WorldWideScience

Sample records for spanish uranium-ore deposit

  1. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  2. Discussion on prospecting potential for rich uranium deposits in Xiazhuang uranium ore-field, northern Guangdong

    International Nuclear Information System (INIS)

    Wu Lieqin; Tan Zhengzhong

    2004-01-01

    Based on analyzing the prospecting potential for uranium deposits in Xiazhuang uranium ore field this paper discusses the prospecting for rich uranium deposits and prospecting potential in the region. Research achievements indicate: that the Xiazhuang ore-field is an ore-concentrated area where uranium has been highly enriched, and possesses good prospecting potential and perspective, becoming one of the most important prospecting areas for locating rich uranium deposits in northern Guangdong; that the 'intersection type', the alkaline metasomatic fractured rock type and the vein-group type uranium deposits are main targets and the prospecting direction for future uranium prospecting in this region

  3. Origin of ores of endogeneous uranium ore deposits

    International Nuclear Information System (INIS)

    Kasanskij, V.I.; Laverov, N.P.; Tugarinov, A.I.

    1976-01-01

    The consideration mainly includes those endogenous uranium ore deposits of which more exact data are available, such as precambrian ones in areas of proto-activated old platforms, deposits of palaeozoic fold areas, and mesozoic deposits in areas of tectonic-magnetic activation. Their genesis and typical characters are mentioned and conclusions on the general distribution of the deposits are drawn. (author)

  4. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tiangang, Li; Hangshou, Tong; Mingyue, Feng; Yuexiang, Li; Zhan, Xu [Beijing Research Inst. of Uranium Geology (China)

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage.

  5. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    International Nuclear Information System (INIS)

    Li Tiangang; Tong Hangshou; Feng Mingyue; Li Yuexiang; Xu Zhan

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage

  6. Sensibility test for uranium ores from Qianjiadian sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Zhang Mingyu

    2005-01-01

    Sensibility tests for uranium ores from Qianjiadian sandstone type uranium deposit in Songliao Basin which is suitable to in-situ leach are carried out, including water sensibility, velocity sensibility, salt sensibility, acid sensibility and alkaline sensibility. The sensibility critical value of this ore is determined. Some references on mining process and technical parameter are provided for in-situ leaching of uranium. (authors)

  7. Uranium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main uranium deposits and occurrences in the Argentine Republic are described, considering, in principle, their geologic setting, the kind of 'model' of the mineralization and its possible origin, and describing the ore species present in each case. The main uraniferous accumulations of the country include the models of 'sandstong type', veintype and impregnation type. There are also other kinds of accumulations, as in calcrete, etc. The main uranium production has been registered in the provinces of Mendoza, Salta, La Rioja, Chubut, Cordoba and San Luis. In each case, the minerals present are mentioned, having been recognized 37 different species all over the country (M.E.L.) [es

  8. Lacustrine-humate model for primary uranium ore deposits, Grants Uranium Region, New Mexico

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1985-01-01

    Two generations of uranium ore, primary and redistributed, occur in fluvial sandstones of the Upper Jurassic Morrison Formation in the San Juan basin; the two stages of ore formation can be related to the hydrologic history of the basin. Primary ore formed soon after Morrison deposition, in the Late Jurassic to Early Cretaceous, and a model, the lacustrine-humate model, is offered that views primary mineralization as a diagenetic event related to early pore fluid evolution. The basic premise is that the humate, a pore-filling organic material closely associated with primary ore, originated as humic acids dissolved in pore waters of greenish-gray lacustrine mudstones deposited in the mud-flat facies of the Brushy Basin Member and similar K shale beds in the Westwater Canyon Member. During compaction associated with early burial, formation water expelled from lacustrine mudstone units carried these humic acids into adjacent sandstone beds where the organics precipitated, forming the humate deposits that concentrated uranium. During the Tertiary, much later in the hydrologic history of the basin, when Jurassic sediments were largely compacted, oxygenated ground water flowed basinward from uplifted basin margins. This invasion of Morrison sandstone beds by oxidizing ground waters redistributed uranium from primary ores along redox boundaries, forming ore deposits that resemble roll-front-type uranium ores. 11 figures

  9. Uranium deposits of the Asian sector of Pacific ocean ore belt

    International Nuclear Information System (INIS)

    Kazanskij, V.I.

    1995-01-01

    Brief description of three basic types of uranium ore deposits in the Asian sector of the Pacific Ocean ore belt, namely uranium-molybdenum vein deposits in the continental volcanic depressions, proper uranium-molybdenum vein deposits in the mesozoic granites and gold-brannerite deposits of the rejuvenated early-proterosoic fractures is given. Schemes of various deposits are presented, petrological and isotope data (K-Ar method) are considered and petro- and oregenesis are analyzed. refs., 9 figs

  10. Thirty years of uranium ore processing in Spain

    International Nuclear Information System (INIS)

    Josa, J.M.

    1982-01-01

    Spanish background in the uranium ore processing includes ores from pegmatitic type deposits, vein deposits, sandstone, enrichments in metamorphic rocks, radioactive coals and non-conventional sources of uranium, such as wet phosphoric acid or copper liquors. Some tests have also done in order to recover uranium from very low grade paleozoic quartzites. We have also been involved in by-products recovery (copper) from uranium ores. The technologies that have been used are: physical concentration, combustion and roasting, conventional alkaline or acid methods, pressure, heap and bacteria leaching. Special attention was paid to recover uranium from the pregnant liquors and to develop suited equipment for it; solvent extraction and continuous ion exchange equipment was carefully studied. We have been involved in commercial size (500-3000 t/d) mills, but we have also developed transportable and reussable modular plants specially designed and suited to recover uranium from small and isolated deposits. In both cases the reduction of the environmental impact was taken in account. Spanish experience also includes nuclear purification aspects in order to get uranium nuclear compounds (ADU, UO 2 , UF 4 and UF 6 ). Wet (nitric-TBP) and dry (Fluid-bed) methods have been used. The best of these 30 years of experience in studies and in industrial practice, together with our new developments towards the future, could become in a good contribution for the medium size countries which are going to develop its own uranium industry. The way for these countries could be easier if they know what is valuable and what must be avoid in the uranium ore processing development. In this aim the whole paper was thought and written. (author)

  11. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  12. In situ carbonate leaching and recovery of uranium from ore deposits

    International Nuclear Information System (INIS)

    Hunkin, G.G.; Fife, T.P.; Stano, J.R.

    1979-01-01

    Uranium is leached from redox roll ore deposits by selective in-situ leaching with a solution of pH 7.4 to 9 (preferably 7.5 to 8.5) containing from about 0.5 to 5g/l of NH 4 HCO 3 and from about 0.1 to 3g/l of peroxide (preferably aqueous H 2 O 2 ), and sufficient NH 3 to maintain the desired pH. The leach solution is then withdrawn from the ore deposit and contacted with a strong base anion exchange material to strip the uranium from the leach solution. The uranium is eluted from the anion exchange material by an aqueous eluant, and the uranium is recovered from the eluate by first acidifying it and then treating it with ammonia to produce a precipitate of relatively pure ammonium diuranate. The content of the three components in the stripped leach solution is adjusted, and then the leach solution is recirculated through the ore deposit. After the uranium ore is removed to the extent economically practicable, the leach solution is replaced with an aqueous reducing solution which when passed into the ore deposit precipitates and renders insoluble any uranium and elements such as vanadium, molybdenum, and selenium. This process produces above ground a very low volume of impurities and waste solutions requiring disposal and does not cause material contamination of the underground deposit or any aquifer associated with the deposit

  13. The role of post-ore processes in the alteration of infiltrational uranium deposits

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Bobrova, L.L.; Nesterova, M.V.

    1992-01-01

    Ore-bearing rocks and ores of uranium deposits that are associated with gray alluvial deposits and formed through oxidation of sedimentary beds at the end of the Jurassic, have undergone intensive alterations. The impact of hot carbonic acid solutions on infiltrational uranium deposits, along with calcite and hematite, resulted in partial dissolution of and redeposition of uranium. Uranium concentrates with newly formed Fe-bisulfides and hydroxides in the reducing stage of epigenetic alterations within a hydrochemical sulfide-gley medium, leading to changes in ore morphology. 20 refs., 7 figs., 3 tabs

  14. Studies on geneses of Lianshanguan granites and Lianshanguan uranium ore deposit

    International Nuclear Information System (INIS)

    Zhang Jiafu; Xu Guoqing; Wang Wenguang

    1994-02-01

    Based on the field work, and through the studies of thin-sections, minerals fluid inclusions, isotope geology, rare-earth elements and U-content in rocks and minerals, it is suggested that Lianshanguan granites are of magmatization genesis with multistage. The genetic model of mineralization of Lianshanguan uranium ore deposit is the magmatization-hydrothermal-filled uranium type. The role of mineralization of uranium ore deposit in that area is discussed. Furthermore, the direction of prospecting and following prospecting criteria for similar deposits in this area are also given

  15. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits

    International Nuclear Information System (INIS)

    Mingarro Martin, E.; Marin Benavente, C.

    1969-01-01

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  16. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    OpenAIRE

    Gongxin Chen; Zhanxue Sun; Yajie Liu

    2016-01-01

    Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. Howev...

  17. Structure and texture of uranium ores in exogenous deposits

    International Nuclear Information System (INIS)

    Danchev, V.I.

    1977-01-01

    Structure and texture signs of uranium rock exogenous deposits have been systematized for the first time, taking into account the slaging of the ore-formation process, connected with formation and change of containing sedimentary rocks, starting with the sedimentogenesis stage and early sediment diagenesis and their subsequent transformation in katagenesis and metamorphism processes. The main features of uranium geochemistry in the exogenous process are considered. Suggested is the genetic classification of uranium exogenous deposits in rocks of sedimentary cover, made with respect to conjugation and various ore-forming productivity of the litogenesis stage. Described are the main combinations of various rock texture and structure properties, characteristic of deposits of genetic classes and groups of the above classification. Eight most frequently occuring textures (lamellar, concretion, oolitic, coagulate, crack, mixed and impregnated) and their types are described and illustrated. Materials of soviet and foreign authors have been used to compile the atlas

  18. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Gongxin Chen

    2016-01-01

    Full Text Available Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. However, the fluoride content (1.8% of weight is greater than that of other deposits. This can be toxic for bacteria growth in bioleaching progress. In our continued multicolumns bioleaching experiment, the uranium recovery (89.5% of 4th column is greater than those of other columns in 120 days, as well as the acid consumption (33.6 g/kg. These results indicate that continued multicolumns bioleaching technology is suitable for leaching this type of ore. The uranium concentration of PLS can be effectively improved, where uranium recovery can be enhanced by the iron exchange system. Furthermore, this continued multicolumns bioleaching system can effectively utilize the remaining acid of PLS, which can reduce the sulfuric acid consumption. The cost of production of uranium can be reduced and this benefits the environment too.

  19. The uranium ore deposits of the pine creek geosyncline in North Territory, Australia

    International Nuclear Information System (INIS)

    Kneuper, G.K.; Clasen, D.

    1980-01-01

    The geological history of the Pine Creek geosyncline is reviewed, and recent research findings and model assumption on the formation of uranium ore deposits are presented. The geological similarities between the Alligator River uranium ore district and the Athabasca Lake district in Saskatchewan, Canada, are pointed out. Present geographic and climatic differences between these two uranium districts and the consequences of these differences for uranium exploration are discussed. The uranium mining activities planned in Australia are illustrated by the example of the Ranger uranium deposit. (orig.) [de

  20. Formation and uranium explorating prospect of sub-volcanic granitic complex and rich uranium ore deposit in South China

    International Nuclear Information System (INIS)

    Wang Yusheng

    1997-01-01

    The rich uranium ore deposits are all closely related to tecto-magmatism of late-magmatic cycle whether volcanic types or granitic types in south China. Volcanic type rich uranium deposit has closely relationship with sub-volcanic activity, and granitic type rich uranium deposit is also closely related to mid-fine, unequal particle small massif in late main invasion stage. Based on characteristics of magmatism, we name the rock sub-volcanic granite complex, which is a unique style and closely related to the formation of rich uranium ore deposit

  1. Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field

    Science.gov (United States)

    Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.

    2017-09-01

    The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.

  2. Ore reserve estimation of uranium deposit Zirovski vrh

    International Nuclear Information System (INIS)

    Lukacs, E.

    1979-01-01

    The uranium ore deposit Zirovski vrh is in the Permian sediments of Northwest Yugoslavia. Lenticular bodies occur at several stratiform levels in grey, medium-grained sandstone. The ore deposit will be mined entirely by underground methods. It is possible to define three stages of deposit evaluation requiring different densities of exploration effort: preliminary evaluation of in situ ore reserves; evaluation of mineable ore reserves; evaluation of production capability and mine planning. The drilling density increases markedly with each succeeding stage. The optimal drilling density for all three stages of evaluation should be determined, but there is some concern that too close spaced drilling would considerably increase the exploration costs without a corresponding increase in effectiveness. On the other hand, too sparsely spaced drilling may result in some difficulties in following the ore in mining. The paper treats the problem of the density of drilling for evaluation of mineable ore reserves compared to that required for mine planning and mine production capability. The purpose of investigation of mineral raw materials is to define economic deposits (ore bodies). To evaluate the deposit economically an accurate reserve estimate is required. If it is accordingly established that such an estimate is within the degree of admissible error, the purpose of the exploration is satisfied. However, the problem as to whether the drilling grid is sufficiently dense remains, because the majority of estimates of ore reserves do not provide a measure of the reliability of the estimate. (author)

  3. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; He Zhongbo; Wang Wenquan

    2012-01-01

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  4. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Becquart, Elena T.; Arias, Maria J.; Fuente, Juan C. de la; Misischia, Yamila A.; Santa Cruz, Daniel E.; Tomellini, Guido C.

    2009-01-01

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  5. Ore controlling oxidized zonation epigenetic uranium-coal deposits and regularities in lignite transformations

    International Nuclear Information System (INIS)

    Uspenskij, V.A.; Kulakova, Ya.M.

    1982-01-01

    Complex of analytical methods was used to study epigenetic transformations in uranium-coal ore manifestation. To clarify the principle scheme of oxidized zonation in coals the materials, related to three similar objects were used. When comparing obtained epigenetic column with columns of similar ore objects the principle scheme of oxidized epigenetic zonation for ancient infiltration uranium-coal deposits was specified; general regularities of eignite transformations and characteristics of profile distribution of uranium and accessory metal zonations were revealed. Infiltration processes, proceeded in coal measureses, formed the steady epigenetic oxidized zonation: O - zone of barren unoxidized coals, 1 - zone of ore-bearing unoxidized coals, 2 - zone of weakly ore-bearing oxidized coals, 3 - zone of oxidized terrigenous rocks with zonules of development of yellow and red iron hydroxides. Capacities of some zones and zonules reflect the intensity and duration of ore-forming processes. Distribution of U and accessory elements obeys completely epigenetic zonation. It is assumed, that ancient infiltration uranium-coal deposits formed due to weakly uranium-bearing oxygen-containing waters

  6. Evolution of ore-bearing material sources of endogenous uranium deposits

    International Nuclear Information System (INIS)

    Kazansk, V.I.; Laverov, N.P.; Tugarinov, A.I.

    1976-01-01

    Considered are the regularities of changes in types and conditions of uranium deposit formation in connection with the general development of the earth crust tectonic structures. Out of pre-Kembrian uranium deposits considered are Vitwatersrand conglomerates, hydrothermal deposits in pre-Kembrian iron quartzites in the areas of regional fractures in exocontacts of big multiphase granitoid massifs of Proterozoic age and in the fundament folded structures. The hydrothermal-metamorphogen theory is supported of the origin of uranium-bearing sodium metasomatite of Proterozoic, including uranium deposits in the area of the Atabaska lake. Four genetic classes of Palaeozoic deposits are considered. Four periods are singled out in the development of Palaeozoic uranium provinces. Most of the Palaeozoic deposits are shown to be of polygenous origin. Mesozoic deposits are also polygenous, but the combination of ore substance sources in them is more complex

  7. Research on metallogenic conditions of intersection-type uranium ore-deposits in Zhongdong area, Northern Guangdong province

    International Nuclear Information System (INIS)

    Wang Zhengqi; Wu Lieqin; Zhang Guoyu

    2007-12-01

    The methods following as field geological investigation, trace element geo- chemistry and isotope geochemistry were used in this project. Based on geological and geochemical characteristics of Xiaoshui uranium ore deposits in Zhongdong area, Xiazhuang ore-field, Guangdong province, it could be concluded that: (1) The Provenance of Cretaceous mantle is a enriched mantle; (2) Silicified zone-type and intersection-type uranium ore are distinctness in the metallogenic period and mineralization process, and main metallogenic period of Xiaoshui uranium ore-deposit is 73.5 Ma; (3) The sources of uranium mineralization substance derived from enriched mantle; and (4)The intersection-type high grade uranium deposits were controlled by substances derived from mantle (contain with U, CO 2 , F, et al), tracks of intersection of NWW-across with NNE-trending faults and lithology of diabase. (authors)

  8. Research on metallogenic conditions of intersection-type uranium ore-deposits in Zhongdong area, Northern Guangdong province

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqi, Wang [East China Inst. of Technology, Fuzhou (China); [Beijing Research Inst. of Uranium Geology, Beijing (China); Lieqin, Wu [Institute No.290, CNNC, Shaoguan (China); Guoyu, Zhang [East China Inst. of Technology, Fuzhou (China)

    2007-12-15

    The methods following as field geological investigation, trace element geo- chemistry and isotope geochemistry were used in this project. Based on geological and geochemical characteristics of Xiaoshui uranium ore deposits in Zhongdong area, Xiazhuang ore-field, Guangdong province, it could be concluded that: (1) The Provenance of Cretaceous mantle is a enriched mantle; (2) Silicified zone-type and intersection-type uranium ore are distinctness in the metallogenic period and mineralization process, and main metallogenic period of Xiaoshui uranium ore-deposit is 73.5 Ma; (3) The sources of uranium mineralization substance derived from enriched mantle; and (4)The intersection-type high grade uranium deposits were controlled by substances derived from mantle (contain with U, CO{sub 2}, F, et al), tracks of intersection of NWW-across with NNE-trending faults and lithology of diabase. (authors)

  9. Discussion on uranium ore-formation age in Xiazhuang ore-field, northern Guangdong

    International Nuclear Information System (INIS)

    Wu Lieqin; Tan Zhengzhong; Liu Ruzhou; Huang Guolong

    2003-01-01

    There exist two genetic types of granite-type uranium deposits, i.e. the early-stage one, and the late-stage one. The early-stage uranium deposits are characterized by ore-formation ages of 122-138 Ma, and are high-grade uranium deposits of postmagmatic hydrothermal origin. The late-stage uranium deposits have ore-formation ages of 54-96 Ma. They mostly are low-grade uranium deposits, and of hydrothermal-regeneration origin with the uranium source derived from the mobilization of consolidated rocks. The early-stage uranium deposits should be the main target of further prospecting for high-grade uranium deposits in the region

  10. Analysis on ore-controlling factors of Zhajistan uranium deposit, Xinjiang

    International Nuclear Information System (INIS)

    A Zhongming

    2000-01-01

    The geologic-structural background where the Zhajistan uranium deposit is located, and sedimentary features of the basin, as well as ore-controlling factors such as the uranium source, the reductant, hydrogeologic conditions and development features of interlayer oxidation zone in Zhajistan, are analysed. Then the author proposes the most favourable sedimentary cycle for uranium metallogenesis and the most favourable prospecting areas

  11. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  12. Mechanism of near-fault ore deposition in stratal infiltration uranium deposits

    International Nuclear Information System (INIS)

    Belova, L.L.; Krichevets, G.N.; Shmariovich, E.M.; Salmin, Yu.P.; Tatarkin, M.A.

    1986-01-01

    The authors have examined the conditions for the formation of uranium ores associated with faults, which constitute a distinct type at various deposits associated with stratal zones of limonitization. Mathematical and experimental models were devised in which uranium-bearing oxidizing fluids and H 2 S-bearing reducing fluids interact in porous media. The algorithm used incorporated the hydrodynamics, the dispersal, and as far as possible also the thermodynamics and kinetics. This combined approach enabled them to examine not only the final result but also the intermediate stages, which are time- and space-dependent. The authors have found that the models reproduce zoning pattern found in natural uranium deposits. The paper describes the algorithm, discusses the results of mathematical modeling, and compares the results of mathematical and physical modeling. 16 references, 3 figures

  13. Exploration on relationship between uranium and organic materials in carbonate-siliceous pelite type uranium ore deposits

    International Nuclear Information System (INIS)

    Dong Yongjie

    1996-01-01

    The author determines the content of uranium and organic carbon of part specimen of surrounding rocks and ores, which sampled from carbonate and black shale type uranium deposits in Xiushui, Jiangxi Province, and Tongcheng, Hubei Province. According to the analytical operation regulations of organic materials, extraction and separation of chloroform pitch is carried out. Internal relationships between uranium and organic derivative is discussed. The conclusion shows that: (1) certain co-relationship between U and organic carbon and chloroform extract is detected; (2) evolutionary processes of organic materials in the exogenetic uranium deposits are not all the same; (3) non-hydrocarbon is closely related to uranium, so it can be regarded as indicator of uranium gathering in exogenetic uranium deposits

  14. A comment on the metallogenic theory of exogenetic uranium ore deposits

    International Nuclear Information System (INIS)

    Liu Xiaodong; Yu Dagan

    2010-01-01

    The theory of exogenetic sandstone-type uranium followed the form process of construction in the early time, and discussed the uranium metallization by chemical enrichment during the phase of syn-deposition and diagenesis. Later, the epigenetic theory was put forward by emphasizing hydrodynamic influence on mineralization. The idea of uranium mineralization in open systems is a renovated metallogenic theory for uranium, which confirms the role of exogenesis playing in uranium mineralization. For open systems, this paper underlines that, as the most critical factors for uranium mineralization, both uranium sources and reduce agents should be open to form a dual-open system. Uranium ore deposits in the tectonic zone of eastern China formed in dual-open system, where uranium has been associated with coal, petroleum and natural gas in the sandstone sequence. (authors)

  15. An example of economical evaluation of stratiform uranium ore deposit

    International Nuclear Information System (INIS)

    Miyata, Hatsuho; Tabuchi, Akihiro; Ushijima, Kenichi.

    1992-01-01

    The Power Reactor and Nuclear Fuel Development corp. has carried out the business of uranium resource investigation and exploration in foreign countries aiming at securing uranium resources. If there is the possibility of economically developing the discovered uranium deposit, it is transferred to a Japanese private enterprise. In this paper, among the economical evaluation works that were carried out for the uranium deposits discovered by the Corp., the example of the initial economical evaluation for a stratiform uranium deposit carried out recently is reported. The deposit is located at the depth of 50 m - 70 m, and is a stratiform deposit having the extension of 4000 m x 1000 m. The boring investigation of about 350 holes was carried out for it. The estimation of the amount of uranium was done, and the production plan was made considering the scale of production, the characteristics of the ore, the circumstances of the site and so on. Based on the production plan, the initial expenses and the operation expenses were calculated. The design of the optimal pit which affects most the profitability and the economical evaluation were carried out. (K.I.)

  16. Ore-processing technology and the uranium supply outlook

    International Nuclear Information System (INIS)

    James, H.E.; Simonsen, H.A.

    1978-01-01

    The subject is covered in sections, as follows: the resource base (uranium content of rocks, regional distribution of Western World uranium); ore types (distribution of Western World uranium, by ore types, response to ore-processing); constraints on expansion in traditional uranium areas (defined for this paper as the sandstone deposits of the U.S.A. and the quartz-pebble conglomerates of the Witwatersrand and Elliot Bay areas, all other deposits being referred to as new uranium areas). Sections then follow dealing in detail with the processing of deposits in U.S.A., South Africa, Canada, Niger, Australia, South West Africa, Greenland. More general sections follow on: shale, lignite and coal deposits, calcrete deposits. Finally, there are sections on: uranium as a by-product; uranium from very low-grade resources; constraints on expansion rate for production facilities. (U.K.)

  17. The geochemical characteristics of alkali metasomatic ore and its ore-forming significance at Zoujiashan deposit, Xiangshan uranium field

    International Nuclear Information System (INIS)

    Wang Yun; Hu Baoqun; Sun Zhanxue; Li Xueli; Guo Guolin; Rao Minghui

    2012-01-01

    Alkaline metasomatites are widely distributed in Zoujiashan uranium deposit and have close relation with uranium mineralization. Based on the study of field geological survey, petrographic methods, element chemical analysis and EPMA, etc, the alteration in alkaline metasomatic ore was found in the order of sodium metasomatism, potassium metasomatism and silica metasomatism. The alkaline hydrothermal fluid of mineralization is rich in Na at first and then rich in K, and quite similar in other chemical composition, but the K rich one is more favourite for the metallization. Compared with the normal porphyroclastic lava, the alkaline metasomatic ores in lower in SiO 2 , but higher in K 2 O or Na 2 O, Al 2 O 3 , Fe 2 O 3 , MgO, P 2 O 5 , CaO and U, Th, Zr, Hf, Sm, Ti, REE. Compared with potassium metasomatic ore, the sodium metasomatic ore is with high ΣLREE/ΣHREE ratio and lower Rb and REE. Because alkaline metasomatism is beneficial to release uranium from accessory mineral and bring out uranium from rocks, therefore it is very important to the migration and precipitation of uranium. (authors)

  18. Hydrochemical uranium mining at the Straz ore deposit and its hydrogeological consequences

    International Nuclear Information System (INIS)

    Hanzlik, J.; Moravec, J.; Macak, P.

    1992-01-01

    The uranium ore deposit at Straz is situated in the North Bohemian Cretaceous Massif. Uranium is extracted from the deposit by underground chemical leaching by means of drills from the ground. Relevant to this kind of extraction, from the hydrogeological and environmental aspects, are the hydrogeological location of the deposit, the kind and amounts of the leaching solution and ways of its injection. The following amounts, in thousand tons, have been injected underground throughout the entire period of practicing chemical extraction of uranium (till 1990): sulfuric acid 3700, nitric acid 270, ammonia 100, hydrofluoric acid 25. The overall area of the leaching fields is 630 hectares, which accommodate 9300 technological boreholes. The environmental burden of the Cenomanian rocks and Turonian water reservoir was analyzed, and significantly elevated heavy metal contents from the recirculation of the technological solutions were found. The solutions expand beyond the leaching fields, causing a contamination of underground water within wider surroundings. The volume of contaminated water in the Turonian reservoir is currently estimated at 2 - 20 million m 3 . Uranium extraction by leaching is harmful at this deposit, having far-reaching impacts on the hydrosphere and ecosystem (increased dust, deforestation of slopes of the Ralsko hill, contamination of water and soil, etc.). Abandoning the ore extraction appears to be the sole feasible approach to this problem. (Z.S.). 2 tabs., 3 figs

  19. The seat of ground water discharge as ore-mabilizing factor in the formatian of hydrogenic uranium deposits

    International Nuclear Information System (INIS)

    Natal'chenko, B.I.; Gol'dshtejn, R.I.

    1982-01-01

    The role of structural-hydrogeological factor in the process of ore-controlling zoning development during hydrogeneous deposit formation is discussed, as reflecting in the most objective way the spreading of stratal oxidation zones and morphology of uranium mineralization as regards discharge seats because there are only they which mobilize stratal waters for active displacement. The types of discharge seats of stratal waters and their effect on formation of ore-controlling zones of stratal oxidation with uranium mineralization are presented. The conclusion is drawn that local and regional discharge seats of stratal waters dictate both the spacing of regional fronts of stratal-oxidized rocks and their ore content degree. The displacement of discharge seats or their growing into local regions of alimentation results in reorganization of the total ore-controlling zoning, which enables to consider the seats of water discharge as ore-mobilizing structures in the formation of hydrogenic uranium deposits

  20. 36Cl production in situ, and groundwater transport in a uranium ore deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Andrews, H.R.; Brown, R.M.; Chant, L.A.; Cramer, J.; Davies, W.G.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.T.; McKay, J.W.; Milton, G.M.; Milton, J.D.C.

    1992-01-01

    The authors have used AMS to measure 36 Cl concentrations produced in situ in ore and in groundwater within the 1.3 billion year old Cigar Lake uranium ore deposit. 36 Cl concentrations are up to 300 times higher in the ore zone than in the surrounding aquifer. Based on 36 Cl ingrowth, the authors calculate the residence time of water within the ore zone to be 100,000 to 300,000 years. Since the geologic setting of this deposit is a very close natural analogue to a proposed nuclear fuel waste repository, this analysis demonstrates that natural geological barriers can effectively isolate mobile radionuclides from an open, regional groundwater flow system over millennia

  1. A case study of shrinkage-in place leaching of low grade uranium ore deposit

    International Nuclear Information System (INIS)

    Ding Dexin; Zhou Guohe

    1998-09-01

    A case study of shrinkage-in place leaching of low grade uranium ore deposit is dealt with. A test block was selected, and the shrinkage mining method was employed to construct the in place heap for leaching. Blast parameters and operations were carefully tried in order to make sure that the fragment size composition was adequate for leaching. A leaching system was planned and the corresponding leaching parameters were tried, too. The results show that the shrinkage method and the parameters for blasting and leaching are all adequate for the in-situ leaching of the blasted ore. This shrinkage-in place leaching system combines the mining and metallurgy processes into one and produces a lot of profits and could be applicable to many low grade uranium ore deposits which are so hard and compact that they have to be fragmented before being leached

  2. Ore petrography of a sedimentary uranium deposit, Live Oak County, Texas

    International Nuclear Information System (INIS)

    Bomber, B.J.; Ledger, E.B.; Tieh, T.T.

    1986-01-01

    Samples from the McLean 5 open-pit uranium mine, a small high-grade deposit located along a normal fault in the Miocene Oakville sandstone of Live Oak County, Texas, have been studied for uranium abundance, distribution, and nature of occurrence on the microscopic level. The host sandstone is composed of quartz, feldspars, and volcanic rock fragments, cemented by sparry calcite. Authigenic minerals include iron disulfide minerals (dominantly pyrite and some marcasite) and small amounts of clays, Ti oxides, and opal. High-grade ore (to 3% U) occurs along the fault, decreasing to less than 1,000 ppm within 10 m from the fault. The ore mineral is amorphous pitchblende and exhibits botryoidal morphology. The microscopic occurrence of uranium, documented by fission-track mapping of petrographic thin sections, is presented in detail. Uranium occurs abundantly as grain coatings and fillings in intergranular spaces in samples with high uranium content, where calcite cement has been partially or totally leached as mineralization proceeded. Lesser amounts are adsorbed onto leucoxene (microcrystalline anatase), mud clasts, and altered igneous rock fragments. Adsorbed uranium is the major code of occurrence in samples, with lower uranium contents farther from the orebody. Textural relations indicate that iron sulfides formed both before and after mineralization. Initial mineralization was by adsorption onto aggregates of fine particles of Ti oxide and clay minerals of various origins. With dissolution of cement and continued uranium influx, uranium precipitated as grain coatings and pore fillings

  3. An innovative jet boring mining method available for the high grade uranium ore underground deposits

    International Nuclear Information System (INIS)

    Narcy, J.L.

    1996-01-01

    An innovative mining method, based on the capability of a high pressure water jet to desaggregate rock, has been conceived and tested with success at the highest grade uranium ore deposit in the world, the Cigar Lake deposit in Saskatchewan, Canada. 113 tonnes of ore at 13% U were mined out by a new jet-boring mining method operated on a semi-industrial basis, in 1992 during the test mining program of Cigar Lake Project. (author). 9 figs

  4. Genetic-Structural relations in some types of spanish uranium deposits

    International Nuclear Information System (INIS)

    Alia Medina, M.

    1962-01-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs

  5. Methods for the estimation of uranium ore reserves

    International Nuclear Information System (INIS)

    1985-01-01

    The Manual is designed mainly to provide assistance in uranium ore reserve estimation methods to mining engineers and geologists with limited experience in estimating reserves, especially to those working in developing countries. This Manual deals with the general principles of evaluation of metalliferous deposits but also takes into account the radioactivity of uranium ores. The methods presented have been generally accepted in the international uranium industry

  6. Mining and milling of uranium ore: Indian scenario

    International Nuclear Information System (INIS)

    Bhasin, J.L.

    2001-01-01

    The occurrence of uranium minerals in Singhbhum Thrust belt of Eastern India has been known since 1937. In 1950, a team of geologists of the Atomic Minerals Division was assigned to closely examine this 160 km long belt. Since then, several occurrences of uranium have been found and a few of them have sufficient grade and tonnage for commercial exploitation. In 1967, the Government of India formed Uranium Corporation of India Ltd., under the administrative control of the Department of Atomic Energy, with the specific objective of mining and processing of uranium ore and produce uranium concentrates. At present the Corporation operates three underground uranium mines, one ore processing plant with expanded capacity, and two uranium recovery plants. Continuing investigations by the Atomic Mineral Division has discovered several new deposits and favourable areas. The most notable is the large Domiasiat deposit of the sandstone type found in the State of Meghalaya. This deposit is now being considered for commercial exploitation using the in-situ leaching technology. (author)

  7. Status Report from the United Kingdom [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    North, A A [Warren Spring Laboratory, Stevenage, Herts. (United Kingdom)

    1967-06-15

    The invitation to present this status report could have been taken literally as a request for information on experience gained in the actual processing of low-grade uranium ores in the United Kingdom, in which case there would have been very little to report; however, the invitation naturally was considered to be a request for a report on the experience gained by the United Kingdom of the processing of uranium ores. Lowgrade uranium ores are not treated in the United Kingdom simply because the country does not possess any known significant deposits of uranium ore. It is of interest to record the fact that during the nineteenth century mesothermal vein deposits associated with Hercynian granite were worked at South Terras, Cornwall, and ore that contained approximately 100 tons of uranium oxide was exported to Germany. Now only some 20 tons of contained uranium oxide remain at South Terras; also in Cornwall there is a small number of other vein deposits that each hold about five tons of uranium. Small lodes of uranium ore have been located in the southern uplands of Scotland; in North Wales lower palaeozoic black shales have only as much as 50 to 80 parts per million of uranium oxide, and a slightly lower grade carbonaceous shale is found near the base of the millstone grit that occurs in the north of England. Thus the experience gained by the United Kingdom has been of the treatment of uranium ores that occur abroad.

  8. Studies on uranium ore processing

    International Nuclear Information System (INIS)

    Suh, I.S.; Chun, J.K.; Park, S.W.; Choi, S.J.; Lee, C.H.; Chung, M.K.; Lim, J.K.

    1983-01-01

    For the exploitation of domestic uranium ore deposit, comprehensive studies on uranium ore processing of the Geum-San pit ore are carried out. Physical and chemical characteristics of the Geum-San ore are similar to those of Goe-San ore and the physical beneficiation could not be applicable. Optimum operating conditions such as uranium leaching, solid-liquid separation, solvent extraction and precipitation of yellow cake are found out and the results are confirmed by the continous operation of the micro-plant with the capacity of 50Kg, ore/day. In order to improve the process of ore milling pilot plant installed recently, the feasibility of raffinate-recycle and the precipitation methods of yellow cake are intensively examined. It was suggested that the raffinate-recycle in the leaching of filtering stage could be reduced the environmental contamination and the peroxide precipitation technique was applicable to improve the purity of yellow cake. The mechanism and conditions the third phase formation are thoroughly studied and confirmed by chemical analysis of the third phase actually formed during the operation of pilot plant. The major constituents of the third phase are polyanions such as PMosub(12)Osub(40)sup(3-) or SiMosub(12)Osub(40)sup(4-). And the formation of these polyanions could be reduced by the control of redox potential and the addition of modifier. (Author)

  9. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    DeVries, F.W.; Lawes, B.C.

