen-blended methanol engine at lean and various load conditions. The test was conducted on a four-cylinder commercial spark-ignition engine equipped with an electronically controlled hydrogen port injection system. The test was conducted under a typical city driving speed of 1400 rpm and a constant excess air ratio of 1.20. Two hydrogen volume fractions in the intake of 0 and 3% were adopted to investigate the effect of hydrogen addition on combustion and emissions performance of the methanol engine. The test results showed that brake thermal efficiency was improved after the hydrogen addition. When manifolds absolute pressure increased from about 38 to 83 kPa, brake thermal efficiencies after the hydrogen addition were increased by 6.5% and 4.2%. The addition of hydrogen availed shortening flame development and propagation periods. The peak cylinder temperature was raised whereas cylinder temperature at the exhaust valve opening was decreased after the hydrogen addition. The addition of hydrogen contributed to the dropped hydrocarbon and carbon monoxide. However, nitrogen oxides were slightly raised after the hydrogen enrichment. - Highlights: • Load characteristics of a H 2 -blended methanol engine are experimentally studied. • H 2 addition is more effective on raising engine efficiency at low loads. • Flame development and propagation periods are shortened after H 2 addition. • H 2 enrichment contributes to the smooth operation of the methanol engine. • HC and CO emissions from the methanol engine are reduced after H 2 addition

  11. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  12. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  13. Chemical kinetic insights into the ignition dynamics of n-hexane

    KAUST Repository

    Tingas, Alexandros; Wang, Zhandong; Sarathy, Mani; Im, Hong G.; Goussis, Dimitris A.

    2017-01-01

    Normal alkanes constitute a significant fraction of transportation fuels, and are the primary drivers of ignition processes in gasoline and diesel fuels. Low temperature ignition of n-alkanes is driven by a complex sequence of oxidation reactions

  14. Emulsification as an approach to the introduction of methanol/gasoline blends as a motor fuel in Canada

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-29

    This report summarizes the work on a phase of a program which concentrates on the utilization of methanol-gasoline mixtures in spark-ignition engines. A fuel system having components for a 2.5 liter engine equipped with an oxygen sensor controlled carburetor, described in another report, was further developed. Extended cold start tests were carried out and the maximum amount of methanol that could be tolerated by the fuel system , without imparing engine operation, was 30% methanol in gasoline on a volume basis. The engine was installed in an automobile and road tests were conducted concentrating on cold starts and warm-up, fuel system performance, fuel economy and materials compatibility of components exposed to the methanol-gasoline blend. A second phase separation control system was developed for a 2.1 liter displacement engine equipped with a mechanical fuel injection system. The proportioning and pick-up components for the tank were incorporated in the existing fuel system. Cold start tests were performed and 20% methanol was found to be the upper limit. The engine was installed and the vehicle were road tested. Minor shortcomings identified during road testing were corrected. Overall performance and driveability of both vehicles were found acceptable. However, testing under low ambient temperature conditions remains to be done. 2 refs., 37 figs., 8 tabs.

  15. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    Science.gov (United States)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  16. Near wall combustion modeling in spark ignition engines. Part A: Flame–wall interaction

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • A model for flame–wall interaction in addition to flame wrinkling by turbulence is proposed. • Two sparkplug positions and two lengths are used in a test engine for model validation. • Flame–wall interaction decreases the maximum values of cylinder pressure and heat release rates. • The impact of combustion chamber geometry is taken into account by the flame–wall interaction model. - Abstract: Research and design in the field of spark ignition engines seek to achieve high performance while conserving fuel economy and low pollutant emissions. For the evaluation of various engine configurations, numerical simulations are favored, since they are quick and less expensive than experiments. Various zero-dimensional combustion models are currently used. Both flame front reactions and post-flame processes contribute to the heat release rate. The first part of this study focuses on the role of the flame front on the heat release rate, by modeling the interaction of the flame front with the chamber wall. Post-flame reactions are dealt with in Part B of the study. The basic configurations of flame quenching in laminar flames are also applicable in turbulent flames, which is the case in spark ignition engines. A simplified geometric model of the combustion chamber was used to calculate the mean flame surface, the flame volume and the distribution of flame surface as a function of the distance from the wall. The flame–wall interaction took into account the geometry of the combustion chamber and of the flame, aerodynamic turbulence and the in-cylinder pressure and temperature conditions, through a phenomenological attenuation function of the wrinkling factor. A modified global wrinkling factor as a function of the mean surface distance distribution from the wall was calculated. The impact of flame–wall interaction was simulated for four configurations of the sparkplug position and length: centered and lateral position, and standard and projected

  17. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  18. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  19. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  20. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  1. Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines

    International Nuclear Information System (INIS)

    Kaleli, Alirıza; Ceviz, Mehmet Akif; Erenturk, Köksal

    2015-01-01

    Minimization of the cyclic variations is one of the most important design goal for spark-ignited engines. Primary motivation of this study is to reduce the cyclic variations in spark ignition engines by controlling the spark timing for consecutive cycles. A stochastic model was performed between spark timing and in–cylinder maximum pressure by using the system identification techniques. The incylinder maximum pressure of the next cycle was predicted with this model. Minimum variance and generalized minimum variance controllers were designed to regulate the in–cylinder maximum pressure by changing the spark timing for consecutive cycles of the test engine. The produced control algorithms were built in LabView environment and installed to the Field Programmable Gate Arrays (FPGA) chassis. According to the test results, the in–cylinder maximum pressure of the next pressure cycle can be predicted fairly well, and the spark timing can be regulated to keep the in–cylinder maximum pressure in a desired band to reduce the cyclic variations. At fixed spark timing experiments, the COV Pmax and COV imep were 3.764 and 0.677%, whereas they decreased to 3.208 and 0.533% when GMV controller was applied, respectively. - Highlights: • Cycle per cycle spark timing control was carried out. • A stochastic process model was described between P max and the spark timing. • The cyclic variations in P max was decreased by keeping it in a desired band. • Different controllers were used to adjust spark timing signal of the next cycle. • COV Pmax was decreased by about 15% by using GMV controller

  2. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.

    2018-04-03

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at 180 CAD (aTDC) and 30 CAD (aTDC), respectively. In the presented work, intake air temperature is used as control parameter to maintain combustion stability at idle and low load condition, while the intake air pressure is maintained at 1 bar (ambient). The engine is equipped with variable valve cam phasers that can phase both inlet and exhaust valves from the original timing. For the maximum cam phasing range (56 CAD) at a valve lift of 0.3 mm, the maximum allowable positive valve overlap was 20 CAD. In the present study, the exhaust cam is phased to 26 CAD and 6 CAD and the corresponding NVO is noted to be 10 CAD and 30 CAD, respectively. With exhaust cam phasing adjustment, the exhaust valve is closed early to retain hot residual gases inside the cylinder. As such, the in-cylinder temperature is increased and a reduction in the required intake air temperature to control combustion phasing is possible. For a constant combustion phasing of 3 CAD (aTDC), a minimum load of indicated mean effective pressure (IMEP) = 1 bar is attained for gasoline (RON = 91) at HCCI and PPC modes. The coefficient of variance was observed to below 5% at these idle and low load conditions. At the minimum load point, the

  3. The possibility of controlled auto-ignition (CAI) in gasoline engine and gas to liquid (GTL) as a fuel of diesel engine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, D. [Korea Inst. of Machinery and Materials, Daejou (Korea)

    2005-07-01

    A significant challenge grows from the ever-increasing demands for the optimization of performance, emissions, fuel economy and drivability. The most powerful technologies in the near future to improve these factors are believed Controlled Auto-Ignition (CAI) in gasoline engine and Gas to Liquid (GTL) as a fuel of Diesel engine. In recent years there has been an increasing trend to use more complex valvetrain designs from traditional camshaft driven mechanical systems to camless electromagnetic or electrohydraulic solutions. Comparing to fixed valve actuation systems, variable valve actuation (VVA) should be powerful to optimize the engine cycle. The matching of valve events to the engine performance and to emission requirements at a given engine or vehicle operating condition can be further optimized to the Controlled Auto-Ignition (CAI) in gasoline engine, which has benefits in NOx emission, fuel consumption, combustion stability and intake throttle load. In case of Diesel engine, the increasing demands for NOx and soot emission reduction have introduced aftertreatment technologies recently, but been in need of basic solution for the future, such as a super clean fuel like Gas to Liquid (GTL), which has benefits in comparability to diesel fuel, independency from crude oil and reduction of CO, THC and soot emissions. Korea looks to the future with these kinds of technologies, and tries to find the possibility for reaching the future targets in the internal combustion engine. (orig.)

  4. Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Dhananjay Kumar; Agarwal, Avinash Kumar [Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Weinrotter, Martin; Wintner, Ernst [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna (Austria); Iskra, Kurt [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2009-03-15

    Laser-induced spark ignition of lean hydrogen-air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen-air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones. (author)

  5. Optimization of operating conditions in the early direct injection premixed charge compression ignition regime

    NARCIS (Netherlands)

    Boot, M.D.; Luijten, C.C.M.; Rijk, E.P.; Albrecht, B.A.; Baert, R.S.G.

    2009-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a

  6. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  7. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  8. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  9. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  10. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate the ignition delay of n-dodecane and n-heptane in a constant volume combustion chamber (CVCC), which is archived in the engine combustion network (ECN) library (http://www.ca.sandia.gov/ecn). A detailed chemical kinetic model for gasoline surrogates from the Lawrence Livermore National Laboratory (LLNL) was utilized for the simulation of n-heptane and isooctane. Additional simulations were performed using an optimized gasoline surrogate mechanism from RWTH Aachen University. Validations of the simulated data were also performed with experimental results from an IQT at KAUST. For simulation of n-dodecane in the CVCC, two n-dodecane kinetic models from the literature were utilized. The primary aim of this study is to test the ability of TSL to replicate ignition timings in the IQT and the CVCC. The agreement between the model and the experiment is acceptable except for isooctane in the IQT and n-heptane and n-dodecane in the CVCC. The ability of the simulations to replicate observable trends in ignition delay times with regard to changes in ambient temperature and pressure allows the model to provide insights into the reactions contributing towards ignition. Thus, the TSL model was further employed to investigate the physical and chemical processes responsible for controlling the overall ignition under various conditions. The effects of exothermicity, ambient pressure, and ambient oxygen concentration on first stage ignition were also studied. Increasing ambient pressure and oxygen concentration was found to shorten the overall ignition delay time, but does not affect the timing of the first stage ignition. Additionally, the temperature at the end of the first stage ignition was found to increase at higher ambient pressure

  11. Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

    1979-09-01

    A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

  12. Methods to improve efficiency of four stroke, spark ignition engines at part load

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper Tolga

    2005-01-01

    The four stroke, spark ignition (SI) engine pressure-volume diagram (p-V) contains two main parts. They are the compression-combustion-expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the p-V diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone

  13. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour; Ahmed, Ahfaz; Lovisotto, Leonardo; Issayev, Gani; Badra, Jihad; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    , were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2

  14. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  15. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  16. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  17. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam

    2016-04-05

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.