    1981-01-01

    Ammonium carbonates are commonly used as the lixiviant for in-situ leaching of uranium ores. However this leads to the deposition of ammonium ions in the uranium ore formation and the problem of ammonia contamination of ground water which may find its way into the drinking water supply. The ammonia contamination of the ore deposit may be reduced by injecting an aqueous solution of a potassium salt (carbonate, bicarbonate, halide, sulfate, bisulfate, persulfate, or monopersulfate) into the deposit after mining has ceased

  10. Status Report from Czechoslovakia [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Civin, V; Belsky, M [Research and Development Laboratory No.3 of the Uranium Industry, Prague, Czechoslovakia (Czech Republic)

    1967-06-15

    The present paper deals with the fundamental problems and the main routes followed in processing low-grade uranium ores in CSSR. In this connection it may be useful to discuss the definition of low-grade ore. In our country this term is applied to uraniferous material with a very low content of uranium (of the order of 0.01%) whose treatment causes no particular difficulty. However, the same term is also used to designate those materials whose processibility lies on the verge of economic profitability. In our view, this classification, of an ore using two independent criteria (i.e. uranium content and processing economy) is useful from the standpoint of technology. The treatment of both such ore types is as a rule carried out by specific technological processes. Consequently, low-grade uranium ores can be divided into two groups: (1) Ores with a low uranium content. To this category belong in our country uraniferous materials which originate as a by-product of technological processes used in processing other materials. This is primarily gangue and tailings of various physical or physico-chemical pretreatment operations to which the ore is subjected at the mining site. Mention should be made in this connection of mine waters, which represent a useful complementary source of uranium despite their low uranium content (of the order of milligrams per litre). (2) Ores whose economical treatment is problematic. To this category belong deposits of conventional ore types with a uranium content on the limit of profitable treatment. Also, those deposits containing atypical materials possessing such properties which impair the economy of their treatment. This includes ores with a considerable amount of components which are difficult to separate and which at the same time consume the leaching agents. Finally, it covers uranium-bearing materials in refractory forms which are difficult to dissolve and also some special materials, such as lignites, uranium-bearing shales, loams

  11. Ore-controlling mechanism of carbonaceous-siliceous-pelitic rock type uranium deposits with down-faulted red basins in the southeast continental margin of Yangtze plate

    International Nuclear Information System (INIS)

    Zhang Zilong; Qi Fucheng; He Zhongbo; Li Zhixing; Wang Wenquan; Yu Jinshui

    2012-01-01

    One of the important ore-concentrated areas of carbonaceous-siliceous-pelitic rock type uranium deposits is the Southeast continental margin of Yangtze plate. Sedimentary-exogenously transformed type and sedimentary- hydrothermal superimposed transformed type uranium deposits are always distributed at or near the edge of down-faulted red ba sins. In this paper, the distributions of the deposits are analyzed with the relation to down-faulted red basins. The connective effect and ore-controlling mechanism are proposed of carbonaceous-siliceous-pelitic rock type uranium deposits with marginal fractures of red basins. (authors)

  12. Comparison of oxidants in alkaline leaching of uranium ore

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Srinivas, K.; Anand Rao, K.; Manmadha Rao, M.; Venkatakrishnan, R.R.; Padmanabhan, N.P.H.

    2007-01-01

    The uranium minerals occurring in various ore deposits consists of predominantly uranous ion (U +4 ), necessitating use of an oxidant and other lixiviants for efficient dissolution during leaching. Unlike acid leaching route, where uranium minerals dissolution could be achieved efficiently with cheaper lixiviants, processing of ores by alkaline leaching route involve expensive lixiviants and drastic leaching conditions. Alkaline leaching of uranium ores becomes economical only upon using cheaper and efficient oxidants and conservation of other reagents by their recycle. The present paper gives efficacy of various oxidants - KMnO 4 , NaOCl, Cu - NH 3 , air and oxygen, in the leaching of uranium from a low-grade dolostone hosted uranium ore of India. A comparison based on technical merits and cost of the oxidant chemicals is discussed. (author)

  13. Research on geochronology and uranium source of sandstone-hosted uranium ore-formation in major uranium-productive basins, Northern-China

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Lin Jinrong; Fan Guang; Hou Yanxian

    2004-12-01

    A method is developed for correcting uranium content in uranium ore samples by considering the U-Ra equilibrium coefficient, then a U-Pb isochron is drawn up. By performing the above correction ore-formation ages of sandstone-hosted uranium mineralization which may be more realistic have been obtained. The comparative research on U-Pb isotopic ages of detritic zircon in ore-hosting sandstone and zircon in intermediate-acid igneous rocks in corresponding provenance area indicates that the ore-hosting sandstone is originated from the erosion of intermediate-acid igneous rocks and the latters are the material basis for the formation of the uranium-rich sandstone beds. On the basis of the study on U-Pb isotopic system evolution of the provenance rocks and sandstones from ore-hosting series, it is verified that the uranium sources of the sandstone-hosted uranium deposit are: the intermediate-acid igneous rocks with high content of mobile uranium, and the sandstone bodies pre-concentrated uranium. (authors)

  14. Age of uranium ores at Ranger and Jabiluka unconformity vein deposits, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Ludwig, K.R.; Grauch, R.I.; Nutt, C.J.; Frishman, D.; Nash, J.T.; Simmons, K.R.

    1985-01-01

    The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers Uranium Field (ARUF), which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 Ga Kombolgie Formation. This study uses U-Pb isotope data from over 60 whole-rock drill core samples that contained a variety of mineral assemblages and textures. Data for Ranger samples indicate a well-defined age of 1.74 +/-.02 Ga. This 1.74 Ga age is distinctly pre-Kombolgie, so the Ranger deposit cannot have been formed by processes requiring its presence. This Ranger age is consistent, however, with mineralization related to heating associated with either the emplacement of early post-metamorphic granites, or possibly with intrusion of the nearby Oenpelli Dolerite. In contrast, data for the least-altered Jabiluka ores yield a concordia-intercept age of 1.44 +/-.02 Ga--significantly younger than the Ranger age, and also younger than the Komobolgie. This age may correspond to a regional thermal event, as indicated both by mafic dikes of roughly this age and a zircon lower-intercept age from a nearby granite-gneiss. Thus, together with the well-defined ∼900 Ma age of ores at the Nabarlek deposit, there are at least 3 distinct periods of major U-mineralization in the ARUF. Data for both Ranger and Jabiluka indicate the same, profound isotopic disturbance at some time in the interval of 0.4-0.6 Ga. Possibly this time corresponds to the development of basins and associated basalt flows to the W and SW, a suggested by Crick et. al. (1980)

  15. Zeolitization at uranium ore manifestation

    International Nuclear Information System (INIS)

    Petrosyan, R.V.; Buntikova, A.F.

    1981-01-01

    The process of zeolitization at uranium ore manifestation is studied. A specific type of low-temperature wall endogenous alteration of rocks due to the effect of primary acid solution with low content of carbonic acid is established. Leaching of calcium from enclosing rocks and its deposition in ore-accompanying calcium zeolites is a characteristic feature of wall-metasomatosis. Formation of desmin- calcite-laumontite and quartz-fluoroapatite of vein associations, including ore minerals (uranophane and metaotenite), is genetically connected with calcium metasomatosis. On the basis of the connection of ore minerals with endogeneous process of zeolitization a conclusion can be made on endogenous origin of uranophane and metaotenite [ru

  16. Preliminary discussion on uranium metallogenic models of China's in-situ leachable sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Zhang Jindai; Xu Gaozhong; Chen Anping; Wang Cheng

    2005-01-01

    By comprehensively analyzing metallogenic environments and main ore-controlling factors of important uranium metallogenic regions of in-situ leachable sandstone-type uranium deposits at the southern margin of Yili basin, at the south-western margin of Turpan-Hami basin and in the northeastern Ordos basin, the authors of this paper discuss the metallogenic models of China's in-situ leachable sandstone-type uranium deposits, and suggest that the interlayer oxidation zone type uranium deposits in Yili and Turpan-Hami basins are basically controlled by favourable structures, sedimentary formations and interlayer oxidation zone, and are characterized by multistage uranium concentration, namely the uranium pre-concentration of ore-hosting sedimentary formation, the uranium ore-formation in the stage of supergenic epigenetic reworking, and the further superimposition enrichment of post-ore tectonic activity. However, the interlayer oxidation zone type uranium deposit in the northeastern Ordos was formed after the formation of the secondary reduction. So, paleo-interlayer oxidation zone type uranium mineralization has the mineralization size much greater than the former two. (authors)

  17. Uranium deposits of Lagoa Real uranium Province, state of Bahia, Brazil

    International Nuclear Information System (INIS)

    Ribeiro, C.I.; Carvalho Filho, C.A. de; Hashizume, B.K.

    1984-01-01

    The Uranium Province of Lagoa Real is situated in the south-central part of the state of Bahia and constitutes, at the present moment, one of the most promising uranium districts of Brazil. The first anomaly was recorded in 1977 and, since then intense exploration and evaluation has been carried out in the area, resulting in the characterization of six ore deposits until now. Simultaneously, NUCLEBRAS has performed tests to establish the beneficiation characteristics of the ore, and developed preliminary mining plans. The host rock for the ore mineralization is related to sodic metasomatism and controlled by lithology and structure. The ore exhibits granoblastic texture, fine to coarse grain size, and the principal uranium minerals are uraninite, and, in minor quantities, pitchblende and uranophane. The solubility is over 90% of the U 3 O 8 contained, with an average acid consumption of 35 Kg per ton of ore treated. This paper presents a brief description of the main ore deposits and touches on their general characterisitcs. As an example, the deposit 'Jazida Cachoeira' is dealt with in greater detail, since this deposit is considered in the present context to be the most important one in the province. (Author) [pt

  18. Mineralogical and paragenetical problems of the Mecsek uranium ore

    International Nuclear Information System (INIS)

    Vincze, J.; Fazekas, V.

    1979-01-01

    The latest results of the ore-mineralogical examination of the uranium ore of a deposit included in Permian sandstones in the Mecsek Mountains, southern Hungary, are presented. The phases of the minerals belonging to the uranium oxide series and their types of development, the post-coffinite nasturan pseudomorphs and the relationship between nasturan and coffinite are dealt with. Of the sulphide ore minerals associated with uranium ore mineralization the type determinant mineral is pyrite, i.e. the mineral forming their bulk and partly represented by characteristically finely aggregated ''bacteriopyrite'' and/or spherical pyrite and ''framboidal pyrite. The textural pattern of the ore mineralization is of typically matrix type. The matrix of sandstone is constituted by carbonate minerals, ''hydromicas'' and ore minerals. The matrix and, consequently, the ore minerals will corrode and consume the allothigenic detrital rockforming minerals, the feldspar, quartz-porphyry and quartz. (A.L.)

  19. NRC's limit on intake of uranium-ore dust

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1983-04-01

    In 1960 the Atomic Energy Commission adopted an interim limit on the intake by inhalation of airborne uranium-ore dust. This report culminates two decades of research aimed at establishing the adequacy of that limit. The report concludes that the AEC underestimated the time that thorium-230, a constituent of uranium-ore dust, would remain in the human lung. The AEC assumed that thorium-230 in ore dust would behave like uranium with a 120-day biological half-life in the lung. This report concludes that the biological half-life is actually on the order of 1 year. Correcting the AEC's underestimate would cause a reduction in the permitted airborne concentration of uranium-ore dust. However, another factor that cancels the need for that reduction was found. The uranium ore dust in uranium mills was found to occur with very large particle sizes (10-micron activity median aerodynamic diameter). The particles are so large that relatively few of them are deposited in the pulmonary region of the lung, where they would be subject to long-term retention. Instead they are trapped in the upper regions of the respiratory tract, subsequently swallowed, and then rapidly excreted from the body through the gastrointestinal tract. The two effects are of about the same magnitude but in opposing directions. Thus the present uranium-ore dust intake limit in NRC regulations should provide a level of protection consistent with that provided for other airborne radioactive materials. The report recalculates the limit on intake of uranium-ore dust using the derived air concentrations (DAC) from the International Commission on Radiological Protection's recent Publication 30. The report concludes that the silica contained in uranium-ore dust is a greater hazard to workers than the radiological hazard

  20. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  1. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits; Los yacimientos uraniferos en las pizarras paleozoicas de Ciudad Rodrigo. sobre la posible existencia de nuevas mineralizaciones

    Energy Technology Data Exchange (ETDEWEB)

    Mingarro Martin, E; Marin Benavente, C

    1969-07-01

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  2. Geophysical signature recognition of aquifuge and relatively impermeable interbed in ore-hosting sandstone layer at sandstone-type uranium deposit

    International Nuclear Information System (INIS)

    Zhao Xigang; Wu Hanning; Bai Guanjun; Zhu Huanqiao; Jia Heng

    2006-01-01

    Geophysical signature recognition of aquifuge and relatively impermeable interbed in ore-hosting aquifer has been carried out a Shihongtan uranium deposit by using comprehensive logging data. The spatial distribution of above aquifuge and impermeable interbed is discussed, and the relation of these layers to sandstone-type uranium deposit, and their impact to in-situ leach mining technology are discussed. It is suggested that the aquifuge and relatively impermeable interbed bring about significant effect to the formation of interlayer oxidation zone sandstone-type uranium deposit, as well as to in-situ leach mining of the deposit. (authors)

  3. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  4. Geology and genesis of uranium deposits in sedimentary and metamorphic formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Belevtsev, Ya.N.

    1980-01-01

    Main genetic types of uranium deposits in sedimentary cover are described. Their genetic classification is based on the principle of conjugation of ore-forming process with the stages of lithogenesis of ore-enclosing rocks. Examples of poligeneity of uranium mineralization are presented. Texture-structural peculiarities of ores and types of ore-controlling zonality are considered as criteria of definite deposits belonging to various genetic classes. The analysis is given of main regularities of location of exogenous and poligenic uranium deposits. Processes of uranium ore-formation under the conditions of low and high degrees of metamorphism are considered. On the basis of separate types of deposits shown is the possibility of mobilization, transfer and concentration of ore substance, its transformation from primary to secondary forms. Metamorphous and ultrametamorphous deposits are formed as a result of ore element translocation within considerable distances under the effect of endogenous solutions and their concentration in favourable structures. Conclusions on the effect of lithogenesis and metamorphism processes on the ore formation are substantiated by field observations, analyses (including methods of isotopic geochemistry) as well as by experiments

  5. Application of isotope techniques to groundwater pollution research for Xiangshan uranium ore field, China

    International Nuclear Information System (INIS)

    Liu Fulin; Liu Peilun; Zhu Chuande; Wu Xiaowei; Zeng Yinsheng

    1998-01-01

    The investigation of groundwater pollution due to uranium deposits focused on the most important uranium metallogenic area-Zhoujiashan district of Xiangshan uranium ore field, China. Groundwater collected from five completed exploration boreholes in the area is regarded as the pollution source and is traced and analysed by using isotope as well as radio-hydrochemical techniques. In addition, the pollution situation of a small uranium ore pile for heap-leaching and a big uranium ore open pit are monitored by the same techniques. It has been experimentally proven that the uranium concentration and the uranium isotope ratio 234 U/ 238 U in natural waters are two sensitive indicators of radioactive pollution in natural waters. It was concluded that under present conditions, exploration of uranium deposits may not cause serious groundwater pollution of radioactive elements (U, Ra, Rn and Th), however, it is difficult to avoid the serious surface water pollution coming from the exploitation of uranium ore by a big open pit. (author)

  6. Surficial uranium deposits in Algeria

    International Nuclear Information System (INIS)

    Mokaddem, M.; Fuchs, Y.

    1984-01-01

    Along southern border of the Hoggar (Algeria) Precambrian shield, Lower Palaeozoic sediments lie unconformably on weathered metamorphic rocks. Along the eastern border of the Tin Seririne basin some good examples of the weathered rocks underneath the unconformity are exposed. The palaeosurface is a peneplain with only minor topographical reliefs from one to a few metres high. The nature and intensity of the weathering process was controlled by the topography, and the existence of badly drained areas is particularly important. At one such area the Tahaggart uranium ore deposit was discovered. The uranium ore consists mainly of torbernite and autunite. The deposit is present in the weathered gneiss underneath the palaeosurface. Mineralogical and geochemical observations indicated that the ore deposit was formed during the period of weathering which was controlled by climatological and palaeotopographical factors. (author)

  7. Concentration factors of uranium mineralization in VII depositional cycle of Shuixigou group, lower-middle Jurassic at Wukurqi uranium deposit, Yili basin

    International Nuclear Information System (INIS)

    Liu Taoyong

    2004-01-01

    Starting with the analysis on uranium mineralization, this paper emphatically discusses factors related to uranium concentration in VII depositional cycle, such as the structure, the paleoclimate, the lithofacies-paleogeography, the lithology, the hydrogeology, the geochemistry, and the content of effective reductant. The author suggests that key factors of uranium migration and concentration at Wukurqi uranium deposit are the existence of ore-hosting formation (sand body), the long-term recharge of oxygen and uranium-bearing groundwater, the existence of effective reductant in ore-hosting formation

  8. On the characteristics of metallotect features and origin of Chanziping uranium deposit

    International Nuclear Information System (INIS)

    Kang Zili; Liu Haiying

    1991-01-01

    Chanziping Uranium Deposit is one of the representative uranium deposits which lie in the Lower Cambrian Qingxi Formation in China, Chiefly composed of black shale formation. The mineralization is largely controlled by the U-rich strata and bedding-plane faults. The former is the source of ore and ore-bearing wallrock; the latter controls the distributions of ore bodies, and is the source of force for remobilization, and mineralization of uranium and other metallogenetic elements. The formation of this deposit approximately undergoes the following 4 stages: 1. Preliminary enrichment of sedimentary uranium source layer in the Qingxi Formation; 2. Further uranium enrichment during the deformation and metamorphism of strata; 3. Formation of hydrothermal (thermal water) uranium deposit (main metallogenetic epoch) due to dynamic differentation and thermodynamic metamorphism; 4. Formation of rich multiple ore bodies due to the secondary leaching and enrichment. Then, the deposit, which contains strata-bound features, becomes a polygenetic compound uranium deposit. These characteristics may be used as the rules for searching for uranium deposits of this type

  9. Precambrian uranium deposits as a possible source of uranium for the European Variscan deposits

    International Nuclear Information System (INIS)

    Mineeva, I.G.; Klochkov, A.S.

    2002-01-01

    The Precambrian uranium deposits have been studied on the territory of Baltic and Ukrainian shields. The primary Early Proterozoic complex Au-U deposits originated in granite-greenstone belts as a result of their evolution during continental earth crust formation by prolonged rift genesis. The greenstone belts are clues for revealing ancient protoriftogenic structures. The general regularities of uranium deposition on Precambrian shields are also traceable in Variscan uranium deposits from the Bohemian massif. The Variscan period of uranium ore formation is connected with a polychronous rejuvenation of ancient riftogenous systems and relatively younger processes of oil and gas formation leading to the repeated mobilization of U from destroyed Proterozoic and Riphean uranium deposits. (author)

  10. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization

    Science.gov (United States)

    Zhang, Di; Zhao, Kui-Dong; Chen, Wei; Jiang, Shao-Yong

    2018-05-01

    Mafic dykes are abundant and widely distributed in many granite-hosted uranium ore deposits in South China. However, their geochronology, petrogenesis and relationship with uranium mineralization were poorly constrained. In this study, apatite U-Pb dating, whole-rock major and trace element and Sr-Nd-Pb isotope analysis were conducted for the dolerite dykes from the Aigao uranium ore deposit. Apatite U-Pb isotopic data indicate that the mafic dykes were emplaced at Early Jurassic (189 ± 4 Ma), which provides new evidence for the rarely identified Early Jurassic magmatism in South China. Pyroxene from the dykes is mainly augite, and plagioclase belongs to albite. The dolerite samples have relatively low SiO2 contents (45.33-46.79 wt%), relatively high total alkali contents (K2O + Na2O = 4.11-4.58 wt%) and Al2O3 contents (13.39-13.80 wt%), and medium MgO contents (4.29-5.16 wt%). They are enriched in Nb, Ta, Ti, rare earth elements and depleted in Rb, K, Sr, Th, showing the typical OIB-like geochemical affinity. All the dolerite samples show homogeneous Sr-Nd-Pb isotopic compositions, with (87Sr/86Sr)i varying from 0.706049 to 0.707137, εNd(t) from +4.6 to +5.2, 206Pb/204Pb from 19.032 to 19.126 and 207Pb/204Pb from 15.641 to 15.653. The mafic dykes in the Aigao deposit should be derived from the partial melting of the asthenospheric mantle and formed in a within-plate extensional environment. The emplacement age of the mafic dykes is older than the uranium mineralization age. Therefore, CO2 in ore-forming fluids couldn't originate from the basaltic magma as suggested by previous studies. The dolerite dykes might only provide a favorable reducing environment to promote the precipitation of uraninite from oxidize hydrothermal fluids.

  11. Equilibria determination in uranium ores by alpha spectrometry

    International Nuclear Information System (INIS)

    Tormo Ferrero, M.J.

    1976-01-01

    A method for the measurement of the U-234/U-238 activities is described. The separation of the uranium from the interferring elements is carried out by ionic change with anionic resine, in chlorhydric-metanol-ascorbic acid medium. The method has been applied to different spanish ores in which the equilibrium state has been determined (author)

  12. Uranium deposits of Australia to 1975

    International Nuclear Information System (INIS)

    Spannari, S.

    1979-01-01

    This bibliography provides a retrospective account of Australian uranium deposits, particularly the unpublished materials in the Australian Capital Territory. Some abstracts are included. Occurrences, mineralogy, ore genesis, structural controls and the eonomic geology of uranium deposits are covered but the mining of uranium, exploration reports, surveys, environmental aspects and controversial materials are not

  13. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  14. Uranium ores of Kazakhstan as the most technologic source of a fissionable material

    International Nuclear Information System (INIS)

    Berikbolov, B.R.

    1999-01-01

    Kazakhstan as is known has unique deposits of uranium. Its resources composed a third part of the world resources. The most important part of resources having a practical value, is related with depression in southern regions of the Republic. By now more than 15 deposits are discovered and partially explored. These deposits from three uranium provinces - Shu-Sarysu, Syr-Darya and Ili. The ores occur in friable water-bearing sandy horizons of Cretaceous and Paleogene age between waterproof agrillaceous sediments at depth from 100 up to 600 m. Ore bodies thickness changes from 5 to 10 m at uranian average-grade 0.03-0.1 %. Width of band shaped ore bodies changes from tens meters to the one kilometers and extent changes from one kilometer up to many tens kilometers. The important feature of deposits is their suitability for development by progressive in situ leaching (ISL) method. It was demonstrated, that uranium ores are comprehensive and, that is important, a lot of commercially important elements, containing in ores, gives in to extraction at development by the ISL method. The preliminary calculation of expenditures for the extraction of useful byproducts from ordinary sulphate solution have demonstrated rather high profitableness for rhenium, scandium, selenium, rare earth even at the very low contents in solution. It was pointed out, that whole technological chain applied now at industrial scale is oriented to mono-metallic uranium ores, therefore present technology of leaching and recovery of industrial solution does not allow ti extract all valuable components containing in ores. The development of new improved technological chain. beginning with a composition of leaching out reagent and up to applying of miscellaneous sorbing materials, can create new mineral-raw base of rare and dissipated elements and to lower considerably the price of uranium mining from sandstone deposits

  15. Case-control study communities with uranium ores deposit/examining versus communities without uranium, or other ores

    International Nuclear Information System (INIS)

    Letkovicova, M.; Letkovic, M.; Daniel, J.; Licivjansky, J.

    2008-01-01

    That is why the present study has been carried out to show, by means of both classical epidemiological and up-to-date mathematical methods, whether there is a difference in the health status of people living in areas with occurrence of pitchblende and those living in areas without any territorial contact with coal or ore mining or with deposits of any known exploitable minerals. The present study on differences in demography and health of population in municipalities with deposits or even with a history of stopping of uranium in comparison with municipalities without any mining or stopping past has been worked out in cooperation of URANPRES in Spisska Nova Ves and the company ENVIRONMENT in Nitra, Slovakia. The background data were provided by the fund ( database ) of the geological data of Uranpres as well as by the author' s databases of Environment, Inc., and the Statistical Office of the Slovak republic in Bratislava. The methods used for comparison have been either the common epidemiological ones, or the up-to-date mathematical methods. There was no difference between municipalities with and without occurrence of pitchblende within their cadastre. On the contrary, municipalities with a uranium extraction history seem to be balanced in respect of all indicators observed, with a long life expectancy, without any impairment of reproduction, with a lower incidence of cancer, and with a decidedly acceptable index of growth. The inhabitants neither have any health troubles nor do they think so and they do not intend to leave their municipalities. (authors)

  16. Unconformity-related uranium deposits

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.

    1985-01-01

    Documentation of ore deposit characterisation is being undertaken to assess the controls of uranium mineralisation associated with Proterozoic unconformities. The Turee Creek uranium prospect in Western Australia is associated with a faulted contact between the Middle Proterozoic Kunderong Sandstone and the Lower Proterozoic Wyloo Group

  17. Characteristics and model of sandstone type uranium deposit in south of Songliao basin

    International Nuclear Information System (INIS)

    Yu Wenbin; Yu Zhenqing

    2010-01-01

    Through analyzing the uranium deposit tectonic environment, upper cretaceous sequence stratigraphy, depositional system, evolutionary characteristics of sand bodies, the effect of subsequent transformation and the characteristic of uranium deposit, the sandstone type uranium deposit in southern basin is different from typical interlayer oxidation zone sandstone type uranium deposit. The formation and evolution of sandstone-type uranium deposit are controlled by structure fensters; the favorable sedimentary facies type is braided river facies, and the ore body is braided river sand body. The size of uranium deposits is controlled by the local oxidation zone with the characteristics of sandstone type uranium deposit in partial oxidation zone. Uranium ore bodies which distribute in the roof wings of structure fenstes, and occur in gray layers between the upper and lower oxidation zone, showing tabular, and the plate of uranium ore body is controlled by the local oxidation zone. Based on the geological features of sandstone-type uranium deposits, the metallogenic model of local oxidation zones sandstone-type uranium deposits has been set up in the south of Songliao Baisn. (authors)

  18. Status report from India [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Fareeduddin, S [Atomic Energy Establishment, Trombay, Bombay (India)

    1967-06-15

    The Energy Survey Committee of India, in its report to the Government, has estimated that the energy requirements in the year 1985/86 would be 290X10{sup 9} kWh, i. e. eight times the present requirement, and in the year 2000 it would be 820X10{sup 9} kWh, which is about 22 times the present requirement. The hydropotential that can be developed during the next 20 years is estimated to be of the order of 150X10{sup 9} kWh and hence the difference of about 140X10{sup 9} kWh will have to be obtained from either fossil or nuclear fuel. This would mean installating a generation capacity of about 26 000 MW in the next 20 years. To conserve the limited fossil fuel reserves, it has been estimated that about 70% of this capacity, i. e. about 18 000 MW, should form the nuclear component. This will be about 25% of the total energy requirements by 1985/86. The uranium requirements to meet this growth will be about 10 000 tonnes by 1985/86 which, from the point of view of our resources, is a substantial quantity. The most important uranium deposits are located in South Bihar in the Singhbhum Thrust belt, which is well known for its copper, apatite magnetite and kyanite deposits. On the basis of their uranium contents, these ores can be classified into two broad categories - one with low copper and high uranium contents and the other with high copper and low uranium contents. Another source of uranium in India is monazite. Some particulars about these deposits are given. Facilities for the recovery of byproduct uranium from monazite already exist in the country. But its production from this source, conditioned as it is by the limited demand for thorium, cannot be very large. Both the categories of the ores from the Singhbhum belt can be considered as low grade. Uranium from the ores in category (B) can be recovered, in the present state of knowledge, only as a byproduct of the copper industry. In the case of ores in the category (A), attempts have been made to recover uranium

  19. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  20. Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1981-01-01

    In the Blind River area, Proterozoic clastic sedimentary and minor volcanic rocks (Huronian Supergroup) unconformably overlie and transgress northward over dominantly granitic Archean terrane (2500 million years) and are intruded by Nipissing Diabase (2150 million years). Later deformations and metamorphic events are recognized. The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerates, which contain 75 percent of Canada's uranium reserves. Historic grades approximate 2 pounds U 3 O 8 /ton (1 kilogram/metric ton), but lower grade material can be mined with increasing price. Some thorium and rare earths have been marketed. The conglomerate beds lie in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. Distribution of monazite relative to uraninite and brannerite and the presence of uranium values in overlying polymictic conglomerates, which truncate the ore beds, indicate that the mineralization is syngenetic, probably placer. The role of penecontemporaneous mafic volcanics is problematical, but these could have been a source for sulphur in the pyrite. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions all suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water and possibly a cold climate. In the upper Huronian (Lorrain Formation), a monazite and iron oxide assemblage associated with red beds suggests a change to oxidizing conditions

  1. New interpretation of the dominant ore-controlling factor of the uranium ore field No. 322

    International Nuclear Information System (INIS)

    Liu Xiang; Yang Chongqiu

    1996-01-01

    The NE-trending fault structures in ore field NO. 322 are characterized by compress-shearing, left-Lateral left-slipping, having an obvious control over the Localisation of the ore field No. 322, and are the dominant ore-controlling factor of the ore field NO.322. Resulting from the sinistral displacement of the NE-trending fault, there is a pull-apart basin in the Feng Zhou area. The formation and evolution of the NE-trending fault zone and the Feng Zhou basin control the formation of uranium deposits of ore field No. 322

  2. Characteristics of sandstone-type uranium mineralization and ore-controlling factors in Wukurqi ore district at southern margin of Yili basin, Xinjiang

    International Nuclear Information System (INIS)

    Li Xigen

    2002-01-01

    With the theories of hydrogenic uranium deposit in the nineties, Wukurqi ore district as a new area was found by the regional prediction and prospecting. Specially, through uranium ore prospecting of about three years, certain prospective reserves are generally controlled in the area. These reserves are hosted in V cyclothem of Middle-Lower Jurassic series, and some prospective reserves are hosted in II and VII cyclothems. By analyzing and summarizing characteristics of sandstone-type uranium mineralization and its ore-controlling factors in Wukurqi ore district, the author provides a foundation for developing further prospecting in this area

  3. Geological exploration of uranium ores at Burgos' basin

    International Nuclear Information System (INIS)

    Cabrera Valdez, M.E.

    1975-01-01

    The outcrop sediments of the Burgos river basin cover the complete Cenozoic sequence from the Pallaeocene to recent date, and are arranged in the form of parallel strips with a regional dip towards the east, in which direction the sediments become steadily younger. Generally speaking they correspond to a regressive process the lithology of which is an alternation of shales, sandstones, tuffaceous material and conglomerates. The explorations and evaluations of sedimentary uranium deposits so far carried out in the north-east of Mexico show close relationships between the mineralization and the sedimentary processes of the enclosing rock. Analysis of the sedimentary-type uranium ore bodies in Mexico indicates characteristics very similar to those found in the deposits of the same type which were first studied and described in southern Texas and were used as a standard for the first exploratory studies. The uranium ore in the State of Texas is found in sands belonging mainly to the Jackson group of the Eocene and, to a lesser extent, the Catahoula formation of Miocene-Oligocene age. In the Burgos basin the existence of uranium deposits in the non-marine Frio formation of Oligocene age, with geological characteristics similar to the Texan deposits, has been demonstrated. This comparative analysis suggests very good prospects for uranium exploration in the region; it is recommended that priority be given to intensive study of the sediments of the non-marine member of the Frio formation, and the Jackson and Catahoula formations. (author)

  4. Mining of sedimentary-type ore deposits

    International Nuclear Information System (INIS)

    Bruha, J.; Slovacek, T.; Berka, J.; Sadilek, P.

    1992-01-01

    A procedure is proposed for mining sedimentary-type ore deposits, particularly uranium deposits, using the stope-pillar technique. The stope having been mined out, the free room is filled with hydro-setting gob from the surface. A precondition for the application of this technique is horizontal ore mineralization in sediments where the total thickness of the mineralized ore layer is at least 3 to 5 m. Mining losses do not exceed 5%. For thicknesses greater than 5 m, the roof is reinforced and the walls are secured with netting. The assets of the technique include higher labor productivity of the driving, lower material demands in reinforcing and filling, lower power consumption, and reduced use of explosives. (Z.S.). 3 figs

  5. Metallogenic model for continental volcanic-type rich and large uranium deposits

    International Nuclear Information System (INIS)

    Chen Guihua

    1998-01-01

    A metallogenic model for continental volcanic-type rich and large/super large uranium deposits has been established on the basis of analysis of occurrence features and ore-forming mechanism of some continental volcanic-type rich and large/super large uranium deposits in the world. The model proposes that uranium-enriched granite or granitic basement is the foundation, premetallogenic polycyclic and multistage volcanic eruptions are prerequisites, intense tectonic-extensional environment is the key for the ore formation, and relatively enclosed geologic setting is the reliable protection condition of the deposit. By using the model the author explains the occurrence regularities of some rich and large/super large uranium deposits such as Strelichof uranium deposit in Russia, Dornot uranium deposit in Mongolia, Olympic Dam Cu-U-Au-REE deposit in Australia, uranium deposit No.460 and Zhoujiashan uranium deposit in China, and then compares the above deposits with a large poor uranium deposit No.661 as well

  6. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  7. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  8. Research of geological technologic condition in laboratory about the ore of 501 deposits

    International Nuclear Information System (INIS)

    Ma Guoxiang; Yu Baoli; Gao Yuyou; Li Changhua

    2009-01-01

    501 deposits of uranium ore grade is 0.052%. The radio of U +6 /U 4+ is 1.7-4.6. there is less content of sarbonate, such as sulfide and organic matter which disservice baptist uranium geological process, and the uranium and oxygen with a high level in the water of seam. The content of [HCO 3 ] - is lower. By conducting the static leaching test, the important technical parameters of uranium ore extraction are determined: with 7.91 g/L H 2 SO 4 , to soak uranium ore which the grade is between 0.007% and 0.216% for 48 hours, the uranium extraction rate of 64.69-99.17%, and extract uranium concentration 9.51-427.6 mg/L; the formula of infusion solution is obtained by using percolation leaching test: 6-8 g/L H 2 SO 4 , the rate of uranium extraction is 95.71%-96.33%, an average of leaching solution uranium concentration of 88.33-111.32 mg/L, leaching liquid-solid ratio of 4.46-5.66, ore tons of sulfuric acid consumption to 27.58-29.83 kg/t, extraction of uranium 1 kg of sulfuric acid consumption to 55.17-60.06 kg. That indicate the geological technologic conditions which the leaching of uranium ore deposits is better. (authors)

  9. Technique for in situ leach simulation of uranium ores

    International Nuclear Information System (INIS)

    Grant, D.C.; Seidel, D.C.; Nichols, I.L.

    1985-01-01

    In situ uranium mining offers the advantages of minimal environmental disturbance, low capital and operating costs, and reduced mining development time. It is becoming an increasingly attractive mining method for the recovery of uranium from secondary ore deposits. In order to better understand the process, a laboratory technique was developed and used to study and simulate both the chemical and physical phenomena occurring in ore bodies during in situ leaching. The laboratory simulation technique has been used to determine effects of leaching variables on permeability, uranium recovery, and post-leach aquifer restoration. This report describes the simulation system and testing procedure in sufficient detail to allow the construction of the system, and to perform the desired leaching tests. With construction of such a system, in situ leaching of a given ore using various leach conditions can be evaluated relatively rapidly in the laboratory. Not only could optimum leach conditions be selected for existing ore bodies, but also exploitation of new ore bodies could be accelerated. 8 references, 8 figures, 2 tables

  10. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.R.