  18. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    Science.gov (United States)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  19. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work are primarily paraffinic and have the same octane rating (∼RON = 84) as the PRF blend, but contain varying amounts of iso- and n-paraffins. Species time-histories and ignition delay times were measured using laser absorption methods over a temperature range of 1350-1550 K and pressures near 2 atm. Measured species time-histories and ignition delay times of the PRF blend and the two FACE fuels agreed reasonably well. However, when compared to recent gasoline surrogate mechanisms, the simulations did not capture some of the kinetic trends found in the species profiles. To our knowledge, this work provides some of the first shock tube species time-history data for gasoline fuels and PRF surrogates and should enable further improvements in detailed kinetic mechanisms of gasoline fuels.

  20. AIR CONTAMINANT EXPOSURE DURING THE OPERATION OF LAWN AND GARDEN EQUIPMENT

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind la...

  1. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  2. Comparative analysis by simulation for behavior of a spark-ignition engine fueled with gasoline and LPG in the transient regimes

    Science.gov (United States)

    Nisulescu, Valentin; Ivan, Florian; Iozsa, Daniel; Banca, Gheorghe

    2017-10-01

    It is known that current vehicles must meet stringent demands on pollution limits but also must meet and the dynamical and economical performances. In this context the transient regimes are those affecting this performances, in this paper are presenting the results of the simulations for these regimes using a vehicle powered with two energy sources gasoline and LPG. Have been selected the transient regimes characteristic for NMVEG cycle (New Motor Vehicle Emissions Group). The simulation is performed using AMESim platform and the results have allowed meticulous interpretations for the 16 regimes of acceleration. The results obtained from the simulation will be validated experimentally.

  3. Physical Improvements in Exciter/Igniter Units, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 2 project consists of the physical integration of our Phase 1 small, compact exciter with a "flight like" igniter or spark plug capable of...

  4. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Su, Teng; Wang, Shuofeng; Zhang, Bo; Yu, Menghui; Cong, Xiaoyu

    2016-01-01

    Highlights: • The performance of a H_2-blended gasoline rotary engine was studied. • The p, Bmep, T_m_a_x and η_b increased after H_2 blending. • Both the CA0-10 and CA10-90 were shortened by the H_2 addition. • H_2 addition resulted in the reduced HC, CO and CO_2 emissions. - Abstract: The rotary engines may encounter high fuel consumption and emissions due to its narrow and long combustion chamber design. The low ignition energy and high flame speed of hydrogen may help improve the combustion of rotary engines. In this paper, a gasoline rotary engine equipped with gasoline and hydrogen injectors was developed to investigate the combustion and emissions of hydrogen-blended gasoline rotary engines. The engine was run at 3000 rpm and a manifolds absolute pressure of 37.5 kPa with the stoichiometric excess air ratio. The spark timing was set to be 25°CA before the top dead center. The engine was first fueled with the pure gasoline and then blended with the hydrogen. The hydrogen volume fractions in the intake were gradually increased from 0% to 5.2%. The results showed that the combustion pressure, brake mean effective pressure, cylinder temperature and thermal efficiency were simultaneously increased after the hydrogen blending. The crank angle of peak pressure was advanced with the hydrogen addition. The hydrogen enrichment was effective on reducing flame development and propagation periods. HC emissions were reduced by 44.8% when the hydrogen volume fraction in the intake was raised from 0% to 5.2%, CO and CO_2 emissions were also reduced after the hydrogen blending.

  5. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  6. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under a Phase 1 effort, IES successfully developed and demonstrated a spark ignition concept where propellant flow drives a very simple fluid mechanical oscillator...

  7. Auto-ignition generated combustion. Pt. 2. Thermodynamic fundamentals; Verbrennungssteuerung durch Selbstzuendung. T. 2. Experimentelle Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, P. [Paris-6 Univ. (France). Lab. de Mecanique Physique; Morin, C. [Paris-6 Univ. (France); Mokhtari, S.

    2004-02-01

    The combustion initiation by auto-ignition demonstrates benefits in NO{sub x} reduction and in process stability for both spark-ignited and compression ignited engines. Based on the better thermodynamic particularities of the auto-ignition, which have been presented in the first part, the characteristics of this process are demonstrated in the second part by experimental analysis. For comparison with similar studies, the analyses have been carried out in base of a two stroke loop scavenged spark-ignition single cylinder engine. (orig.) [German] Die Steuerung der Verbrennung durch Selbstzuendung zeigt Vorteile bezueglich Senkung der NO{sub x}-Emission und Prozessstabilitaet, sowohl bei Otto- als auch bei Dieselmotoren. Auf Grundlage der thermodynamischen Besonderheiten der Selbstzuendvorgaenge, die im ersten Teil praesentiert wurden, erfolgt im zweiten Teil eine experimentelle Betrachtung der Prozesscharakteristika. Zur Vergleichbarkeit mit aehnlichen Untersuchungen wird die experimentelle Analyse auf Basis eines Zweitakt-Einzylinder-Ottomotors mit Umkehrspuelung durchgefuehrt. (orig.)

  8. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  9. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  10. Cycle-skipping strategies for pumping loss reduction in spark ignition engines: An experimental approach

    International Nuclear Information System (INIS)

    Yüksek, Levent; Özener, Orkun; Sandalcı, Tarkan

    2012-01-01

    Highlights: ► A cycle density variation technique called cycle-skipping was applied. ► Effect on fuel consumption and gaseous emissions was investigated. ► Fuel consumption and gaseous tail-pipe emissions improved at partial loading conditions. - Abstract: Spark ignition (SI) engines are widely used for power generation, especially in the automotive industry. SI engines have a lower thermal efficiency than diesel engines due to a lower compression ratio, higher charge-induction work and lower end of compression stroke pressure. A significant amount of charge induction work is lost when an SI engine runs under partial loading conditions. Under partial loading conditions, a lower intake charge is required, which can be theoretically achieved by varying the displacement volume or the stroke number of the engine without using a throttle. Reducing the displacement volume to control the engine load can be achieved by skipping cycles in single-cylinder engines. This study investigates the effect of cycle-skipping strategies on the brake specific fuel consumption (BSFC) and exhaust emissions of an SI engine under partial loading conditions. Three different skipping modes were applied: normal, normal-skip and normal-normal-skip. A significant improvement in BSFC and carbon monoxide emission was obtained by applying cycle-skipping strategies.

  11. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  12. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    Science.gov (United States)

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  13. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Sajid, Muhammad Bilal; Al-Qurashi, Khalid; Atef, Nour; Al Khesho, Issam; Ahmed, Ahfaz; Chung, Suk-Ho; Roberts, William L.; Morganti, Kai; Sarathy, Mani

    2016-01-01

    This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  14. Estimation of Individual Cylinder Air-Fuel Ratio in Gasoline Engine with Output Delay

    Directory of Open Access Journals (Sweden)

    Changhui Wang

    2016-01-01

    Full Text Available The estimation of the individual cylinder air-fuel ratio (AFR with a single universal exhaust gas oxygen (UEGO sensor installed in the exhaust pipe is an important issue for the cylinder-to-cylinder AFR balancing control, which can provide high-quality torque generation and reduce emissions in multicylinder engine. In this paper, the system dynamic for the gas in exhaust pipe including the gas mixing, gas transport, and sensor dynamics is described as an output delay system, and a new method using the output delay system observer is developed to estimate the individual cylinder AFR. With the AFR at confluence point augmented as a system state, an observer for the augmented discrete system with output delay is designed to estimate the AFR at confluence point. Using the gas mixing model, a method with the designed observer to estimate the individual cylinder AFR is presented. The validity of the proposed method is verified by the simulation results from a spark ignition gasoline engine from engine software enDYNA by Tesis.

  15. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  16. Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions

    International Nuclear Information System (INIS)

    Huang, Yuhan; Huang, Sheng; Huang, Ronghua; Hong, Guang

    2016-01-01

    Highlights: • Sprays can be considered as non-evaporating when vapour pressure is lower than 30 kPa. • Ethanol direct injection should only be applied in high temperature engine environment. • Gasoline spray collapses at lower fuel temperature (350 K) than ethanol spray does (360 K). • Flash-boiling does not occur when fuel temperature reaches boiling point until ΔT is 14 K. • Not only spray evaporation mode but also breakup mechanism change with fuel temperature. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) represents a more efficient and flexible way to utilize ethanol fuel in spark ignition engines. To exploit the potentials of EDI, the mixture formation characteristics need to be investigated. In this study, the spray and evaporation characteristics of ethanol and gasoline fuels injected from a multi-hole injector were investigated by high speed Shadowgraphy imaging technique in a constant volume chamber. The experiments covered a wide range of fuel temperature from 275 K (non-evaporating) to 400 K (flash-boiling) which corresponded to cold start and running conditions in an engine. The spray transition process from normal-evaporating to flash-boiling was investigated in greater details than the existed studies. Results showed that ethanol and gasoline sprays demonstrated the same patterns in non-evaporating conditions. The sprays could be considered as non-evaporating when vapour pressure was lower than 30 kPa. Ethanol evaporated more slowly than gasoline did in low temperature environment, but they reached the similar evaporation rates when temperature was higher than 375 K. This suggested that EDI should only be applied in high temperature engine environment. For both ethanol and gasoline sprays, when the excess temperature was smaller than 4 K, the sprays behaved the same as the subcooled sprays did. The sprays collapsed when the excess temperature was 9 K. Flash-boiling did not occur until the excess temperature

  17. Critical firing and misfiring boundary in a spark ignition methanol engine during cold start based on single cycle fuel injection

    International Nuclear Information System (INIS)

    Li, Zhaohui; Gong, Changming; Qu, Xiang; Liu, Fenghua; Sun, Jingzhen; Wang, Kang; Li, Yufeng

    2015-01-01

    The influence of the mass of methanol injected per cycle, ambient temperature, injection and ignition timing, preheating methods, and supplying additional liquefied petroleum gas (LPG) injection into the intake manifold on the critical firing and misfiring boundary of an electronically injection controlled spark ignition (SI) methanol engine during cold start were investigated experimentally based on a single cycle fuel injection with cycle-by-cycle control strategy. The critical firing and misfiring boundary was restricted by all parameters. For ambient temperatures below 16 °C, methanol engines must use auxiliary start-aids during cold start. Optimal control of the methanol injection and ignition timing can realize ideal next cycle firing combustion after injection. Resistance wire and glow plug preheating can provide critical firing down to ambient temperatures of 5 °C and 0 °C, respectively. Using an additional LPG injection into the intake manifold can provide critical firing down to an ambient temperature of −13 °C during cold start. As the ambient temperature decreases, the optimal angle difference between methanol injection timing and LPG injection timing for critical firing of a methanol engine increases rapidly during cold start. - Highlights: • A single cycle fuel injection and cycle-by-cycle control strategy are used to study. • In-cylinder pressure and instantaneous speed were used to determine firing boundary. • For the ambient temperatures below 16 °C, an auxiliary start-aids must be used. • A preheating and additional LPG were used to expand critical firing boundary. • Additional LPG can result in critical firing down to ambient temperature of −13 °C

  18. Conditioning of data for cyclic variation of IMEP under lean burn operation in a spark-ignition engine; Hibana tenka kikan no kihaku nensho untenji ni okeru zushi heikin yuko atsuryoku no hendo

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Urata, Y.; Yoshida, K.; Ono, t. [Honda Motor Co. Ltd., Tokyo (Japan)

    1997-07-25

    In this study, we investigated the relationship of indicated mean effective pressure (IMEP) for a spark ignition engine under lean combustion with the cyclic variation of mass fraction burned by measuring the energy release from the spark plug, intensity of the light emission from the flame and the cylinder pressure at the same time. In order to minimized an error in the initial and late combustion sages of the mass fraction burned to be obtained by cylinder pressure, spark plug energy and intensity of light emission were measured. As a result, it was found that there are three main causes of cyclic variation of IMEP. These consist of the burning speed during the initial stage of combustion, variation in the total mass fraction burned, and variation of the late burning during the late expansion stroke. Thus, we determined that there is a favorable interrelationship between the IMEPs and the corrected mass fraction burned. 13 refs., 9 figs., 1 tab.