    1975-01-01

    A process of improving the filtration efficiency and separation of uranium ore pulps obtained by carbonate leaching of uranium ore which comprises treating said ore pulps with an aqueous solution of hydroxyalkyl guar selected from the group consisting of hydroxyethyl and hydroxypropyl guar in the amount of 0.1 and 2.0 pounds of hydroxyalkyl guar per ton of uranium ore

  11. The relationship between depositional system and ore-formation of sandstone-type uranium deposits in Dongsheng area, Ordos basin

    International Nuclear Information System (INIS)

    Zhao Honggang; Ou Guangxi

    2006-01-01

    The analysis on depositional system plays a very important role in studying sandstone-type uranium deposits. Based on depositional system analysis and sequence stratigraphy, and through the study of depositional system characteristics and the spatial distribution of sedimentary facies, the evolution of sedimentary environments as well as the sequence stratigraphy of Zhiluo Formation in Dongsheng area, Ordos basin, authors have come to the following conclusions, (1) the spatial distribution of sand bodies is controlled by the planar distribution of sedimentary facies, which, in turn, affects the spatial distribution of ore-hosting sand bodies; (2) the evolution of sedimentary facies and sedimentary environments creates good lithofacies and lithological conditions favorable for interlayer oxidation; (3) the spatial lithologic combination of 'three layer structure' is controlled by sedimentary sequence. (authors)

  12. Studies on uranium ore processing

    International Nuclear Information System (INIS)

    Kim, C.H.; Park, S.W.; Lim, J.K.; Chung, M.K.

    1981-01-01

    Chemical and chemical engineering techniques of the uranium ore processing established by France COGEMA (Compagnie Generale des Matieres Nucleaires) have been comprehensively reviewed in preparation for successful test operation of the pilot plant to be completed by the end of 1981. It was found that the amount of sulfuric acid (75 Kg/t, ore) and sodium chlorate (2.5 Kg/t, ore) recommended by COGEMA should be increased up to 100 Kg/t, ore and 10 Kg/t, ore respectively to obtain satisfactory leach of uranium for some ore samples produced at the different pits of Goesan uranium mine. Conditions of the other processes such as solvent extraction, stripping, and precipitation of yellow cake were generally agreed with the results of intensive studies done by this laboratory

  13. Brief analysis on relationship between red beds and sandstone-type uranium ore-formation

    International Nuclear Information System (INIS)

    Ji Zengxian

    2006-01-01

    Red beds are sandy gravel beds deposited under the arid and hot climates and correspondent to the oxidation environment of continental basins. As an exogenetic epigenetic uranium deposit, the formation of the sandstone-type uranium deposit needs a large chronologic gap between the diagenesis and the subsequent uranium metallogenesis of the ore-hosting target layer with a sedimentary discontinuity and an alternative humid-arid climate. Red beds are the product of this time. The evolutionary times of red beds are in accordance with the formation of the sandstone-type uranium deposit. Both domestic and abroad researches indicate that each times evolution of a red bed might be associated with uranium ore-formation in one or more sandstone layers in the region. In China, red beds are developed in many geologic periods, but sandstone-type uranium mineralization occurs mostly in Mesozoic-Cenozoic. Taking five known sandstone-type uranium deposits as examples, the author makes a primary analysis on the relationship between red beds and the subsequent sandstone-type uranium mineralization. It is suggested that the deposition of red beds and sandstone-type uranium metallogenesis are of 'cogenesis and coexistence' and that the deposition of red beds and its evolutionary times can be regarded as the prerequisites to judge the potential of sandstone-type uranium mineralization in a Mesozoic-Cenozoic sedimentary basin. (authors)

  14. Low grade uranium ores as potential sources of raw material

    International Nuclear Information System (INIS)

    Venzlaff, H.

    1976-01-01

    Reports on the uranium requirement and the uranium reserves show that, even if the demand were to be stretched out slightly, the rate of new discoveries of uranium would have to be doubled or even tripled within a few years in order to ensure supply. Despite some spectacular discoveries of large scale deposits in Australia it must be said that only very few truly new uranium provinces have been discovered over the past twenty years. In this situation more attention is now being devoted to low grade uranium depositis, to findings whose concentration does not exceed 1,000 ppm. These deposits contain quantities of uranium many times larger than the deposits that can now be mined at prices up to 30/lb of U 3 O 8 . Even now low grade uranium ore is being mined as a byproduct, with the actual valuable mineral producing most of the income from mining activities. However, if one strikes a balance in this situation, one finds that only part of the requirement can be met in this way. Hence, all possibilities must be exhausted to mine uranium as a byproduct, new techniques of uranium production from low grade ores must be developed, and also conventional prospection must be intensified, if the continuity of supply of the nuclear power stations in the eighties and nineties is to be guaranteed. (orig.) [de

  15. Uranium R and D directed to low-grade ores

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The treatment of depleted uranium ores by in-situ leaching and by counterflow ion exchange in the USA is described. In-situ leaching is mainly suitable for sandstone deposits. The research was originally focused on leaching with an acid and with carbonates. Phosphoric acid appears to be a promising leaching agent. The equipment for continuous ion exchange may be used for sludge processing but the application depends on the type of equipment and mineralogy of processed ores. The method is advantageous for lower capital costs and for smooth operation. Ion exchange is also used for uranium extraction from mine waters in the USA as well as in Canada. For example, in Grants, New Mexico, a yield exceeding 90% was reached in mine waters only containing 5 to 7 ppm U 3 O 8 . In the future, the treatment of ores with a low uranium content will require more selective extraction methods in view of the more stringent technical conditions of uranium concentrate processing. (J.P.)

  16. A study of U-Pb isotopic evolutionary system in Chanziping uranium deposit

    International Nuclear Information System (INIS)

    Xu Weichang; Huang Shijie; Xia Yuliang.

    1988-01-01

    Chanziping uranium deposit occurred in the black siliceous slate of Lower cambrian. The uranium mineralization was controlled by both interstratified fault belt and the ore-bearing beds. Based on the study of the U-Pb isotopic system of the various rocks, ores and minerals in the ore-bearing beds, the authors find out the obvious disequilibrium of U-Pb isotopic composition in most rock samples which indicates the loss of uranium form the ore-bearing beds and surrounding granite. Its counting loss ranges from 30 to 80%. The age of rich ores of the U-Pb concordance diagram and the U-Pb three stage model are t 1 = 523 ± 19M. Y. , t 2 = 22 ± 2 M.Y.. The isochronal ages for pitchblend are 75 ± 4 M.Y., 43 ± 7 M.Y., and for rock is 416 M.y.. These data shows that the uranium in ore-bearing beds was mainly derived from the ore-bearing beds itself and partly from the surrounding granite. The ore deposit can be considered to be of stratabound uranium deposit of sedimentation and late transformation type

  17. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada. Informal report

    International Nuclear Information System (INIS)

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique

  18. Hyperspectral information identification for characterizing metallogenic factors of Taoshan uranium ore-field

    International Nuclear Information System (INIS)

    Zhang Jielin

    2007-01-01

    The application of high resolution remote sensing technology to uranium mineralization is discussed in detail. By utilizing field hyperspectrum measurement method (VIS/NIR-SWIR-FIR) and fusion technology of ETM image and Radarsat data, the spectral characteristic of uranium mineralization factors including rock mass, ore-control fault and hydrothermal alteration are studied in Taoshan granite type uranium deposits. The main ore-control structure has been identified based on remote sensing image feature. Those results and experiences provide the new remote sensing approaches to the prospecting and evaluation of uranium resources. (authors)

  19. The genesis of surficial uranium deposits

    International Nuclear Information System (INIS)

    Boyle, D.R.

    1984-01-01

    Surficial uranium deposits can form in such diverse environments as calcareous-dolomitic-gypsiferous fluvial and aeolian valley sediments in hot arid and semi-arid regions, oxidizing and reducing alkaline and saline playas, highly organic and/or clay-rich wetland areas, calcareous regoliths in arid terranes, laterites, lake sediments, and highly fractured zones in igneous and metamorphic basement complexes. Formation of ore is governed by the interrelationships between source of ore-forming elements, mechanisms of migration, environment of deposition, climate, preservation, tectonic history and structural framework. The principal factors controlling mobilization of ore-forming elements from source to site of deposition are the availability of elements in source rocks, presence of complexing agents, climate, nature of source rock regolith and structure of source rock terrane. The major processes governing precipitation of uranium in the surficial environment are reduction mechanisms, sorption processes, dissociation of uranyl complexes, change in redox states of ore-forming constituents, evaporation of surface and groundwaters, change in partial pressure of dissolved carbon dioxide, changes in pH, colloidal precipitation, and mixing of two or more surface and groundwaters. One or a number of these processes may be actively involved in ore formation. (author)

  20. Uranium deposit of Bauzot (Saone et Loire)

    International Nuclear Information System (INIS)

    Carrat, G.H.

    1956-01-01

    The best known of the uranium ore deposits of the Morvan (a province of France) is in the form of a bundle of quartz-fluor lodes with pitchblende and B.P.G.C. ore. The pitchblende seems to have been deposited at different time in respect to the formation of the gangue minerals, but generally it is ore of the first-formed. The main concentrations of ore are always in the vicinity of dykes of basic crystalline rocks. (author) [fr

  1. Mining industry and explorations for uranium ore - the situation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lange, G

    1976-05-01

    A survey is given of the present state of knowledge on uranium ore reserves, uranium production and uranium consumption. The supply with uranium of the various European countries is explained in brief sections. The results of the exploration efforts so far indicate that in the future, too, the demand can only be met partially by European deposits, and that the dependence on uranium imports cannot be deleted. Secure supply can be fortified by acquiring a share in overseas deposits and by geographic diversification. Activities in this direction have been started already.

  2. Microbial leaching of low grade sandstone uranium ores: column leaching studies

    International Nuclear Information System (INIS)

    Bhatti, T.M.; Malik, K.A.; Khalid, A.M.

    1991-01-01

    Microbial leaching studies on a low-grade sandstone uranium ore from Baghalchur Ore Deposits, D. G. Khan, Pakistan, containing 0.027 % U/sub 3/O/sub 8/ for extraction of uranium, were conducted in columns. Baghalchur sandstone uranium ore which is alkaline in nature, contained 5.0% calcite [CaCo/sub 3/], 2-3 % Fe/sub 2/O/sub 3/ and pyrite [FeS/sub 2/] less than 0.1 %. The ore amended with sulfur and/or sulfur slag as external energy source was found to leach with indigenous microflora mostly belonging to the genus Thiobacillus which are present in the uranium mine water. Column leaching studies revealed that when the ore was amended with elemental sulfur and irrigated with mine water (pH 3.5) 53 % U/sub 3/O/sub 8/ could be solubilized from it. However, when the natural mine water was used as such (pH 7.4) the solubilization of uranium was decreased to 41 % U/sub 3/O/sub 8/ in 90 days under similar conditions of percolation rate and temperature. The addition of (NH/sub 4/)/sub 2/SO/sub 4/ (3.0 g/L) in mine water was found to enhance the uranium leaching to 70 % U/sub 3/O/sub 8/ from the columns containing ore amended with sulfur slag. (author)

  3. The depositional and hydrogeologic environment of tertiary uranium deposits, South Texas uranium province

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1985-01-01

    Uranium ore bodies of the South Texas Uranium Province occur within the most transmissive sand facies of coastal-plain fluvial and shore-zone depositional systems. Host strata range in age from Eocene through Miocene. Ore bodies formed at the fringes of epigenetic oxidation tongues near intrinsic organic debris or iron-disulfide mineral reductants. Mineralized Eocene units, which include the Carrizo and Whitsett Sandstones, subcropped beneath tuffaceous Oligocene through early Miocene coastal plain sediments. Roll-front mineralization occurred because of this direct hydrologic continuity between an aquifer and a uranium source. Most ore occurs within coarse, sand-rich, arid-region, bed-load fluvial systems of the Oligocene through Miocene Catahoula, Oakville, and Goliad Formations. Host sediments were syndepositionally oxidized and leached. Reductant consists predominantly of epigenetic pyrite precipitated from deep, sulfide-rich thermobaric waters introduced into the shallow aquifers along fault zones. Mineralization fronts are commonly entombed within reduced ground. Modern ground waters are locally oxidizing and redistributing some ore but appear incapable of forming new mineralization fronts. (author)

  4. Determination of uranium content in phosphate ores using different measurement techniques

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Eshaikh

    2016-01-01

    Full Text Available The most important unconventional source of uranium is found in phosphate deposits; unfortunately, nowadays its exploitation is limited by economic constraints. The uranium concentrations in phosphate ores in the world vary regionally and most countries with large phosphate deposits have either plant in operation to extract uranium or are at the stage of pilot extraction plants. The aim of this investigation is to evaluate uranium content in the Saudi phosphate ores for, at least, two reasons: firstly, upgrading the phosphate quality by removing the uranium content in order to reduce the radioactivity in the fertilizer products. Secondly, getting benefit from the extracted uranium for its domestic use as a fuel in nuclear power and desalination plants. The results of this study show that the uranium concentration in Saudi phosphate rocks is relatively low (less than 100 ppm, which is not economically encouraging for its direct extraction. However, its extraction as a byproduct from the phosphoric acid, which will have higher concentration could be quite promising and worth exploiting.

  5. Uranium deposits in France and in French overseas territories; Les gisements d'uranium de la France metropolitaine et des territoires francais d'Outre-Mer

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The discover of radium element by Pierre and Marie Curie in 1898 activated the uranium ores prospecting in France and its overseas territories. Before 1945, rare and poor deposits were found with only one being operated in Madagascar and the production of nobiantalates from washing of pegmatitic eluvium. Since the setting up of the Research and Mines Department in the C.E.A. and the training of specialized exploration teams as well as the use of Geiger counters, the uranium ores prospecting has been largely developed in France. The mineralogical data resulting from studies during the pre-war period led to the discover of four main uranium ores content areas: La Crouzille deposit in Limousin characterized by large presence of pitchblende, the Bauzot deposit with massive presence of pitchblende as well, discover of mineralization traces in the Bois Noirs area where a rich uranium ore lodes were discovered afterwards and finally the madagascar deposit. Few other areas have been prospected and have got good evidences of uranium ores presence. The majority of French uranium deposits have got an 'hydrothermal' vein type with localized pitchblende or a secondary mineralization type. It described the different deposits by region and in chronological order of discover. The structural aspect and petrographic studies are discussed. The metallogenic study shows the presence of large mineralization in the French Hercynian massif. After ten years of uranium ores prospecting and mines work, it shows that France possesses numerous uranium deposits which can be qualified as large deposits and the minerals ores prospecting revealed that many deposits sites would be payable in the near future. (M.P.)

  6. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  7. Chapter 1. General information about uranium. 1.3. Uranium ores

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    The uranium ores were described. It was found that uranium ores and natural mineral formations containing uranium and its compounds, can be found in concentrations that are technically possible for industrial utilization and which are economically profitable. It was defined that oxidation levels of uranium minerals have an impact on their reprocessing technology and behavior in hydrometallurgical re partition. It was found that the chemical composition of ores has a decisive importance during selection of their reprocessing method.

  8. Metallogenetic condition and mineralization characteristics of uranium deposit No.114

    International Nuclear Information System (INIS)

    Niu Lin; Ma Fei; Yang Wanjin

    1988-01-01

    Deposit No 114 is one of the typical carbonate-type uranium deposits, that are widely distributed in South China. In this paper formational environment of host rock, wall-rock alteration, sulfur, oxygen, carbon isotopes, mineralization temperatures, ore compsitions were studied. Based on the U-Pb isotopic research three mineralization stages in deposit No 114 were established, namely 104 Ma, 61 Ma and 11 Ma. It is suggested, that the deposit No 114 is a polygenetic deposit formed primarily by supergene leaching and hydrothermal reworked. The uranium deposit has multi-sources, the main uranium source of which is from the granite body situated nearby. According to metallogenetic characteristics the authors suggest the favourable geological exploration guides for this kind of ore deposits

  9. Hydrogeochemical radioactive features and prospecting in granopegmatite type uranium ore district in Danfeng area

    International Nuclear Information System (INIS)

    Feng Zhangsheng

    2011-01-01

    Hydrochemical radioactive prospecting plays an important role in the all stages of grano-pegmatite type uranium deposit exploration in Danfeng area dut to its fast, simple, economic and high effective advantage. Radioactive anomalous halo in the shallow underground water has identical distribution scopes with the ore-bearing biotite granite-pegmatite, which can be used to delineate uranium ore-forming prospective area, reconnaissance area and detailed prospecting area. Deep underground water close to the ore is characterized by hydrogeochemical radioactive features with high uranium and radon content. Through prospecting engineering of radioactive hydrogeochemical, the situation of blind ore bodies can be used to guide the layout. (authors)

  10. An unusual feature of uranium ore from Domiasiat, Meghalaya: presence of water soluble uranium

    International Nuclear Information System (INIS)

    Singh, A.K.; Padmanabhan, N.P.H.; Sivaramakrishnan, K.; Krishna Rao, N.

    1993-01-01

    An unusual feature of the recently discovered sandstone-type uranium deposit in Domiasiat is the presence of appreciable amount of water soluble uranium. With normal tap water at its natural pH (7.5-7.8), upto 35% of the uranium in the ore was found to be soluble during agitation in the different samples. Presence of other ions in appreciable quantities particularly SO 4 -2 Cl - and Fe +3 appear to influence the dissolution. Percolation experiments give terminal solubilization of upto 58%, but the instantaneous uranium concentration in the percolating water attains its maximum within the first few minutes of contact. A detailed study on the chemistry of uranium dissolution may throw light on the physico-chemical controls of localization of uranium in the deposit. (author). 7 refs., 3 tabs., 4 tabs

  11. Static leaching of Spanish uranium ores; Lixiviacion estatica de minerales espanoles de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, G; Gasos, P; Merino, J L; Suarez, Y E [Direccion de Plantas Piloto e Industriales, Junta de Energia Nuclear, Madrid (Spain)

    1967-06-15

    The paper summarizes the experience acquired in Spain during seven years of investigation on the static leaching of uranium ores. The operations covered minerals showing wide variations with regard to both uranium content (250 and 2000 ppm) and the type of rock and gangue (granites, shales, sandstones, sulphides, carbonates, limonites etc.). The studies were carried out on quantities of material varying from a few kilograms to several tons. Leaching agents included water, solid reagents (pyrites), alkaline carbonates and sulphuric acid. The systems used consisted of both simple layouts and other, more elaborate schemes including recycling of the liquors. The uranium was recovered from the liquors first by direct precipitation and later by ion-exchange and extraction with amines. (author) [Spanish] La memoria resume la experiercia espanola de siete anos de estudio sobre lixiviacion estatica de minerales de uranio. Se ha estudiado una gran variedad de minerales tanto en lo que respecta a ley de uranio (250 y 2000 ppm), como a la naturaleza de las rocas y gangas (granitos, pizarras, areniscas, sulfuros, carbonatos, limonitas, etc.). Los estudios se han realizado en diferentes escalas, desde kilogramos a varias toneladas. Los agentes de lixiviacion han sido variables: agua, reactivos solidos (piritas), carbonatos alcalinos y acido sulfurico. Los circuitos empleados se refieren tanto a esquemas sencillos, como a otros mas elaborados con recirculaciones de liquido. La recuperacion del uranio de los liquidos se resolvio inicialmente por precipitacion directa, pero luego se efectuo mediante cambio de ion y extraccion con aminas. (author)

  12. Uranium ore processing in Spain

    International Nuclear Information System (INIS)

    Josa, J.M.

    1976-01-01

    The paper presents a review of the Spanish needs of uranium concentrates and uranium ore processing technology and trends in Spain. Spain produces approximately 200t U 3 O 8 /a at two facilities. One plant in the south (Andujar, Jaen) can obtain 70t U 3 O 8 /a and uses a conventional acid leaching process with countercurrent solvent extraction. A second plant, situated in the west (Ciudad Rodrigo, Salamanca) has started in 1975 and has a capacity of 120-130t U 3 O 8 /a, using acid heap leaching and solvent extraction. There is another experimental facility (Don Benito, Badajoz) scheduled to start in 1976 and expected to produce about 25-35t U 3 O 8 /a as a by-product of the research work. For the near future (1978) it is hoped to increase the production with: (a) A new conventional acid leaching/solvent extraction plant in Ciudad Rodrigo; its tentative capacity is fixed at 550t U 3 O 8 /a. (b) A facility in the south, to recover about 130t U 3 O 8 /a from phosphoric acid. (c) Several small mobile plants (30t U 3 O 8 /a per plant); these will be placed near small and isolated mines. The next production increase (1979-1980) will come with the treatment of sandstones (Guadalajara and Cataluna) and lignites(Cataluna); this is being studied. There are also research programmes to study the recovery of uranium from low-grade ores (heap, in-situ and bacterial leaching) and from other industries. (author)

  13. Multi-column bioleaching of a uranium ore

    International Nuclear Information System (INIS)

    Meng Yunsheng; Zheng Ying; Liu Hui; Cheng Hao

    2014-01-01

    The technology of bioleaching uranium ore can increase the uranium leaching rate and shorten the leaching uranium period, save consumption of acid and oxidant, lower production costs. An experiment on multi-column bioleaching of a uranium ore was done using mesophilic bacteria, the average uranium recovery of 90% was achieved in 39 days. Compared with traditional process, leaching period was shortened to 39 d from 59 d, acid consumption and liquid-solid ratio were also reduced. The results showed it is suitable to bioleach the uranium ore. (authors)

  14. On a Bayesian estimation procedure for determining the average ore grade of a uranium deposit

    International Nuclear Information System (INIS)

    Heising, C.D.; Zamora-Reyes, J.A.

    1996-01-01

    A Bayesian procedure is applied to estimate the average ore grade of a specific uranium deposit (the Morrison formation in New Mexico). Experimental data taken from drilling tests for this formation constitute deposit specific information, E 2 . This information is combined, through a single stage application of Bayes' theorem, with the more extensive and well established information on all similar formations in the region, E 1 . It is assumed that the best estimate for the deposit specific case should include the relevant experimental evidence collected from other like formations giving incomplete information on the specific deposit. This follows traditional methods for resource estimation, which presume that previous collective experience obtained from similar formations in the geological region can be used to infer the geologic characteristics of a less well characterized formation. (Author)

  15. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  16. REE characteristics and uranium metallogenesis of sandstone-type uranium deposits in northern Sichuan

    International Nuclear Information System (INIS)

    Zhu Xiyang; Wang Yunliang; Wang Zhichang; Zhang Chengjiang

    2004-01-01

    On the basis of the analysis of a large number of samples at sandstone-type uranium deposits in northern Sichuan, this paper analyses the REE composition of country rocks, ores, calcite-veins and uranium minerals, and systematically summarizes their REE geochemical characteristics, and discusses variation regularity of REE during depositional and diagenetic processes. By comparing these characteristics with those of typical hydrothermal volcanics-type and metamorphic rock type uranium deposits both at home and abroad, authors suggest that sandstone-type uranium deposits in northern Sichuan are characterized by REE geochemical features of hydrothermal reworking metallogenesis, the uranium mineralization has experienced two stages: the diagenetic preconcentration and the concentration of hydrothermal reworking

  17. Discussion on the genesis of Zhongchuan uranium deposit

    International Nuclear Information System (INIS)

    Zhang Yulong; Zhang Chengzhong

    2008-01-01

    Through elaborating the geological setting, deposit and orebody geological charactors and hydrological features, the ore controlling factors are analysed and the genesis of Zhongchuan uranium deposit is discussed in the way of deposit occurrence, mineral asembleage and matalization ages. It is believed that uranium deposit was formed under the regional uplifting background with the exogenous mechanism and its genesis belongs to surface leaching. (authors)

  18. Uranium deposits of the world. Europe

    Energy Technology Data Exchange (ETDEWEB)

    Dahlkamp, Franz J.

    2016-07-01

    Uranium Deposits of the World, in three volumes, comprises an unprecedented compilation of data and descriptions of the uranium regions in Asia, USA, Latin America and Europe structured by countries. With this third, the Europe volume, Uranium Deposits of the World presents the most extensive data collection of the set. It covers about 140 uranium regions in more than 20 European countries with nearly 1000 mentioned uranium deposits. Each country and region receives an analytical overview followed by the geologically- and economically-relevant synopsis of the individual regions and fields. The presentations are structured in three major sections: (a) location and magnitude of uranium regions, districts, and deposits, (b) principal features of regions and districts, and (c) detailed characteristics of selected ore fields and deposits. This includes sections on geology, alteration, mineralization, shape and dimensions of deposits, isotopes data, ore control and recognition criteria, and metallogenesis. Beside the main European uranium regions, for example in the Czech Republic, Eastern Germany, France, the Iberian Peninsula or Ukraine, also small regions an districts to the point of singular occurrences of interest are considered. This by far the most comprehensive presentation of European uranium geology and mining would not be possible without the author's access to extensive information covering the countries of the former Eastern Bloc states, which was partly not previously available. Abundantly illustrated with information-laden maps and charts throughout, this reference work is an indispensable tool for geologists, mining companies, government agencies, and others with an interest in European key natural resources. A great help for the reader's orientation are the substantial bibliography of uranium-related publications and the indices, latter containing about 3900 entries in the geographical part alone. The three volumes of Uranium Deposits of the

  19. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  20. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  1. IAEA sends out samples of uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Governments and organizations interested in developing uranium resources will be assisted by a new service, now being inaugurated by the Agency's laboratories, for the distribution of reference samples of uranium ores. This is an addition to the service which began at Seibersdorf in January 1962 for the distribution of calibrated radionuclides, and which has met with a steadily increasing demand. * Uranium deposits consisting of ores with a uranium content in the range 0.5 - 0.05 per cent occur in a number of countries, including developing countries and can present considerable analytical difficulties. In 1962 the Agency asked Member States whether they would be interested in receiving reference samples of uranium ores to assist them in checking their methods of chemical analysis. The response encouraged the Agency to proceed. There is a multiplicity of types of uranium ores and, initially, three of the most commonly occurring have been selected - torbernite, uraninite and carnotite. Member States have provided the laboratory with supplies of these three types of ore. In order to determine the uranium content, samples are sent to leading laboratories throughout the world, so as to arrive at the most accurate values possible. This work has proved to be useful to the laboratories themselves ; in searching for reasons for discrepancies between the different collaborating laboratories, they enlarge their own knowledge and improve their methods. The reference samples are sent out in the form of fine powder, and are available to atomic energy commissions, research laboratories or mining companies. The requesting laboratory, having worked out the analytical process best suited to its needs, is then able to check its results by analysing an IAEA reference sample of known uranium content. By the end of 1966, reference samples will be available of the three ores mentioned, and later also of pure uranium oxide and of uranium oxide containing trace impurities, the

  2. Digitization of uranium deposit information in basin. A new strategy of ISL sandstone-type uranium deposits exploration

    International Nuclear Information System (INIS)

    Tan Chenglong

    2006-01-01

    The discovered ISL sandstone-type uranium deposits in the entire world are mostly blind deposits, many of them occur in bleak desert, gobi desert, and semi-hilly land area. Exploration methods for these deposits mainly depend on great and systematic drilling. There are many large-medium size Meso-Cenozoic sedimentary basins in northern China, and over twenty of them are thick overburden basins which are mostly the virgin land for ISL sandstone-type uranium deposit. Due to the comprehensive national power, geological background, uranium exploration ability, great and systematic drilling is not favorable for prospecting ISL sandstone-type uranium deposit in China. According to the exploration and prospecting experiences for mineral ore bodies at home and abroad, uranium information mapping based on geochemical survey of the basins is a new strategy for ISL sandstone-type uranium deposits. It is an economic, practical, fast and effective method, and has been manifested by the performing information digitization for oil and gas resources, gold mineral resources in China and the mapping of uranium information for whole Europe continent. (authors)

  3. Mantle geofluid and uranium ore-formation model

    International Nuclear Information System (INIS)

    Wu Jianhua; Liu Shuai; Yu Dagan; Zhang Bangtong

    2005-01-01

    Results of the recent research show that volcanic-type and granite-type uranium deposits have both early and late phases of uranium mineralization, and the early phase uranium mineralization is characterized by metallogenetic features of mantle fluids. This paper discusses the geofluids and related metallogenesis, as well as characteristics of early phase uranium mineralisation, and emphasizes, that the ΣCO 2 , U and H 2 O, that comprise the bulk of the ore-forming hot fluids, are originated from different sources, namely CO 2 comes from mantle fluids, U comes from country rocks the mantle fluids have passed during their ascending way, and H 2 O comes from mantle fluids and country rocks the mantle fluids have passed during their ascending way. (authors)

  4. Petrology, mineralogy and geochemistry of surficial uranium deposits

    International Nuclear Information System (INIS)

    Pagel, M.

    1984-01-01

    A comprehensive understanding of the petrology, mineralogy, and geochemistry of surficial uranium ore deposits is important for developing prospecting and evaluation strategies. Carnotite is the main uranium mineral and is found in those deposits that have the greatest potential uranium resources. The following uranium-bearing minerals have been reported to occur in surficial deposits: carnotite, tyuyamunite, soddyite, weeksite, haiweeite, uranophane, betauranophane, metaankoleite, torbernite, autunite, phosphuranylite, schroeckingerite, Pb-V-U hydroxide (unnamed mineral), uraninite and organourano complexes. The interrelationships between some of the minerals of the host rocks (especially the clays) are not well understood. (author)

  5. Flotation of uranium from uranium ores in Canada. Part 1

    International Nuclear Information System (INIS)

    Muthuswami, S.V.; Vigayan, S.; Woods, D.R.; Banerjee, S.

    1983-01-01

    About 150 flotation tests were done on Elliot Lake ore with 15 reagents as collectors in order to screen and choose an attractive collector for uranium flotation. Several variables were studied including pH, conditioning time and mode of collector addition. The tests were done in a Denver or Agitair subaeration cell. The particle size of the ore was kept at 85% below -325 mesh. Three reagents (Kelex 00, TOPO, and cupferron) were identified as having the most promise. The best results were obtained with cupferron, where 93-95% of the uranium was recovered in 25-30% of the mass of original ore. Radium in the tails varied between 5 and 30 pCi/g depending on the mass of uranium floated. Radium was recovered in proportion to uranium in the tests done at neutral pH. The preconcentration results obtained by flotation alone were comparable to those obtained using pyrite flotation and wet high-intensity magnetic separation of uranium. The consumption of cupferron was 4 kg/Mg ore for each flotation stage. This was 10-15 times larger than the collector usage in conventional oxide flotation. This scheme did not require other reagents as depressants, activators or modifiers. Reproducibility was good and similar recoveries were obtained with fresh or old ores, and with distilled or mine water. The selectivity of cupferron for uranium in the ore studied was outstanding

  6. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  7. Uranium metallogenic features and prospecting potentialities in the areas around Shabazi uranium deposit in Nanling metallogenic belt

    International Nuclear Information System (INIS)

    Yang Shanghai

    2008-01-01

    Based on the actuality of exploration and research on Shabazi uranium deposit in Nanling metallogenic belt, the author analyzes and summarizes uranium metallogenic features of the deposit. Under the direction of modern metallogenic theories of uranium deposit, such as deep-source mineralization and deep prospecting for uranium deposits, it is shown that there is great mineralization and prospecting potentiality in the areas around Shabazi uranium deposit and high attention importance should be paid to the areas in the future exploration according to the synthetical analysis on geologic background of the deposit, uranium mineralization features, ore-controlling factors and systematic data of geology. (authors)

  8. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  9. Geology and ore deposits of Johnny M mine, Ambrosia Lake District

    International Nuclear Information System (INIS)

    Falkowski, S.K.

    1980-01-01

    The Johnny M mine is one of very few mines in the Ambrosia Lake district with uranium ore in two members of the Morrison Formation (Jurassic); these members are the Westwater Canyon Sandstone and the Brushy Basin Shale. The Westwater Canyon ore is contained in the two upper sandstone units of the member, and the Brushy Basin ore is contained in the Poison Canyon sandstone (informal usage). The sedimentary features and structures in the Westwater Canyon sandstones indicate that the sediments were deposited by a system of aggrading braided streams, possibly at the distal end of coalescing alluvial fans. The Poison Canyon sandstone was probably the result of deposition in a complex environment of meandering and braided streams. Paleocurrent-direction indicators, such as fossilized-log orientation, foreset azimuths, and the axes of crossbeds and channel scours, suggest that the local palostream flow was to the east and southeast. The uranium mineralization is closely associated with 1) local accumulations of carbonaceous (humate) matter derived from the decay of organic material and 2) paleostream channels preserved in the rocks. The ore elements were derived from the leaching of volcanic air-fall tuffs and ash, which were introduced into the fluvial system during volcanic activity in the western United States. The mobile ore-element ions were reduce and concentrated by humic acids and bacteria present in the fluvial system and ultimately remobilized into the forms present today. The uranium is thus envisioned as forming either essentially on the surface as the sediments were being deposited or at very shallow depth

  10. A uranium-bearing coalificated wood remain from the Upper Carboniferous uranium ore deposit in the Baden-Baden region of the Black Forest

    International Nuclear Information System (INIS)

    Kirchheimer, F.

    1981-01-01

    From the 1973 discovered Upper Carboniferous uranium ore sandstone deposit in the Baden-Baden region (Black Forest) a uranium-bearing coalificated wood remain derived, probably the relic of a Cordaites-trunk. The chemical determinated whole uranium content of this amounts about to 40 wght.-%. Pitchblende of the collomorphic type is embedded in the vitrinite of the fossil and imitates the nearly destroyed former wood-structure. The aggregates of this mineral, surrounded by zones of contact, consist of at least two modifications of different reflectance and hardness. Radiometric analyses reveale a different disturbed radioactive equilibrium, which indicated partly loss and re-enrichment of the uranium-content in recent time. A part of the fossil is completely mineralized by pitchblende of high reflectance and associated galena. For this paragenesis the radiometric investigations proved an approached equilibrium of radioactive substances. Therefore it is to be estimated, that the pitchblende is not alterated substantially, in contrast to the embeddings in the vitrinite, rich in little reflecting and soft nasturanium. The inhomogenic mineralization of the highly coalificated fossil, also to recognise microscopically, is set in relation to the controverse genetic interpretation of the deposit. Final remarks are concerned to other uranium-enriched fossils, especially remains of bones of different origin and age. (orig.) [de

  11. Inhalation of uranium ores

    International Nuclear Information System (INIS)

    Stuart, B.O.; Jackson, P.O.

    1975-01-01

    In previous studies the biological dispositions of individual long-lived alpha members of the uranium chain ( 238 U, 234 U and 230 Th) were determined during and following repeated inhalation exposures of rats to pitchblende (26 percent U 3 O 8 ) ore. Although finely dispersed ore in secular equilibrium was inhaled, 230 Th/ 234 U radioactivity ratios in the lungs rose from 1.0 to 2.5 during 8 weeks of exposures and increased to 9.2 by four months after cessation of exposures. Marked non-equilibrium levels were also found in the tracheobronchial lymph nodes, kidneys, liver, and femur. Daily exposures of beagle dogs to high levels of this ore for 8 days resulted in lung 230 Th/ 234 U ratios of >2.0. Daily exposures of dogs to lower levels (0.1 mg/1) for 6 months, with sacrifice 15 months later, resulted in lung and thoracic lymph node 230 Th/ 234 U ratios ranging from 3.6 to 9 and nearly 7, respectively. The lungs of hamsters exposed to carnotite (4 percent U 3 O 8 ) ore in current lifespan studies show 230 Th/ 234 U ratios as high as 2.0 during daily inhalation of this ore in secular equilibrium. Beagle dogs sacrificed after several years of daily inhalations of the same carnotite ore plus radon daughters also showed marked non-equilibrium ratios of 230 Th/ 234 U, ranging from 5.6 to 7.4 in lungs and 6.2 to 9.1 in thoracic lymph nodes. This pattern of higher retention of 230 Th than 234 U in lungs, thoracic lymph nodes, and other tissues is thus consistent for two types of uranium ore among several species and suggests a reevaluation of maximum permissible air concentrations of ore, currently based only on uranium content

  12. Biomineral processing of high apatite containing low-grade indian uranium ore

    International Nuclear Information System (INIS)

    Abhilash; Mehta, K.D.; Pandey, B.D.; Ray, L.; Tamrakar, P.K.