  19. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Science.gov (United States)

    2010-07-01

    ... industry-sponsored or other independent brokering arrangements. (3) Manufacturers who enroll a fuel or fuel... Specification for Automotive Spark-Ignition Engine Fuel”, used to define the general characteristics of gasoline... shall be chemical-grade quality, at a minimum, and shall not contain a significant amount of other...

  20. Artificial neural network applications in the calibration of spark-ignition engines: An overview

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-09-01

    Full Text Available Emission legislation has become progressively tighter, making the development of new internal combustion engines very challenging. New engine technologies for complying with these regulations introduce an exponential dependency between the number of test combinations required for obtaining optimum results and the time and cost outlays. This makes the calibration task very expensive and virtually impossible to carry out. The potential use of trained neural networks in combination with Design of Experiments (DoE methods for engine calibration has been a subject of research activities in recent times. This is because artificial neural networks, compared with other data-driven modeling techniques, perform better in satisfying a majority of the modeling requirements for engine calibration including the curse of dimensionality; the use of DoE for obtaining few measurements as practicable, with the aim of reducing engine calibration costs; the required flexibility that allows model parameters to be optimized to avoid overfitting; and the facilitation of automated online optimization during the engine calibration process that eliminates the need for user intervention. The purpose of this review is to give an overview of the various applications of neural networks in the calibration of spark-ignition engines. The identified and discussed applications include system identification for rapid prototyping, virtual sensing, use of neural networks as look-up table surrogates, emerging control strategies and On-Board Diagnostic (OBD applications. The demerits of neural networks, future possibilities and alternatives were also discussed.

  1. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  2. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    International Nuclear Information System (INIS)

    Li, Ning; Liang, Caiping; Yang, Jianguo; Zhou, Rui

    2016-01-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner–Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated. (paper)

  3. Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine

    OpenAIRE

    Oakley, Aaron John

    2001-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effects of air and exhaust gas dilution on the CAI combustion of a range of fuels including three gasoline compositions, four primary reference fuels, and two alcohols are experimentally investigated using a single cylinder research engine. Two of the three gasolines tested are manufactured from standard gasoline during engine operation by a novel fuel system, designed to improve the per...

  4. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  5. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Asad Naeem Shah

    2011-10-01

    Full Text Available This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes species emanated from a light duty SI (Spark Ignition vehicle E-0 (fuelled on gasoline and E-10 (ethanol-gasoline blend. Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with the standard protocols recommended for light duty vehicle emissions. Carbonyls and BTEX were analyzed by HPLC (High Performance Liquid Chromatography with UV detector and GC/MS (Gas Chromatography/Mass Spectroscopy, respectively. Formaldehyde and acetaldehyde were the predominant components of the carbonyls for E-0 and E-10, respectively. During transient mode, formaldehyde, acrolein + acetone, and tolualdehyde pollutants were decreased but, acetaldehyde emissions increased with E-10 as compared to E-0. The BTEX emissions were also decreased with E-10, relative to E-0. During the steady-state modes, formaldehyde, acrolein + acetone and propionaldehyde were lower, aromatic aldehydes were absent, but acetaldehyde pollutants were higher with E-10 compared to E-0. The BTEX emissions were decreased at medium and higher speed modes however, increased at lower speed mode with E-10 as compared to E-0. Total BTEX emissions were maximal at lower speed mode but, least at medium speed mode for both the fuels. SR of the pollutants was higher over transient cycle of operation, compared with steady-state mode. Relative to E-0, E-10 displayed lower SR during both transient as well as steady-state mode.

  6. Research on Control-Oriented Modeling for Turbocharged SI and DI Gasoline Engines

    Directory of Open Access Journals (Sweden)

    Feitie Zhang

    2015-01-01

    Full Text Available In order to analyze system performance and develop model-based control algorithms for turbocharged spark ignition and direct injection (SIDI gasoline engines, a control oriented mean value model is developed and validated. The model is constructed based on theoretical analysis for the different components, including the compressor, turbine, air filter, intercooler, throttle, manifold, and combustion chamber. Compressor mass flow and efficiency are modeled as parameterized functions. A standard nozzle model is used to approximate the mass flow through the turbine, and the turbine efficiency is modeled as a function of blade speed ratio (BSR. The air filter is modeled as a tube for capturing its pressure drop feature. The effectiveness number of transfer units (NTU modeling method is utilized for the intercooler. The throttle model consists of the standard nozzle model with an effective area regressed to throttle position. Manifolds are modeled for their dynamically varying pressure state. For the cylinder, the air mass flow into cylinders, fuel mass, torque, and exhaust temperature are modeled. Compared to the conventional lookup table approach, transient dynamics error can be improved significantly through using the model from this work.

  7. Numerical study of the ignition behavior of a post-discharge kernel injected into a turbulent stratified cross-flow

    Science.gov (United States)

    Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias

    2017-11-01

    The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.

  8. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  9. Exergetic Evaluation of Speed and Load Effects in Spark Ignition Engines Évaluation exergétique des effets de la vitesse et de la charge dans les moteurs àallumage par étincelle

    OpenAIRE

    Sezer I.; Bilgin A.

    2012-01-01

    This study investigates the effects of various operating conditions in spark ignition engines via an exergy analysis. A thermodynamic cycle model including compression, combustion and expansion processes was used for investigation. Induction and exhaust processes were computed with a simple approximation method. The principles of the second law were applied to the cycle model to perform the exergy analysis. Exergetic variables, i.e., the exergy transfers with heat and work, irreversibili...

  10. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  11. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour; Nasir, Ehson F.; Es-sebbar, Et-touhami; Farooq, Aamir

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work

  12. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  13. Experimental optimization of a direct injection homogeneous charge compression ignition gasoline engine using split injections with fully automated microgenetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli Univ., Izmit (Turkey); Reitz, R.D. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2003-03-01

    Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NO{sub x} and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60 deg spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies. (Author)

  14. Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinhua; Chen, Hao; Liu, Bing; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-09-15

    Cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends with hydrogen volumetric fraction of 0%, 12%, 23%, 30% and 40% were studied. The effect of hydrogen addition on cycle-by-cycle variations of the natural gas engine was analyzed. The results showed that the peak cylinder pressure, the maximum rate of pressure rise and the indicated mean effective pressure increased and their corresponding cycle-by-cycle variations decreased with the increase of hydrogen fraction at lean mixture operation. The interdependency between the combustion parameters and the corresponding crank angle tended to be strongly correlated with the increase of hydrogen fraction under lean mixture operation. Coefficient of variation of the indicated mean effective pressure gave a low level and is slightly influenced by hydrogen addition under the stoichiometric and relatively rich mixture operation while it decreased remarkably with the increase of hydrogen fraction under the lean mixture operation. The excessive air ratio at CoV{sub imep} = 10% extended to the leaner mixture side with the increase of hydrogen fraction and this indicated that the engine lean operating limit could be extended with hydrogen addition. (author)

  15. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  16. Mixture formation of direct gasoline injection engine. In cylinder gas sampling using fast response ionization detector; Tonai funsha gasoline engine no kongoki keisei. Kosoku FID ni yoru tonai gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marubara, M; Ota, N; Kudo, H; Yamamoto, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Local mixture concentration near the spark plug of a direct gasoline injection engine was observed by a fast flame ionization detector. To ensure combustion stability and good fuel economy in DISC operation, the swirl ratio and the piston configuration were optimized. Swirl is needed to retain well-vaporized and stable mixture near the spark plug especially in light load. And adequate volume in piston cavity is required for trapping curved fuel spray in it. With these specifications, the fuel economy improvement of 13 to 30 % was realized. 2 refs., 13 figs., 1 tab.

  17. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam; Morganti, Kai; Algunaibet, Ibrahim; Sarathy, Mani; Dibble, Robert W.

    2016-01-01

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach

  18. Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process

    Directory of Open Access Journals (Sweden)

    Marcin Noga

    2017-03-01

    Full Text Available The paper presents the results of research on the turbocharged spark ignition engine with additional exhaust expansion in a separate cylinder, which is commonly known as the five-stroke engine. The research engine has been constructed based on the four cylinder engine in which two outer cylinders work as the fired cylinders, while two internally connected inner cylinders constitute the volume of the additional expansion process. The engine represents a powertrain realizing an ultra-expansion cycle. The purpose of the study was to find an effective additional expansion process in the five-stroke engine. Cylinder-pressure indicating measurements were carried out for one of the fired cylinders and the additional expansion cylinder. The study was performed for over 20 different points on the engine operation map. This allowed us to determine a dependence between the pressure indicated in the fired cylinders and in the additional expansion cylinders. A function of the mean pressure indicated in the additional expansion cylinder versus a brake mean effective pressure was also presented. This showed a load threshold from which the work of the cylinders of additional expansion produced benefits for the output of the experimental engine. The issues of mechanical efficiency and effective efficiency of this engine were also discussed.

  19. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    Science.gov (United States)

    1943-06-01

    compression type, without ignition, the resulting preliminary reactions being detectable and meas- urable thermometrically . Contents I. Influence of Preliminary...thoroughly insulated be- tween the carburettor and the engine, by aluminium foil and asbestos. -I -I " I" I ’I il i~ " !, I I 1𔃻I I’ ) To enable the

  20. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  1. Investigation of the effect of heated ethanol fuel on combustion and emissions of an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang

    2016-01-01

    Highlights: • Effect of EDI heating on the EDI + GPI engine performance was investigated. • CO and HC were significantly reduced and NO was slightly increased by EDI heating. • IMEP and combustion speed were slightly reduced by EDI heating. • EDI heating is effective to address the evaporation and over-cooling issues of EDI + GPI engine. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to utilise ethanol fuel more efficiently and flexibly in spark ignition engines. One issue needs to be addressed in the development of EDI + GPI is the ethanol fuel’s low vapour pressure and large latent heat which slow down the ethanol’s evaporation and result in the mixture unready for combustion by the time of spark ignition and the consequent increase of CO and HC emissions. Heating the ethanol fuel to be directly injected (EDI heating) has been proposed to address this issue. This paper reports the investigation of the effect of EDI heating on the combustion and emissions of a research engine equipped with EDI + GPI. The results showed that EDI heating effectively reduced the CO and HC emissions of the engine due to the increase of evaporation rate and reduced fuel impingement and local over-cooling. The reduction of CO and HC became more significant with the increase of ethanol ratio. When the temperature of the ethanol fuel was increased by 40 °C, the CO and HC were reduced by as much as 43% and 51% respectively in EDI only condition at the original spark timing of 15 CAD BTDC, and 15% and 47% respectively at the minimum spark advance for best torque (MBT) timing of 19 CAD BTDC. On the other hand, the NO emission was slightly increased, but still much smaller than that in GPI only condition due to the strong cooling effect and low combustion temperature of EDI. The IMEP and combustion speed were slightly reduced by EDI heating due to the decrease of injector fuel flow rate and spray collapse of flash-boiling. The

  2. Rapid detonation initiation by sparks in a short duct: a numerical study

    Science.gov (United States)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  3. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  4. DT ignition in a Z pinch compressed by an imploding liner

    International Nuclear Information System (INIS)

    Bilbao, L.; Bernal, L.; Linhart, J.G.; Verri, G.