    2010-01-01

    Microbial species isolated from source mine water, primarily an enriched culture of Acidithiobacillus ferrooxidans was employed for bio-leaching of uranium from a low-grade apatite rich uranium ore of Narwapahar Mines, India while varying pH, pulp density (PD), particle size, etc. The ore (0.047% U_3O_8), though of Singhbhum area (richest deposit of uranium ores in India), due to presence of some refractory minerals and high apatite (5%) causes a maximum 78% recovery through conventional processing. Bioleaching experiments were carried out by varying pH at 35"oC using 20%(w/v) PD and <76μm size particles resulting in 83.5% and 78% uranium bio-recovery at 1.7 and 2.0 pH in 40 days as against maximum recovery of 46% and 41% metal in control experiments respectively. Finer size (<45μm) ore fractions exhibited higher uranium dissolution (96%) in 40 days at 10% (w/v) pulp density (PD), 1.7 pH and 35"oC. On increasing the pulp density from 10% to 20% under the same conditions, the biorecovery of uranium fell down from 96% to 82%. The higher uranium dissolution during bioleaching at 1.7 pH with the fine size particles (<45μm) can be correlated with increase in redox potential from 598 mV to 708 mV and the corresponding variation of Fe(III) ion concentration in 40 days. (author)

  13. Biomineral processing of high apatite containing low-grade indian uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash; Mehta, K.D.; Pandey, B.D., E-mail: biometnml@gmail.com [National Metallurgical Laboratory (CSIR), Jamshedpur (India); Ray, L. [Jadavpur Univ., FTBE Dept., Kolkata (India); Tamrakar, P.K. [Uranium Corp. of India Limited, CR& D Dept., Jaduguda (India)

    2010-07-01

    Microbial species isolated from source mine water, primarily an enriched culture of Acidithiobacillus ferrooxidans was employed for bio-leaching of uranium from a low-grade apatite rich uranium ore of Narwapahar Mines, India while varying pH, pulp density (PD), particle size, etc. The ore (0.047% U{sub 3}O{sub 8}), though of Singhbhum area (richest deposit of uranium ores in India), due to presence of some refractory minerals and high apatite (5%) causes a maximum 78% recovery through conventional processing. Bioleaching experiments were carried out by varying pH at 35{sup o}C using 20%(w/v) PD and <76μm size particles resulting in 83.5% and 78% uranium bio-recovery at 1.7 and 2.0 pH in 40 days as against maximum recovery of 46% and 41% metal in control experiments respectively. Finer size (<45μm) ore fractions exhibited higher uranium dissolution (96%) in 40 days at 10% (w/v) pulp density (PD), 1.7 pH and 35{sup o}C. On increasing the pulp density from 10% to 20% under the same conditions, the biorecovery of uranium fell down from 96% to 82%. The higher uranium dissolution during bioleaching at 1.7 pH with the fine size particles (<45μm) can be correlated with increase in redox potential from 598 mV to 708 mV and the corresponding variation of Fe(III) ion concentration in 40 days. (author)

  14. Status report from USSR [Processing of Low-Grade Uranium Ores]; Doklad o sostoyanii voprosa v SSSR

    Energy Technology Data Exchange (ETDEWEB)

    Zefirov, A P [Gosudarstvennyj Komitet Po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moskva, Union of Soviet Socialist Republics (Russian Federation)

    1967-06-15

    The uranium industry for processing poor uranium ores in the USSR was established in recent years. As a result of research work institutions and enterprises in the development of this industry was provided by rapid technological advances that allowed dramatically increased productivity, reduced consumption of reagents, simplified process flow diagrams, and reduced production costs. At present, the basis for uranium industry, including and poor uranium ore deposits in the USSR are with different content valuable components (uranium, phosphorus, molybdenum, rare earth elements, thorium, iron, .. .)

  15. Uranium-series disequilibria as a means to study recent migration of uranium in a sandstone-hosted uranium deposit, NW China

    International Nuclear Information System (INIS)

    Min Maozhong; Peng Xinjian; Wang Jinping; Osmond, J.K.

    2005-01-01

    Uranium concentration and alpha specific activities of uranium decay series nuclides 234 U, 238 U, 230 Th, 232 Th and 226 Ra were measured for 16 oxidized host sandstone samples, 36 oxic-anoxic (mineralized) sandstone samples and three unaltered primary sandstone samples collected from the Shihongtan deposit. The results show that most of the ores and host sandstones have close to secular equilibrium alpha activity ratios for 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 230 Th, indicating that intensive groundwater-rock/ore interaction and uranium migration have not taken place in the deposit during the last 1.0 Ma. However, some of the old uranium ore bodies have locally undergone leaching in the oxidizing environment during the past 300 ka to 1.0 Ma or to the present, and a number of new U ore bodies have grown in the oxic-anoxic transition (mineralized) subzone during the past 1.0 Ma. Locally, uranium leaching has taken place during the past 300 ka to 1.0 Ma, and perhaps is still going on now in some sandstones of the oxidizing subzone. However, uranium accumulation has locally occurred in some sandstones of the oxidizing environment during the past 1 ka to 1.0 Ma, which may be attributed to adsorption of U(VI) by clays contained in oxidized sandstones. A recent accumulation of uranium has locally taken place within the unaltered sandstones of the primary subzone close to the oxic-anoxic transition environment during the past 300 ka to 1.0 Ma. Results from the present study also indicate that uranium-series disequilibrium is an important tool to trace recent migration of uranium occurring in sandstone-hosted U deposits during the past 1.0 Ma and to distinguish the oxidation-reduction boundary

  16. PHASE ANALYSES OF URANIUM BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    Ren, M.; Goodell, P.; Kelts, A.; Anthony, E.Y.; Fayek, M.; Fan, C.; Beshears, C.

    2005-01-01

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions

  17. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  18. Geochemical barriers formed during in-situ leaching in ore-bearing horizons of hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Solodov, E.N.

    1994-01-01

    The behaviour of major metallogenetic element and associated elements on the boundary of the leaching solution transiting to the unchanged natural water in a layered uranium deposit of infiltration origin is studied. Neutralization geochemical barrier and their relevant secondary barriers-degassing barrier and neutralization barrier are defined, and recent accumulation of uranium, rare earth elements and a series of other elements at these barriers are in progress. The action of underground microorganism during this process is pointed out; the neutralization capacity of the ore-hosting terrigenous rocks is determined and the dimension of the matter removal, migration and reprecipitation in the studied system is evaluated. The principal conclusion is that the studied geological media have sufficient protective nature to resist direct and strong leaching action of the solution

  19. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  20. Surficial uranium deposits: summary and conclusions

    International Nuclear Information System (INIS)

    Otton, J.K.

    1984-01-01

    Uranium occurs in a variety of surficial environments in calcretes, gypcretes, silcretes, dolocretes and in organic sediments. Groundwater moving on low gradients generates these formations and, under favourable circumstances, uranium deposits. A variety of geomorphic settings can be involved. Most surficial deposits are formed in desert, temperate wetland, tropical, or transitional environments. The largest deposits known are in sedimentary environments in arid lands. The deposits form largely by the interaction of ground or surface waters on the geomorphic surface in favourable geologic terrains and climates. The deposits are commonly in the condition of being formed or reconstituted, or being destroyed. Carnotite is common in desert deposits while in wetland deposits no uranium minerals may be seen. Radioactive disequilibrium is common, particularly in wetland deposits. Granites and related rocks are major source rocks and most large deposits are in regions with enriched uranium contents, i.e. significantly greater than 5 ppm uranium. Uranium dissolution and transport is usually under oxidizing conditions. Transport in desert conditions is usually as a bicarbonate. A variety of fixation mechanisms operate to extract the uranium and form the deposits. Physical barriers to groundwater flow may initiate ore deposition. Mining costs are likely to be low because of the near surface occurrence, but there may be processing difficulties as clay may be present and the saline or carbonate content may be high. (author)

  1. Application of anatectic mineralization to prospecting in-situ leachable sandstone type uranium ore in South Songliao Basin

    International Nuclear Information System (INIS)

    Zhao Zhonghua

    2001-01-01

    The deep ore-forming origin is a new theory for prospecting in-situ leachable sandstone type uranium. Tectonics, lithologic and geochemistry are basic forecasting criteria. Previous unconsolidated sand, source area and geochemical barrier are three essential conditions for forming uranium deposit. Metallogenic environment and prospective region are found. Tertiary system is prospective layer for prospecting in-situ leachable sandstone type uranium ore in south Songliao Basin

  2. Sandstone-type uranium deposits. Summary and conclusions

    International Nuclear Information System (INIS)

    Finch, W.I.

    1985-01-01

    The similarity of most of the deposits described in this report is striking even though they occur in sandstone host rocks ranging in age from Carboniferous to Tertiary and on every continent outside the polar regions. Geologic environments of the uranium deposits consist of distinctive sets of tectonic and sedimentary-depositional systems, all of which have some common threads of favorable geologic processes. In this summary paper it is hoped that this report has sharpened an understanding of the deposit's ''home environment'' that will aid future exploration for these resource-important sandstone-type uranium ores

  3. Geological-economic analysis on the exploration of backup resources for depleted mines in Lujing uranium ore-field, central-southern China

    International Nuclear Information System (INIS)

    Li Deping; Wang Zhicheng; Fan Shaoyun

    2006-01-01

    With the geological-economic evaluation program for pithead heap-leaching mining uranium deposits developed by the authors and the data of column-leaching tests and the geological reserve, the geological-economic evaluation is made to the residual geological reserves of both Lujing and Huangfengling deposit, and the geological reserves of Yangjiaonao deposit of the depleted mines in Lujing uranium ore-field, central-southern China. The results of static analysis on these reserves show that the residual geological reserves of both Lujing and Huangfengling deposit belong to sub-profitable type, but the ones of Yangjiaonao deposit is profitable with 26.56% tax-before profit. 1 tU profitable type of ore from Yangjiaonao deposit can use 2.40-3.79 tU subprofitable type of ores from Lujing and Huangfengling deposit. In order to solving the problem on scarcity of backup resources of the depleted mines in Lujing uranium ore-field and using the existing sub-profitable type of geological reserves, it is suggested that the high grade of profitable type of deposits should be explored around the exhausting mines so that the production of the mines could be profitable by the pithead heap-leaching mining method with arrangement groups of both sub-profitable and profitable type of ores. (authors)

  4. Sandstone uranium deposits of Eurasia – from genetic concepts to forecasting and new discoveries

    International Nuclear Information System (INIS)

    Pechenkin, I.

    2014-01-01

    Along the Eurasian continent’s southern borders lie uranium ore provinces and regions controlling medium-sized and, on rare occasions, large sandstone deposits. Central French, Eastern Rhodope and other regions are known in the west. Large uranium ore provinces were discovered in the south of the Turan Plate and in the depressions of South Kazakhstan, viz. Central Kyzyl Kum, Syr Darya, Chu Sarysu. A common criterion has been established for all objects of the sandstone type, located in oil and gas, coal etc. sedimentary basins – the zone of interlayer or ground-interlayer oxidation, controlling uranium mineralization. In 2003 we were able to justify the concept that the formation of giant deposits in Chu Sarysu province was caused by the collision between the Indian Plate and the southern part of the Eurasian continent. Within the limits of Pacific ore belt there is a zonal distribution of ore deposits. Ordinary mineralization is drawn towards its eastern fringe: gold, tin, copper, tungsten etc. Volcanic and tectonic structures of central type of Mesozoic age are located further west, from the north to the south, that is large calderas – Streltsovskaya (Russia), Dornot (Mongolia), Sian Shan (China), which control large and unique endogene uranium deposits. In the far west, in the region of subsiding tectonic tensions, there are sandstone deposits of uranium in Transbaikalia, Mongolia and Yunnan, which are specially connected to young basalts. Infiltration deposits of Vitim region are adjacent to endogene deposits of Streltsovsky region in the southern-easterly direction, and to the east of the deposits of Yunnan at the same latitude lay the Sian Shan caldera with geothermal deposits of uranium and other metals. We combined them into the unified submeridional Baikal-Southern China uranium ore belt. After examining the southern extremities of the Eurasian continent, the region of the collision of the Indian Plate, a distinct similarity can be perceived between

  5. Contribution to the methods for estimating uranium deposits (1963)

    International Nuclear Information System (INIS)

    Carlier, A.

    1964-02-01

    Having defined a deposit of economic value according to the marginal theory, the author discriminates several categories of ore reserves according to the degree of knowledge of the deposit and according to the mining stage where the ore is considered. He dismisses the conventional French classification of 'on sight', 'probable' and 'possible' ore categories and suggests more suitable ones. The 'sensu stricto', ore reserves are those for which the random error can be calculated. The notion of the natural contrast of grades in an ore deposit (absolute dispersion coefficient α) is introduced in relation to this topic. The author considers three types of mining exploration. The first is the random exploration so often met; the second is the logical exploration based on a systematic location of underground works, bore-holes, etc. The third, and hardest to achieve, is the one which minimizes exploration costs for a given level of accuracy. Part of the publication deals with sampling errors such as those resulting from the quartering of a heap of ore (theory of Pierre GY) or those resulting from the use of radiometric measurement of grade. Another part deals with the extension error (entailed by the assimilation of samples to the deposit they are issued from) and gives the essential formulae in order to appraise the random error (Geo-statistics of Matheron). As to the estimator itself the work shows how the disharmony between the ore sample and the associated influence zone can be solved by the way of 'kriging'. The thesis gives numerous examples of the various numerical parameters, characteristics of an uranium deposit (absolute dispersion coefficient) or of an uranium ore (liberation parameter) as well as a few examples of linear correlations between gamma radioactivity and uranium grade. Three complete examples of reserve evaluation are given. The end of the thesis deals with the notion of ruin risk which has to be taken in some cases. A detailed alphabetical index is

  6. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  7. Geological investigation of uranium deposits at southwest of Chungju area

    International Nuclear Information System (INIS)

    Kim, J.H.; Park, J.W.; Kim, J.T.; Kim, D.E.; Im, H.C.

    1982-01-01

    A geologic investigation has been carried out at the southwest of Chungju area for the exploration of uranium ore deposit. A trace element geochemistry was supplemented to study the genesis of uranium ore deposit. The uraniferous black slate is interbedded with meta-argillaceous rock formation correlative to the Munjuri formation of Ogcheon group. The uranium rich carbonaceous slate is distributed discontinuously in three places. The discontinuity of the slate is probably due to the deformation of Daebo Orogeny. The grade of the ore bodies is 396-495 ppm U 3 O 8 , Vanadium 1.47-0.48%V 2 O 5 and fixed carbon 18.16-8.54%. The width of outcrop is 10.3m-2.5m. The semiquantitative spectrographic analysis of 4 samples in the above ore zone revealed that the average of minor elements contents are Ba 3025, Be 1.5, Cd 131, Cu53, Co 12, Cr 155, Ga<10, Mo 83, Pb 66, Ni 183, Sr 22, and Zr 196 in ppm. Analysed the 33 major and trace elements in 20 samples including above are samples from drill-cores and trenched rocks from Ogcheon black slate indicates that the uranium has positive correlation with Fe(0.47), Mo (0.45) and Ba(0.38). In the uranium deposits of Ogcheon black slate, we can accept the theory of syngenitic origin where uranium occurs with unusually high content of minor elements in black slate. The elements were introduced at the same time with the mud deposition without significant later addition. Mechanism of emplacement might be fixation of living organisms and absorption of decaying organic matter from sea water. An intensive study is necessary for futher understanding of redistribution and recrystallization of uranium by metamorphism. (Author)

  8. Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico

    Science.gov (United States)

    Granger, H.C.; Santos, E.S.

    1982-01-01

    The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and

  9. An oxygen isotope study on hydrothermal sources of granite-type uranium deposits in South China

    International Nuclear Information System (INIS)

    Yongfei, Z.

    1987-01-01

    The usefulness of oxygen isotope measurements in solving problems of hydrothermal sources has been demonstrated in a number of detailed studies of the granite type uranium deposits in this paper. Remarkly the granite-type uranium deposits in Southr China have been shown to have formed from magmatic water, meteoric water, of mixtures of both the above, and origin of waters in the ore-forming fluid may be different for differing uranium deposits ore differing stages of the mineralization. Consequences obtained in this study for typical uranium deposits of different age and geologic sitting agree well with that obtained by other geologic-geochemical investigation. Furthermore, not only meteoric water is of importance to origin and evolution of the ore-forming fluid, but also mixing of waters from different sources is considered to be one of the most characteristic features of many hydrothermal uranium deposits related to granitoids or volcanics. (C.D.G.) [pt

  10. Discussion on spatial emplacement of exogenic-epigenetic infiltration-type uranium deposit

    International Nuclear Information System (INIS)

    Zhao Fengmin

    2005-01-01

    Exogenic-epigenetic infiltration-type uranium deposit is a kind of deposit with large resources, low exploitation cost, and less environmental pollution being the recent important prospecting target in China. Prospecting practice for uranium during recent decade indicates that the metallogenic model and prospecting-evaluation criteria obtained from sandstone-hosted uranium deposits in Middle Asia are not applicable to the case in China. China is a country which has been subject to intense neotectonism, and Meso-Cenozoic basins in China have experienced various tectonic reworking. According to the spatial relation to orogenic belts sedimentary basins may be divided into: basins in orogenic belt; basins near orogenic belt and basins with weak tectonic activation far away from orogenic belt. Then, based on the structural features, basins may be further divided into corresponding subtypes. The author discusses the favourability of each type basin for the formation of exogenic-epigenetic uranium mineralization, as well as the paleo-climatic conditions for uranium ore-formation. Then, the author proposes that, for small intracontinental basins recharged by natural groundwater, the arid climatic period is not totally a favourable factor for uranium ore-formation, it even could be an unfavourable factor. In contrast, basins located in humid climatic region may be advantageous to uranium ore-formation. For improving the prospecting efficiency, a metallogenic model for exogenic-epigenetic infiltration uranium deposits and corresponding prospecting-evaluation criteria suitable for geologic situation of China have to be established as soon as possible. (authors)

  11. Depending on scientific and technological progress to prospect for superlarge uranium deposits. Across-century target for uranium resources exploration work in China

    International Nuclear Information System (INIS)

    Shen Feng

    1995-01-01

    After over 30 years' development, uranium resources exploration work in China has resulted in the discovery of more than 10 economic types of uranium deposits in 23 provinces (regions) of the whole country and large quantities of uranium reserves have been submitted which guarantee the development of nuclear industry in China. However, characteristics such as smaller size of deposits and ore bodies, and lower ore grade of discovered China's uranium deposits have brought about a series of problems on how to economically exploit and utilize these uranium resources. To prospect for superlarge uranium deposits is a guarantee of making uranium resources essentially meet the demand for the long-term development of nuclear industry in China, and is an important way of improving economic benefits in mining China's uranium resources. It is an important mark for uranium geological exploration work to go up a new step as well. China exhibits the geological environment in which various types of superlarge uranium deposits can be formed. Having the financial support from the state to uranium resources exploration work, having professional uranium exploration teams well-experienced in ore prospecting, having modernized uranium exploration techniques and equipment and also having foreign experience in prospecting for superlarge uranium deposits as reference, it is entirely possible to find out superlarge uranium deposits in China at the end of this century and at the beginning of next century. In order to realize the objective, the most important prerequisite is that research work on metallogenetic geological theory and exploration techniques and prospecting methodology for superlarge uranium deposits must be strengthened, and technical quality of the geological teams must be improved. Within this century, prospect targets should be selected and located accurately to carry out the emphatic breakthrough in exploration strategy

  12. The peculiarities of evolution of the hypergene zone at the uranium-phosphate deposit

    International Nuclear Information System (INIS)

    Glagolev, N.A.

    1979-01-01

    The study of peculiarities of hypergene zone evolution at the uranium-phosphate deposit has been carried out to clarify possibilities of qualitative and quantitative estimation of primary ores as to their outputs at search works. Bed-like deposit of phosphorites occurs together with ore-containing limestones and at considerable length it comes out at the day surface. Hypergenously unchanged phosphorites present grey microcrystallic carbonate-apatite ores, comprising fluoroapatite (60-80%) and calcite. It is shown, that the greater part of uranium in unchanged ores is bound with U- and Th containing fluoroapatite, U amounts being low

  13. Reviews on the metallogenic and geological features of sandstone-type uranium deposits in Japan

    International Nuclear Information System (INIS)

    Pei Chengkai; Huang Xianfang; Zhang Baoju

    2006-01-01

    Regional geologic settings of sandstone-type uranium deposits in Japan are firstly analyzed. The regional tectonic evolution characteristics of 'Green tuff region' and 'Non green tuff region' and their relationship with uranium mineralization are elaborated in depth. Based on those mentioned above, the uranium sources of sandstone-type uranium deposits in Japan are discussed deeply and the most favorable uranium sources are considered to come from the basement and the surrounding granites. Their intrusive epochs range from Later Cretaceous to Palaeogene (about 60 to 70 Ma ago). The characteristics of ore-bearing host rocks, matter compositions of the deposits, ore formation enrichment factors, the hydrogeologic conditions and so on are described by taking Ningyo-Toge and Tono deposits as examples. Finally, the prospecting measures for the palaeo-channel sandstone-type uranium deposits (basal type) are reviewed. (authors)

  14. Difference of ore-bearing and non-ore-bearing pegmatite in the Guangshigou area and its research significance

    International Nuclear Information System (INIS)

    Zuo Wenqian; Zhang Zhanshi; Sha Yazhou; Rao Chaojun

    2011-01-01

    Guangshigou uranium deposit is one of the typical granite-pegmatite uranium deposits in China, the ore-body are located in the density zone of the outside contact zone of granite pluton. To distinguish the ore-bearing and Non-ore-bearing pegmatite is one of the most practices and have great significance for the effect of mineral exploration. Based on the field investigation and former research results, contrast research on the characteristics of the pegmatite on petrology, geophysical, geochemistry and stable isotopes have been carried out. It is pointed out that the ore-bearing pegmatite differ from the non-ore-bearing one from macro-and-micro-view in Guangshigou Uranium deposits, the main characteristics are summarized; the macro-and-micro signs are established, the genetic difference between the ore-bearing and non-ore-bearing pegmatite are discussed primarily. The achievements would be helpful for prospecting and researching of this type uranium deposits in China. (authors)

  15. Simulation of weathering processes of uranium-nickel ore from Key Lake, Sask., Canada - a contribution of uranium mineralogy to environmental protection

    International Nuclear Information System (INIS)

    Pechmann, E. von; Voultsidis, V.

    1979-01-01

    The impact of frost and rain on stockpiles of uranium-nickel or from the Key Lake deposits has been investigated in simulation tests. Frost splitting causes strong disaggregation of the rock and fragmentation of the mineral grains. The ore is much less affected in the sandstone than in the mylonitized basement. During the tests, the uranium minerals have nearly not been weathered. The nickel minerals are quickly transformed into water soluble secondary minerals (sulphates and arsenate). The weathering effects on stored ore depend on the degree of ore comminution and its exposition to the atmospheric elements. (orig.) [de

  16. Uranium ore processing minimizing reagent losses

    International Nuclear Information System (INIS)

    Shaogiang, Chen; Moret, J.; Lyaudet, G.

    1989-01-01

    The uranium ore is treated by sodium carbonates and the solution is divided in two parts: a production solution which is decarbonated by an acid before uranium precipitation with sodium hydroxide and a recycling solution directly treated by sodium hydroxide for precipitation of about 85% of uranium and total transformation of sodium bicarbonate into sodium carbonate, the quantity of sodium hydroxide used on the recycling solution brings sodium ions required for attack of the ore [fr

  17. Mineralogical variations across Mariano Lake roll-type uranium deposits, McKinley County

    International Nuclear Information System (INIS)

    Sachdev, S.C.

    1980-01-01

    Mineralogy of core samples from the Mariano orebody was determined. The data obtained were used to develop exploration tools for roll-type uranium deposits. Preliminary interpretations of the physical and chemical conditions of ore deposition were made on the basis of paragenetic relationships. The host sandstones occur between the bentonitic rock units and contain scattered intercalations of detrital montmorillonitic material in the form of clay galls, stringers, and lenses derived from these bentonites. Authigenic clay minerals identified in the host rocks include cellular montmorillonite, platy chlorite, and pseudohexagonal books of kaolinite. The cellular montmorillonite is concentrated in the oxidized zone and appears to have formed prior to ore deposition. Authigenic chlorite is most abundant in the ore zone and has formed at the expense of cellular montmorillonite; its formation is interpreted as being related to the ore-forming processes. Kaolinite in sandstones is the last clay mineral to form and is enriched in the reduced zone. Calcite, considered typical of such deposits, is not found in this orebody. Iron-titanium oxides and their alteration products are the most abundant heavy-mineral species in the host rocks. In addition to anatase and rutile, the alteration products include hematite in the oxidized zone and pyrite in the ore and reduced zones. Carbonaceous material introudced later into the potential ore zone appears to have been responsible for the decomposition of Fe-Ti oxides and the formation of pyrite. The paragenetic relationship indicates oxidation of pyrite by mineralizing solutions, resulting in reduction and subsequent deposition of uranium. The positive correlation between organic carbon and uranium suggests that carbonaceous material also acted as a reductant for uranium

  18. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    International Nuclear Information System (INIS)

    Thamm, J.K.; Kovschak, A.A. Jr.; Adams, S.S.

    1981-01-01

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses

  19. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The hydrogeochemical characteristics of the certain uranium deposit and their relationship with uranium mineralization

    International Nuclear Information System (INIS)

    Li Huanguang

    2010-01-01

    On the basis of previous work, this paper studies characteristics of the stratum,lithology,structure, ore bodies, ore and wall rocks and the relations between hydrochemical characteristics and uranium mineraliztion are stressed and anaysed.The environmental index of hydrogeochemisty is closely related with the uranium form, migration,and precipitation. According to negative ion, the ground water is classified into HCO3-,SO42-, HCO3--SO42-and HCO3-Cl-. For deposit genesis, uranium source comes from two parts; there are five mineralizations such as leaching, adsorption, hydrogeochemistry, palaeo-climatology and geothermal mineralization. Hydrogeochemical mineralization is the key process.. (authors)

  1. Discussion on geological characteristics and types of uranium deposit of Mesozoic-cenozoic basin in Guangdong

    International Nuclear Information System (INIS)

    Wang Kesheng; Deng Shihua

    1992-01-01

    Systematic summary is briefly made of the distribution, classification, formation, regional geological setting, uranium deposit type, ore-controlling geological conditions of the Mesozoic-Cenozoic basin in Guangdong area, and on this basis it is proposed that there exist different ore-controlling conditions in different types of basin and different types of deposit can be formed in them, thus indicating the direction for exploration of the basin type uranium deposit from now on and expanding the prospect of ore-finding in the basins in Guangdong area

  2. Influence of acid/ore relation in the uranium-silicate ore treatment

    International Nuclear Information System (INIS)

    Antaki, C.; Cipriani, M.; Bruno, J.B.

    1985-01-01

    The estimation of acid addition effect (Kg of H 2 SO 4 /t of ore) in uranium extraction from an uranium-silicate ore, with a view to the control of silica concentration in leach under 0,6 g/l is presented. The analysis was effected based on bench-scale tests, with different quantities of sulfuric acid addition. (Author) [pt

  3. Uranium ore mill at Dolni Rozinka: 40 years of operation

    International Nuclear Information System (INIS)

    Toman, F.; Jezova, V.

    2007-01-01

    Uranium ore mined in the Rozna deposit is treated at a chemical treatment plant (a mill) situated in the close vicinity of the Rozna mine. In the mill, uranium is extracted from the crushed and ground-up ore by alkaline leaching. Uranium is then recovered from the solution by sorption on ion exchange resin; the next steps are precipitation and drying. Alkaline leaching is applied at the atmospheric pressure and the temperature of 80 deg C; the recovery factor is moving around 93%. The final product of the milling is uranium concentrate, ammonium diuranate (NH 4 ) 2 U 2 O 7 ), a so-called 'yellow cake' which is treated into a fuel for nuclear power plants in conversion facilities abroad. The milling is carried on under the condition of the closed cycle of technology water. Due to the positive annual precipitation balance, the over balance of technology water in tailings pond has to be purified before discharging into a river. Evaporation and membrane processes (electrodialysis and reverse osmosis) are used to purify the water. The mill at Dolni Rozinka has been in operation since 1968. It has processed 13.2 million tons of uranium ore which is about 14000 tons of uranium and purified more than 6 million m 3 of the over balanced technology water during 40 years. From the organizational point of view, the mine and the chemical treatment plant form the branch plant GEAM, which is a part of the state enterprise DIAMO. (author)

  4. Uranium distribution in mined deposits and in the earth's crust. Final report

    International Nuclear Information System (INIS)

    Deffeyes, K.; MacGregor, I.

    1978-08-01

    Examination of both the global distribution of uranium in various geological units and the distribution of uranium ore grades mined in the U.S. shows that both distributions can be described by a single lognormal curve. The slope of that distribution indicates approximately a 300-fold increase in the amount of uranium contained for each 10-fold decrease in ore grade. Dividing up the U.S. production by depth zones, by geologic setting, by mineralogical types, by geographic regions, and by deposit thicknesses shows substantially the same 300-fold increase in contained uranium for each 10-fold decrease in ore grade. Lieberman's (1976) analysis of uranium discoveries as an exponentially declining function of the feet of borehole drilled was extended. The analysis, in current dollars and also in constant-value dollars, using exploration expenditures and acreage leases as well as drilling effort, shows that a wide range of estimates results. The conclusion suggests that the total uranium available in the 300 to 800 part-per-million range will expand through byproduct and coproduct mining of uranium, through increased exploitation of low-grade ores in known areas, and through the exploration of terrains which historically never produced high-grade ores. These sources of uranium (coupled with efficient reactors like the heavy-water reactors) could postpone the economic need for mining 100 part-per-million deposits, and the need for the breeder reactor and fuel reprocessing, well into the next century

  5. Study on characteristics of U-Ra equilibrium coefficient at Qianjiadian uranium deposit

    International Nuclear Information System (INIS)

    Zhang Mingyu; Tian Shifeng; Zhang Zegui; Xia Yuliang; Liu Hanbin

    2004-01-01

    Calculation methods of U-Ra equilibrium coefficient for in-situ leachable sandstone-type uranium deposits in general, and for Qianjiadian sandstone-type uranium deposit in particular are proposed and discussed in this paper. Variation features of U-Ra equilibrium coefficient at Qianjiadian sandstone-type uranium deposit are analyzed as well. These results provide a scientific basis for the correction of radioactivity logging data, the delineation of uranium ore bodies and the calculation of uranium resources. (authors)

  6. Uranium Processing Research in Australia [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J R [Australian Atomic Energy Commission, Coogee, N.S.W. (Australia)

    1967-06-15

    Uranium processing research in Australia has included studies of flotation, magnetic separation, gravity separation, heavy medium separation, atmospheric leaching, multi-stage leaching, alkali leaching, solar heating of leach pulps, jigged-bed resin-in-pulp and solvent-in-pulp extraction. Brief details of the results obtained are given. In general, it can be said that gravity, magnetic and flotation methods are of limited usefulness in the treatment of Australian uranium ores. Alkali leaching seldom gives satisfactory recoveries and multi-stage leaching is expensive. Jigged-bed resin-in-pulp and packed tower solvent-in-pulp extraction systems both show promise, but plant-scale development work is required. Bacterial leaching may be useful in the case of certain low-grade ores. The main difficulties to be overcome, either singly or in combination, in the case of Australian uranium ores not currently considered economically exploitable, are the extremely finely divided state of the uranium mineral, the refractory nature of the uranium mineral and adverse effects due to the gangue minerals present. With respect to known low-grade ores, it would be possible in only a few cases to achieve satisfactory recovery of uranium at reasonable cost by standard treatment methods. (author)

  7. Structural and genetic characteristics of uranium phosphates metasomatic deposits in limestones

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, K G; Pigul' skij, V I; Prozorov, V G

    1985-01-01

    Voluminous literature on structural and genetic peculiarities of phosphorus-uranium deposits in Ordovician volcanogenic-sedimentary masses, is analyzed to clarify the reasons for their formation. On the basis of geologo-structural and mineralogo-geochemical research, it has been established that phosphorus-uranium mineralization is of metasomatic, postgeosyncline, intraorogenetic character. Mineralization is related to filtration of uprising fluids along rupture untrafolding violations. Formation of metasomatic ore bodies took place under hypabyssal conditions in closed structures by means of endogenous replacement of both carbonate and alumosilicate rocks, including intrusive volcanic and sedimentary complexes. The scale of phosphorus-uranium deposits depends on tectonic peculiarities of ore-containing medium much more than on lithological ones.

  8. The relationship of carbonate-siliceous-pelitic uranium deposits with the plunging portions of down-faulted zones

    International Nuclear Information System (INIS)

    Liu Guihua; Liu Shouzhi; Zhou Huawen.

    1985-01-01

    Five uranium deposits of carbonate-siliceous-pelitic type occurred in different geological setting are studied. The geological data suggest that this type of uranium deposits is mostly located in the plunging portions of down-faulted zones. The cause of this kind of occurrence is tentatively discussed. It is proposed that uraniferous strata are the uranium source in deposits. The infiltration under arid climatic conditions promoted the uranium concentration up to ore grade. The mesozoic-cenozoic era which is characterized by the arid climate was the main ore-forming period. The converging condition of ground water in the plunging portions of down-faulted zones was better. Therefore, the plunging portions of down-faulted zones were more favourable for uranium ore formation compared with that of the uplifting portions. The preservation is the most important ore-controlling factor under the neotectonic movement and the plunging portions are the most favourable in this sence. The recognition criteria for the plunging portions of down-faulted zones which can be used in uranium exploration are proposed

  9. Mid-crustal uranium and rare metal mineralisation in the Mount Isa Inlier: a genetic model for formation of orogenic uranium deposits

    OpenAIRE

    McGloin, Matthew

    2017-01-01

    Uranium mineralisation near Mount Isa in northwest Queensland, Australia, is widespread yet poorly understood. Within this region in the Western Fold Belt, one hundred and ninety uranium-rare metal occurrences are known. This uranium mineralisation is similar to worldwide examples of albitite-hosted or sodium-metasomatic uranium deposits, which host albite-carbonate ore zones enriched in incompatible elements. Various metal sources and ore-forming processes have been sugg...

  10. Manual on laboratory testing for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    Laboratory testing of uranium ores is an essential step in the economic evaluation of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for interpreting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. 17 refs, 40 figs, 17 tabs

  11. Technologies for processing low-grade uranium ores and their relevance to the Indian situation

    International Nuclear Information System (INIS)

    Murthy, T.K.S.

    1991-01-01

    The technology for uranium ore processing is well established. Various estimates have shown that on a global basis uranium resources are adequate to meet the forseeable demand. The Indian resources are estimated to be about 60,000 t U. The grade of the ores is low and the individual deposits are small. The nature of the deposits, precarious resources position and relatively small capacity of the mines do not permit the country to take advantage of large throughputs in the mill to achieve substantial cost reduction. However by resorting to as high a scale of milling as the mines would permit, by reducing the loss of solubilised uranium after leaching and by undertaking production of nuclear grade final product at the mill site, significant though not a major, economic benefit can be derived. (author). 2 figs., 3 tabs

  12. Uranium deposit of Bauzot (Saone et Loire); Le gisement d'uranium de Bauzot (Saone et Loire)

    Energy Technology Data Exchange (ETDEWEB)

    Carrat, G H [Commissariat a l' Energie Atomique, Saone et Loire (France). Centre d' Etudes Nucleaires

    1956-07-01

    The best known of the uranium ore deposits of the Morvan (a province of France) is in the form of a bundle of quartz-fluor lodes with pitchblende and B.P.G.C. ore. The pitchblende seems to have been deposited at different time in respect to the formation of the gangue minerals, but generally it is ore of the first-formed. The main concentrations of ore are always in the vicinity of dykes of basic crystalline rocks. (author) [French] Bauzot, le plus connu des gisements d'uranium du Morvan est constitue d'un faisceau de filons quartzofluores, mineralise en pechblende et sulfures B.P.G.S. La pechblende semble s'etre mide en place a des periodes variables par rapport a la gangue mais en general elle constitue un des premiers mineraux deposes. Les principaux amas se situent toujours a proximite de filons de roches lamprophyriques. (auteur)

  13. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  14. The treatment of uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1979-01-01

    After having described the main steps in the treatment of uranium ores, the author describes the treament activities for these ores, as they are organized in France and in the African countries having made cooperation agreements with France in this field [fr

  15. Geology and ore deposits of the Section 23 mine, Ambrosia Lake District, New Mexico

    International Nuclear Information System (INIS)

    Granger, H.C.; Santos, E.S.

    1986-01-01

    The Section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation, in the Ambrosia Lake uranium district, during the early 1960s. Two distinct types of unoxidized ore occur in the mine. One type consists of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks. This type of ore occurs as peneconcordant layers which are typically elongate east-southeast, subparallel both to the sedimentary trends and to the regional strike of the host rock. A second type of ore is essentially devoid of organic matter and occurs in thick zones which conform to interfaces that separate oxidized from reduced parts of the host rocks. Genesis of the second type of ore is similar to that of roll-type deposits in Tertiary rocks of Wyoming and Texas. Organic matter in the primary ores was probably introduced into the host rock as humic acids that precipitated in the pores of the sandstone. This material is inferred first to have fixed uranium as urano-organic compounds but with further diagenesis, to have released some of the uranium to form coffinite. Vanadium, molybdenum, and selenium are associated with primary ore and may also have been fixed by the organic matter. The secondary or roll-type ores contain uranium mostly in the form of coffinite and only rarely as uraninite. They also contain vanadium and selenium but are virtually devoid of molybdenum

  16. Geological characteristics of granite type uranium deposits in middle of Inner Mongolia in comparison with south China

    International Nuclear Information System (INIS)

    Wang Gui

    2012-01-01

    Granites extensively distributed in middle of Inner Mongolia and South China, namely Caledonian, Hercynian and Yanshanian. Some of the intrusive are composed of granites which belong to different ages. Some of the uranium deposits were found inside the granite bodies or in sedimentary rocks and meta sedimentary rocks along the exocontact zone. Granite rock was comparing in middle Inner Mongolia and South China, including Uranium ore-forming geological conditions. ore-forming process and Ore-controlling factors. Think the Uranium ore-forming geological conditions is similar; ore-forming process is mainly for low-mid temperature hot liquid; Uranium ore bodies (uranium mineralization) was controlled by fracture. Explain granite type uranium mineralization potential is tremendous in middle of Inner Mongolia. (author)

  17. A study on hydrogen, oxygen, carbon, sulfur and lead isotopes in the rich uranium deposit No.201

    International Nuclear Information System (INIS)

    Li Yuexiang; Li Tiangang; Tong Hongshou; Feng Mingyue; Xu Zhan

    1995-01-01

    The uranium deposit No.201 located in Indonesian granite is one of the richest uranium deposits of granite type in China. An attempt is made to investigate the sources of ore-forming solutions and ore-forming materials, and to presume the environment of ore formation in the light of the study on composition of stable isotopes such as hydrogen, oxygen, carbon, sulfur and lead. The research results indicate that the ore-forming fluids in the deposit is mainly composed of meteoric water, the ore-forming materials principally came from pre-Yanshanian granite Massif and possibly, partly from the lower crust, and metallogenesis was undertaken under relatively stable physicochemical conditions

  18. A study on hydrogen, oxygen, carbon, sulfur and lead isotopes in the rich uranium deposit No.201

    Energy Technology Data Exchange (ETDEWEB)

    Yuexiang, Li; Tiangang, Li; Hongshou, Tong; Mingyue, Feng; Zhan, Xu [Beijing Research Inst. of Uranium Geology (China)

    1995-09-01

    The uranium deposit No.201 located in Indonesian granite is one of the richest uranium deposits of granite type in China. An attempt is made to investigate the sources of ore-forming solutions and ore-forming materials, and to presume the environment of ore formation in the light of the study on composition of stable isotopes such as hydrogen, oxygen, carbon, sulfur and lead. The research results indicate that the ore-forming fluids in the deposit is mainly composed of meteoric water, the ore-forming materials principally came from pre-Yanshanian granite Massif and possibly, partly from the lower crust, and metallogenesis was undertaken under relatively stable physicochemical conditions.

  19. Geostatistics applied to estimation of uranium bearing ore reserves

    International Nuclear Information System (INIS)

    Urbina Galan, L.I.

    1982-01-01

    A computer assisted method for assessing uranium-bearing ore deposit reserves is analyzed. Determinations of quality-thickness, namely quality by thickness calculations of mineralization, were obtained by means of a mathematical method known as the theory of rational variables for each drill-hole layer. Geostatistical results were derived based on a Fortrand computer program on a DEC 20/40 system. (author)

  20. Analysis on depositional system and discussion on ore-formation conditions of channel sandstone type uranium deposit. Taking Dongsheng area, Ordos meso-cenozoic basin as an example

    International Nuclear Information System (INIS)

    Wu Rengui; Yu Dagan; Zhu Minqiang; Zhou Wanpeng; Chen Anping

    2003-01-01

    Applying the theory of depositional system, the depositional facies and depositional systems of the Zhiluo Formation in Dongsheng area are systematically analysed, and the authors proposed that sediments of the Zhiluo Formation are of fluvial facies, and streams of the Zhiluo time experienced three evolution stages, namely: the early braided stream, the middle low sinuosity meandering stream and the late high sinuosity meandering stream. Based on features of paleoclimatic evolution, the Zhiluo Formation is divided into two lithological members. The lower lithological member consists of sediments of braided and low sinuosity meandering streams under humid-ward paleoclimatic conditions forming grey sedimentary formation. The upper member is composed of sediments of meandering streams under arid-hot paleoclimatic conditions representing complex-colored (mainly red) sedimentary formation. It is suggested that uranium mineralization in the study area is of channel sandstone type and controlled by braided channel sediments. Besides, the ore-formation conditions for channel sandstone type uranium deposit are preliminarily discussed

  1. Commercial test on uranium ore percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Cai Chunhui

    2002-01-01

    Commercial test on uranium ore percolation leaching was carried out according to ore characteristics of Fuzhou Uranium Mine and results from small test. Technological and economic indexes, such as leaching rate, acid consumption, leaching cycle, etc. are discussed. The general idea applying the test results to commercial production is presented, too

  2. Small-sized test of gravity separation and preliminary assessment of technology and economics in Guangshigou granite pegmatite type uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Zhifu, Sun; Mingyue, Feng; Jiashu, Rong; Ziyang, Xu [Beijing Research Inst. of Uranium Geology (China)

    1994-11-01

    The small-sized test of gravity separation in Guangshigou granite pegmatite type uranium deposit has found a new avenue for the industrial utilization of ores from such uranium deposit, especially those low grade ones. The test has proved that the gravity separation is superior to hydrometallurgy in the aspect of uranium recovery from ores of the granite pegmatite type uranium deposit, by-product recovery and protection against environmental pollution.

  3. Small-sized test of gravity separation and preliminary assessment of technology and economics in Guangshigou granite pegmatite type uranium deposit

    International Nuclear Information System (INIS)

    Sun Zhifu; Feng Mingyue; Rong Jiashu; Xu Ziyang

    1994-01-01

    The small-sized test of gravity separation in Guangshigou granite pegmatite type uranium deposit has found a new avenue for the industrial utilization of ores from such uranium deposit, especially those low grade ones. The test has proved that the gravity separation is superior to hydrometallurgy in the aspect of uranium recovery from ores of the granite pegmatite type uranium deposit, by-product recovery and protection against environmental pollution

  4. In situ production of 36CI in uranium ore: a hydrogeological assessment tool

    International Nuclear Information System (INIS)

    Cornett, R.J.; Cramer, J.; Andrews, H.R.; Chant, L.A.; Davies, W.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.; McKay, J.; Milton, G.M.; Milton, J.C.D.

    1996-01-01

    In situ neutron activation of 35 Cl within the rock and groundwater of geologic deposits that have elevated concentrations of uranium provides a hydrogeological tracer. We determine the production rate and mobility of 36 Cl in the 1.3-billion-year-old Cigar Lake uranium ore deposit. Accelerator mass spectrometry was used to map the Concentrations of 36 Cl in the ore and in the groundwater that were up to 100 times greater than those encountered in unmineralized portions of the host sandstone aquifer. The residence time of this mobile anion in groundwater within the mineralized zone ranged from 14 to 280 kyr. These residence times are consistent with the hydraulic and geochemical data, suggesting significant control of Cl - and groundwater movement by the clay-rich matrix of the mineralized zone. (author)

  5. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    International Nuclear Information System (INIS)

    Taki, Tomohiro

    2000-12-01

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  6. Prospects for increasing uranium resources in the Khiagda ore field (Russian Federation)

    International Nuclear Information System (INIS)

    Novgorodtcev, A.; Martynenko, V.; Gladyshev, A.

    2014-01-01

    The Khiagda ore field uranium deposits are located in the Republic of Buryatia, on the Amalat Plateau formed by the Neogene basalts. The position of the ore field is defined by a large tectonic structure having a north-eastern strike the Baisykhan Uplift. The slopes of the Baisykhan dividing uplift are incised by short (4 to 16 km) lateral tributaries of the Amalat and Atalanga paleorivers. The paleovalley network is filled with terrigenous-volcanogenic units of the Miocene Dzhilinda Formation (N1dz) buried under a thick cover of plateau basalts. The upheaval of the Baisykhan Uplift in the Neogene caused the penetration of the hydrodynamic flow of oxygenous uranium-bearing water into the sedimentary rock mass and formation of the subsoil/tabular oxidation zone (STOZ) on the boundary of which there formed uranium mineralisation.

  7. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  8. Industrial types of uranium deposits in Kazakhstan

    International Nuclear Information System (INIS)

    Fyodorov, G.V.

    2001-01-01

    The main industrial uranium deposits of Kazakhstan that can be commercially mined, are located in two ore regions and are represented by two types of the uranium deposits. The first region is named Chu-Syrdarya (75.6% of total resources of Kazakhstan) and is located in the South of Kazakhstan and this one is the largest in the world among the regions of the deposits connected with the bed oxidation zone, localized in the permeable sediments and amenable for in-situ leach mining. The second region is named Kokshetau (16% of total resources) and is located in the North of Kazakhstan at the north edge of Kazak Shield and is characterized by the vein-stockwork type of deposit. Other industrial deposits (8.4% of total resources) are grouped in two regions that have been determined and are retained as reserves for economical and ecological reasons. These are: Pricaspian region with the organic phosphate type of uranium deposits; and Ili-Balkhash region with mainly the coal-uranium type. There are 44 industrial uranium deposits with resources ranging from 1000 t to 100000 t U and more in each of them, in all, in Kazakhstan. Seven of them are completely mined now. Total uranium resources in Kazakhstan are determined at 1670000 t U. (author)

  9. Electron microscopy and microanalysis of uranium phases in primary ores, Eocene and Miocene of south Texas

    International Nuclear Information System (INIS)

    Liang, L.C.; Price, J.G.; Bobeck, P.

    1984-01-01

    Two contrasting types of roll-front uranium deposits occur in south Texas. In the barrier-bar sands of the Eocene Jackson Group, organic matter was essential to uranium reduction, whereas in the fluvial sands of the Miocene Oakville Formation, epigenetic pyrite was the reductant. In a sample of reduced Oakville ore, a uranium phase with grains ranging in diameter from < 1 to 20μm was recognized by SEM backscattered-electron imaging and wavelength-dispersive spectrometer (WDS) elemental-dot mapping. Quantitative microprobe analyses indicated that the phase is a uranium-calcium silicate-phosphate with molar Ca/P approximately equal to 1.0, U/P equal to 2.8 +/- 0.4 (n = 27), and U/Si approaching 1.0 in samples uncontaminated with quartz, feldspar, or clay minerals. Highest uranium content is 59%. Oakville ore is typically easy to leach by in-situ methods. Jackson ore contains 2 uranium phases. Sulfur-rich organic matter contains 4.1 +/- 1.6% uranium (n = 27). Although individual grains of a possible uranium mineral within the organic matter are too small to be resolved by electron imaging, a consistent molar U/Fe (0.5 +/- 0.1) suggests a uranium-iron oxide phase. Alternatively, uranium is adsorbed by or otherwise bound to the organic matter. The second phase is a uranium-calcium silicate-phosphate that differs from the Oakville ore. Molar Ca/P equals 0.8 +/- 0.2 (n = 13), and U/P equals 4.7 +/- 0.4. Small grain size (generally less than 1 μm) prevented analysis of samples uncontaminated with quartz and pyrite. The grain with highest uranium content (43%) has U/Si equal to 0.34. Jackson ore is less favorable for in-situ leaching than Oakville ore in part because the organic-associated uranium is difficult to extract

  10. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    Science.gov (United States)

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  11. Application research on remote sensing geology of sandstone-type uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Wang Huaiwu

    2002-01-01

    Based on remote sensing images and practical materials, and new ideas of laying particular emphasis on the research of regional geologic structures, and large in-situ leachable sandstone-type uranium deposits, applying the theory of plate tectonics, the author makes a comprehensive analysis on the uranium metallogenic environments, characteristics of regional geologic structures, the ore-controlling mechanism and factors, and uranium metallogeny. Authors propose that large interlayer oxidation zone sandstone-type uranium deposits are controlled by the combination of the stable block in Meso-Cenozoic compressive-shearing faulted subsided basin on the Yili multiphase massif in Tianshan paleo-island arc system, and the specific paleo-geographic environments and its' structural terrace'. The origin of hydrogenic sandstone-type uranium deposits is summarized by the authors as the 'mixing and neutralization' genetic model, and the 'eight ore-controlling factors merge into an organic whole' prospecting model. The above mentioned provides clear prospecting direction and new ideas for the forecasting direction for prospecting large sandstone-type uranium deposits

  12. The Crouzille (Haute-Vienne, France) uranium ores. Half a century of human and industrial adventure in Limousin

    International Nuclear Information System (INIS)

    Bavoux, B.; Guiollard, P.C.

    1998-01-01

    The 16 uranium deposits of the Crouzille (Haute-Vienne, France) have produced 25000 tons of uranium between 1950 and 1995. The uranium content of the ores ranges from 1 to 10/1000. The main production came from the underground exploitation up to 300 m of depth. This book presents the historical aspects of this industrial and human epopee and describes with details the underground exploitation of the ore, its processing and the rehabilitation of the site after the mines have closed down. (J.S.)

  13. Processing of low-grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1975-01-01

    Four types of low grade ores are studied. Low grade ores which must be extracted because they are enclosed in a normal grade deposit. Heap leaching is the processing method which is largely used. It allows to obtain solutions or preconcentrates which may be delivered at the nearest plant. Normal grade ores contained in a low amplitude deposit which can be processed using leaching as far as the operation does not need any large expensive equipment. Medium grade ores in medium amplitude deposits to which a simplified conventional process can be applied using fast heap leaching. Low grade ores in large deposits. The processing possibilities leading to use in place leaching are explained. The operating conditions of the method are studied (leaching agent, preparation of the ore deposit to obtain a good tightness with regard to the hydrological system and to have a good contact between ore and reagent) [fr

  14. Radiometric sorting of Rio Algom uranium ore

    International Nuclear Information System (INIS)

    Cristovici, M.A.

    1983-11-01

    An ore sample of about 0.2 percent uranium from Quirke Mine was subjected to radiometric sorting by Ore Sorters Limited. Approximately 60 percent of the sample weight fell within the sortable size range: -150 + 25 mm. Rejects of low uranium content ( 2 (2 counts/in 2 ) but only 7.6 percent of the ore, by weight, was discarded. At 0.8-0.9 counts/cm 2 (5-6 counts/in 2 ) a significant amount of rejects was removed (> 25 percent) but the uranium loss was unacceptably high (7.7 percent). Continuation of the testwork to improve the results is proposed by trying to extend the sortable size range and to reduce the amount of fines during crushing

  15. Processing of low grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1978-10-01

    Four types of low-grade ores are studied: (1) Low-grade ores that must be extracted because they are enclosed in a normal-grade deposit. Heap leaching is the processing method which is largely used. (2) Normal-grade ores contained in low-amplitude deposits. They can be processed using in-place leaching as far as the operation does not need any large and expensive equipment. (3) Medium-grade ores in medium-amplitude deposits. A simplified conventional process can be applied using fast heap leaching. (4) Low-grade ores in large deposits. The report explains processing possibilities leading in most cases to the use of in-place leaching. The operating conditions of this method are laid out, especially the selection of the leaching agents and the preparation of the ore deposit

  16. Geological characteristics of the main deposits in the world. Geological characteristics of French uranium deposits; their consequences on the different stages of valorisation. The uranium market

    International Nuclear Information System (INIS)

    Gangloff, A.; Lenoble, A.; Mabile, J.

    1958-07-01

    This document gathers three contributions. In the first one, after having recalled data regarding uranium ore and metal reserves in Canada, USA, South Africa and France, the author describes and discusses the geological and mineral characteristics of the main deposits in Canada (Great Bear Lake, Ace-Verna and other deposits of the Beaverlodge district, Gunnar, Blind River and Bancroft), in the USA (New Mexico, Colorado and Arizona), and in South Africa (similar structure as observed in Blind River). The second contribution addresses the French uranium deposits by firstly presenting, describing and classifying vein deposits (five types are distinguished) and sedimentary deposits in different geological formations, and by secondly discussing the impacts of these characteristics on exploration, surface exploration works, and mining works. The third contribution proposes an overview of the uranium market: comments of world productions (conventional extraction processes and technical peculiarities, costs and prices, reserves and production in Canada, USA, South Africa, France, Australia and others), presentation of the French program (location and production capacity of uranium production plants, locations of ore extraction), overview of the current situation of the world market (price levels, possible prices after 1962), discussion of the comparison between demands and supplies, overview of the French uranium policy

  17. Genetic-Structural relations in some types of spanish uranium deposits; Relaciones genetico-estructurales de algunos tipos de mienralizaciones uraniferas espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Alia Medina, M

    1962-07-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs.

  18. Tectonic regime and evolution of exogenous uranium ore formation in sedimentary rocks

    International Nuclear Information System (INIS)

    Danchev, V.I.; Shumlyanskij, V.A.; AN Ukrainskoj SSR, Kiev. Inst. Geokhimii i Fiziki Mineralov)

    1981-01-01

    Regularities of the formation and location of exogenous uranium deposits are studied depending on the tectonics regime. It is shown that the successive alternation of sedimentogenous deposits by diagenetic and, subsequently, catogene ones takes place from early Proterozoic to Cenozoic, i.e. exogenous ore formation in the history of the Earth proceeds from early to late stages of lithogenesis [ru

  19. Complex mineralization at large ore deposits in the Russian Far East

    Science.gov (United States)

    Schneider, A. A.; Malyshev, Yu. F.; Goroshko, M. V.; Romanovsky, N. P.

    2011-04-01

    Genetic and mineralogical features of large deposits with complex Sn, W, and Mo mineralization in the Sikhote-Alin and Amur-Khingan metallogenic provinces are considered, as well as those of raremetal, rare earth, and uranium deposits in the Aldan-Stanovoi province. The spatiotemporal, geological, and mineralogical attributes of large deposits are set forth, and their geodynamic settings are determined. These attributes are exemplified in the large Tigriny Sn-W greisen-type deposit. The variation of regional tectonic settings and their spatial superposition are the main factor controlling formation of large deposits. Such a variation gives rise to multiple reactivation of the ore-magmatic system and long-term, multistage formation of deposits. Pulsatory mineralogical zoning with telescoped mineral assemblages related to different stages results in the formation of complex ores. The highest-grade zones of mass discharge of hydrothermal solutions are formed at the deposits. The promising greisen-type mineralization with complex Sn-W-Mo ore is suggested to be an additional source of tungsten and molybdenum. The Tigriny, Pravourminsky, and Arsen'evsky deposits, as well as deposits of the Komsomol'sk and Khingan-Olonoi ore districts are examples. Large and superlarge U, Ta, Nb, Be, and REE deposits are localized in the southeastern Aldan-Stanovoi Shield. The Ulkan and Arbarastakh ore districts attract special attention. The confirmed prospects of new large deposits with Sn, W, Mo, Ta, Nb, Be, REE, and U mineralization in the south of the Russian Far East assure expediency of further geological exploration in this territory.

  20. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  1. Perspective and resource evaluation and metallogenic studies on sandstone-type uranium deposit in Qianjiadian depression of Songliao Basin

    Energy Technology Data Exchange (ETDEWEB)

    Yuliang, Xia; Jinrong, Lin; Ziying, Li; Shengxiang, Li; Hanbin, Liu; Zhiming, Wang; Guang, Fan [Beijing Research Inst. of Uranium Geology, Beijing (China); Jiwei, Zheng; Zhenji, Li; Mingyu, Zhang [Liaohe Oil Field, Panjin (China)

    2003-07-01

    The geotectonic evolution history of the southeastern part of Songliao Basin has been clearly described and it is pointed out that both of the provenance rocks and evolution features of the studied area are favorable to the formation of U-rich sandstone bodies, development of interlayered oxidation and providing uranium source for mineralization. Yaojia Formation in Qianjiadian depression has been found out to be the favorable target ore bed for looking for sandstone-type uranium deposit. On the basis of analysis of metallogenetic conditions, the perspective target area has been circled and a sandstone-type uranium deposit with a certain amounts of uranium tonnages has been discovered. The achievements and data have been gotten in the following aspects: constitution and features of ore-forming beds and sandstone bodies, uranium existence forms and mineralogical and chemical compositions of the ores, associated elements and their economic values for comprehensive mining. The study of metallogenetic features and mechanism of the uranium deposit suggested that pre-enrichment of uranium during the depositional-diagenetic stage provide a good basis for uranium mineralization, and hereafter interlayered oxidation as well as oil-gas reduction processes played a decisive role to uranium mineralization. U-Pb isotopic studies indicate that the ores have two isochron ages of 53{+-}3 Ma and 7.0{+-}0 Ma, corresponding to the periods of arid and semiarid paleo-climates which are favorable to interlayered oxidation development and uranium mineralization. It is concluded that the Qianjiadian sandstone-type uranium deposit is genetically related to interlayered oxidation and secondary reduction of oil-gas. The metallogenic model of Qianjiadian uranium deposit was set up. (authors)

  2. Perspective and resource evaluation and metallogenic studies on sandstone-type uranium deposit in Qianjiadian depression of Songliao Basin

    International Nuclear Information System (INIS)

    Xia Yuliang; Lin Jinrong; Li Ziying; Li Shengxiang; Liu Hanbin; Wang Zhiming; Fan Guang; Zheng Jiwei; Li Zhenji; Zhang Mingyu

    2003-01-01

    The geotectonic evolution history of the southeastern part of Songliao Basin has been clearly described and it is pointed out that both of the provenance rocks and evolution features of the studied area are favorable to the formation of U-rich sandstone bodies, development of interlayered oxidation and providing uranium source for mineralization. Yaojia Formation in Qianjiadian depression has been found out to be the favorable target ore bed for looking for sandstone-type uranium deposit. On the basis of analysis of metallogenetic conditions, the perspective target area has been circled and a sandstone-type uranium deposit with a certain amounts of uranium tonnages has been discovered. The achievements and data have been gotten in the following aspects: constitution and features of ore-forming beds and sandstone bodies, uranium existence forms and mineralogical and chemical compositions of the ores, associated elements and their economic values for comprehensive mining. The study of metallogenetic features and mechanism of the uranium deposit suggested that pre-enrichment of uranium during the depositional-diagenetic stage provide a good basis for uranium mineralization, and hereafter interlayered oxidation as well as oil-gas reduction processes played a decisive role to uranium mineralization. U-Pb isotopic studies indicate that the ores have two isochron ages of 53±3 Ma and 7.0±0 Ma, corresponding to the periods of arid and semiarid paleo-climates which are favorable to interlayered oxidation development and uranium mineralization. It is concluded that the Qianjiadian sandstone-type uranium deposit is genetically related to interlayered oxidation and secondary reduction of oil-gas. The metallogenic model of Qianjiadian uranium deposit was set up. (authors)

  3. Research within the coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Marjanovic, D.

    1975-02-01

    The bacteria of some Yugoslav uranium ore deposits were studied to determine the factors controlling the rate of bacteria growth and their activity. The determination of the bacteria was made on the basis of morphological, physiological and cultivating properties of isolated bacteria, bacterial culture activity was determined by the density of bacterial cells using the method of probable numbers and determination of iron oxidation effect. The temperature optimum for the bacterial culture isolated from uranium ore deposits is 28-30degC, while those of bacteria isolated from copper deposits is higher. T.ferrooxidans tolerate high concentrations of heavy metals, including iron and uranium which are toxic for the majority of other bacteria. The optimum air flow is one liter per cubic meter of solution per minute. It appears the highest activity of T.ferrooxidans culture cultivating under optimum conditions is between 3 and 6 days, which term corresponds to the logarithmic stage of bacterial growth, when the culture consists almost exclusively of young cells. The action of a magnetic field of given intensity stimulates the growth and activity of T.ferrooxidans. This phenomenon is observed when the entire/or half of the amount of water for nutritive medium preparation was previously magnetized. Uranium recovered by biomass Scenedesmus is most efficient. In addition to sorption the biomass has capability of regeneration. But some adsorption of T.ferrooxidans by the biomass is observed during the process of uranium sorption. The adsorption of the bacteria results from the affinity between their cellular walls and the sorbent. The highest growth of bacteria is observed when acidic ferrisulphate is present in solutions

  4. New discovery in study of remote sensing image characteristics at sandstone-type uranium deposits in China and its important significance

    International Nuclear Information System (INIS)

    Liu Dechang; Huang Xianfang; Ye Fawang

    2004-01-01

    Sandstone-type uranium deposit now is one of main targets in uranium prospecting in China. During the prospecting, the study is often emphasized on those ore-controlling factors such as the lithology and lithofacies of ore-hosting strata. While the ore-controlling factor of fault structure is usually neglected. By means of systematic research on remote sensing image features of sandstone-type uranium deposits, it is found that fault structure is always present at most main sandstone-type uranium ore districts. Based on above research achievements characteristics of ore-controlling fault and its ore-controlling role are analysed and a new metallogenetic model--'structural-geochemical barrier model' is put forward. Finally, the difference between the sturctural-geochemical barrier model and traditional interlayer oxidation zone front model is elaborated and its important significance is discussed. (authors)

  5. Present and future: heap leaching of uranium ore in China

    International Nuclear Information System (INIS)

    Li Jianhua

    2010-01-01

    Based on small and disperse uranium deposits, and low grade ores, heap leaching has been developed as the dominating technique in the uranium production of China. It is indicated that heap leaching technique has such advantages as less capital, low cost, low power consumption and water consumption. At the meanwhile, heap leaching technique presents shortcomings of poor adaptability and low recovery rate. In order to meet the oncoming enormous demand of nuclear power, great effort shall be put on research of new technology, new equipment, new material. (authors)

  6. Uranium deposits in Proterozoic quartz-pebble conglomerates

    International Nuclear Information System (INIS)

    1987-09-01

    This report is the result of an effort to gather together the most important information on uranium deposits in Proterozoic quartz-pebble conglomerates in the United States of America, Canada, Finland, Ghana, South Africa and Australia. The paper discusses the uranium potential (and in some cases also the gold potential in South Africa, Western Australia and Ghana) in terms of ores, sedimentation, mineralization, metamorphism, placers, geologic formations, stratigraphy, petrology, exploration, tectonics and distribution. Geologic history and application of geologic models are also discussed. Glacial outwash and water influx is also mentioned. The uranium deposits in a number of States in the USA are covered. The Witwatersrand placers are discussed in several papers. Refs, figs, tabs

  7. Stratigraphy and uranium deposits, Lisbon Valley district, San Juan County, Utah

    International Nuclear Information System (INIS)

    Huber, G.C.

    1980-01-01

    Uranium occurrences are scattered throughout southeastern Utah in the lower sandstones of the Triassic Chinle Formation. The Lisbon Valley district, however, is the only area with uranium deposits of substantial size. The stratigraphy of the Lisbon Valley district was investigated to determine the nature of the relationship between the mineralized areas and the lower Chinle sandstones. The geochemistry of the Lisbon Valley uranium deposits indicates a possible district-wide zoning. Interpretation of the elemental zoning associated with individual ore bodies suggests that humates overtaken by a geochemical oxidation-reduction interface may have led to formation of the uranium deposits. Refs

  8. Fission track method for uranium ore exploration

    International Nuclear Information System (INIS)

    Guo Shilun; Deng Xinlu; Sun Shengfen; Meng Wu; Zhang Pengfa; Hao Xiuhong

    1986-01-01

    The uranium concentrations in natural water collected in the fields of uranium ore exploration with fission track method have been determined. It shows that the results of fission track method are consistent with that of fluoro-colorimetry and laser fluorometry for the same samples of water with uranium concentration in the region of 10 -4 to 10 -8 g/l. For water samples with lower uranium concentration (≤10 -8 g/l), the fission track method can still give accurate or referential results, but the other two methods failed. The reproducibility of fission track method was checked and discussed by using samples collected in the same fields of uranium ore exploration. The effects of the concentration of the impurities in natural water on determination of uranium concentration were analysed and discussed as well

  9. Study on geochronology and uranium source of sandstone-type uranium deposit in Dongsheng area

    International Nuclear Information System (INIS)

    Liu Haibin; Xia Yuliang; Tian Shifeng

    2007-01-01

    This paper studied the geochronology of sandstone-type uranium deposit in the Dongsheng area of Ordos Basin. In eastern segment, ages of mineralization at the wing of the ore-roll are found to be 120 ± 5 Ma and 80 ± 5 Ma, and at the front of the ore-roll are 20 ± 2 Ma and 8 ± 1 Ma; While in middle segment, ages of mineralization are 124 ± 6 Ma and 80 ± 5 Ma. This means that the main mineralization in Dongsheng area were formed at early Jurassic and late Cretaceous, and correspondent to the time of structure uplift. Mineralization of roll-front (rich ore) which formed in Miocene and Pliocene may related to tectonic-thermal event taken place at that time and reformed the early mineralization in this area. The isochron line age of sample with uranium grade 0 ) in the sandbody is 24.64 x 10 -6 also shows the uranium pre-concentration in the strata. The even value of ΔU of rocks in Zhiluo formation is -70.2%, this shows that non-mineralized rocks have migrated uranium and acted as important metallogenic uranium sources. (authors)

  10. Radionuclide migration around uranium ore bodies in the Alligator Rivers region of the Northern Territory, Australia - analogue of radioactive waste repositories

    International Nuclear Information System (INIS)

    Airey, P.L.; Roman, D.; Golian, C.; Short, S.; Nightingale, T.; Lowson, R.T.; Davey, B.G.; Gray, D.

    1984-01-01

    Appropriate geochemical analogues may be used to reduce the uncertainties in predicting the long-term transport of actinides, radium and fission products from laboratory adsorption and hydrological data. In this study the migration of uranium series nuclides within, and down-gradient of ore bodies in the Alligator Rivers uranium province of the Northern Territory of Australia is described. A mathematical framework was developed to permit calculation of the rate of leaching or deposition of uranium and radium between defined zones of the ore bodies, and the rate of loss of the nuclides due to groundwater transport and surface erosion. A detailed study was made of the distribution of uranium, thorium and radium isotopes within various minerals comprising the weathered ore assemblage. Uranium and thorium concentrate principally in the iron minerals and radium in the clay-quartz phases. Substantial disequilibria are observed, which are attributed to a combination of α-recoil and chemical effects. Evidence of the relative lability of iron phases is presented. The transport of uranium series nuclides in groundwater intersecting the deposits was investigated. Down-gradient of the Ranger One deposit, the maximum retardation factor of uranium is 250. The role of colloids in groundwater transport is being studied. Uranium is transported principally in solution. There appears to be an equilibrium between solute and articulate uranium

  11. Exploration of the Key Lake uranium deposits, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Gatzweiler, R.; Schmeling, B.; Tan, B.

    1981-01-01

    In 1969, one year after the discovery of the Rabbit Lake uranium deposit, exploration started in the Key Lake area as part of a major uranium rush into Northern Saskatchewan, and within the frame of a joint venture. The area was not chosen on the basis of a particular metallogenetic concept. The lack of exploratory success in 1969 and 1970, together with the introduction in March 1970 of foreign ownership restrictions for uranium mining in Canada, discouraged six of the nine companies forming the original joint venture. In 1971 the three remaining companies decided to continue under a redefined concept, based on the knowledge obtained from the Rabbit Lake deposit (Uranerz had acquired a 49% share in 1970) and from the newly discovered uranium deposits in the Pine Creek Geosyncline, Australia. In the same year, exploration work resulted in the discovery of two high-grade mineralized boulders and significant radioactive and geochemical anomalies 5 km SW of Key Lake deposits. Subsequent exploration, aimed at finding the source of the mineralized boulders, comprised geological, glacial geological and ground radiometric surveys, boulder tracing, air-photo interpretation, lake sediment and muskeg sampling surveys, radon surveys, ground magnetic, gravity, electromagnetic and IP surveys, and drilling. The systematic exploration efforts resulted in the discovery of the Gaertner ore body in July 1975 and the Deilmann ore body in June 1976, where glacial geology, lake sediment sampling, magnetic and electromagnetic surveys were the key methods in defining the drilling targets. Three further years and a total of about 2400 drillholes were needed to fully delineate the two ore bodies. (author)

  12. Application of mathematical methods to the investigation of uranium deposits

    International Nuclear Information System (INIS)

    Formery, P.; Ziegler, V.

    1958-01-01

    It may be considered approximately that grades, widths and accumulations (grade-width products), in french uranium deposits are distributed according to a lognormal law. This property associated to KRIGE'S and de WIGE'S formulae make a powerful tool in ore deposits surveys. The correlation between radioactivities and grades is realized, in logarithmic coordinates, through a straight line the properties of which are analysed in the paper. MATHERON'S recent works, in association with data of classical statistics and the above mentioned formulae make possible to complete the ore reserves evaluation by computing the accuracy. Statistical methods applied to ore deposits have given birth to a parameter which is as important as the mean grade for characterisation of deposits: the absolute dispersion. (author) [fr

  13. Aeromagnetic gradient survey used in sandstone type uranium deposits prospecting

    International Nuclear Information System (INIS)

    Li Xiaolu; Chang Shushuai

    2014-01-01

    The principle, advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper which was used in sandstone type uranium deposits prospecting to study the shallow surface faults, uranium ore-forming environment and depth of magnetic body, which proved to be a good results. (authors)

  14. Preliminary discussion on the classification of uranium deposits in China

    International Nuclear Information System (INIS)

    Zhou Weixun; Liu Xinzhong; Wang Zubang.

    1991-01-01

    The classification of uranium deposits is a comprehensive and complicated problem which is of great importance for the guide in prospecting and exploration. The authors review the merits and shortcomings of various classifications sumitted by uranium geologists in the world based on origin, geotectonics and host rocks. Considering the reasonable parts in previous classifications and characteristics of uranium metallogenesis in China, the authors suggest a new classification of uranium deposits of China mainly according to host rocks, and also deposits' structure and morphology of ore bodies. This classification is composed of 7 goups divided into 25 subgroups. Finally, an indication and explanation are presented in order to draw attention of the Chinese uranium geologists and make further discussions among them

  15. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword.