    2001-01-01

    It has been shown that an m=0 instability of a Z pinch carrying a current of the order of 10 MA with a rise time of less than 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent DT plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in previous publications without considering the role played by an initially impressed m=0 perturbation, a mechanism indispensable for the generation of a spark. The liner-Z pinch dynamics can be solved at several levels of physical model completeness. The first corresponds to a zero dimensional model in which the liner has a given mass per unit length and a zero thickness, the plasma is compressed adiabatically and is isotropic, and there are no energy losses or Joule heating. The second level is one dimensional. The Z pinch plasma is described by the full set of MHD, two-fluid equations. The liner is treated first as thin and incompressible, and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic equation of state. Both plasma and liner are considered uniform in the Z direction and only DT reactions are considered. It is shown that, given sufficient energy and speed of the liner, the Z pinch can reach a volume ignition. The third level is two dimensional. Plasma and liner are treated as in the second level but either the Z pinch or the liner is perturbed by an m=0 non-uniformity. Provided the liner energy is high enough and the initial m=0 perturbation is correctly chosen, the final neck plasma can act as a spark for DT ignition. It is also shown that the liner energy required for generating a spark and the subsequent detonation propagation are considerably less than in the case of volume ignition. (author)

  5. A fundamental investigation into the relationship between lubricant composition and fuel ignition quality

    KAUST Repository

    Kuti, Olawole Abiola

    2015-11-01

    A fundamental experiment involving the use of an ignition quality tester (IQT) was carried out to elucidate the effects of lubricant oil composition which could lead to low speed pre-ignition (LSPI) processes in direct injection spark ignition (DISI) engines. Prior to the IQT tests, lubricant base oils were analyzed using ultra-high resolution mass spectrometry to reveal their molecular composition. High molecular-weight hydrocarbons such as nC16H34, nC17H36, and nC18H38 were selected as surrogates of lubricant base oil constituents, and then mixed with iso-octane (iC8H18-gasoline surrogate) in proportions of 1 vol.% (iC8H18 = 99 vol.%) and 10 vol.% (iC8H18 = 90 vol.%) for the IQT experiments. In addition, lubricant base oils such as SN100 (Group I) and HC4 and HC6 (Group III) and a fully formulated lubricant (SAE 20W50) were mixed with iso-octane in the same proportions. The IQT results were conducted at an ambient pressure of 15 bar and a temperature range of 680-873 K. In the temperature range of 710-850 K, the addition of 10 vol.% base oils surrogates, base oils, and lubricating oil to the 90 vol.% iC8H18 reduces the average total ignition delay time by up to 54% for all mixtures, while the addition of 1 vol.% to 99 vol.% iC8H18 yielded a 7% reduction within the same temperature range. The shorter total ignition delay was attributed to the higher reactivity of the lubricant base oil constituents in the fuel mixtures. A correlation between reactivity of base oils and their molecular composition was tentatively established. These results suggest that the lubricants have the propensity of initiating LSPI in DISI engines. Furthermore, similar results for n-alkanes, lubricant base oils, and fully formulated commercial lubricants suggest that it is the hydrocarbon fraction that contributes primarily to enhanced reactivity, and not the inorganic or organometallic additives. © 2015 Elsevier Ltd. All rights reserved.

  6. A fundamental investigation into the relationship between lubricant composition and fuel ignition quality

    KAUST Repository

    Kuti, Olawole Abiola; Yang, Seung Yeon; Hourani, Nadim; Naser, Nimal; Roberts, William L.; Chung, Suk-Ho; Sarathy, Mani

    2015-01-01

    A fundamental experiment involving the use of an ignition quality tester (IQT) was carried out to elucidate the effects of lubricant oil composition which could lead to low speed pre-ignition (LSPI) processes in direct injection spark ignition (DISI) engines. Prior to the IQT tests, lubricant base oils were analyzed using ultra-high resolution mass spectrometry to reveal their molecular composition. High molecular-weight hydrocarbons such as nC16H34, nC17H36, and nC18H38 were selected as surrogates of lubricant base oil constituents, and then mixed with iso-octane (iC8H18-gasoline surrogate) in proportions of 1 vol.% (iC8H18 = 99 vol.%) and 10 vol.% (iC8H18 = 90 vol.%) for the IQT experiments. In addition, lubricant base oils such as SN100 (Group I) and HC4 and HC6 (Group III) and a fully formulated lubricant (SAE 20W50) were mixed with iso-octane in the same proportions. The IQT results were conducted at an ambient pressure of 15 bar and a temperature range of 680-873 K. In the temperature range of 710-850 K, the addition of 10 vol.% base oils surrogates, base oils, and lubricating oil to the 90 vol.% iC8H18 reduces the average total ignition delay time by up to 54% for all mixtures, while the addition of 1 vol.% to 99 vol.% iC8H18 yielded a 7% reduction within the same temperature range. The shorter total ignition delay was attributed to the higher reactivity of the lubricant base oil constituents in the fuel mixtures. A correlation between reactivity of base oils and their molecular composition was tentatively established. These results suggest that the lubricants have the propensity of initiating LSPI in DISI engines. Furthermore, similar results for n-alkanes, lubricant base oils, and fully formulated commercial lubricants suggest that it is the hydrocarbon fraction that contributes primarily to enhanced reactivity, and not the inorganic or organometallic additives. © 2015 Elsevier Ltd. All rights reserved.

  7. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    Science.gov (United States)

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluación de un motor de encendido por chispa trabajando con mezclas etanol-gasolina; Evaluation of the spark-ignition engine fueled with ethanol–gasoline blends

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2012-07-01

    Full Text Available En la presente investigación se realiza un análisis del rendimiento de un motor de encendido por chispa (Lada 1300 al usar como combustible mezclas de etanol con gasolina en un 10%, 20% y 30%. Los parámetros analizados en cada experimento fueron el torque efectivo, la potencia efectiva, el consumo específico de combustible y las emisiones de monóxido de carbono. Los resultados obtenidos se analizaron estadísticamente mediante una comparación de muestras múltiples en el software estadístico Statgraphics Centurion XV.II. Este análisis fue hecho con él con el objetivo de analizar las posibles diferencias entre los parámetros evaluados para cada combustible a una misma rpm. A partir de los resultados obtenidos se pudieron establecer satisfactoriamente dos porcientos adecuados de la mezcla etanol-gasolina para ser utilizado en motores de encendido por chispa (Lada en las condiciones de Cuba y sin hacer modificacionesen el motor. In this investigation an analysis based on the performances of an engine when using blends of anhydrous ethanol with regular gasoline as fuels is carried out. The experiments of the Lada 1300 engine were carriedout for different blends in 10%, 20% and 30% of ethanol in gasoline. The analyzed parameters for each experiment were the effective torque, the effective power, the specific fuel consumption and the carbon monoxide exhausts emissions. The obtained results were statistically analyzed through multiple-sample comparison in the software Statgraphics Centurion XV.II. This analysis was made with the objective of analyzing the possible differences among the evaluated parameters for each fuel to the same rpm. The appropriate percent of the anhydrous ethanol - regular gasoline blends for use in engine (Lada under the Cuba conditions and without making modifications were satisfactorily established.

  9. Towards 40% efficiency with BMEP exceeding 30 bar in directly injected, turbocharged, spark ignition ethanol engines

    International Nuclear Information System (INIS)

    Boretti, Alberto

    2012-01-01

    Highlights: ► The main advantages of ethanol vs. gasoline are higher knock resistance and heat of vaporization. ► Direct injection and turbo charging are the key features of high efficiency and high power density ethanol engines. ► Advanced ethanol engines are enablers of vehicle fuel energy economy similar to Diesel engines. ► Waste bio mass ethanol may cut the nonrenewable energy costs of fossil fuels passenger cars by almost 90%. - Abstract: Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results when targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger than gasoline top engine brake thermal efficiencies and peak power and torque, while the variable valve actuation produces smaller penalties in efficiency changing the load than in conventional throttle controlled engines.

  10. Vehicle driving cycle performance of the spark-less di-ji hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box663, Ballarat, VIC 3353 (Australia)

    2010-05-15

    The paper describes coupled CFD combustion simulations and CAE engine performance computations to describe the operation over the full range of load and speed of an always lean burn, Direct Injection Jet Ignition (DI-JI) hydrogen engine. Jet ignition pre-chambers and direct injection are enablers of high efficiencies and load control by quantity of fuel injected. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the spark-less pre-chamber of the DI-JI engine, where it mixes with the air entering from the main chamber and auto-ignites because of the high temperature of the hot glow plug. Then, jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. Engine maps of brake specific fuel consumption vs. speed and brake mean effective pressure are computed first. CAE vehicle simulations are finally performed evaluating the fuel consumption over emission cycles of a vehicle equipped with this engine. (author)

  11. Literature study and feasibility test regarding a gasoline/EHN blend consumed by standard CI-engine using a non-PCCI combustion strategy

    NARCIS (Netherlands)

    Doornbos, G.; Somhorst, J.; Boot, M.D.

    2013-01-01

    A literature and experimental study was done to create an overview of the behavior of gasoline combusted in a CI-engine. This paper creates a first overview of the work to be done before implementing this Gasoline Compression Ignition concept in a multi-cylinder engine. According to literature the

  12. Skip cycle method with a valve-control mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Baykara, Cemal; Akin Kutlar, O.; Dogru, Baris; Arslan, Hikmet

    2017-01-01

    Highlights: • A normal four-stroke cycle followed by a skip cycle without gas exchange is tested. • The normal and skipped mode results are compared at equal power levels. • The throttle valve is opened wider, thereby resulting in a higher volumetric efficiency. • The pumping work during the gas exchange decreases significantly. • The fuel consumption (BSFC) is reduced by approximately 14–26% under part load conditions. - Abstract: The efficiency decrease of spark ignition (SI) engines under part-load conditions is a considerable issue. Changing the effective stroke volume based on the load level is one of the methods using to improve the part-load efficiency. In this study, a novel alternative engine valve control technique in order to perform a cycle without gas exchange (skip cycle), is examined. The goal of skip cycle strategy is to reduce the effective stroke volume of an engine under part load conditions by skipping several of the four stroke cycles by cutting off the fuel injection and simultaneously deactivating the inlet and exhaust valves. To achieve the same power level in the skip cycle, the cylinder pressure level reaches higher values compared to those in a normal four stroke cycle operation, but inherently not higher than the maximum one at full load of normal cycle. According to the experimental results, the break specific fuel consumption (BSFC) was reduced by 14–26% at a 1–3 bar break mean effective pressure (BMEP) and a 1200–1800 rpm engine speed of skip cycle operation, in comparison to normal engine operation. The significant decrease in the pumping work from the gas exchange is one of the primary factors for an increase in efficiency under part load conditions. As expected, the fuel consumption reduction rate at lower load conditions was higher. These experimental results indicate a promising potential of the skip cycle system for reducing the fuel consumption under part load conditions.

  13. Air pollution and motor vehicles

    International Nuclear Information System (INIS)

    Bruzzi, L.

    1992-01-01

    An analysis is made of the effects of fuel chemical composition and fuel-air mixture on the composition of combustion exhaust gases produced by automotive spark ignition and diesel engines. This analysis considers several aspects: the merits of unleaded gasolines, Italian legal limits on the concentration of aromatic hydrocarbons in gasoline, limits on the sulfur content of diesel fuels, and proposed European Communities limits on automobile air pollution. The paper concludes with an assessment of the cost effective performance of different types of catalytic converters now available on the market

  14. Gasoline-related injuries and fatalities in the United States, 1995-2014.

    Science.gov (United States)

    Drago, Dorothy A

    2018-02-12

    This descriptive study examines twenty years of gasoline-related fatalities and emergency department treated injuries in the United States, based on data from the US Consumer Product Safety Commission. Thermal burns consistently accounted for the majority (56%) of gasoline-related injuries and for most (82%) gasoline-related deaths, and were commonly (57-71%) associated with the use of gasoline as an accelerant. Poisoning accounted for 13% of injuries and 17% of deaths. The primary poisoning injury pattern was ingestion; the primary fatality pattern was inhalation, with about half of those associated with deliberate abuse. The estimated number of ingestions decreased from 60 to 23% of poisoning-related injuries, while injuries associated with inhalation abuse increased from 6 to 23%. Chemical burns and dermatitis were less represented in the injury data and were primarily associated with gasoline spills or splashes. Gasoline cans reportedly ignited or exploded in about 5% of thermal burn injuries and fatalities. While mandatory requirements for child resistant closures on gasoline cans (a primary intervention) have potentially impacted poisonings, the use of flame mitigation devices to address thermal injuries, if successful, would be a secondary intervention, and could address only a small percentage (about 5%) of injuries and deaths.

  15. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON

    KAUST Repository

    Mannaa, Ossama

    2015-06-01

    The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.

  16. Pre-ignition and glow-ignition of gasoline biofuels; Vorentflammung und Gluehzuendung von Ottokraftstoffen mit Bioanteilen

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marco; Kremer, Florian; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Uygun, Yasar [RWTH Aachen Univ. (Germany). Stosswellenlabor

    2013-12-01

    Due to their specific fuel properties alternative fuels from biomass allow to significantly reduce carbon dioxide emissions and increase the thermal efficiency of gasoline combustion systems. Both enhanced downsizing and new fuels lead to challenges due to irregular combustion phenomena. Within the scope of a FVV research project new test methodologies and possible characteristic numbers characterising irregular combustion phenomena of various alternative fuels have been developed at RWTH Aachen University. (orig.)

  17. Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel

    International Nuclear Information System (INIS)

    Li, J.; Yang, W.M.; An, H.; Zhou, D.Z.; Yu, W.B.; Wang, J.X.; Li, L.

    2015-01-01

    Highlights: • A chemical reaction mechanism is newly developed for dual fuel combustion. • The developed chemical kinetics is coupled with KIVA4 to model the combustion. • The role of reactivity gradient in RCCI combustion is investigated. • The RCCI (dual fuel mode) combustion is compared with blend fuel mode. - Abstract: The reactivity controlled compression ignition (RCCI), which belongs to dual fuel mode (DFM) combustion has been considered as a promising way to achieve high fuel conversion efficiency and low emissions. By this strategy, a fuel reactivity gradient is formed in the combustion chamber which offers the probability of controlling combustion phasing. In this study, the role of fuel reactivity gradient was examined numerically by comparing a DFM (i.e., RCCI) combustion with other hypothetical cases under one specific load condition. Firstly, a chemical reaction mechanism was developed aiming at a modelling study on dual fuel and blend fuel combustion in internal combustion (IC) engines fueled by gasoline/diesel and gasoline/biodiesel. Ignition delays were validated for 100% diesel, 100% gasoline and 100% biodiesel under 102 conditions in total. Subsequently, the validated reaction mechanism which consists of 107 species and 425 reactions was implemented in coupled KIVA4-CHEMKIN code. Three dimensional validations were further conducted under 3 conditions including pure diesel combustion, and gasoline/diesel DFM combustion with both single and double injection strategies in the engine. To investigate the fuel reactivity gradient, the gasoline/diesel DFM combustion with single injection was compared with other three hypothetical cases, one of which was DFM without fuel reactivity gradient, two were the blend fuel mode but with different start of injection (SOI) timings. The results showed that the fuel reactivity gradient could retard the ignition timing, reduce heat release rate, and ease peak pressure rise rate. In addition, low levels of NO

  18. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  19. Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine

    International Nuclear Information System (INIS)

    Dhamodaran, Gopinath; Esakkimuthu, Ganapathy Sundaram; Pochareddy, Yashwanth Kutti; Sivasubramanian, Harish

    2017-01-01

    Global concern over rising greenhouse gas emission levels and the availability of fossil fuels has led to the development of biofuels, and the use of gasoline formulations with oxygenated compounds has become common practice for improving fuel quality. This empirical study evaluated the effects of oxygenated gasoline fuel blends on air quality. Tests were conducted on a four-stroke, four-cylinder multi-point fuel injection (MPFI) spark ignition (SI) engine using an eddy current dynamometer to investigate the combustion and emissions behaviour of n-butanol blends. Blends comprising n-butanol (N10, N20, and N30) and unleaded gasoline were tested over a rotational speed range of 1400 rpm–2800 rpm under a constant load of 20 Nm. The results obtained indicate that use of n-butanol blends produced lower hydrocarbon (HC) and carbon monoxide (CO) levels than unleaded gasoline but nitrogen oxide (NO_x) emissions were found to be higher. When ignition timing was retarded, NOx emissions for all n-butanol blends decreased. The peak in-cylinder pressures and heat release rates for the blends were also found to be higher than for unleaded gasoline (UG). COV_I_M_E_P of gasoline was higher than that of n-butanol/gasoline blends. - Highlights: • Using oxygenated compound gasoline formulations is common for improving fuel quality. • Blends of n-butanol with unleaded gasoline were tested between 1400 rpm and 2800 rpm. • Blends increased brake thermal efficiency and produced lower HC and CO but higher NOx. • Lower NOx was observed when ignition timing was retarded. • Peak in-cylinder pressures and heat release rates for blends were higher.

  20. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  1. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  2. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    Science.gov (United States)

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.

  3. Cycle-by-cycle variations in a spark ignition engine fueled with natural gas-hydrogen blends combined with EGR

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bin; Hu, Erjiang; Huang, Zuohua; Zheng, Jianjun; Liu, Bing; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 710049 Xi' an (China)

    2009-10-15

    Study of cycle-by-cycle variations in a spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation (EGR) was conducted. The effects of EGR ratio and hydrogen fraction on engine cycle-by-cycle variations are analyzed. The results show that the cylinder peak pressure, the maximum rate of pressure rise and the indicated mean effective pressure decrease and cycle-by-cycle variations increase with the increase of EGR ratio. Interdependency between the above parameters and their corresponding crank angles of cylinder peak pressure is decreased with the increase of EGR ratio. For a given EGR ratio, combustion stability is promoted and cycle-by-cycle variations are decreased with the increase of hydrogen fraction in the fuel blends. Non-linear relationship is presented between the indicated mean effective pressure and EGR ratio. Slight influence of EGR ratio on indicated mean effective pressure is observed at low EGR ratios while large influence of EGR ratio on indicated mean effective pressure is demonstrated at high EGR ratios. The high test engine speed has lower cycle-by-cycle variations due to the enhancement of air flow turbulence and swirls in the cylinder. Increasing hydrogen fraction can maintain low cycle-by-cycle variations at high EGR ratios. (author)

  4. An Experimental and Simulation Study of Early Flame Development in a Homogeneous-charge Spark-Ignition Engine

    Directory of Open Access Journals (Sweden)

    Shekhawat Y.

    2017-09-01

    Full Text Available An integrated experimental and Large-Eddy Simulation (LES study is presented for homogeneous premixed combustion in a spark-ignition engine. The engine is a single-cylinder two-valve optical research engine with transparent liner and piston: the Transparent Combustion Chamber (TCC engine. This is a relatively simple, open engine configuration that can be used for LES model development and validation by other research groups. Pressure-based combustion analysis, optical diagnostics and LES have been combined to generate new physical insight into the early stages of combustion. The emphasis has been on developing strategies for making quantitative comparisons between high-speed/high-resolution optical diagnostics and LES using common metrics for both the experiments and the simulations, and focusing on the important early flame development period. Results from two different LES turbulent combustion models are presented, using the same numerical methods and computational mesh. Both models yield Cycle-to-Cycle Variations (CCV in combustion that are higher than what is observed in the experiments. The results reveal strengths and limitations of the experimental diagnostics and the LES models, and suggest directions for future diagnostic and simulation efforts. In particular, it has been observed that flame development between the times corresponding to the laminar-to-turbulent transition and 1% mass-burned fraction are especially important in establishing the subsequent combustion event for each cycle. This suggests a range of temporal and spatial scales over which future experimental and simulation efforts should focus.

  5. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed

    2017-02-07

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  6. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed; Javed, Tamour; Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  7. Response surface methodology (RSM) based multi-objective optimization of fusel oil -gasoline blends at different water content in SI engine

    International Nuclear Information System (INIS)

    Awad, Omar I.; Mamat, R.; Ali, Obed M.; Azmi, W.H.; Kadirgama, K.; Yusri, I.M.; Leman, A.M.; Yusaf, T.

    2017-01-01

    Highlights: • The optimal ratio ratio of fusel oil–gasoline blended fuels is proposed. • The water content of fusel oil was reduced from 13.5% to 6.5%. • The heating value of fusel oil was improved by 13%. • FAWE 20 fuels were found to be optimal values with a high desirability of 0.707. • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: The main objective of this study is to determine the optimal blend ratio of fusel oil–gasoline before and after water extraction (FBWE10, FBWE20, FAWE10, and FAWE20) regarding the performance and emissions of spark ignition engine using response surface methodology (RSM). The multi-objective optimization is applied to maximize the brake power, brake thermal efficiency and minimize the brake specific fuel consumption (BSFC), NOx emission, HC emission and CO emission. The water content of fusel oil has been extracted by employing rotary extractor method. The experimental of this study has been carried out with different fusel oil–gasoline blends, different throttle valve opening position (15%, 30%, 45% and 60%) and different engine speed (1500, 2500, 3500 and 4500 rpm). All the developed models for responses were determined to be statistically significant at 95% confidence level. The study results reveal an improvement in heating value of fusel oil after water extraction with FAWE20 (80 vol% gasoline fuel, 20 vol% fusel oil after water extracted) as the optimally blended fuel. The best condition of engine parameters with FAWE20 were 55.4% of WOT for load and 4499 rpm engine speed. In additional of the optimal values with a high desirability of 0.707 were 62.511 kW, 241.139 g/kW h, 36%, 1895.913 ppm140.829 ppm and % for brake power, BSFC, BTE, NO x , HC and CO emissions respectively. The reduction of water content in fusel oil has a statistical significance influence to increases BTE, NO x emission and decreases the BSFC, HC and CO emissions.