  16. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword

  17. Dazai super-large uranium-bearing germanium deposit in western Yunnan region metallogenic geological conditions and prospect

    International Nuclear Information System (INIS)

    Han Yanrong; Yuan Qingbang; Li Yonghua; Zhang Ling; Dai Jiemin

    1995-05-01

    The Dazai super-large uranium-bearing germanium deposit is located in Bangmai Fault Basin, Western Yunnan, China. The basin basement is migmatitic granite and the cover is miocene coal-bearing clastics, Bangmai Formation. The basin development had undergone faulted rhombus basin forming, synsedimentary structure-developing and up-lifted-denuded stages. Synsedimentary faults had controlled distribution of sedimentary formation and lithofacies, and uranium and germanium mineralization. Germanium ore-bodies occur mainly in master lignite-bed of lower rhythmite. Hosted germanium-lignite is taken as main ore-type. Germanium occurs in vitrinite of lignite in the form of metal-organic complex. The metallogenetic geological conditions of the deposit are that ground preparation is uplift zone-migmatitic granite-fault basin-geothermal anomaly area, rich and thick ore-body is controlled by synsedimentary fault, peat-bog phase is favorable to accumulation for ore-forming elements, and unconformity between overlying cover and underlying basement is a channel-way of mineralizing fluid. A multiperiodic composite, being regarded sedimentation and diagenesis as a major process, uranium and germanium ore deposit has been formed through two mineralization. Four prospecting areas have been forecasted and two deposits have been accordingly discovered again. Technical-economic provableness shows that the deposit is characterized by shallow-buried, rich grade, large scale, easy mining and smelting. (9 figs.)

  18. Flotation of uranium from uranium ores in Canada. Part 2

    International Nuclear Information System (INIS)

    Muthuswami, S.V.; Vijayan, S.; Woods, D.R.

    1985-01-01

    Measurements are reported for the equilibrium of cupferron from solutions by uranium oxide, quartz, illite, a mixture of these three, pitchblende, pyrite and brannerite ore. The cupferron concentration ranged from 1 to 6 g/L, and the pH was 7 and 8. Most isotherms followed the Langmuir model, although Freundlich behaviour was observed for illite and pitchblende. Most adsorption was pH independent except for illite and pitchblende. The adsorption isotherms for a mixture of uranium oxide, quartz and illite in the same proportions as in the naturally occurring ore agreed with the adsorption of the pyrite-free ore at pH 8 but not pH 7. We attribute the discrepancy to the use of illite as the model clay. The specific adsorption of cupferron on quartz and illite is lower by a factor of about 50 and 5, respectively, than the adsorption on uranium oxide. Specific adsorption less than 1 mg cupferron per gm of pyrite free ore does not float the mineral. The corresponding equilibrium concentration of cupferron is 0.5 g/L. A qualitative model is given, and the implications of this work for practical operations are presented

  19. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  20. Review on geological character and exploration methods of Daqiaowu volcanic-type uranium deposit

    International Nuclear Information System (INIS)

    Tang Jiangwei

    2009-01-01

    Through a new round of exploration work from 2006 to 2008 on exploration practice and studies, it is suggested that ore host rock in Daqiaowu volcanic rock-type uranium deposit is volcanic breccias which can be classified into two types, one is cryptoexplosion breccias of vent facies,the other is lens-like breccias of crater facies controlled by interlayer structure. Main ore-controlling structure is NW-trending faults, uranium ore bodies in all the mineralized belts of the deposit are mainly NW-trending. The layout of exploration projects in reconnaissance stage should be with flexible principles, so that project arrangement can be adjusted timely with the deepening and changes of geological understanding. (authors)

  1. Uranium and thorium recovery in thorianite ore-preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotte, Joao V.M. [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil); Villegas, Raul A.S.; Fukuma, Henrique T., E-mail: rvillegas@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    This work presents the preliminary results of the studies aiming to develop a hydrometallurgical process to produce uranium and thorium concentrates from thorianite ore from Amapa State, Brazil. This process comprises two major parts: acid leaching and Th/U recovery using solvent extraction strategies. Thorianite ore has a typical composition of 60 - 70% of thorium, 8 - 10% lead and 7 - 10% uranium. Sulfuric acid leaching operational conditions were defined as follows: acid/ore ratio 7.5 t/t, ore size below 65 mesh (Tyler), 2 hours leaching time and temperature of 100 deg C. Leaching tests results showed that uranium and thorium recovery exceeded 95%, whereas 97% of lead ore content remained in the solid form. Uranium and thorium simultaneous solvent extraction is necessary due to high sulfate concentration in the liquor obtained from leaching, so the Primene JM-T primary anime was used for this extraction step. Aqueous raffinate from extraction containing sulfuric acid was recycled to the leaching step, reducing acid uptake around 60%, to achieve a net sulfuric acid consumption of 3 t/t of ore. Uranium and thorium simultaneous stripping was performed using sodium carbonate solution. In the aqueous stripped it was added sulfuric acid at pH 1.5, followed by a second solvent extraction step using the tertiary amine Alamine 336. The following stripping step was done with a solution of sodium chloride, resulting in a final solution of 23 g L-1 uranium. (author)

  2. Status Report from Yugoslavia [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Bunji, B [Institute for Technology of Nuclear and Other Raw Materials, Belgrade, Yugoslavia (Serbia)

    1967-06-15

    Full text: The greater part of our activities is connected with the problem of extracting uranium from low-grade ores. In this paper, a brief review of the most important recent developments will be presented. In this connection, it may be useful to determine the definition of low-grade ores. This term can be applied to ore from which the uranium content cannot be extracted under normal economic conditions. Thus this term can be applied to uranium-bearing material with a uranium content of no more than 0. 05%. But, in general, it could be said that there is a very large range of uranium content where uranium extraction may not be economic for such different reasons as; (a) the size or other facts in connection with the orebodies themselves; (b) refractory ore; or (c) other local conditions. During research on the treatment of low-grade ore from the deposit at Gabrovnica (Stara Planina, Yugoslavia) it became apparent that an alkaline leaching process would have to be carried out. The treatment of this granitic type of ore causes no particular difficulties. The required temperature is about 90{sup o}C. The retention time in the leaching stage is from 4 to 12 hours. Sodium carbonate consumption is not higher than 15 kg/t of ore. Pachuca-type leaching shows satisfactory maintenance and processing costs. At Kalna uranium precipitation by means of hydrogen pressure reduction has been developed, and is being developed and investigated in full-scale operation. Details of the process were published in Geneva in 1963. On the basis of the experience gained from full-scale operation, many refinements and cost-saving changes have been made. A normal steel wire screen used as a catalyst carrier shows a very good improvement over free-moving UO{sub 2} as catalyst. In large-scale operation (200 t/d), after the precipitation of uranium the barren solution content is about 1 g U/m{sup 3}. The content of the pregnant solution is of the order of 300-600 g/m{sup 3}. Recycling the

  3. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  4. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    Science.gov (United States)

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  5. Recent Exploration Progresses on Sandstone-Hosted Uranium Deposits in Northwestern China

    International Nuclear Information System (INIS)

    Li Ziying

    2014-01-01

    Conclusions: 1. China nuclear power development is stimulating exploration for uranium resources. 2. Big progress on exploration for sandstonehosted uranium deposits have been made for recent years. 3. The combined exploration techniques are effectively used for locating ore beds and targeting uranium mineralization. 4. Metallogenic models have played important roles in expansion and new discoveries of u-deposits. 5. Uranium is very mobile and can be enriched in the different types of rocks. 6. Greenish sandstone is due to chlorite alteration by secondary reduction process related to oil and gas and can be used to indicate uranium mineralization.

  6. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  7. Uranium mobilization from low-grade ore by cyanobacteria

    International Nuclear Information System (INIS)

    Lorenz, M.G.; Krumbein, W.E.

    1985-01-01

    Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from a carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores. (orig.)

  8. Uranium mobilization from low-grade ore by cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, M.G.; Krumbein, W.E.

    1985-04-01

    Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from a carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores.

  9. Study of the dry processing of uranium ores

    International Nuclear Information System (INIS)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [fr

  10. Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Han, B.-Y.; Shin, H.S.; Kim, H.D.; Jung, E.C.; Jung, J.H.; Na, S.H.

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been recognized as a promising technique for analyzing sensitive nuclear materials such as uranium, plutonium, and curium in a high-radiation environment, especially since the implementation of IAEA (International Atomic Energy Agency) safeguards. The uranium spectra of ore samples were quantitatively analyzed prior to analyzing sensitive materials in the nuclear industry. The purpose of this experiment is to extract quantitative information about the uranium in a uranium ore using a standard addition approach. The uranium ore samples containing different concentrations of U were prepared by mixing raw ore powder with natural uranium oxide powders. Calibration sets of 0.2, 0.4, 0.6, 0.8 and 1.0 wt.% uranium concentrations within the uranium ore sample were achieved. A pulsed and Q-switched Nd:YAG laser at a wavelength of 532 nm was used as a light source. An echelle spectrometer that covers a 190–420 nm wavelength range is used to generate a calibration curve and determine the detection limit of uranium in the ore matrix. The neutral atomic-emission peak at a wavelength of 356.659 nm indicated a detection limit of ∼ 158 ppm for uranium, and the uranium concentration was determined in a raw ore sample that has an unknown quantity of uranium. - Highlights: ► The feasibility of LIBS application to monitor uranium element was carried out. ► The detection limit of U in ore was determined by a standard additional approach. ► Quantitative analyses of U concentration in a natural uranium ore were performed.

  11. Developments of uranium and gold ores heap leaching technologies

    International Nuclear Information System (INIS)

    Tian Yuan; Guan Zibin; Gao Renxi

    1998-01-01

    The author reviews developments in heap leaching of uranium and gold ores at home and abroad, summarises condition of application. The author also presents problems having to be studied and settled urgently in heap leaching of uranium and gold ores in China

  12. Uranium mobility in the natural environment - evidence from sedimentary roll-front deposits

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Serne, R.J.

    1983-04-01

    Roll-front deposits consist of naturally occurring ore-grade uranium in selected sandstone aquifers throughout the world. The geochemical environment of these roll-front deposits is analogous to the environment of a radioactive waste repository containing redox-sensitive elements during its post-thermal period. The ore deposits are formed by a combination of dissolution, complexation, sorption/precipitation, and mineral formation processes. The uranium, leached from the soil by percolating rainwater, complexes with dissolved carbonate and moves in the oxidizing ground water at very low concentration (parts per billion) levels. The uranium is extracted from the leaching solution by the chemical processes, over long periods of time, at the interfaces between oxidized and reduced sediments. The Eh of the ground water associated with the reduced sediments (Eh = -100 mv to +100 mv) is higher than the Eh expected for most waste repository environments (Eh = -100 mv to -300 mv); this suggests that uranium solids will not be very soluble in the repositories. Data from in-situ leach mining and restoration of roll-front uranium deposits also provide information on the potential mobility of the waste if oxidizing ground water should enter the repository. Uranium solids probably will be initially very soluble in carbonate ground water; however, as reducing conditions are re-estblished through water/rock interactions, the uranium will reprecipitate and the amount of uranium in solution will again equilibrate with the reduced uranium minerals

  13. Fluid inclusion and oxygen isotope studies of the Nabarlek and Jabiluka uranium deposits, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Ypma, P.J.M.; Fuzikawa, K.

    1980-01-01

    We lack a basic understanding of the solutions producing the uranium deposits of the Alligator Rivers Uranium Field (ARUF). Several theories have been proposed ranging from syngenetic, epigenetic hydrothermal, epigenetic metamorphogenic, surficial origin (Ferguson et al., this volume), and mobilization by evaporite deposits. As for a precipitation mechanism, we do not seem to find much beyond the presence of graphite in some ore-bearing and intra-formational strata, and pre-uranium sulphides, none of which reducing factors are common throughout all ore bodies. This study was initiated with the aim of obtaining direct fluid inclusion evidence of the solution transport and precipitation of uranium

  14. Distributed regularity of accompanying element and its deep prospecting significances in Guizhou 504 uranium mineral deposit

    International Nuclear Information System (INIS)

    Zhang Weiqian; Huang Kaiping; Cheng Guangqing

    2012-01-01

    In the 504 hydrotherm type mineral deposit, Mo, Hg, Ni, Re, Te, Se element (Mo, Hg are industrial mineral deposit and Ni, Re, Te, Se are scarce element) reach the industrial integrated utilization request, the scarce element widely distributed in acid orebody (upper ore zone) and alkali orebody (lower ore zone). Based on composite samples of uranium ore in the analysis, through computer processing, the linear regression and R-factor analysis, Reveals the relationship between uranium and other elements. They haven't correlation among the U, Hg, Mo. The relation- ship among the Ni, Re, Te, Se is germane. Using this correlation, deep in the deposit and surrounding exploration provides the basis for deep. (authors)

  15. Recovery of uranium and molybdenum from a carbonate type uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Zhou Genmao; Zeng Yijun; Tang Baobin; Meng Shu; Xu Guolong

    2014-01-01

    Based on the results of process mineralogical research of a carbonate type uranium-molybdenum ore, leaching behaviors of the uranium-molybdenum ore were studied by alkali agitation leaching, conventional alkali column leaching and alkali curing column leaching processes. The results showed that using the alkali curing column leaching process, the leaching rate of molybdenum increased to more than 90%, and the leaching rate of uranium was about 85%, Compared with the conventional alkali column leaching process, the leaching time of the alkali curing column leaching process decreased by 60 days. (authors)

  16. Age, sedimentary environments, and other aspects of sandstone and related host rocks for uranium deposits

    International Nuclear Information System (INIS)

    1983-01-01

    Project II of the Uranium Geology Working Group was assigned to the study of sedimentary basins and sandstone - type uranium deposits. About 40% of the worlds's uranium resources are contained in sandstone-type deposits, which has led to extensive research. The research was carried out mainly by correspondence, and the results reported by 21 geologists from 10 nations are summarized in this report. It investigated five topics dealing with important aspects of the geology of uranium ores in sandstone host formations: age of host rock; partitioning of uranium between continental and marine sediments; latitude limitation on formation of sandstone deposits; effect of rock formation dip on sandstone ores; usefulness of stable isotope and fluid inclusion studies. The results of studies on these subjects form part of a wider programme of the Working Group, whose final results will be presented at the 27th International Geological Congress in Moscow in 1984

  17. Why jurisdiction and uranium deposit type are essential considerations for exploration and mining of uranium

    International Nuclear Information System (INIS)

    Miller, D.

    2014-01-01

    Uranium is a relatively abundant element, being 25 times more common than silver, and having the same crustal abundance as tin. Economically minable uranium grades vary greatly, from a low of 0.01% U to over 20% U. What are the factors that allow mining of these very low grade ores that are only 50 times background concentrations? Why don’t the high grade deposits of the world exclusively supply all of the worlds newly mined uranium needs? There are two main reasons that the high grade deposits of the world do not exclusively supply all of the worlds newly mined uranium needs: 1) jurisdictional issues, the favorability or lack thereof of governmental policies where the deposit is located and the delays caused by an ineffective or corrupt policy and 2) the deposit type, which has a great influence on the recovery cost of the uranium. The quality of a deposit can override more difficult political jurisdictions if recovery of the investment occurs quickly and in an environmentally friendly way.

  18. Geochemistry of the Cigar Lake uranium deposit: XPS studies

    International Nuclear Information System (INIS)

    Sunder, S.; Cramer, J.J.; Miller, N.H.

    1996-01-01

    Samples of uranium ore from the Cigar Lake deposit in northern Saskatchewan, Canada, were analyzed using XPS. High-resolution spectra were recorded for the strongest bands of the major elements (U 4f, C 1 s, O 1 s, Pb 4 f, S 2 p, Cu 2 p, Fe 2 p, and the valence region (0-20 eV)) to obtain chemical state information for these samples. In general, the U VI /U IV ratio was very low, i.e., much less than 0.5, the threshold for the oxidative dissolution of UO 2 . The low values of the U VI /U IV ratio observed for samples from the Cigar Lake deposit indicate thermodynamic stability of the uranium ore in the reduced aqueous environment. Similarities between the disposal vault envisaged in the Canadian Nuclear Fuel Waste Management Program and the Cigar Lake deposit suggest that, if geochemical conditions in the vault were to be similar to those in the deposit, the long-term dissolution of UO 2 fuel would be very minimal. (orig.)

  19. Aeromagnetic gradient survey and elementary application in sandstone type uranium deposits prospecting

    International Nuclear Information System (INIS)

    Li Xiaolu; Chang Shushuai

    2009-01-01

    The principle,advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper, and used to identify the shallow surface faults, uranium ore-forming environment and depth of magnetic body for the prospecting of sandstone type uranium deposits. (authors)

  20. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    International Nuclear Information System (INIS)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U 3 O 8 (3.32 million pounds U 3 O 8 ). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed

  1. Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico

    International Nuclear Information System (INIS)

    Fishman, N.S.; Reynolds, R.L.

    1986-01-01

    The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the Smith Lake district of the Grants uranium region, New Mexico. The orebody, contains abundant amorphous organic material, which suggests that it represents a primary-type deposit; however, the orebody is close to a regional reduction-oxidation interface, which suggests that uranium was secondarily redistributed by oxidative processes. Uranium contents correlate positively with organic carbon contents. Petrographic evidence points to uranium residence in amorphous organic material that was postdepositionally introduced in the diagenetic history of the host sandstone. Uranium mineralization was preceded by precipitation of pyrite (δ/sup 34/S values of -11.0 to -38.2 per mil), mixed-layer smectite-illite clays, and quartz and potassium feldspar overgrowths; and also partial dissolution of some detrital feldspars. Alterations associated with uranium mineralization include precipitation of the organic material, microcrystalline quartz, and pyrite and marcasite (δ/sup 34/S values of -29.4 to -41.6 per mil), and the destruction of detrital Fe-Ti oxide grains. Following mineralization, calcite, dolomite, barite, and kaolinite were precipitated, and some iron disulfides were replaced by ferric oxides. Geochemical data and petrographic observations both indicate that the Mariano Lake orebody is a primary-type deposit. Oxidative processes have not noticeably redistributed uranium in the immediate vicinity of the deposit, nor have they greatly modified geochemical characteristics in the ore. Impedance of ground-water flow by local folds and the lower porosity characteristics of ore zones may have helped to preserve the deposit

  2. Technological studies on the Manisa-Koprubasi uranium ores of Turkey

    International Nuclear Information System (INIS)

    Sagdik, U.

    1980-01-01

    At the end of the laboratory and pilot plant scale technological experiments, three main types of ore have been classified: (i) Kasar type: The ores consist of secondary uranium mineralization (autunite, meta-autunite and torbenite) in loosely consolidated sands, gravels and clays of Neogene Age. Heap leaching has been carried out on 100 and 1000 t ore samples (0.05% U 3 O 8 ) under economical conditions, such as 20 to 40 kg of H 2 SO 4 per tonne of ore at ambient temperature; original size -20 cm, solid/liquid ratio of 10, 20 days, and 90% recovery of uranium has been reached. The uraniferous solutions (1 to 2 g of U 3 O 8 per litre) obtained from the heap leaching operations were purified in a solvent extraction unit with a capacity of 100 ltr/h by using an Alamine 336-kerosene-decanol solution. The uranium in the purified and concentrated solutions (15 g of U 3 O 8 per litre) was then precipitated as a yellow cake with 65 to 75% U 3 O 8 content by means of magnesia milk. (ii) Tasharman type: No specific uranium mineral has been detected in the mineralogical determination, although uranium is disseminated in phosphate minerals as dahllite and apatite. Uranium in the ore has been leached under rather uneconomical conditions; 100 kg of H 2 SO 4 per tonne of ore, particle size -1 cm, 25 0 C, 30 days. In the SX-treatment of pregnant solutions phosphate ions, higher acidity than pH 1, and compounds formed as a chemical precipitation, hindered the SX-recoveries. In such cases, the addition of acid, dilution of pregnant solutions, membrane filtration, or 40 0 C temperature have been applied to decrease the uranium loss in the raffinate. (iii) Carbonate type: Even if alkaline leaching at 65 0 C, or leaching with 400 kg of H 2 SO 4 per tonne of ore, was carried out on -200 mesh ore samples, no acceptable uranium recoveries were obtained

  3. National Uranium Resource Evaluation. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Final report

    International Nuclear Information System (INIS)

    Chatham, J.R.; Wanty, R.B.; Langmuir, D.

    1981-02-01

    Groundwaters from aquifers in two different sandstone-type uranium mining districts in Texas and Wyoming were collected and chemically analyzed. The data were used to compare the merits of using the computed saturation state of the groundwater with respect to uranium minerals, to that of single-element tracers in the groundwater for geochemical prospecting. Chemical properties of the Texas waters were influenced locally by preferred groundwater flow within buried fluvial channel deposits; upward leakage of brines along growth faults into the aquifer; and the establishment of a redox interface (Eh = 0 volts) within the aquifer. Chemical characteristics of aquifer waters in Wyoming changed gradually downdip, reflecting regional homogeneity in groundwater flow and a more gradual downdip reduction of Eh values than in Texas. The most reliable indicator of reduced uranium ore in both study sites was the saturation state of groundwater with respect to uraninite or coffinite. For both minerals, this saturation state increased from 15 to 20 log units as reduced ore deposits were approached over distances of 3 to 4.5 km in both sites. Tyuyamunite and carnotite approached or exceeded saturation in some oxidized waters of the Texas site reflecting possible occurrences of these minerals. The radiogenic elements Ta and Rn were excellent indicators of ore directly within the deposits, where anomalous values were 2 to 3 orders of magnitude above background. Helium also increased near the ore, although anomalies were generally displaced in the direction of groundwater flow. Uranium and uranium isotope values did not individually pinpoint ore, but may be used together to classify groundwater samples in terms of their position relative to uranium mineralization

  4. Geological-geochemical evidence for deep fluid action in Daqiaowu uranium deposit, Zhejiang province

    International Nuclear Information System (INIS)

    Qiu Linfei; Ou Guangxi; Zhang Jianfeng; Zhang Min; Jin Miaozhang; Wang Binghua

    2009-01-01

    Through the contrast study of petrography, micro thermometry and laser Raman ingredient analysis of fluid inclusion, this paper has verified the basic nature of ore-forming fluid (temperature, salinity and ingredient) in daqiaowu uranium deposit, discussed the origin of the ore-forming fluid with its structure character and geology-geochemistry character. The testing results indicats that ore-forming temperature of this deposit is between 200 degree C and 250 degree C in main metallogenetic period, which belongs to middle temperature hydrothermal. The ore-forming fluids are of middle-high salinity and rich in valatility suchas CO 2 , H 2 , CH 4 . To sum up, the deposit mineralization process should be affected by the deep fluid primarily, and the ore-forming fluid is mainly the mantle fluid.(authors)

  5. Present exploration status of the Lianshanguan uranium deposit, Northeast China

    International Nuclear Information System (INIS)

    Fei, Q.; Shaokang, H.

    1980-01-01

    During recent years surface radiometry has revealed a series of anomalies and uranium occurrences in the Lianshanguan region of Northeast China which are present in Proterozoic Formations. Several significant uranium occurrences were tested by trenching and core drilling which resulted in the discovery of the Lianshanguan uranium deposit in 1978. The ore bodies of economic significance are located at a depth of 38-250m. Potential reserves are 1000 tons of U 3 O 8 . The geological setting of the Lower Proterozoic Lianshanguan uranium deposit has a certain similarity to the Alligator Rivers Region, Northern Territory, Australia. However, the Lianshanguan deposit occurs in detrital formations (in the lower part of the Lower Proterozoic sequence), adjacent to a migmatitic zone; it is overlain by carbonate argillitic rocks. The discovery of the Lianshanguan deposit indicates a potential for further uranium discoveries in northeast China, where Proterozoic sequences are well developed. The Lianshanguan uranium deposit is located approximately 100km south of Shenyang at 40 0 59'N and 123 0 30'E

  6. Radiation dose estimates from a mining plan for a high-grade uranium deposit

    International Nuclear Information System (INIS)

    Scott, L.M.

    1981-01-01

    The significance of gamma exposure to uranium miners has been recognized only in the last few years. Most ore deposits which have been underground mined, were 1% or less U 3 O 8 . Full-time mining of this grade ore can result in exposure exceeding 1 Rem per year. Several companies in Saskatchewan are planning to mine recently discovered ore bodies which contain ore pods in excess of 10% U 3 O 8 . The purpose of this paper is to present dose data which can be used to estimate gamma exposure from high-grade ore deposits, and to present mining techniques which will minimize miner exposure

  7. Uranium extraction from ores with lemon juice I,b-uranium recovery from pregnant lemon juice liquors obtained by attacking phosphate ores and suggested flowsheet

    International Nuclear Information System (INIS)

    EL-Sayed, M.H.

    1992-01-01

    In order to recover uranium from the pregnant liquors obtained by attacking safaga phosphate and qatrani phosphatic sandstone ore materials with lemon juice, methylation for acidic fraction-salt separation has been carried out. Afterwards, separation of uranium from the associated calcium (mainly present in lemon juice liquors as citrate) has been performed by making-use of the wide difference in their water solubility. The solutions containing the separated uranium were then subjected to evaporation till dryness whereby the precipitated uranyl citrate was calcined at 500 degree C to obtain the yellow orange oxide powder (U o 3 ). On the basis of one ton ore treatment, a flowsheet for uranium recovery from the two ore materials has been suggested

  8. Uranium extraction from ores with lemon juice; II,b. uranium recovery from pregnant lemon juice liquors obtained by attacking phosphate ore and suggested flowsheet

    International Nuclear Information System (INIS)

    Hussein, E.M.

    1997-01-01

    In order to recover uranium from the pregnant liquors obtained by attacking Safaga phosphate and Qatrani phosphatic sandstone ore materials with lemon juice, methylation for acidic fraction-salt separation has been carried out. Afterwards, separation of uranium from the associated calcium (mainly present in lemon juice liquors as citrate) has been performed by making-use of the wide difference in their water solubility. The solutions containing the separated uranium were then subjected to evaporation till dryness whereby the precipitated uranyl citrate was calcined at 500 degree C to obtain the yellow orange oxide powder (UO 3 ). On the basis of one ton ore treatment, a flowsheet for uranium recovery from the two ore materials has been suggested

  9. Biosolubilization of uranyl ions in uranium ores by hydrophyte plants

    International Nuclear Information System (INIS)

    Cecal, Alexandru; Calmoi, Rodica; Melniciuc-Puica, Nicoleta

    2006-01-01

    This paper investigated the bioleaching of uranyl ions from uranium ores, in aqueous medium by hydrophyte plants: Lemna minor, Azolla caroliniana and Elodea canadensis under different experimental conditions. The oxidation of U(IV) to U(VI) species was done by the atomic oxygen generated in the photosynthesis process by the aquatic plants in the solution above uranium ores. Under identical experimental conditions, the capacity of bioleaching of uranium ores decreases according to the following series: Lemna minor > Elodea canadensis > Azolla caroliniana. The results of IR spectra suggest the possible use of Lemna minor and Elodea canadensis as a biological decontaminant of uranium containing wastewaters. (author)

  10. An instrument for rapid delineation of grade boundaries in selective mining of uranium ore

    International Nuclear Information System (INIS)

    Clark, G.J.; Dickson, B.L.; Meakins, R.L.; Kenny, D.; Talaska, A.

    1982-01-01

    A vehicle-mounted radiation detector interfaced to a microprocessor called PRAM (programmable radioactive analyser mobile) has been developed to provide grade control for selective mining of a soft rock uranium ore. The grade of ore over which the vehicle passes is determined and indicated by several coloured lights to a pegman who walks behind the vehicle. Coloured pegs are then laid out to mark the uranium grade ranges on the floor of the mine pit. Comparison between grade ranges determined by the PRAM and by prior drilling and downhole logging at the Yeelirrie deposit, Western Australia indicate good agreement. Use of the PRAM decreases the cost, manpower and time required to grade extensive areas of a mine pit floor

  11. Test operation of the uranium ore processing pilot plant and uranium conversion plant

    International Nuclear Information System (INIS)

    Suh, I.S.; Lee, K.I.; Whang, S.T.; Kang, Y.H.; Lee, C.W.; Chu, J.O.; Lee, I.H.; Park, S.C.

    1983-01-01

    For the guarantee of acid leaching process of the Uranium Ore Processing Pilot Plnat, the KAERI team performed the test operation in coorperation with the COGEMA engineers. The result of the operation was successful achieving the uranium leaching efficiency of 95%. Completing the guarentee test, a continuous test operation was shifted to reconform the reproducibility of the result and check the functions of every units of the pilot plant feeding the low-grade domestic ore, the consistency of the facility was conformed that the uranium can easily be dissolved out form the ore between the temperature range of 60degC-70degC for two hours of leaching with sulfuric acid and could be obtained the leaching efficiency of 92% to 95%. The uranium recovery efficiencies for the processes of extraction and stripping were reached to 99% and 99.6% respectively. As an alternative process for the separation of solid from the ore pulp, four of the Counter Current Decanters were shifted replacing the Belt Filter and those were connected in a series, which were not been tested during the guarantee operation. It was found out that the washing efficiencies of the ore pulp in each tests for the decanters were proportionally increased according to the quantities of the washing water. As a result of the test, it was obtained that washing efficiencies were 95%, 85%, 83% for the water to ore ratio of 3:1, 2:1, 1.5:1 respectively. (Author)

  12. Fluid inclusion study of the Witwatersrand gold-uranium ores

    International Nuclear Information System (INIS)

    Shepherd, T.J.

    1977-01-01

    Fluid inclusions, preserved in quartz pebbles of the uraniferous and auriferous Precambrian oligomictic conglomerates of the Witwatersrand Basin, provide a unique insight into the genesis of the ores. Using differences in inclusion characteristics in conjunction with intra- and inter-deformational textures for adjacent pebbles, a distinction is made between pre- and post-depositional inclusions. Excluding those related to subsequent brittle fracture, the former comprise five principal types; two of which are distinguished by the development of liquid carbon dioxide. Collectively they indicate a moderate to high pressure-temperature environment of vein quartz formation. Systematic variation in the relative abundance of these inclusion assemblages for different sections of the orefield demonstrates the importance of well-defined provenance areas or multiple entry points into the basins. A marked sympathetic relationship between uraniferous banket ores and the presence of vein quartz rich in liquid carbon dioxide inclusions, together with a corresponding antipathetic relationship for gold, strongly suggests separate sources for the metals. The temporal and spatial aspects of the association 'U-CO 2 ' also imply a uranium influx into the basin from discrete areas of the hinterland contemporaneous with the sediments. Post-depositional inclusions are subordinate and offer no support for the alternative epigenetic model and show only a later interaction of relatively cool circulating groundwaters. A discussion is given of the probable nature and origin of uranium in the source rocks and its mode of transportation. In conclusion, a proposal is made for the use of applied fluid inclusion research in the evaluation of and exploration for similar deposits. (author)

  13. Vein-type and similar uranium deposits of Argentina

    International Nuclear Information System (INIS)

    Stipanicic, P.

    1982-01-01

    Some vein-type and similar uranium deposits and occurrences are briefly described to show different models identified in Argentina. Practically all of them were formerly thought to be related to hydrothermal-magmatic processes, but at present few are considered to be so; some are classified as typically exogenous and opinions differ about the genesis of the remaining ones, especially because of a lack of sufficient research on the matter since this group of accumulations only contributes less than 10% to the entire uranium resources of Argentina. The typical vein-type ore bodies are small (including less than 200t U) with grades varying from 0.1 to near 1%U. Other deposits, resolved as stockworks, could be from small to medium size (more than 200t U to 2000t U) with a uranium content from 0.7 to 0.03%, respectively. The mineralogical associations are variable, from complex ones in veins considered as magmatic-endogenous (with U, Ni, Co, Pb, Cu, Zn, etc.) to very simple ones in the exogenetic accumulations, which only comprise uranium minerals. The paragenetic studies available are not complete enough to define the possible relation of uranium with the other metals in the complex ores. The age of the mineralization has been defined in some cases, but not in others. There are examples of mineralizing processes occurring from Palaeozoic to very recent times. Some of the uranium deposits mentioned here have been exploited in the past; one of them will be re-opened very shortly; and a new one will be put into operation in 1981. The geological composition of Argentina is not favourable for uranium deposits related to the Proterozoic unconformity, and the best possibilities for finding interesting accumulations of vein and similar type are in the large Hercynian granitic environments which have outcrops that cover more than 150,000km 2 (Pampean Hills and North Patagonian Massif). (author)

  14. Practice and prospect on bioleaching of uranium ore in China

    International Nuclear Information System (INIS)

    Liu Jian; Fan Baotuan; Meng Yunsheng; Zheng Ying; Liu Chao; Zhou Lei

    2008-01-01

    Developing situation on bioleaching of uranium ore in China is introduced. The selection and domestication of bacteria, development and application of biocntact oxidation tank, and practice on bioleaching of uranium ore in China are retrospeted and prospected. (authors)

  15. Chlorination of uranium ore for extraction of uranium, thorium and radium and for pyrite removal

    International Nuclear Information System (INIS)

    Skeaf, J.M.

    1979-01-01

    The high-temperature chlorination of uranium ore was investigated. The objective was to develop a process which is both economically viable and environmentally acceptable. Test work was directed toward obtaining high extractions of uranium, thorium and radium-226, as well as iron, sulphur and the rare earths, and consists of chlorinating samples of an Elliot Lake uranium ore at elevated temperatures and repulping the resulting calcine in dilute hydrochloric acid. The effect of temperature and chlorine throughput on the extraction of the various metals was investigated. The best conditions yielded extractions of uranium, iron and sulphur (all as chlorides) greater than 95 percent. Chlorine consumption varied between 6 and 16 percent by weight of the ore charge. (author)

  16. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison Counties, Colorado

    International Nuclear Information System (INIS)

    Olson, J.C.

    1988-01-01

    The geology of two districts in southwestern Colorado is described, particularly geologic features bearing on the uranium deposits, which are mainly fault controlled and localized near an unconformity beneath Tertiary volcanics. A genetic model for uranium ore formation is proposed to aid in exploration and evaluation of uranium potential; this model involves Tertiary siliceous tuffs as source rocks, leaching and solution of uranium by supergene ground waters, and localization of ore in favorable structural environments along faults and other permeable zones

  17. Geology of uranium vein deposits (including Schwartzwalder Mine) in Proterozoic metamorphic rocks, Front Range, Colorado

    International Nuclear Information System (INIS)

    Voto, R.H. de; Paschis, J.A.

    1980-01-01

    The Schwartzwalder uranium deposit is one of many uranium vein occurrences in the Lower Proterozoic metamorphic rocks of the Front Range, Colorado. The principal veins of significant uranium content occur marginal to the Colorado Mineral Belt; are localized by structural dilation zones, vein junctions, fault deflections or branching; and occur dominantly within or at the contact of certain preferred metamorphic-stratigraphic units, particularly the siliceous, garnetiferous gneisses, where these rock units are broken by faults and fractures associated with the north-northwest-trending throughgoing faults. Uranium at the Schwartzwalder mine occurs primarily as open-space brecciated vein filling along the steeply west-dipping Illinois vein and numerous east-dipping subsidiary veins where they cut preferred metamorphic host rocks that are tightly folded. Uraninite occurs with molybdenite, adularia, jordisite, ankerite, pyrite, base-metal sulphides, and calcite in vein-filling paragenetic sequence. Minor wall-rock alteration is mainly hematite alteration and bleaching. Vertical relief on the developed ore deposit is 900 metres and still open-ended at depth. No vertical zonation of alteration, vein mineralogy, density of the subsidiary veins, or ore grade has been detected. The Schwartzwalder uranium deposit is of substantial tonnage (greater than 10,000 metric tons of U 3 O 8 ) and grade (averaging 0.57% U 3 O 8 ). Structural mapping shows that the Illinois vein-fault is a Proterozoic structure. Discordant Proterozoic (suggested) and Laramide dates have been obtained from Schwartzwalder ore. The data suggest, therefore, a Proterozoic ancestry of this heretofore presumed Laramide (Late Cretaceous-Early Tertiary) hydrothermal uranium deposit. The authors suggest a polygenetic model for the origin of the Schwartzwalder uranium deposit

  18. Exploration of method determining hydrogeologic parameters of low permeability sandstone uranium deposits

    International Nuclear Information System (INIS)

    Ji Hongbin; Wu Liwu; Cao Zhen

    2012-01-01

    A hypothesis of regarding injecting test as 'anti-pumping' test is presented, and pumping test's 'match line method' is used to process data of injecting test. Accurate hydrogeologic parameters can be obtained by injecting test in the sandstone uranium deposits with low permeability and small pumping volume. Taking injecting test in a uranium deposit of Xinjiang for example, the hydrogeologic parameters of main ore-bearing aquifer were calculated by using the 'anti-pumping' hypothesis. Results calculated by the 'anti-pumping' hypothesis were compared with results calculated by water level recovery method. The results show that it is feasible to use 'anti-pumping' hypothesis to calculate the hydrogeologic parameters of main ore-bearing aquifer. (authors)

  19. Radioactive equilibrium of uranium-bearing ores in some problems of applied geology

    International Nuclear Information System (INIS)

    Coulomb, R.; Girard, Ph.; Goldsztein, M.