  8. Electrostatic hazards of charging of bedclothes and ignition in medical facilities.

    Science.gov (United States)

    Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki

    2018-02-26

    We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).

  9. Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas)

    International Nuclear Information System (INIS)

    Masi, Massimo

    2012-01-01

    The use of LPG (liquefied petroleum gas) as alternative fuel to petrol is common practise in spark ignition engines. While the main driving force to the use of LPG still remains the low cost for the end user, its favourable pollutant emissions, in particular carbon dioxide, will in the middle term probably increase interest in LPG as an IC engine fuel. In addition, there are both theoretical and technical reasons to consider LPG as an attractive fuel also in terms of engine performance. Despite the continuously increasing stock production of dual-fuel (petrol–LPG) passenger car models, doubts still exist about both real engine performance in LPG operation and the reliability of the dual-fuel feeding system. This paper deals with the theoretical advantages of using LPG as fuel for SI engines. Brake performance tests of a passenger car engine fed with petrol and LPG are analysed and compared. The stock engine has been equipped with a “third-generation” standard kit for dual-fuel operation. The performance reductions in LPG operation are discussed in both steady state and transient condition. The results of some modifications to the set-up of both the petrol and LPG metering devices, designed for a better justification of the measured performance, are also presented. -- Highlights: ► Experimental research on the actual performances of an SI engine fed with petrol and gaseous LPG. ► Theoretical advantages and drawbacks of fuelling SI ICE’s with LPG. ► Brake performance analysis shows a noticeable gap between LPG and petrol operation. ► Local measurements confirm that the thermodynamic operation of the evaporator-pressure reducer device is crucial for the engine performance. ► The performance of the up-to-date kit for petrol–LPG dual-fuel operation is greatly affected by the settings of the mechanical components of the LPG evaporator device.

  10. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    Science.gov (United States)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  11. Modeling of the Inductance of a Blumlein Circuit Spark Gap

    International Nuclear Information System (INIS)

    Aboites, V; Rendón, L; Hernández, A I; Valdés, E

    2015-01-01

    In this paper we present an analysis of the time-varying inductance in the spark gap of a Blumlein circuit. We assume several mathematical expressions to describe the inductance and compare theoretical and computational calculations with experimental results. The time-varying inductance is approximated by a constant, a straight line and two parables which differ in their concavity. This is the first time to our knowledge, in which the time-varying ignition inductance of a nitrogen laser is modeled

  12. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  13. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  14. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  15. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  16. Desenvolvimento de um equipamento para avaliação do efeito do etanol na pressão de vapor e entalpia de vaporização em gasolinas automotivas

    Directory of Open Access Journals (Sweden)

    Cataluña Renato

    2006-01-01

    Full Text Available The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating conditions in internal combustion engines. The study reported here involved the development of a device to determine the vapor pressure and the vaporization enthalpy of formulations containing volumes of 5, 15 and 25% of ethanol in four base gasolines (G1, G2, G3 and G4. The chemical composition of these gasolines was determined using a gas chromatographer equipped with a flame ionization detector (FID.

  17. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  18. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  19. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  20. Experimental investigation of the vibrational and thermal response of a laser spark plug

    Science.gov (United States)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit

  1. Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G.

    2008-01-01

    A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is

  2. Exploring the limits of a down-sized ethanol direct injection spark ignited engine in different configurations in order to replace high-displacement gasoline engines

    International Nuclear Information System (INIS)

    Baêta, José Guilherme Coelho; Pontoppidan, Michael; Silva, Thiago R.V.

    2015-01-01

    Highlights: • The limits of a highly boosted down-sized ethanol engine was investigated. • 28% of fuel consumption reduction was achieved by means of an extreme down-sizing. • 53% of down-sizing was reached by means of cutting-edge technologies implementation. • Engine efficiency at partial load was also investigated. • A significant decrease in engine-out emissions was achieved. - Abstract: The paper presents a layout of a highly boosted Ethanol Direct Injected engine in order to explore the limits of down-sizing for replacing high-displacement gasoline engines, which represents a powerful means of reducing fuel consumption and engine-out emissions at reduced production costs. The substitution of high-displacement engines (2.4- or 3.0-l) by a down-sized turbocharged Ethanol Direct Injected engine is studied. This document describes the detailed layout of all engine hardware and in particular, the cylinder head structure including the optimized intake and exhaust manifolds as well as implemented direct injection injectors. The work continues with a presentation of the experimental data obtained at the engine test rig. A series of experimental data is also presented for the down-sized engine mounted in a car as a replacement for its original high-displacement engine. Substantial fuel consumption gains are obtained as well as values of engine torque for the down-sized, down-speeded prototype engine, which makes it possible to replace engines with much higher displacements. As a result the maximum obtained efficiency of the 1.4 l prototype engine with twin-stage compressor reaches a value of 3250 kPa brake pressure at 44% efficiency. The present work is a very new and different approach compared to previous published studies on ethanol and down-sized engines due to the fact that the Brazilian hydrated ethanol fuel (7% water content) has a major charge effect compared to North American and European Gasoline and alcohol fuels (consult Table 1). This means that

  3. [Exposure to electrocution by automotive ignition system in the work environment of car service employees].

    Science.gov (United States)

    Fryśkowski, Bernard; Swiatek-Fryśkowska, Dorota

    2014-01-01

    Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed.

  4. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  5. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  6. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  7. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  8. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    Science.gov (United States)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  9. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    Science.gov (United States)

    Ng, H. K.; Sekar, R. R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO(x) emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO(x) emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO(x) emissions could meet the 2004 Tier 2 emissions standards with 25%-oxygen-content air.

  10. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  11. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    Highlights: • An experimental and simulation study of a linear engine is conducted. • The effects of operating parameters on the generating power are investigated. • The air gap length has a significant influence on the generating power. • The generating power of the linear engine is optimized with the value of 111.3 W. • There are no problems for the linear engine after 100 h of durable test. - Abstract: In this paper, we present our experiment and simulation study of a free piston linear engine based on operating conditions and structure of the linear engine for generating electric power. The free piston linear engine includes a two-stroke free piston engine, linear generators, and compressors. In the experimental study, the effects of key parameters such as input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air gap length on the piston dynamics and electric power output are investigated. Propane is used as a fuel in the free piston linear engine, and it is premixed with the air to make a homogeneous charge before go into the cylinder. The air and fuel mass flow rate are varied by a mass flow controller. The experimental results show that the maximum generating power is found with the value of 111 W at the input caloric value of 5.88 kJ/s, spark timing delay of 1.5 ms, equivalence ratio of 1.0, electric resistance of 30 Ω, and air gap length of 1.0 mm. In order to check the durability of the linear engine, a durable test is conducted during 100 h. The experimental results show that there are no problems for the linear engine after about one hundred hours of the durable test. Beside experimental study, a simulation study is conducted to predict operating behavior of the linear engine. In the simulation study, the two-stroke free piston linear engine is modeled and simulated through a combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These

  12. Ignition studies of n-heptane/iso-octane/toluene blends

    KAUST Repository

    Javed, Tamour

    2016-07-09

    Ignition delay times of four ternary blends of n-heptane/iso-octane/toluene, referred to as Toluene Primary Reference Fuels (TPRFs), have been measured in a high-pressure shock tube and in a rapid compression machine. The TPRFs were formulated to match the research octane number (RON) and motor octane number (MON) of two high-octane gasolines and two prospective low-octane naphtha fuels. The experiments were carried out over a wide range of temperatures (650–1250 K), at pressures of 10, 20 and 40 bar, and at equivalence ratios of 0.5 and 1.0. It was observed that the ignition delay times of these TPRFs exhibit negligible octane dependence at high temperatures (T > 1000 K), weak octane dependence at low temperatures (T < 700 K), and strong octane dependence in the negative temperature coefficient (NTC) regime. A detailed chemical kinetic model was used to simulate and interpret the measured data. It was shown that the kinetic model requires general improvements to better predict low-temperature conditions and particularly requires improvements for high sensitivity (high toluene concentration) TPRF blends. These datasets will serve as important benchmark for future gasoline surrogate mechanism development and validation. © 2016 The Combustion Institute

  13. Characterization of laser-induced ignition of biogas-air mixtures

    International Nuclear Information System (INIS)

    Forsich, Christian; Lackner, Maximilian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2004-01-01

    Fuel-rich to fuel-lean biogas-air mixtures were ignited by a Nd:YAG laser at initial pressures of up to 3 MPa and compared to the ignition of methane-air mixtures. The investigations were performed in a constant volume vessel heatable up to 473 K. An InGaAsSb/AlGaAsSb quantum well ridge diode laser operating at 2.55 μm was used to track the generation of water in the vicinity of the laser spark in a semi-quantitative manner. Additionally, the flame emissions during the ignition process were recorded and a gas inhomogeneity index was deduced. Laser-induced ignition and its accompanying effects could be characterized on a time scale spanning four orders of magnitude. The presence of CO 2 in the biogas reduces the burning velocity. The flame emissions result in a much higher intensity for methane than it was the case during biogas ignition. This knowledge concludes that engines fuelled with biogas ultimately affect the performance of the process in a different way than with methane. Methane-air mixtures can be utilized in internal combustion engines with a higher air-fuel ratio than biogas. Comparing failed laser-induced ignition of methane-air and biogas-air mixtures similar results were obtained. The three parameters water absorbance, flame emission and the gas inhomogeneity index constitute a suitable tool for judging the quality of laser-induced ignition of hydrocarbon-air mixtures at elevated pressures and temperatures as encountered in internal combustion engines

  14. Pollution provoquée par le moteur Diesel. Niveaux d'émission. Comparaison avec le moteur à allumage commandé Pollution Caused by Diesel Engines. Emission Levels. Comparison with Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Degobert P.

    2006-11-01

    Full Text Available A partir de l'analyse des différences de modes de combustion allumage commandé et Diesel , cet article compare et explique la nature et les niveaux des différents polluants émis en fonction de leurs mécanismes de formation. Les facteurs d'action au niveau moteur sont examinés, ainsi que l'influence du carburant utilisé. Based on an analysis of the difference between spark-ignition and diesel combustion modes, this article compares and explains the nature and levels of different pollutants emitted as a function of their formation mechanisms. The action factors at the engine> level are examined together with the influence of the fuel used.

  15. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Homdoung, N.; Tippayawong, N.; Dussadee, N.

    2015-01-01

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  16. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  17. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  18. Exposure to electrocution by automotive ignition system in the work environment of car service employees

    Directory of Open Access Journals (Sweden)

    Bernard Fryśkowski

    2014-06-01

    Full Text Available Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed. Med Pr 2014;65(3:419–427

  19. STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition

    Science.gov (United States)

    Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2011-10-01

    The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.

  20. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  2. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  3. Chemical kinetic insights into the ignition dynamics of n-hexane

    KAUST Repository

    Tingas, Alexandros

    2017-10-13

    Normal alkanes constitute a significant fraction of transportation fuels, and are the primary drivers of ignition processes in gasoline and diesel fuels. Low temperature ignition of n-alkanes is driven by a complex sequence of oxidation reactions, for which detailed mechanisms are still being developed. The current study explores the dynamics of low-temperature ignition of n-hexane/air mixtures, and identifies chemical pathways that characterize the combustion process. Two chemical kinetic mechanisms were selected as a comparative study in order to better understand the role of specific reaction sequences in ignition dynamics: one mechanism including a new third sequential O2 addition reaction pathways (recently proposed by Wang et al. 2017), while the other without (Zhang et al. 2015). The analysis is conducted by applying tools generated from the computational singular perturbation (CSP) approach to two distinct ignition phenomena: constant volume and compression ignition. In both cases, the role of the third sequential O2 addition reactions proves to be significant, although it is found to be much more pronounced in the constant volume cases compared to the HCCI. In particular, in the constant volume ignition case, reactions present in the third sequential O2 addition reaction pathways (e.g., KDHP  →  products + OH) contribute significantly to the explosivity of the mixture; when accounted for along with reactions P(OOH)2 + O2  →  OOP(OOH)2 and OOP(OOH)2  →  KDHP + OH, they decrease ignition delay time of the mixture by up to 40%. Under HCCI conditions, in the first-stage ignition, the third-O2 addition reactions contribute to the process, although their role decays with time and becomes negligible at the end of the first stage. The second ignition stage is dominated almost exclusively by hydrogen-related chemistry.

  4. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  5. Ignition delay time correlation of fuel blends based on Livengood-Wu description

    KAUST Repository

    Khaled, Fathi

    2017-08-17

    In this work, a universal methodology for ignition delay time (IDT) correlation of multicomponent fuel mixtures is reported. The method is applicable over wide ranges of temperatures, pressures, and equivalence ratios. n-Heptane, iso-octane, toluene, ethanol and their blends are investigated in this study because of their relevance to gasoline surrogate formulation. The proposed methodology combines benefits from the Livengood-Wu integral, the cool flame characteristics and the Arrhenius behavior of the high-temperature ignition delay time to suggest a simple and comprehensive formulation for correlating the ignition delay times of pure components and blends. The IDTs of fuel blends usually have complex dependences on temperature, pressure, equivalence ratio and composition of the blend. The Livengood-Wu integral is applied here to relate the NTC region and the cool flame phenomenon. The integral is further extended to obtain a relation between the IDTs of fuel blends and pure components. Ignition delay times calculated using the proposed methodology are in excellent agreement with those simulated using a detailed chemical kinetic model for n-heptane, iso-octane, toluene, ethanol and blends of these components. Finally, very good agreement is also observed for combustion phasing in homogeneous charge compression ignition (HCCI) predictions between simulations performed with detailed chemistry and calculations using the developed ignition delay correlation.

  6. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    Science.gov (United States)

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  7. Pengaruh prosentase etanol terhadap daya dan konsumsi bahan bakar mesin pembakaran busi

    Directory of Open Access Journals (Sweden)

    Mega Nur Sasongko

    2017-03-01

    Full Text Available Abstrak: Penelitian ini merupakan studi eksperimental pengaruh penambahan etanol terhadap kinerja mesin pembakaran busi (mesinbensin, meliputi daya efektif dan konsumsi bahan bakar spesifiknya. Mesin yang digunakan dalam penelitian ini berupa mesinempat langkah silinder tunggal, system injeksi tidak langsung, dengan volume 124.8 cc dan rasio kompresi 9.3 : 1. Pengujiandilakukan pada 8 kecepatan putaran mesin yang berbeda mulai dari 1500 rpm sampai 5000 rpm, dengan 10 tipe campuranbensin dan etanol (E10 sampai E100. Hasil pengujian menunjukkan bahwa daya efektif mesin menurun dengan peningkaranetanol dalam campuran untuk semua variasi kecepatan putaran mesin. Daya maksimum dicapai pada putaran mesin 2500sampai 3000 rpm. Etanol memiliki nilai kalor yang lebih rendah dibanding bensin, sehingga peningkatan kandungan etanoldalam bahan bakar menyebabkan kenaikan konsumsi bahan bakar spesifik mesin.Kata kunci: etanol; bahan bakar bensin-etanol; performa mesin, konsumsi bahan bakar spesifik Abstract: This present study investigated experimentally the influence of ethanol addition on the engine performance; in the term ofeffective power and Brake specific fuel consumptio of gasoline spark ignition engine. The engine used in the research was a 4stroke single-cylinder, indirect injection system with volume of 124.8 cc and compression ratio of 9.3:1. The experiments wereconducted at eight different engine speeds ranging from 1500 rpm to 5000 rpm and 10 types of gasoline-ethanol mixtures (E10to E100. The result showed that the effective power decreased with increasing of ethanol in the fuel blends for all variation ofengine speed. The maximum power of the engine was obtained at engine speed around 2500 to 3000 rpm. Since the ethanolhas a lower heating value than that of gasoline, ethanol addition in the blend fuel causes the increment of Brake Specific FuelConsumptionKeywords: ethanol; gasoline-ethanol fuel; spark ignition engine; engine performance, brake

  8. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  9. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, R.; Azmi, W.H.; Omar, A.I.; Obed, M.A.; Shaiful, A.I.M.

    2017-01-01

    Highlights: • Adding 2-butanol in gasoline fuel can improve engine performance. • 2-Butanol addition reduced NO x , CO, and HC but produced higher CO 2 . • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: Producing an optimal balance between engine performance and exhaust emissions has always been one of the main challenges in automotive technology. This paper examines the use of RSM (response surface methodology) to optimize the engine performance, and exhaust emissions of a spark-ignition (SI) engine which operates with 2-butanol–gasoline blends of 5%, 10%, and 15% called GBu5, GBu10, and GBu15. In the experiments, the engine ran at various speeds for each test fuel and 13 different conditions were constructed. The optimization of the independent variables was performed by means of a statistical tool known as DoE (design of experiments). The desirability approach by RSM was employed with the aim of minimizing emissions and maximizing of performance parameters. Based on the RSM model, performance characteristics revealed that increments of 2-butanol in the blended fuels lead to increasing trends of brake power, brake mean effective pressure and brake thermal efficiency. Nonetheless, marginal higher brake specific fuel consumption was observed. Furthermore, the RSM model suggests that the presence of 2-butanol exhibits a decreasing trend of nitrogen oxides, carbon monoxides, and unburnt hydrocarbon, however, a higher trend was observed for carbon dioxides exhaust emissions. It was established from the study that the GBu15 blend with an engine speed of 3205 rpm was found to be optimal to provide the best performance and emissions characteristics as compared to the other tested blends.

  10. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2016-10-17

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  11. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Morganti, Kai; Al-Qurashi, Khalid; Johansson, Bengt

    2016-01-01

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  12. Gasoline marketing

    International Nuclear Information System (INIS)

    England-Joseph, J.

    1991-06-01

    This paper is a discussion of two reports. One, issued in April 1990, addresses gasoline octane mislabeling, and the other, issued in February 1991, addresses possible consumer overbuying of premium gasoline. Consumers can purchase several grades of unleaded gasoline with different octane ratings regular (87 octane), mid-grade (89 octane), and premium (91 octane or above). A major concern of consumer buying gasoline is that they purchase gasoline with an octane rating that meets their vehicles' octane requirements. In summary, it was found that consumers may unknowingly be purchasing gasoline with lower octane than needed because octane ratings are mislabeled on gasoline pumps. At the same time, other consumers, believing they may get better performance, may be knowingly buying higher priced premium gasoline when regular gasoline would meet their vehicles' needs. These practices could be coasting consumers hundred of millions of dollars each year

  13. Evaluating the effect of methanol-unleaded gasoline blends on SI engine performance

    Directory of Open Access Journals (Sweden)

    B Sabahi

    2015-09-01

    Full Text Available Introduction: Today, all kinds of vehicle engines work with fossil fuels. The limited fossil fuel resources and the negative effects of their consumption on the environment have led researchers to focus on clean, renewable and sustainable energy systems. In all of the fuels being considered as an alternativefor gasoline, methanol is one of the more promising ones and it has experienced major research and development. Methanol can be obtained from many sources, both fossil and renewable; these include coal, natural gas, food industry and municipal waste, wood and agricultural waste. In this study, the effect of using methanol–unleaded gasoline blends on engine performance characteristics has been experimentally investigated. The main objective of the study was to determine engine performance parameters using unleaded gasoline and methanol-unleaded gasoline blends at various engine speeds and loads, and finally achieving an optimal blend of unleaded gasoline and methanol. Materials and Methods: The experimental apparatus consists of an engine test bed with a hydraulic dynamometer which is coupled with a four cylinder, four-stroke, spark ignition engine that is equipped with the carbureted fuel system. The engine has a cylinder bore of 81.5 mm, a stroke of 82.5 mm, and a compression ratio of 7.5:1 with maximum power output of 41.8 kW. The engine speed was monitored continuously by a tachometer, and the engine torque was measured with a hydraulic dynamometer. Fuel consumption was measured by using a calibrated burette (50cc and a stopwatch with an accuracy of 0.01s. In all tests, the cooling water temperature was kept at 82±3˚C. The test room temperature was kept at 29±3˚C during performing the tests. The experiments were performed with three replications. The factors in the experiments were four methanol- unleaded gasoline blends (M0, M10, M20 and M30 and six engine speeds (2000, 2500. 3000, 3500, 4000 and 4500 rpm. Methanol with a purity of

  14. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  15. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin; Tomlin, Alison S.; Lawes, Malcolm; Park, Sungwoo; Sarathy, Mani

    2016-01-01

    between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20

  16. Gasoline marketing

    International Nuclear Information System (INIS)

    Metzenbaum, H.M.

    1991-02-01

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline

  17. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  18. High performance Spark best practices for scaling and optimizing Apache Spark

    CERN Document Server

    Karau, Holden

    2017-01-01

    Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues i...

  19. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  20. Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

    Directory of Open Access Journals (Sweden)

    Abd Rashid Abd Aziz

    2017-07-01

    Full Text Available An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG fuel in a direct injection (DI engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA after top dead center (TDC for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure, while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV. Using an endoscopic intensified CCD (ICCD camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl resulted in the highest rate of flame growth.