    1964-01-01

    The state of equilibrium between several nuclides in radioactive relationship is determined with accuracy by the fundamental equations of radioactivity. It can be measured physically and expressed in suitable and internationally adopted units; Equilibrium - disequilibrium of uranium-bearing ores is a fairly complex phenomenon but the problem can be much simplified by well-chosen approximations in various practical field cases. The results of radiometric and radiochemical measurements lead to the interpretation of geochemical anomalies and may be used in the qualitative and quantitative estimation of uranium bearing deposits. (authors) [fr

  20. Radiological characterization of two Spanish uranium mine facilities

    International Nuclear Information System (INIS)

    Quindos Poncela, L.S.; Fernandez, P.I.; Gomez Arozamena, J.; Bordonoba, M.L.

    2000-01-01

    During the last decade our Department of Applied and Medical Physics has been involved in the development of a Radiation Protection Programme to monitor and control the environmental radiation conditions existing in the only two Spanish uranium mill facilities located at La Haba (Badajoz) and Salacious (Salamanca). Both mines are located in the west of the country, geographical area with high natural radiation levels. In the framework of this Programme, measurements of radon, radon progeny and external gamma radiation indoors and outdoors, as well as of radon exhalation rate and natural radionuclide concentrations in tailings and soils, have been systematically carried out. In particular, two ore body areas in these uranium mill sites have been specially studied to determine the natural radiation background to be used as a reference value to design reliable criteria for the closure of both facilities, which is planned for the next year. This paper summarizes the main results obtained from the measurements of external gamma radiation, radon concentrations, radon exhalation rate and natural radionuclide activity concentrations made in the above mentioned facilities with special emphasis on the results achieved from the ore body areas. Correlations between experimental results and a short description of the devices and methods used in the measurements are also shown. (author)

  1. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  2. Application of biohydrometallurgy to uranium ore processing

    International Nuclear Information System (INIS)

    Zhang Jiantang

    1989-01-01

    The development on application of biohydrometallargy to uranium ore processing is briefly introduced. The device designed for oxidizing ferrous ions in solution by using biomembrane, several bacterial leaching methods and the experimental results are given in this paper. The presented biohydrometallurgical process for recovering uranium includes bacterial leaching following by adsorption using tertiary amine resin 351 and oxidation of ferrous ions in the device with biomembranes. This process brings more economical benefits for treating silicate type original ores. The prospects on application of biogydrometallyurgy to solution mining is also discussed

  3. The development of an ore reserve methodology for the Olympic Dam copper-uranium-gold deposit

    International Nuclear Information System (INIS)

    Scott, I.R.

    1987-01-01

    At the Olympic Dam copper-uranium-gold deposit in South Australia, evolution in the understanding of the controls on mineralisation coupled with the changing demands of the project have led to changes in the approach to reserve estimation. The project has moved into a phase where detailed stope mining reserves are now required as distinct from global ore reserves. To enable the selective manipulation of geological and assay information and its characterisation, a relational database has been developed. For reserve calculations themselves, initial computations were based on a system derived from that used for the Kambalda nickel orebodies. The Olympic Dam system differed mainly in the use of statistical analyses in the estimation of grade instead of the previous polygonal area of influence weighting method. Three dimensional weighting techniques are now being used for local reserve estimates

  4. An investigation for the economic assessment of uranium deposits and mining projects

    International Nuclear Information System (INIS)

    Alnajim, N.

    1980-01-01

    It is the aim of this thesis to supply a comprehensive basis for decisions to be made in connection with the detection, exploration, extraction processing and marketing of uranium. The deposit types and forms, the technologies of exploration, extraction and processing as well as the most economic procedure for the exploitation of such deposits are presented in detail. This results in an assessment system which serves to consider the necessity for the construction of uranium ore deposits. (orig./HP) [de

  5. On the classification of uranium deposits associated with volcano-techtonic depressions

    International Nuclear Information System (INIS)

    Konstantinov, V.M.

    1981-01-01

    Advisability of separating uranium deposits associated with volcano-techtonic depressions as a class is grounded. Three groups of deposits are stated: foundation or low depression zone, medium depression zone, upper depression zone. Deposits are unified in five subgroups: in terrigenic molass, effusion- sedimentary formations, paleovulcanic setups and subvulcanic intrusions, granitoides, sedimentary and metamorphical rocks of geocinclinic complex. 18 structural-morphological types of deposits are determined by accounting of the basic structural-lithologic factors of ore control. An idealized diagram of ore-bearing vulcano-techtonic depression and its alternations at different erosion shears are presented. A conclusion is made on practical application of the classification [ru

  6. Metallogenesis and metallogenic model of Nuheting uranium deposit in Erlian Basin

    International Nuclear Information System (INIS)

    Li Hongjun; Kuang Wenzhan

    2010-01-01

    Based on the study on geological characteristics, metallogesis and geochemical features in Nuheting uranium deposit, it is considered that the deposit belongs to syn-sedimentary and epigenetic reworking type. The deposit position was controlled by the lake area developed during Erlian period in Late Cretaceous. The metallognesis has experienced three stages, they are syn-sedimentary metallogenesis, epigenetic reworking metallogenesis and exogenic metallogenesis. The ore-forming ages are respectively 85 Ma, (41±5)Ma and 6-13 Ma. Based on the summary of metallogenic geological features,metallogenesis and geochemical features, the metallogenic model of Nuheting uranium deposit has been established. (authors)

  7. REE geochemistry and genesis of Daxin uranium deposit

    International Nuclear Information System (INIS)

    Li Zhixing; Qi Fucheng; He Zhongbo; Zhang Zilong

    2011-01-01

    Through the analysis on typical REE parameters,chondrite-normalized REE patterns and hierarchical cluster analysis of rocks in the structural-geochemical zonation in Daxin uranium deposit, the paper discusses the uranium source and genesis. The study shows that the uranium source mainly came from Cambrian System. The Devonian System is maily as the favorable room for saving ores in addition to pre-concentrated room for uranium. Underground water resulted from early and late Yanshanian movement and the heating of volcanic rock was turned into geothermal water and it was moved upward by the force of tectonic movement. The geothermal water mainly extracted active uranium from the Cambrian rocks, then moved upward along main regional fault (F2) connecting the Cambrian rocks and the Devonian rocks until it arrived in structural fracture zone which was controlled by secondary faults (F13, F23, F33). At last, the uranium element in geothermal water was precipitated and concentrated into the uranium deposit in reducing environment of enriched organic material and pyrite. (authors)

  8. Geochemical study of the insoluble organic material (kerogen) in the Oklo uranium ore and the associated Francevillian schists

    International Nuclear Information System (INIS)

    Vandenbroucke, M.; Rouzaud, J.N.; Oberlin, A.

    1978-01-01

    The purpose of this study was to describe the organic material associated with uranium ore and ore transformations undergone by it, in terms of the following problems: (1) In the natural reactor zones, evolution of the organic material in the core and as a function of the distance away from it; (2) Comparison of organic materials from a rich and a poor ore; (3) Intercomparison of organic materials in the dispersed and concentrated state; (4) Comparison of organic materials in the uranium ore zones and in the adjacent non-mineralized Francevillian. The organic material from the reactor core could not be isolated by the normal techniques of treatment with acid. It is found in other cases that the organic material is oxidized in the uranium-bearing sediments and that the nearer to the reaction zone, the greater the oxidation, irrespective of the state of dispersion of the organic material in the rock. The uranium content does not affect this phenomenon, which is attributed to the action of the water raised to a high temperature in the vicinity of the reaction zones. On the basis of the present distribution of organic material and uranium the authors suggest a pattern for the formation of the deposit that would take into account localization of the ore in the sandstones and the part played by organic material in the accumulation process. (author)

  9. The organic geochemistry characteristic simple analyse of Shihongtan sandstone-type uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Cai Jinfang; Shang Gaofeng; Song Zhe

    2007-12-01

    The Shihongtan uranium deposit in Turpan-Hami basin is an interlayer oxi- dized zone type sandstone uranium deposit. The deposit occurs in the coal-bear- ing detrital rocks of braided meandering steam facies in the Middle Jurassic Xishanyao formation. There is a great deal of organic matter in the ore-hosting bed. There is distinct content of organic carbon, soluble organic matter, acidolysis hydrocarbon in various geochemistry belt rock, and the maximum content in the ore belt. Organics carbon mother-material type is sapropelic humus, organic matter is under mature stage, Acidolysis hydrocarbon is coal-gas type. Uranium content in rock is positive correlativity to soluble organics and acidolysis hydrocarbon by statistical count, The role of organic matter in sandstone type uranium metallogenetic process is analysed, it is thought that material decomposed under oxygenic coalition is advantage to uranium dissolution and migration in groundwater, material decomposed and polymerized under oxygen-deficient condition forms reducing and adsorption geochemistry barrier for uranium precipitation, play a important role in uranium metallogenetic process. (authors)

  10. Optimization of mining methods for steep vein uranium ore deposits of French COGEMA company

    International Nuclear Information System (INIS)

    Caleix, C.

    1985-01-01

    The Compagnie Generale des Matieres Nucleaires is currently exploiting several steep vein uranium deposits in France. The upper parts are exploited using the open-cast method, in the lower parts underground mining is used. The veins with a thickness of several meters fill faults caused by tectonic activity. With regard to the low strength of the rocks, wooden supports are used or fills. In the course of the past 25 years several mining methods have been tried of which overhand stoping was selected with an oblique ramp driven in the ore, this mainly for securing operating safety and the profitability of selective exploitation. In overburdens with a low bearing capacity the method of underhand benching in slices was used with a concrete fill and later underhand benching in slices with concrete reinforcing plates. Overhand stoping is being tried with fill and electric self-propelled machines left in the stope and mechanized driving of raises by full profile drilling. (B.S.)

  11. The study on the characteristic of Shuangqiao fault and the ore-control action of it in Daqiaowu deposit

    International Nuclear Information System (INIS)

    Han Xiaozhong; Hui Xiaochao; Wang Mingtai; Liu Rongrong; Liu Quan; Tang Jiangwei; Jin Miaozhang

    2012-01-01

    Shuangqiao fault is the most important one to control uranium ore bodies in Daqiaowu district of Quzhou area, Zhejiang province, but there is the obvious argument about the attitude which results in the restriction of the U- prognosis in the area. It aims at finding out the movement and ore-control action of the fault by the study on the characteristic of geometry and kinematics. and combining with geophysics in the depth. The Shuangqiao fault's trend is SE instead of NW by researching, and it has the polygenetic movement. There are two obvious stages of tension about the Shuangqiao fault which tally with the two stages of mineralization in Daqiaowu deposit to show the controlled action to ore bodies by it. By the study in-depth, the Shuangqiao fault can lead the metallogenic hydrothermal, and the secondary faults which connect with it can store the ore bodies. The point that the hanging side of fault can control the ore bodies is put forward by making a synthesis of tectonic assembled form and ore-control factors in Daqiaowu deposit. This view is approved by exploration to provide the reference for disposition of uranium prospecting. (authors)

  12. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  13. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    International Nuclear Information System (INIS)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H 2 S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H 2 S

  14. Forecasting sandstone uranium deposits in oil-and-gas bearing basins

    International Nuclear Information System (INIS)

    Pechenkin, I.

    2014-01-01

    The interrelation between oxidation and reduction processes in the carbonaceous strata of Paleogene age was first studied in the 1950s in deposit of the Fergana depression. The presence of pre-ore and post-ore epigenesis of petroleum series was established. Part of uranium mineralization was found to be covered with fluid oil. In the middle of the 1960s in the Sabirsay deposit (Uzbekistan) in primary red-coloured continental sediment of Cretaceous age were studied pre-ore reduction changes, which caused economic uranium mineralization in contrasting geochemical barrier. Further research showed that multidirectional epigenetic processes had changed repeatedly. Later, in the 1970s, American geologists studying uranium deposits in the oil-and-gas bearing Texas Plain reached similar conclusions. From their point of view, in the Benevides deposit the main zones of mineralization tend to be located near the boundary where the zones of oxidation in the strata wedge in, developing in epigenetically reduced formations. A second post-mineral reduction was registered in a number of rock bodies. The complexity of the processes is determined by the double role of hydrocarbon fluids and the products of their dissolution. On the one hand, bituminization of permeable strata as well as pyritization, chloritization, dolomitization and other alterations associated with it create favourable geochemical conditions of a reducing character for a subsequent concentration of ore and nonmetal raw materials. On the other hand, intrusion of bitumen and its dissolution in the aeration zone leads to the burial of the mineralization which formed earlier and disappearance of all traces of its formation (epigenetic oxidation zoning). Thus forecasting and subsequent prospecting become impeded. The established sequence of epigenetic alterations allows us to carry out specialized mapping in productive regions, uncovering hidden parts of epigenetic oxidation zoning and “buried” mineralization

  15. Catahoula formation as a source of sedimentary uranium deposits in east Texas

    International Nuclear Information System (INIS)

    Ledger, E.B.; Tieh, T.T.

    1983-01-01

    Volcanic glass-rich mudstone and siltstone samples from the Oligocene/Miocene Catahoula formation of Jasper County, Texas, and coeval volcaniclastic rock samples from Trans-Pecos, Texas, have been compared as to U, Th, Zr, Ti, K, Rb, and Sr contents. Uranium is slightly greater in the distal ash (5.85 ppM U) compared to the Trans-Pecos samples (average 5.41 ppM U). Diagenetic and pedogenetic alteration of Catahoula volcanic glass releases uranium to solution and, under favorable conditions, this uranium may accumulate to form ore bodies. Uranium has been produced from such ore bodies in south Texas, but economic deposits are not known in east Texas. Significant differences between south and east Texas include: (1) a greater amount of volcanic debris delivered to south Texas, both as air-fall ash and stream-transported material, (2) delivery of only air-fill ash to east Texas, (3) the possibility of more petroleum-related reductants such as H 2 S in south Texas, and (4) pervasive glass alteration with subsequent uranium release in south Texas due to late calichification. These differences argue against economic deposits of the south Texas type being found in east Texas. If economic deposits occur they are likely to be far downdip making exploration difficult and expensive

  16. Aluminum chloride restoration of in situ leached uranium ores

    International Nuclear Information System (INIS)

    Grant, D.C.; Burgman, M.A.

    1982-01-01

    During in situ uranium mining using ammonium bicarbonate lixiviant, the ammonium exchanges with cations on the ore's clay. After mining is complete, the ammonium may desorb into post-leach ground water. For the particular ore studied, other chemicals (i.e., uranium and selenium) which are mobilized during the leach process, have also been found in the post-leach ground water. Laboratory column tests, used to simulate the leaching process, have shown that aluminum chloride can rapidly remove ammonium from the ore and thus greatly reduce the subsequent ammonium leakage level into ground water. The aluminum chloride has also been found to reduce the leakage levels of uranium and selenium. In addition, the aluminum chloride treatment produces a rapid improvement in permeability

  17. Aqueous-chlorine leaching of typical Canadian uranium ores

    International Nuclear Information System (INIS)

    Haque, K.E.

    1982-01-01

    Laboratory-scale aqueous-chlorine leaches were conducted on quartz-pebble conglomerates, pegmatite and vein-type ores. Optimum leach temperatures, pulp density and retention times were determined. Uranium extraction of 98 per cent was obtained from the Elliot Lake, Madawaska Mines of Bancroft and Rabbit Lake ores, 96 per cent from the Key Lake ore and 86 per cent from the Agnew Lake ore. However, tailings containing 15-20 pCi g -1 of radium-226 were obtained only from the Elliot Lake and Agnew lake quartz-pebble conglomerates and Bancroft pegmatite-type ores by second-stage leaches with HCl. The second-stage leach results indicate that multistage (3 or 4) acid-chloride or salt-chloride leaches might be effective to obtain tailings containing 15-20 pCi 226 Ra g -1 from the high-grade vein-type ores. Comparative reagent-cost estimates show that the sulphuric-acid leach process is far less expensive than aqueous chlorine leaching. Nevertheless, only the aqueous chlorine and acid-chloride leaches in stages are effective in producing tailings containing 15-20 pCi 226 Ra g -1 from the typical Canadian uranium ores. (Auth.)

  18. Processing of Low-Grade Uranium Ores. Proceedings of a Panel

    International Nuclear Information System (INIS)

    1967-01-01

    The 22 specialists from 15 countries and one international organization who attended the meeting were asked to give an appraisal of the current situation with regard to the processing of low-grade uranium ores and make recommendations for a possible IAEA programme of activities. This publication covers the work of the panel. Contents: Status reports (13 reports); Technical reports (13 reports); Summaries of discussions; Recommendations of the panel. Each report is in its original language (16 English, 4 French, 2 Russian and 4 Spanish) and each technical report is preceded by an abstract in English and one in the original language if this is not English. The summaries of discussions and the panel recommendations are in English. (author)

  19. Processing of Low-Grade Uranium Ores. Proceedings of a Panel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    The 22 specialists from 15 countries and one international organization who attended the meeting were asked to give an appraisal of the current situation with regard to the processing of low-grade uranium ores and make recommendations for a possible IAEA programme of activities. This publication covers the work of the panel. Contents: Status reports (13 reports); Technical reports (13 reports); Summaries of discussions; Recommendations of the panel. Each report is in its original language (16 English, 4 French, 2 Russian and 4 Spanish) and each technical report is preceded by an abstract in English and one in the original language if this is not English. The summaries of discussions and the panel recommendations are in English. (author)

  20. Bottle roll leach test for Temrezli uranium ore

    International Nuclear Information System (INIS)

    Çetin, K.; Bayrak, M.; Turan, A. İsbir; Üçgül, E.

    2014-01-01

    The bottle roll leach test is one of the dynamic leaching procedure which can meet in-situ mining needs for determining suitable working conditions and helps to simulate one of the important parameter; injection well design. In this test, the most important parameters are pulp density, acidic or basic concentration of leach solution, time and temperature. In recent years, bottle roll test is used not only for uranium but also gold, silver, copper and nickel metals where in situ leach (ISL) mining is going to be applied. For this purpose for gold and silver metal cyanide bottle roll tests and for uranium metal; acidic and basic bottle roll tests could be applied. The new leach test procedure which is held in General Directorate of Mineral Research and Exploration (MTA) of Turkey is mostly suitable for determining metal extraction conditions and recovery values in uranium containing ore bodies. The tests were conducted with samples taken from Temrezli Uranium Ore located in approximately 200 km east of Turkey’s capital, Ankara. Mining rights of Temrezli Ore is controlled 100% by Anatolia Energy Ltd. The resource estimate includes an indicated mineral resource of 10.827 Mlbs U_3O_8 [~4160 t U] at an average grade of 1426 ppm [~1210 ppm U] and an additional inferred resource of 6.587 Mlbs of U_3O_8 [~2530 t U] at an average grade of 904 ppm [~767 ppm U]. In accordance with the demand from Anatolia Energy bottle roll leach tests have been initiated in MTA laboratories to investigate the recovery values of low-grade uranium ore under in-situ leach conditions. Bottle roll leaching tests are performed on pulverized samples with representative lixiviant solution at ambient pressure and provide an initial evaluation of ore leachability with a rough estimate of recovery value. At the end of the tests by using 2 g/L NaHCO_3 and 0.2 g/L H_2O_2 more than 90% of uranium can pass into leach solution in 12 days. (author)

  1. Chlorine-assisted leaching of Key Lake uranium ore

    International Nuclear Information System (INIS)

    Haque, K.E.

    1981-04-01

    Bench-scale chlorine-assisted leach tests were conducted on the Key Lake uranium ore. Leach tests conducted at 80 0 C on a slurry containing 50% solids during 10 hours of agitation gave the maximum extraction of uranium - 96% and radium-226 - 91%. Chlorine was added at 23.0 Kg Cl 2 /tonne of ore to maintain the leach slurry pH in the range of 1.5-1.0. To obtain residue almost free of radionuclides, hydrochloric acid leaches were conducted on the first stage leach residues. The second stage leach residue still was found to contain uranium - 0.0076% and radium-226 - 200 pCi/g of solids

  2. The relationship between tectonic-thermal evolution and sandstone-type uranium ore-formation in Ordos basin

    International Nuclear Information System (INIS)

    Zhao Honggang

    2005-01-01

    The comprehensive study of the volcanic activities, the geothermal field, the thermal flow field, the paleogeo-thermal activity and the tectonic evolution of the Ordos basin indicates that the tectonic-thermal evolution of the Ordos basin has offered the basis for the fluid-fluid and fluid-rock mutual reactions, and has created favourable conditions for the formation of organic mineral resources and sandstone-type uranium deposits. Especially, the tectonic-thermal event during middle-Late Jurassic to Cretaceous played an important role in providing uranium source material, and assisting the migration, the concentration and precipitation of uranium and uranium ore-formation. (authors)

  3. The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of Western Qinling

    International Nuclear Information System (INIS)

    Qian Farong; Zhou Dean; Ji Hongfang

    1995-11-01

    The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of western Qinling is an inland found type deposit with specific mineralization and good potentiality. The mineralization distributes along definite horizons and occurs in siliceous layer and lenses of siliceous-calcareous rocks. Orebody presents in forms of stratoid, lenticular and irregular veins and controlled by factorial structures. Ore is identified as massive and sandy and each characterized by various mineral compositions and element associations. The study shows that the mineralizing materials are mainly derived from ore-bearing strata. The metallogenic environment has characteristics of middle-low temperature and supergene The metallogenesis underwent three stages: (1) Sedimentation-diagenesis of the ore-bearing strata led to preliminary concentration of uranium; (2) Polytectonic activities accompanied by underground hydrothermal process resulted in the industrial concentration of uranium; and (3) Orebody reworked by oxidation-denudation and leaching, locally has taken place secondary concentration. The deposit in origin attributes to polygenesis dominated by underground hydrothermal metallogenesis. Main metallogenic epoch happens during the periods of Late Yanshan and Himalayan. According to the geological-tectonic conditions the further prospecting direction in study area is proposed. (3 refs., 5 figs., 9 tabs.)

  4. Uranium ore processing

    International Nuclear Information System (INIS)

    Ritcey, G.M.; Haque, K.E.; Lucas, B.H.; Skeaff, J.M.

    1983-01-01

    The authors have developed a complete method of recovering separately uranium, thorium and radium from impure solids such as ores, concentrates, calcines or tailings containing these metals. The technique involves leaching, in at least one stage. The impure solids in finely divided form with an aqueous leachant containing HCl and/or Cl 2 until acceptable amounts of uranium, thorium and radium are dissolved. Uranium is recovered from the solution by solvent extraction and precipitation. Thorium may also be recovered in the same manner. Radium may be recovered by at least one ion exchange, absorption and precipitation. This amount of iron in the solution must be controlled before the acid solution may be recycled for the leaching process. The calcine leached in the first step is prepared in a two stage roast in the presence of both Cl 2 and a metal sulfide. The first stage is at 350-450 0 and the second at 550-700 0

  5. RL-1: a certified uranium reference ore

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.

    1985-06-01

    A 145-kg sample of a uranium ore from Rabbit Lake, Saskatchewan, has been prepared as a compositional reference material. RL-1 was ground to minus 74 μm and mixed in one lot. Approximately one half of this ore was bottled in 100-g units, the remainder being stored in bulk. The homogeneity of RL-1 with respect to uranium and nickel was confirmed by neutron activation and X-ray fluorescence analytical techniques. In a 'free choice' analytical program, 13 laboratories contributed results for one or more of uranium, nickel and arsenic in one bottle of RL-1. Based on a statistical analysis of the data, the following recommended values were assigned: U, 0.201%; Ni, 185 μg/g; and As, 19.6 μg/g

  6. The distribution of E-centres concentration in the minerals of the wall-rocks of uranium deposit

    International Nuclear Information System (INIS)

    Kislyakov, Ya.M.; Moiseev, B.M.; Rakov, L.T.; Kulagin, Eh.G.

    1975-01-01

    Electron paramagnetic resonance was used to investigate the distribution of electron-hole centres caused by natural radioactive irradiation in terrigenous arcosic rocks and their principal mineral components (quartz-feldspar concretions, white and smoky quartz, feldspars). The relationship between concentrations of E-centres and the uranium content of the rocks reflects the genetic features of the uranium mineralization. Taking one specific deposit as an example, the author shows the proportional dependence between uranium content and E-centre concentration. The dependence reflects the practically simultraneous formation of the main mass of epigenetic mineralization. The hypothesis that older (syngenetic) ore deposits may have existed was not confirmed. Despite the long interval between sedimentary accumulation end epigenesis, no significant surplus concentrations of E-centres were found in epigenetic-metamorphic rocks. Anomalous concentrations of uranium and E-centres are caused by uranium migration during later epigenetic processes superimposed on the mesozoic ore-controlling zonality. One result of this migration is the formation in limonitized rocks of ''augen'' ores for which low concentrations of paramagnetic centres are typical. For the study of the distribution of E-centres in rocks from uranium deposits, it is possible to use polymineral mixtures. For the proper interpratation of the data obtained, however, account must be taken of the sensitivity to irradiation of the various mineral components, particularly the various forms of quartz, which is the principal natural dosimeter. (E.G.)

  7. Chloride pyrometallurgy of uranium ore. 1. Chlorination of phosphate ore using solid or gas chlorinating agent and carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1995-01-01

    A thermodynamical and pyrometallurgical study to recover uranium from the phosphate ores was undertaken using the chloride volatilization method. Iron was chlorinated with solid chlorinating agents such as NaCl and CaCl 2 in combination with activated carbon, which will be used for removing this element from the ore, but uranium was not. On the other hand, the chlorination using Cl 2 gas and activated carbon gave a good result at 1,223 K. Not only uranium but also iron, phosphorus, aluminum and silicon were found to form volatile chlorides which vaporized out of the ore, while calcium remained in the ore as non-volatile CaCl 2 . The chlorination condition was studied as functions of temperature, reaction time and carbon content. The volatilization ratio of uranium around 95% was obtained by heating the mixture of the ore and activated carbon (35 wt%) in a mixed gas flow of Cl 2 (200 ml/min) and N 2 (200 ml/min) at 1,223 K for 120 min. (author)

  8. Further new activities at uranium deposit Rozna, Czech Republic

    International Nuclear Information System (INIS)

    Toman, F.; Pavel, V.

    2014-01-01

    Mining of uranium ore has been running at Rozna deposit for 56 years, since 1957. Extraction of uranium ore is currently performed in the mining field of blind shaft R7S. Top slicing and caving under the artificial roof method is used for the extraction. Uranium ore mined in the Rozna deposit is treated at a chemical treatment plant (a mill) situated in the close vicinity of the Rozna mine. In the mill, uranium is extracted from the crushed and ground ore by alkaline leaching. The uranium is then removed from the solution by sorption on resin; the next steps are precipitation and drying. Alkaline leaching is applied at the atmospheric pressure and the temperature of 80 °C. The final product of the milling is ammonium diuranate (NH 4 ) 2 U 2 O 7 , which is further treated into a fuel for nuclear power plants in conversion facilities abroad. The milling is carried on under the condition of the closed cycle of technology water. Due to the positive annual precipitation balance, the over balance of mill water in tailings pond has to be purified before discharging into a river. Forced evaporation and membrane processes (electrodialysis and reverse osmosis) are used to purify the water. New activities are searched and carried out with consequence of gradual decreasing of the uranium production. The main target and also benefit of this is the using of skilled human resources in the mine Rozna I and entry able underground spaces. Geological exploration works for a construction of the underground gas storage were started on 21st level of shaft R7S three years ago. New horizontal galleries with profile 9 m 2 were driven during geological exploration works. Exploratory holes with length 100m were drilled. Sampling of rocks for geochemical, geomechanical and petrographic tests were carried out. So far 1264.9 m of exploration galleries and 1130 m exploration drill holes have been made. Geological exploration works for construction of underground research workplace on 12th level

  9. Research on ore-controlling factors and prospecting targets in Shihongtan uranium deposit area, turpan-hami basin

    International Nuclear Information System (INIS)

    Fu Chengming

    2005-01-01

    Based on analyzing the controlling role of geologic structure, host formation and hydrodynamic environments on interlayer oxidation zone and uranium mineralization, the author suggests that the Aiding structural slope, block-faulting structure, and subsidiary faults and folds are indications of uranium mineralization emplacement, sand bodies of braided stream facies provide favorable space for the development of interlayer oxidation zone and uranium mineralization, and variation sites of interlayer artesian water and geochemical environments are important places for the precipitation of ore material. Based on the above-mentioned a prediction of favorable metallogenic targets is made. (author)

  10. BL-2a and BL-4a: certified uranium reference ores

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.; Zechanowitsch, G.; Sutarno, R.

    1982-05-01

    Samples of two uranium ores BL-2a and BL-4a from Beaverlodge, Saskatchewan, were prepared as compositional reference materials to replace the similar certified ores, BL-2 and BL-4, of which the stock had been exhausted. Each ore was ground to minus 74 μm, blended in one lot and bottled in 200-g units. The homogeneity of the ores with respect to uranium was confirmed by both a neutron activation and a fluorimetric analytical procedure performed by two commercial laboratories. The recommended value for uranium is based on the results of one determination on each of 25 bottles by the volumetric-umpire method performed at CANMET. A statistical analysis of the data gave a recommended value for uranium of 0.426% for BL-2a and 0.1248% for BL-4a

  11. Economic evaluation of preconcentration of uranium ores

    International Nuclear Information System (INIS)

    1981-04-01

    The economics of two options for the preconcentration of low-grade uranium ores prior to hydrochloric acid leaching were studied. The first option uses flotation followed by wet high-intensity magnetic separation. The second option omits the flotation step. In each case it was assumed that most of the pyrite in the ore would be recovered by froth flotation, dewatered, and roasted to produce sulphuric acid and a calcine suitable for acid leaching. Savings in operating costs from preconcentration are offset by the value of uranium losses. However, a capital saving of approximately 6 million dollars is indicated for each preconcentration option. As a result of the capital saving, preconcentration appears to be economically attractive when combined with hydrochloric acid leaching. There appears to be no economic advantage to preconcentration in combination with sulphuric acid leaching of the ore

  12. The Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1976-01-01

    The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerate that contains 75 percent of Canada's uranium reserves. The conglomerate beds occur in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. The mineralization is syngenetic, probably placer. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions, suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water, and possibly a cold climate. (author)

  13. Discussion on distribution characteristics of calcareous sandstone in Shihongtan uranium deposit and its genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Qiao Haiming; Jia Heng; Xu Gaozhong

    2007-01-01

    Based on the observation and statistics on the calcareous sandstone in the ore host layer in Shihongtan uranium deposit, this paper finds that the calcareous sandstone occurs on and off near the top or wash surface of the sandbody as beads-strings lens along the layer and concentrates in the area where the ore bodies are rich. In lithology, the calcareous sandstone is of coarse grain and fairly well sorted. According to the analysis on the lithogeochemical features and the carbon and oxygen isotopes of calcareous sandstones, it is realized that there some genetic relation between the formation of calcareous sandstone and uranium mineralization in the oxidation-deoxidation transitional belt, that is the precipitation and enrichment of uranium is accompanied by the deposition of carbonate and formation of calcareous sandstone. (authors)

  14. Comparison of braided-stream depositional environment and uranium deposits at Saint Anthony underground mine

    International Nuclear Information System (INIS)

    Baird, C.W.; Martin, K.W.; Lowry, R.M.

    1980-01-01

    United Nuclear's Saint Anthony mine, located in the Laguna district, produces uranium ore from the Jackpile sandstone unit of the Morrison Formation. The Jackpile sediments were deposited in a fluvial environment characterized by aridity, gentle slope, distant source area, and limited flow volume. Resultant stratigraphy consists of an intricate assemblage of trough and tabular cross-stratification grading to near massive bedding at some locations. Interbedded with the Jackpile sands are green mudstones and siltstones that commonly display irregular thicknesses of less than 2 ft and that are laterally discontinuous. Major penecontemporaneous and postdepositional alteration of originally deposited sands, silts, and clays includes: 1) infiltration and filling of interstices by kaolinitic clays; 2) mobilization and relocation of organic carbonaceous material; and 3) geochemical alteration of mineral constituents and fixation of uranium ions in organic carbonaceous material. Mineralized zones of economic volume display a spatial relationship to bedding features indicative of loosely packed sand deposited in dune and trough foresets. This relationship indicates possible permeability control by initial stratigraphy upon the flow of mineralizing solutions. Additionally, the low-energy foreset environment facilitates the accumulation of low-specific-gravity carbonaceous material necessary for interaction with mineralizing solutions. Large volumes of loosely packed foreset sands accumulate in transverse bars in braided-stream environments. These structures have a great potential for conducting large volumes of mineralizing fluids and hosting economic quantities of uranium ore

  15. Modelling a uranium ore bioleaching process

    International Nuclear Information System (INIS)

    Chien, D.C.H.; Douglas, P.L.; Herman, D.H.; Marchbank, A.

    1990-01-01

    A dynamic simulation model for the bioleaching of uranium ore in a stope leaching process has been developed. The model incorporates design and operating conditions, reaction kinetics enhanced by Thiobacillus ferroxidans present in the leaching solution and transport properties. Model predictions agree well with experimental data with an average deviation of about ± 3%. The model is sensitive to small errors in the estimates of fragment size and ore grade. Because accurate estimates are difficult to obtain a parameter estimation approach was developed to update the value of fragment size and ore grade using on-line plant information

  16. The Cigar Lake uranium deposit: Analog information for Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1995-05-01

    The Cigar Lake uranium deposit, located in northern Saskatchewan, has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This shows that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based and general aspects of water-rock interaction. The main geotechnical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. This report reviews and summarizes the analog information and data from the Cigar Lake analog studies for the processes and scenarios expected to occur in the disposal system for used nuclear fuel proposed in Canada. (author). 45 refs., 10 figs

  17. Analysis of leachability for a sandstone uranium deposite with high acid consumption and sensitivities in Inner Mongolia

    International Nuclear Information System (INIS)

    Cheng Wei; Miao Aisheng; Li Jianhua; Zhou Lei; Chang Jingtao

    2014-01-01

    In-situ Leaching adaptability of a ground water oxidation zone type sandstone uranium deposit from Inner Mongolia is studied. The ore of the uranium deposit has high acid consumption and sensitivities in in-situ leaching. The leaching process with agent of CO_2 + O_2 and adjusting concentration of HCO_3"- can be suitable for the deposit. (authors)

  18. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  19. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-01-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit

  20. Two main types of uranium deposit within phanerozoic formations of Ukraine

    International Nuclear Information System (INIS)

    Shumlyanskiy, V.A.