  1. GTLine – Gasoline as a potential CN suppressant for GTL

    KAUST Repository

    Reijnders, Jos; Boot, Michael; Johansson, Bengt; de Goey, Philip

    2018-01-01

    The main driver to investigate low temperature combustion concepts, such as partially premixed combustion (PPC), is the promise of low particulate matter (PM) and nitric oxide (NOx) emissions. A critical prerequisite for PPC is to temporally isolate the fuel injection and combustion events. In practice, exhaust gas recirculation (EGR) is applied in order to sufficiently extend the ignition delay to that effect. Hereby, in general, higher EGR rates are necessary for fuels with higher cetane numbers (CN). Against this background, the objective of this paper is to investigate the efficacy, with respect to PM-NOx emissions and engine efficiency, of gasoline as a potential gas-to-liquid (GTL) CN suppressant in various dosages. The performance of the resulting GTLine blend will be evaluated under PPC operating conditions in a heavy-duty direct-injected diesel engine. Setting aside for a moment any potential practical issues (e.g., flash point, vapor pressure) that fall outside the scope of this study, our data suggest that blending gasoline to otherwise high CN GTL appears to be a promising route to improve not only the efficiency, but also PM and NOx emissions, particularly when operating in PPC mode. Interestingly, this benefit is notwithstanding the high aromaticity of the gasoline compared to GTL. Given the ongoing dieselization trend and associated surplus of gasoline in many regions, notably Europe, along with the fact that the cost price of gasoline is significantly lower than that of GTL, the proposed GTLine approach promises to be a cost effective way to accommodate GTL in a world wherein low temperature combustion concepts, such as PPC, appear to be really taking off.

  2. GTLine – Gasoline as a potential CN suppressant for GTL

    KAUST Repository

    Reijnders, Jos

    2018-03-23

    The main driver to investigate low temperature combustion concepts, such as partially premixed combustion (PPC), is the promise of low particulate matter (PM) and nitric oxide (NOx) emissions. A critical prerequisite for PPC is to temporally isolate the fuel injection and combustion events. In practice, exhaust gas recirculation (EGR) is applied in order to sufficiently extend the ignition delay to that effect. Hereby, in general, higher EGR rates are necessary for fuels with higher cetane numbers (CN). Against this background, the objective of this paper is to investigate the efficacy, with respect to PM-NOx emissions and engine efficiency, of gasoline as a potential gas-to-liquid (GTL) CN suppressant in various dosages. The performance of the resulting GTLine blend will be evaluated under PPC operating conditions in a heavy-duty direct-injected diesel engine. Setting aside for a moment any potential practical issues (e.g., flash point, vapor pressure) that fall outside the scope of this study, our data suggest that blending gasoline to otherwise high CN GTL appears to be a promising route to improve not only the efficiency, but also PM and NOx emissions, particularly when operating in PPC mode. Interestingly, this benefit is notwithstanding the high aromaticity of the gasoline compared to GTL. Given the ongoing dieselization trend and associated surplus of gasoline in many regions, notably Europe, along with the fact that the cost price of gasoline is significantly lower than that of GTL, the proposed GTLine approach promises to be a cost effective way to accommodate GTL in a world wherein low temperature combustion concepts, such as PPC, appear to be really taking off.

  3. Final environmental statement concerning rule making. Exemption from licensing requirements for spark-gap irradiators that contain cobalt-60. Docket No. PRM 30-54

    International Nuclear Information System (INIS)

    1977-12-01

    The potential environmental impacts and adverse environmental effects from distribution, use only in commercial-sized oil burners, and disposal of 6000 spark-gap irradiators per year that contain 60 Co are summarized. On the basis of the analysis and evaluation set forth in this statement and after weighing the environmental, economic, technical, and other benefits against environmental costs and after considering available alternatives, it is concluded that the action called for under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 is the issuance of an exemption from licensing requirements for spark-gap irradiators that contain 60 Co, subject to the following conditions for the protection of the environment: persons who apply 60 Co to, or persons who incorporate 60 Co into, spark-gap irradiators or persons who import for sale or distribution spark-gap irradiators containing 60 Co are not exempt from the requirements for a license; each spark-gap irradiator shall contain no more than 1 μCi of 60 Co; and the 60 Co shall be applied to the spark-gap irradiators for use in electrically ignited fuel-oil burners having a firing rate of at least 3 gal/h

  4. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2016-05-01

    Full Text Available Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose has been developed for the analysis of Ignitable Liquid Residues (ILRs. The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA and linear discriminant analysis (LDA were applied to the MS data (45–200 m/z to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin were used to ignite different substrates (wood, cotton, cork, paper and paperboard. A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.

  5. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  6. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  7. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Asazuma, Shinichiro; Okada, Takashi; Kashiro, Kashio

    2004-01-01

    The glove-box dismantling facility in the Plutonium Fuel Production Facility is developed to dismantle after-service glove-boxes with remote-controlled devices such as an arm-type manipulator. An abrasive wheel cutter, which is used to size reduce the gloveboxes, generates sparks during operation. This dispersing spark was a problem from the fire prevention point of view. A suitable spark control measures for this operation were required. We developed panels to minimize spark dispersion, shields to prevent the income of sparks to the pre-filter, and incombustible pre-filters. The equipment was tested and effectiveness was confirmed. This report provides the results of these tests. (author)

  8. Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Hall, Carrie [Illinois Inst. of Technology, Chicago, IL (United States); Miers, Scott [Michigan Technological Univ., Houghton, MI (United States)

    2016-04-05

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best

  9. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  10. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  11. Mechanisms of spray formation and combustion from a multi-hole injector with E85 and gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Serras-Pereira, J.; van Romunde, Z. [Department of Mechanical Engineering, University College London (United Kingdom); Caine, J. [Ford Motor Company, Dunton Engineering Centre (United Kingdom); Wirth, M. [Ford Werke GmbH, Merkenich, Cologne (Germany)

    2010-04-15

    The spray formation and combustion characteristics of gasoline and E85 (85% ethanol, 15% gasoline) have been investigated using a multi-hole injector with asymmetric nozzle-hole arrangement. Experiments were carried out in a quiescent optical chamber using high-speed shadowgraphy (9 kHz) to characterise the spray sensitivity to both injector temperature and ambient pressure in the range of 20-120 C and 0.5, 1.0 bar. Spray-tip penetrations and 'umbrella' spray cone angles were calculated for all conditions. Phase Doppler Anemometry was also used to measure droplet sizes in the core of one of the spray plumes, 25 mm below the injector tip. To study the effect of fuel properties on vaporisation and mixture preparation under realistic operating conditions, a separate set of experiments was carried out in a direct-injection spark-ignition optical engine. The engine was run at 1500 RPM under cold and fully warmed-up conditions (20 C and 90 C) at part load and full load (0.5 and 1.0 bar intake pressure). Floodlit laser Mie-scattering images of the sprays on two orthogonal planes corresponding to the swirl and tumble planes of in-cylinder flow motion were acquired to study the full injection event and post-injection mixing stage. These were used to make comparisons with the static chamber sprays and to quantify the liquid-to-vapour phase evaporation process for both fuels by calculating the projected 'footprint' of the sprays at different conditions. Analysis of the macroscopic structure and turbulent primary break-up properties of the sprays was undertaken in light of jet exit conditions described in terms of non-dimensional numbers. The effects on stoichiometric combustion were investigated by imaging the natural flame chemiluminescence through the engine's piston crown (swirl plane) and by post-processing to derive flame growth rates and trajectories of flame motion. (author)

  12. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  13. An experimental investigation of a lean-burn natural-gas pre-chamber spark ignition engine for cogeneration; Swiss Motor. Modification d'un moteur diesel pour le fonctionnement au gaz naturel en cogeneration. Fonctionnement avec prechambre de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Roethlisberger, R.; Favrat, D.

    2001-07-01

    This thesis presented at the Department of Mechanical Engineering of the Swiss Federal Institute of Technology in Lausanne describes the conversion and testing of a commercial diesel engine for use as a lean-burn, natural gas, pre-chamber, spark ignition engine with a rated power of 150 kW, in combined heat and power (CHP) plants. The objective of the investigations - to evaluate the potential of reducing exhaust gas emissions - is discussed in detail with respect to NO{sub x} and CO emissions. The approach adopted includes both experimental work and numerical simulation. The report describes the testing facilities used. The results obtained with experimental spark-plug configurations based on simulation results are presented and the influence of various pre-chamber configuration variants are discussed. The results of the tests are presented and the significant reduction of NO{sub x}, CO and unburned-hydrocarbon (THC) emissions are discussed. The authors state that the engine, which achieves a fuel efficiency of more than 36.5%, fulfils the Swiss requirements on exhaust gas emissions. Also, ways of compensating for the slight loss in fuel-conversion efficiency in the pre-chamber configuration are discussed.

  14. THE MARINE HEAVY FUEL IGNITION AND COMBUSTION BY PLASMA

    Directory of Open Access Journals (Sweden)

    MOROIANU CORNELIU

    2015-05-01

    Full Text Available The continuous damage of the used fuel quality, of its dispersion due to the increasing viscosity, make necessary the volume expansion and the rise of the e electric spark power used at ignition. A similar situation appears to the transition of the generator operation from the marine Diesel heavy fuel to the residues of water-fuel mixture. So, it feels like using an ignition system with high specific energy and power able to perform the starting and burning of the fuels mentioned above. Such a system is that which uses a low temperature plasma jet. Its use involves obtaining a high temperature area round about the jet, with a high discharge power, extending the possibility of obtaining a constant burning of different concentration (density mixtures. Besides the action of the temperature of the air-fuel mixture, the plasma jet raises the rate of oxidation reaction as a result of appearance of lot number of active centers such as loaded molecules, atoms, ions, free radicals.

  15. Dual-fuel HCCI operation with DME/LPG/gasoline/hydrogen

    International Nuclear Information System (INIS)

    Bae, C.

    2009-01-01

    The advantages of homogeneous charge compression ignition (HCCI) engines include usage of the different type of fuels, ultra low nitrogen oxide and particulate matter emissions and improved fuel economy. Disadvantages include an excessive combustion rate, engine noise, and hydrocarbon and carbon emissions. An experiment on dual-fuel HCCI operation with dimethyl ether (DME)/liquefied petroleum gas (LPG)/gasoline/hydrogen was presented. The advantages and disadvantages were first presented and the dual-fuel HCCI combustion engine was illustrated through an experimental apparatus. The experimental conditions were also presented in terms of engine speed, DME injection quantity, LPC injection quantity, and LPC composition. Experimental results were discussed for output performance and indicated mean effective pressure (IMEP). It was concluded that the effect of LPG composition in a DME-LPG dual-fueled HCCI engine at various injection quantity and injective timing were observed. Specifically, it was found that propane was a more effective way to increase IMEP in this study, and that in a DME HCCI engine, higher load limit was extended by using LPG as an ignition inhibitor. tabs., figs.

  16. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    KAUST Repository

    Singh, Eshan

    2017-02-01

    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures’ octane ratings were obtained from the literature. The mixtures cover a RON range of 0–100, with the majority being in the 70–100 range. A parametric simulation study across a temperature range of 650–950 K and pressure range of 15–50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON

  17. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  18. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  19. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    Science.gov (United States)

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  20. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle

    2017-10-10

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline. In the present work, a three-stage fuel-air stratification development process was observed during the transition from HCCI to PPC. Moreover, a transition stage was observed between the HCCI and PPC stages. Within this transition stage, both the combustion and emission characteristics deteriorated. The allocation of this transition area was mainly determined by the geometric design of the fuel injector and combustion chamber. Some differences in charge stratification were observed between the PRF and gasoline. The NO emissions of the PRF were comparable to those of gasoline. However, the NO emissions surged during the transition stage, indicating that the PRF combustion was probably more stratified. The soot emissions from PRF and gasoline were both much higher in the PPC than the HCCI mode, though the PRF produced much less soot than did gasoline in the PPC mode.