    1997-01-01

    The two main types of uranium deposits occurring within Phanaerozoic formations of Ukraine are described. They consist of uraniferous bearing bitumen in the Upper Carboniferous to Lower Triassic red beds, and infiltration (roll front type) uranium ores, occurring in the sediments filling ancient Paleogene river valleys. The first deposit type include black to dark brown beds of disseminated to massive bitumen occurring respectively as ozyantraxolite and oxykerite. These beds include uranium, as well as other metals. This uranium mineralization is dated at 195 to 200 million years old. The second type includes infiltration deposits in Paleogene coal bearing sediments, with the uranium mineralization occurring in the upper part of the sequence. The sediments occur within paleovallyes eroded into the underlying crystalline basement of the Ukraine shield and its weathered crust. The paleovalleys extend to a depth of 70 to 90 metres. The coal bearing sediments are overlain by sediments of younger age. Several uranium deposits of the second type are known, including a few identified as being of industrial grade. (author). 7 figs

  1. Chemical separation of Th-230 from uranium ore

    International Nuclear Information System (INIS)

    Kikunaga, H.; Nakanishi, T.; Mitsugashira, T.; Hara, M.

    2001-01-01

    We are studying the decay processes of low energy nuclear isomer of Th-229. Our approach to produce Th-229m is (γ, n) reaction on Th-230, hence, about 100 μg of Th-230 is necessary as a target. However, our stock of Th-230 has run out during several experiments, thus, we tried to separate Th-230 from uranium ore. In this paper, the detail of a chemical separation procedure for Th-230 from uranium ore and the results are reported. (author)

  2. Waste monitoring of the uranium ore processing activities in Romania

    International Nuclear Information System (INIS)

    Nica, L.

    2002-01-01

    The uranium ore processing activities at the Feldioara site produce a range of liquid and solid waste that are monitored. Liquids are treated through decantation, pH correction and uranium precipitation before their release into the environment. The solid waste is gathered into ore specific area and are covered regularly with clay materials. (author)

  3. Installation of Radiometric Sorting throughout the Cogema-Simo Mining Complex at Lodeve. [Uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, J.; Winter, J.M.; Deville, P.

    1986-06-01

    The ores of Lodeve present no physical characteristics which permit an elimination of the lowest grade fractions, with the exception of the radioactivity and the radium which accompanies the uranium. The mine therefore turned to radiometric pebble-by-pebble sorting on a machine model M 17 of Ore Sorters who have a monopoly of this type of equipment; this permits an operation over a size range from 25 to 160 mm. Sampling of the deposit investigation of pebble samples, construction of the sorting plant and commissioning are described.

  4. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  5. DH-1a: a certified uranium-thorium reference ore

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.; Zechanowitsch, G.

    1981-09-01

    A 122-kg sample of uranium-thorium ore, DH-1a, from Elliot Lake, Ontario, was prepared as a compositional reference material to replace the similar certified ore, DH-1. DH-1a was ground to minus 74μm, blended in one lot, and bottled in 200 g units. The homogeneity of DH-1a with respect to uranium was confirmed using the volumetric umpire method. The recommended value for uranium is based on the data from the confirmation of homogeneity. For thorium, twelve laboratories provided results in a free choice analytical program. A statistical analysis of the data gave a recommended value of 0.263 percent for uranium and 0.091 percent for thorium

  6. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  7. Radiological impact assessment in Bagjata uranium deposit: a case study

    International Nuclear Information System (INIS)

    Sarangi, A.K.; Bhowmik, S.C.; Jha, V.N.

    2007-01-01

    The uranium ore mining facility, in addition to the desirable product, produces wastes in the form of environmental releases or effluents to air, water and soil. The toxicological and other (non-radiological) effects are generally addressed in EIA/EMP studies as per MOEF guidelines. Since the uranium ore is radioactive, it is desirable to conduct a study on radiological effects considering the impacts of radiological releases to the environment. Before undertaking the commercial mining operations at Bagjata uranium deposit in the Singhbhum east district of Jharkhand, pre-operational radiological base line data were generated and a separate study on radiological impact on various environmental matrices was conducted in line with the International Atomic Energy Agency's laid out guidelines. The paper describes the philosophy of such studies and the findings that helped in formulating a separate environmental management plan. (author)

  8. Some aspects of the processing development for uranium ores treatment

    International Nuclear Information System (INIS)

    Bruno, J.B.

    1982-01-01

    It is discussed the methodology adopted by NUCLEBRAS to the processing development for uranium ores treatment. The used methodology has the following steps: exploratories studies, preliminaries stiudies and optimization studies. The studies include physical and chemical contained in the solution. As examples are cited the uranium ores treatment in Lagoa Real and Itataia. (A.B.) [pt

  9. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  10. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.L.

    1975-01-01

    The patent describes a process whereby improved flocculation efficiency and filtration of carbonate leached uranium ore pulps are obtained by treating the filter feed slurry with an aqueous solution of hydroxyalkyl guar. (J.R.)

  11. Prospecting and exploration of the Key Lake uranium deposits, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Tan, B.H.

    1980-01-01

    The research activities which led to the detection of the Key Lake deposit and their model character for uranium prospecting in this area are discussed. The genesis of the ores and the surrounding rocks are described, and the possible genesis of the deposit is discussed on the basis of the present state of knowledge. (HP) [de

  12. Underground leaching - A method for the economic extraction of uranium from low-grade ores; Podzemnoe vyshchelachivanie - sposob ehkonomicheskogo izvlecheniya urana iz bednykh rud

    Energy Technology Data Exchange (ETDEWEB)

    Zefirov, A P [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj EHnergii SSSR, Moskva, Union of Soviet Socialist Republics (Russian Federation)

    1967-06-15

    The method of underground leaching of uranium ores has a number of advantages over extraction followed by processing of the ores in factories. It has been studied in two types of deposit, occurring in rock masses and sandy shales. Research techniques were worked out accordingly for the leaching of uranium from large-grained ore (-200 mm) and from layers in natural stratification. Special models were constructed permitting the simulation of underground leaching conditions. The results obtained were checked in field conditions on experimental plots and experimental underground blocks. The investigations demonstrated the practicability of the process of underground leaching of uranium from certain ores and made it possible to work out flow-sheets and routines for an industrial process, information about which is given in the paper. (author)

  13. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  14. Certain distribution characteristics of uranium and thorium in apatite-carbonate ores

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, R Sh; Faizullin, R N; Kozlov, E N; Berman, I B

    1979-01-01

    A study of the total radioactivity, uranium content, thorium content, U/Th ratio, and the spatial distribution of uranium by the f-radiographic method has demonstrated that the apatite ores of the deposit contain elevated concentrations of radioactive elements that are essentially of thorium origin. The main concentration of uranium and thorium is in the cinnemon-brown apatite. Elevated uranium concentrations are also found in hematite and accessory minerals (monacite, zirconium, titanite). Dolomite, quartz, martite, and second generation apatite were found to be weakly radioactive. The uranium and thorium concentration is correlated to the concentration of phosphorus and other petrogenic elements. An analysis of uranium, thorium, and Th/U distribution indicates that the concentration of radioactive elements is not caused by their primary content in carbonate rock but by the outside introduction of these elements together with phosphorus. The cited analyses confirm the chemogenic-sedimentary origin of the dolomite substrate and the metamorphogenic hydrothermal genesis of apatite mineralization. The data on radioactivity may be used as a reliable exploratory criterion for apatite potential. 3 references, 3 figures.

  15. Some methodical questions of study of vertical geochemical zoning of ore deposits

    International Nuclear Information System (INIS)

    Sochevanov, N.N.; Gorelova, E.K.

    1975-01-01

    Taking a hydrothermal uranium deposit as an example, the advisability of dividing ore-localizing structures (for the purpose of making a calculation for a single geochemical zonality) into five zones, a supra-, an upper, a central, a lower and an infra-ore one, has been shown. It is recommended to determine the place of elements in the geochemical zonality sequence by taking into account the productivity of their aureoles and the location of the centre of gravity of their reserves in the ore, supra- and infra-ore horizons. When considering the peculiarities of a zonality, it is irrational to take account of elements determined with an insufficient sensitivity as well as of low-contrast or unstable ones. When calculating tracer ratios the most contrasting data can be obtained by using the most distant elements in the geochemical zonality sequence

  16. Mining and processing of uranium ores in the USSR

    International Nuclear Information System (INIS)

    Laskorin, B.N.; Mamilov, V.A.; Korejsho, Yu.A.

    1983-01-01

    Experience gained in uranium ore mining by modern methods in combination with underground and heap leaching is summarized. More intensive processing of low-grade ores has been achieved through the use of autoclave leaching, sorptive treatment of thick pulps, extractive separation of pure uranium compounds, automated continuous sorption devices of high efficiency for processing the underground- and heap-leaching liquors, natural and mine water, and recovery of molybdenum, vanadium, scandium, rare earths and phosphate fertilizers from low-grade ores. Production of ion-exchangers and extractants has been developed and processes for concomitant recovery of copper, gold, ionium, tungsten, caesium, zirconium, tantalum, nickel and cobalt have been designed. (author)

  17. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1

    International Nuclear Information System (INIS)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword

  18. Discussion on the origin of bleached sandstone of Qianjiadian uranium deposit

    International Nuclear Information System (INIS)

    Pang Yaqing; Xiang Weidong; Li Tiangang; Chen Xiaolin; Xia Yuliang

    2007-01-01

    Qianjiadian uranium deposit is a sandstone-type uranium deposit that has been discovered in Songliao Basin in recent years. Uranium ore bodies are planar or lenticular in shape and under the control of the contact between gray sandstones and bleached sandstones. The bleached sandstone is white in color, cemented loosely, nearly without TOC and pyrite contained and rich in uranium. Geochemical characteristics and types and assemblages of clay minerals of the bleached sandstone reveal that the bleached sandstone is the product of oxidation of the interlayer oxidation zone, and it is a part of the interlayer oxidation zone. The main reasons for white color of the bleached sandstone are transfer of iron ion, oxidation of TOC and kaolinization of sandstone. (authors)

  19. 36Cl production and mobility in the Cigar Lake uranium deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Fabryka-Martin, J.; Cramer, J.J.; Andrew, H.R.; Koslowsky, V.T.

    2010-01-01

    Can accelerator mass spectrometry (AMS) studies validate risk assessments of the long-term behaviour of contaminants such as radionuclides? AMS measurements on samples from the 1.3 billion-year-old Cigar Lake uranium ore deposit provide one approach to address this question. In Cigar Lake, elevated concentrations of uranium enhance the in situ neutron flux that produces 36 Cl and other radionuclides. We calculated the production of 36 Cl using a Monte Carlo neutron transport code. We then tested for the loss of 36 Cl from ore samples collected from an 8 m stratigraphic section through the deposit by comparing the predicted values (assuming equilibrium between production and decay) with the concentrations measured by AMS. The 36 Cl:Cl atom ratios within the ore were more than two orders of magnitude higher than in the surrounding host rock and ranged from 4 to 64 x 10 -12 . The 36 Cl concentrations in the ore, rock, clay and fracture infilling minerals all agree with the values predicted by the Monte Carlo simulations. We conclude that 36 Cl has very limited mobility. Even in matrix adjacent to more permeable fractures, there is no evidence that the measured isotopic ratios deviate significantly from the predicted values.

  20. Extraction and analysis of reducing alteration information of oil-gas in Bashibulake uranium ore district based on ASTER remote sensing data

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Yang Xu

    2008-01-01

    Beginning with the analysis of the spectral characteristics of sandstone with reducing alteration of oil-gas in Bashibulake ore district, the extract technology of reducing alteration information based on ASTER data is presented. Several remote sensing anomaly zones of reducing alteration information similar with that in uranium deposit are interpreted in study area. On the basis of above study, these alteration anomaly information are further classified by using the advantage of ASTER data with multi-band in SWIR, the geological significance for alteration anomaly information is respectively discussed. As a result, alteration anomalies good for uranium prospecting are really selected, which provides some important information for uranium exploration in outland of Bashibulake uranium ore area. (authors)

  1. Status Report from Canada [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Thunaes, A [Eldorado Mining and Refining Ltd., Ottawa (Canada)

    1967-06-15

    The Canadian production of uranium increased in a spectacular manner during the period 1955-1959 from 1000 to 15 500 tons U{sub 3}O{sub 8} per year. Since 1959 the production has declined to the 1966 level of 3900 tons U{sub 3}O{sub 8} per year; stretch-out of contracts and government stockpiling programmes has made the decline gradual, and is maintaining the current rate of production until 1970. Nineteen mills were in operation during the period of peak production but only three are operating today. Ten mills were shut down and dismantled because of exhaustion of ore bodies or because the operation was uneconomical; six mills are maintained in stand-by condition. The total daily capacity of mills in operation or standing by is about 28 000 tons ore, but some of these mills would not be reopened unless an appreciable increase in uranium price occurs. The tide of uranium demand is about ready to turn and prospecting for uranium is very active this year, particularly in the Elliot Lake and Beaverlodge areas. The estimates for uranium demand in 1975-1980 are such that new ore will have to be found and developed, and new treatment plants must be built. The new ore that is found will likely be of lower grade or more expensive to mine than most of the current proven reserves in Canada and the most efficient methods of treatment will be needed to avoid excessive increases in production costs. This seems an opportune time to review Canadian milling of uranium ore, the improvements that have been made and development work towards further improvements.

  2. Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey

    International Nuclear Information System (INIS)

    Akyuez, T.; Varinlioglu, A.; Kose, A.; Akyuez, S.

    2000-01-01

    The specific activities of 238 U, 226 Ra, 232 Th and 40 K in the composite samples of phosphate ores of type I (grey-coloured ore, with high P 2 O 5 (21-35%) and low calcite content) and of type II (grey coloured calcite ore, with low P 2 O 5 content (5-17%)) of Karatas-Mazidag phosphate deposit, Turkey, have been determined by gamma spectrometry together with phosphatic animal feed ingredients. The concentrations of 238 U, 226 Ra, 232 Th and 40 K were found to be up to 557, 625, 26 and 297 Bq x kg -1 , respectively. Radium equivalent activities of samples were calculated and compared with those given in the literature. Uranium concentration of the individual phosphate samples, from which composite samples of ores of type I and II have been prepared, were found to show and increasing trend with increasing P 2 O 5 and F concentrations. (author)

  3. Fractal character of structural control on uranium mineralization in south china

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Xie Yanshi

    2009-01-01

    South China is the most important uranium producer in the country. Most uranium ore deposits in south China are strictly controlled by NE-NNE trending regional fracture structure. Fractal analyses on spatial distribution of uranium ore deposits and regional fracture structure in south China have been done in this paper. It indicates that the spatial distribution of both uranium ore deposits and regional fracture structure in south China show fractal character. The fractal dimension D=1.414 2 for the spatial distribution of regional fracture structure in the whole area indicate a higher ripening degree in the fracture structure evolution and an advantages to fluid flow and uranium mineralization. The fractal dimension D=1.052 7 for the spatial distribution of uranium ore deposits in south China show a lower complexity than regional fracture structure. The fractal dimensions in three sub-areas in south China on spatial distribution of uranium ore deposits show a positive correlation to which of regional fracture structure. The fractal spatial distribution of uranium ore deposits in south China is the result of the evolution of the fractal fracture structure system. (authors)

  4. Geological characteristics of the main deposits in the world. Geological characteristics of French uranium deposits; their consequences on the different stages of valorisation. The uranium market; Caracteres geologiques des principaux gisements du monde. Caracteres geologiques des gisements francais d'uranium; leurs consequences dans les differents stades de la mise en valeur. Le marche de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gangloff, A.; Lenoble, A.; Mabile, J.

    1958-07-15

    This document gathers three contributions. In the first one, after having recalled data regarding uranium ore and metal reserves in Canada, USA, South Africa and France, the author describes and discusses the geological and mineral characteristics of the main deposits in Canada (Great Bear Lake, Ace-Verna and other deposits of the Beaverlodge district, Gunnar, Blind River and Bancroft), in the USA (New Mexico, Colorado and Arizona), and in South Africa (similar structure as observed in Blind River). The second contribution addresses the French uranium deposits by firstly presenting, describing and classifying vein deposits (five types are distinguished) and sedimentary deposits in different geological formations, and by secondly discussing the impacts of these characteristics on exploration, surface exploration works, and mining works. The third contribution proposes an overview of the uranium market: comments of world productions (conventional extraction processes and technical peculiarities, costs and prices, reserves and production in Canada, USA, South Africa, France, Australia and others), presentation of the French program (location and production capacity of uranium production plants, locations of ore extraction), overview of the current situation of the world market (price levels, possible prices after 1962), discussion of the comparison between demands and supplies, overview of the French uranium policy.

  5. Underground Milling of High-Grade Uranium Ore

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C., E-mail: chuck.edwards@amec.com [AMEC Americas Limited, Saskatoon, Saskatchewan (Canada)

    2014-05-15

    There are many safety and technical issues involved in the mining and progressing of high grade uranium ores such as those exploited in Northern Canada at present. With more of this type of mine due to commence production in the near future, operators have been looking at ways to better manage the situation. The paper describes underground milling of high-grade uranium ore as a means of optimising production costs and managing safety issues. In addition the paper presents some examples of possible process flowsheets and plant layouts that could be applicable to such operations. Finally an assessment of potential benefits from underground milling from a variety of viewpoints is provided. (author)

  6. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    International Nuclear Information System (INIS)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository

  7. Discussion on the interlayer oxidation and uranium metallogenesis in Qianjiadian uranium deposit, Songliao Basin

    International Nuclear Information System (INIS)

    Pang Yaqing; Chen Xiaolin; Fang Xiheng; Sun Ye

    2010-01-01

    Through systematic drill core observation, section contrast and analysis,it is proved that the ore-controlling interlayer oxidation zone of Qianjiadian uranium deposit is mainly composed by the red oxidized sandstone and locally distributed yellow and off-white sandstones. The red sandstone contains charcoal fragments, pyrite, ilmenite, siderite, which have been oxidized intensively, and it can be deduced that their original color was gray and became red due to the oxidization. The distribution of the oxidation zone is mainly controlled by the sedimentary facies,which also controll uranium metallization. The uranium orebodies mainly developed in the thinning or pinch parts of the red oxidation zone in section. On the plans, the uranium mineralization distributes near the front of the red interlayer oxidation zone. (authors)

  8. Practical aspects of monitoring and dosimetry of long-lived dust in uranium mines and mills - determination of the annual limit on intake for uranium and uranium/thorium ore dust

    International Nuclear Information System (INIS)

    Duport, P.; Horvath, F.

    1989-01-01

    Based on the recommendations of ICRP Publication 26, the dosimetric and metabolic data of ICRP Publication 30, and using available information on the physical and solubility characteristics of uranium and uranium/thorium ore, the ALI values for airborne ore dust were calculated. Four hypothetical types of ore were considered: uranium ore with no radon emanation, uranium ore with 50% radon emanation, uranium/thorium ore with neither 222 Rn nor thoron emanation, and uranium/thorium ore with 50% 22 Rn and 220 Rn emanation. Furthermore, the ALI values were calculated assuming the radionuclides present in the ore were all: (a) solubility class Y: (b) solubility class W; and (c) equal parts of classes Y and W. The ALI values were also calculated for Activity Median Aerodynamic Diameters (AMAD) ranging from 1 to 10 μm. The results of the calculations show that the solubility class of the radionuclides is the single most important factor that governs ALI values. The ALI value for uranium and uranium-thorium ore dust is proportional to (AMAD) 0.5 for class Y materials, (AMAD) 0.2 for a mixture of equal parts of class Y and class W materials, and is independent of the AMAD for class W materials. A series of graphs is given from which it is possible to evaluate the ALI for airborne ore dust when the AMAD of the dust and the solubility characteristics are known approximately. (author)

  9. Non-polluting treatment of uranium effluents from the alkaline digestion of an uranium ore containing sulfur

    International Nuclear Information System (INIS)

    Berger, Bernard.

    1978-01-01

    New non-polluting process for treating uranium effluents from the alkaline digestion of an uranium ore containing sulphur, which makes it possible (a) to extract and obtain relatively pure uranium and (b) to process the digestion liquor freed from the uranium and containing in an aqueous solution a mixture of alkaline carbonate and/or bicarbonate and sodium sulphate, consisting in the selective extraction of the sodium sulphate present and the recycling of the liquor free of SO 4 = ions, containing in solution the sole carbonates and/or bicarbonates involved, towards the digestion of the ore [fr

  10. Uranium reduction by carbon oxide during ore formation

    International Nuclear Information System (INIS)

    Matyash, I.V.; Gavrusevich, I.B.; Pasal'skaya, L.F.; Shcherba, D.I.

    1981-01-01

    Using the method of gas chromatography the gas content in Pre-Cambrian granitoils of various types and in natrometasomatites associted with them is studied. It is established that granites associated with ore-bearing albitites have sharply elevated amounts of CO as compared with granites, which do not include mineralization. Simultaneously in ore samples the absence or sharply low amounts of CO as compared with ore-free samples is observed, that is reverse dependence of CO and ore components. Carbon oxide is the reducing agent of uranium mineralization and alongside with other reducing agents can be a geochemical barrier in the process of ore formation [ru

  11. Chlorine/chloride based processes for uranium ores

    International Nuclear Information System (INIS)

    1980-11-01

    The CE Lummus Minerals Division was commissioned by The Department of Supply and Services to develop order-of-magnitude capital and operating cost estimates for chlorine/chloride-based processes for uranium ores. The processes are designed to remove substantially all radioactive consituents from the ores to render the waste products harmless. Two processes were selected, one for a typical low grade ore (2 lb. U 3 O 8 /ton ore) and one for a high grade ore (50 lbs U 3 O 8 /ton). For the low grade ore a hydrochloric acid leaching process was chosen. For high grade ore, a more complex process, including gaseous chlorination, was selected. Capital cost estimates were compiled from information obtained from vendors for the specified equipment. Building cost estimates and the piping, electrical and instrumentation costs were developed from the plant layout. Utility diagrams and mass balances were used for estimating utilities and consumables. Detailed descriptions of the bases for capital and operating cost estimates are given

  12. A discussion on several problems in determination of uranium ore grade criteria

    International Nuclear Information System (INIS)

    Zhu Zhixiang.

    1991-01-01

    The course of determination of uranium ore grade criteria in China is briefly introduced. The cut-off grade minimum industrial grade and allowable minimum average grade uranium ore bodies used in China are reviewed. The meanings and role of various grade criteria and their economic basis for determination in uranium exploration, mining and sorting are discussed and the author's ideas are given

  13. Evaluation of the Cerro Solo nuclear ore, province of Chubut. Geological characteristics of the deposit and of the basin. Pt. 2

    International Nuclear Information System (INIS)

    Benitez, A.F.; Fuente, A.; Maloberti, A.; Landi, V.A.; Bianchi, R.E.; Marveggio de Bianchi, N.; Gayone, M.R.

    1993-01-01

    The Cerro Solo uranium ore deposit, is located 420 km west from Trelew city, Chubut province, in the extra-andean. The geologic environment belongs to the northwest edge portion of the intracratonic San Jorge Gulf Basin. The uraniferous district is named Pichinanes Ridge district. The mineralization lies 25 to 130 m depth, and is hosted by Los Adobes formation aged Aptian-Albian, made up by conglomerates, sandstones, coarse-sandstones and less abundant siltstones and claystones. The Cerro Solo ore deposit that belongs to the sandstone type-uranium occurrences are lenticular or tabular shaped, associated with organic material and pyrite, generally roughly parallel to the bedding (Trend-Type). The uranium minerals are uraninite and coffinite associated with organic material and pyrite, and frequently hematite, goethite, calcite, siderite and barite are observed. (Author)

  14. Discussion on the genesis and mineralization of sandstone type uranium deposit in the southern-central Longchuanjiang basin, western Yunnan province

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Mangen

    2002-01-01

    The author mainly discusses the character of the depositional systems, geological structures and ore-bearing series in the south-central Longchuanjiang basin, and points out that the uranium mineralization is closely related to the two depositional discontinuities caused by the tectonic evolution. Based on the characteristics of uranium mineralization in the area, pitchblende, uranium blacks and phosphuranylite are discovered in No. 382 uranium deposit and radiometric super-micro-minerals in No. 381 deposit. The research on the uranium mineralization age in No. 382 deposit shows that the mineralization in the south-central part of the basin has genetically multi-staged

  15. Work within the coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Jayaram, K.M.V.

    1978-10-01

    The paper relates geological and lithological aspects of host rocks to the leaching and precipitation of uranium through the agency of microorganisms. For this purpose three different host rocks were studied: a low grade uranium ore analysing 0.045% U 3 O 8 and two high grade ores analysing 0.27% and 1.8% U 3 O 8 respectively. The affect of ore composition, water composition and climatic conditions were studied in relation to the nature of the microflora indigenously developed

  16. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  17. Exploration for in situ leach amenable sandstone uranium deposits and their impact on the environment in China

    International Nuclear Information System (INIS)

    Zhang Weixing

    2002-01-01

    Taking the No. 512 uranium deposit in YiLi Basin, Xinjiang as an example, this paper describes the ore-forming geological settings of inter-layer oxidizing zone roll-front type of ISL amenable uranium deposits. It also summarizes the different exploration methods used during various stages of exploration. The paper also introduces the Dabu uranium deposit in Taoshan, Jiangxi, which is amenable to the in-place-leach mining method. It probes into the possibilities for transforming non-economic and sub-economic uranium deposits into economical and minable ones. In addition, the paper emphasizes that ISL uranium mining, when compared with conventional mining, plays an active role in reducing environmental contamination and restoring ecological balance. (author)

  18. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing

    1994-01-01

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  19. Processing of Low-Grade Uranium Ores. Proceedings of a Panel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Proceedings of a panel convened by the IAEA in Vienna, 27 June - 1 July 1966. The 22 specialists from 15 countries and one international organization who attended the meeting were asked to give an appraisal of the current situation with regard to the processing of low-grade uranium ores and make recommendations for a possible IAEA programme of activities. This publication covers the work of the panel. Contents: Status reports (13 reports); Technical reports (13 reports); Summaries of discussions; Recommendations of the panel. Each report is in its original language (16 English, 4 French, 2 Russian and 4 Spanish) and each technical report is preceded by an abstract in English and one in the original language if this is not English. The summaries of discussions and the panel recommendations are in English. (author)

  20. Uranium extraction from Uro area phosphate ore, Nuba mountains, Sudan

    International Nuclear Information System (INIS)

    Mohammed, A. A.; Eltayeb, M. A. H.

    2003-01-01

    This study was carried out mainly to extract uranium from Uro area phosphate ore in the eastern part of Nuba mountains near Abu Gibiha town in southern Kurdufan state. For this purpose first, the phosphate ore samples were decomposed with sulphuric acid. the resulting phosphoric acid was filtered off, and pretreated with pyrite and activated charcoal. the chemical analysis of the obtained grain phosphoric acid showed that about 98% of uranium content of the phosphate ore was rendered soluble in the phosphoric acid. The clear green phosphoric acid was introduced to uranium extraction by 25% tributylphosphate (Tbp) in kerosene. The effect of several factors on the extraction and stripping processes namely, interference's effect, the suitable strip solution, the required number of extraction and stripping stages, the optimum phase ratio have been studied in details. A three stage extraction at a phase ratio (aqueous/organic) of 1:2, followed by two stages stripping using 0.5 M sodium carbonate solution at a phase ratio (A/O) of 1:4 were found to be the optimum conditions to report more than 98% of uranium content in green phosphoric acid to the aqueous phase as uranyl tricarbonate complex (UO 2 (CO 3 ) 3 ) 4- . By applying sodica decomposition upon the stripping carbonate solution using 50% sodium hydroxide, about 98% of uranium content was precipitated as sodium diuranate concentrate (Na 2 U 2 O 7 ). The chemical analysis using atomic absorption spectrometry (Aas) showed a good agreement between the specification of the obtained uranium concentrate with the standard commercial specification of sodium diuranate concentrate. Further purification was achieved for the yellow cake by selective precipitation of uranium from the solution as uranium peroxide (UO 4 .2H 2 O) using 30% hydrogen peroxide. Finally the uranium peroxide precipitated was calcined at 450 degree C to obtain the orange powder uranium trioxide (UO 3 ). The chemical analysis of the final uranium trioxide

  1. Comprehensive geophysical survey technique in exploration for deep-buried hydrothermal type uranium deposits in Xiangshan volcanic basin, China

    International Nuclear Information System (INIS)

    Ke, D.

    2014-01-01

    According to recent drilling results, uranium mineralization has been found underground more than 1000 m deep in the Xiangshan volcanic basin, in where uranium exploration has been carried out for over 50 years. This paper presents a comprehensive geophysical survey technique, including audio magnetotelluric method (AMT), high resolution ground magnetic and radon survey, which aim to prospect deep-buried and concealed uranium deposits in Xiangshan volcanic basin. Based on research and application, a comprehensive geophysical technique consisting of data acquisition, processing and interpretation has been established. Concealed rock and ore-controlling structure buried deeper than 1000 m can be detected by using this technique. Moreover, one kind of anti-interference technique of AMT survey is presented, which can eliminate the interference induced by the high-voltage power lines. Result of AMT in Xiangshan volcanic basin is demonstrated as high-low-high mode, which indicates there are three layers in geology. The upper layer with high resistivity is mainly the react of porphyroclastic lava. The middle layer with low resistivity is metamorphic schists or dellenite whereas the lower layer with high resistivity is inferred as granite. The interface between middle and lower layer is recognized as the potential zone for occurrence of uranium deposits. According to the corresponding relation of the resistivity and magnetic anomaly with uranium ore bodies, the tracing model of faults and interfaces between the different rocks, and the forecasting model of advantageous area for uranium deposits have been established. In terms of the forecasting model, some significant sections for uranium deposits were delineated in the west of the Xiangshan volcanic basin. As a result, some achievements on uranium prospecting have been acquired. High grade economic uranium ore bodies have been found in several boreholes, which are located in the forecasted zones. (author)

  2. Characteristics of chlorites from Huangnihu uranium deposit and their implications in uranium metallogenic environment in the southern part of Jiangxi Province

    International Nuclear Information System (INIS)

    Hu Zhihua; Lin Jinrong; Pang Yaqing; Gao Fei; Rong Jiashu; Guo Shuying

    2013-01-01

    Chlorite is genetically related to uranium mineralization in Huangnihu uranium deposit. By means of microscopic and electronic microprobe analysis, the authors investigated chemical composition and texture of the chlorite and found that chlorite in Huangnihu deposit has the following characteristics: 1. they are mainly Fe-rich chlorite composed of chamosite and brunsvigite, of which chemical composition is mainly affected by mud and mafic rock; 2. the Fe-Mg and Al"I"V-Si substitution dominates the octahedral substitution supplemented by Al"V"I-Fe substitution; the oolitic chlorite and biotite feinted chlorite closely associated with uranium were formed at temperatures of 216.23 ∼ 256.73℃ (average 228.6℃). The chemical composition and forming environment of the oolitic chlorite and biotite illusion chlorite suggests that Huangnihu uranium deposit is a low-moderate temperature hydrothermal uranium deposit formed in a reducing environment and iron-rich formation, the ore-forming fluid mainly originated from shale rock, partly from ultramafic or mafic liquid. (authors)

  3. Oxidizing attack process of uranium ore by a carbonated liquor

    International Nuclear Information System (INIS)

    Maurel, Pierre; Nicolas, Francois.

    1981-01-01

    A continuous process for digesting a uraniferous ore by oxidation with a recycling aqueous liquor containing alkaline carbonates and bicarbonates in solution as well as uranium in a concentration close to its solubility limit at digestion temperature, and of recuperation of the precipitated uranium within the solid phase remaining after digestion. The digestion is carried out by spraying oxygen into the hot reactional medium in order not only to permit oxidation of the uranium and its solubilization but also to ensure that the sulphides of impurities and organic substances present in the ore are oxidized [fr

  4. Sandstone uranium deposits: analogues for surf disposal in some sedimentary rocks

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1987-01-01

    Sandstone uranium deposits are well suited as analogs for SURF. These deposits typically occur as tabular or lensoid masses of uraniferous sandstone, commonly where the argillaceous mineral and organic content is high. Primary minerals consist of pitchblende and/or coffinite, with possibly some urano-organic phases as well. The ore is usually associated with authigenic ferromagnesian clay minerals, such as chlorite and/or authigenic illite and/or mixed layer smectite-illite; and with pyrite ± jordisite ± seleniferrous species ± calcite. Organic matter is usually associated with the ore. The clay minerals in the ore zones are commonly vanadiferrous. The genesis of the sandstone uranium deposits is now fairly well understood and allows semi-quantitative estimates to be placed on behaviour of analog-elements for many constituents of SURF (or HLW). Prior to mineralization, oxidized species of U, V, Se, Mo, As are carried together as oxyanions; these species precipitate in a restricted range of Eh-pH when reducing conditions are met. Concomitant with removal of these species, due to formation of reduced, insoluble species, several other elements of interest are concentrated in the ore zones as well. Chalcophile elements, such as Cu, Co, Mn, Zn, Cd, Sb, and others are fixed in authigenic sulfide phases, and the alkalis Rb, K, and Cs are fixed in the authigenic illite and illitic mixed layer clays. The alkaline earth elements Sr and Ba are commonly fixed in sulfate-rich rock. The rare earth elements (REE) are incorporated into authigenic clay minerals or into oxy-hydroxide phases. (author)

  5. Prospecting ideas for mesozoic granite-type, volcanics-type and exo-contact-type uranium deposits in South China. Pt.1

    International Nuclear Information System (INIS)

    Yu Dagan

    2001-01-01

    The Mesozoic uranium ore-formation process in South China resulted from the intense volcanic magmatism, the crust-mantle interaction and the fluidization in Yanshanian period, and there is great prospect for large-scale uranium concentration and ore-formation. Therefore, during the prospecting for Mesozoic granite-type, volcanics-type and exo-contact-type uranium deposits it is necessary to introduce deep-source metallogenic theory, to 'desalt' metallogenic theory of epithermal activation, to fully realize that uranium deposits may be formed not only at shallow depth, but also in conditions of deep-source, great depth and high temperature, as well as in environments of deep-source, shallow depth and median temperature, to give emphasis to the early-stage (130-95 Ma) uranium mineralization, to break the man-made boundary in prospecting for uranium only based on host rock type, to strengthen the research on Cretaceous magmatic system

  6. Possible application of underground leaching of uranium in ''sandstone'' deposits by drilling method

    International Nuclear Information System (INIS)

    Bareja, E.

    1988-01-01

    Underground leaching as the method for excavation of uranium from its sandstone deposits is applied in many countries. A preliminary examination of a possible use of this method to sandstone deposits in Poland suggests it to be analysed against the uranium mineralization, noted within sediments of the Lower Triassic age in the Peribaltic Syneclise in the Krynica Morska - Paslek area. Before a definite decision on such exploitation of uranium, geologic and hydrogeologic conditions should be studied of individual uranium-bearing beds, particularly their permeability and insulation by impermeable claystone series as well as extraction of uranium from its bearing sandstones. The depth at which uranium-bearing beds occur, forms a very important item. The depth at which uranium ores described in literature and exploited by this method occur, does not exceed 700 m. 7 refs. (author)

  7. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes

    International Nuclear Information System (INIS)

    Xuegang Wang; Zhongkui Zhou

    2017-01-01

    We evaluated uranium bioleaching from low-grade, granite-type uranium ore using mixed acidophilic microbes from uranium mine leachate. A 4854-ton plant-scale heap bioleaching process achieved sustained leaching with a uranium leaching efficiency of 88.3% using a pH of 1.0-2.0 and an Fe"3"+ dosage of 3.0-5.5 g/L. Acid consumption amounted to 25.8 g H_2SO_4 kg"-"1 ore. Uranium bioleaching follows a diffusion-controlled kinetic model with a correlation coefficient of 0.9136. Almost all uranium was dissolved in aqueous solution, except those encapsulated in quartz particles. Therefore, heap bioleaching by mixed acidophilic microbes enables efficient, economical, large-scale recovery of uranium from low-grade ores. (author)

  8. Clay minerals in uraniferous deposit of Imouraren (Tim Mersoi basin, Niger): implications on genesis of deposit and on ore treatment process

    International Nuclear Information System (INIS)

    Billon, Sophie

    2014-01-01

    Nigerian uraniferous deposits are located in carboniferous and Jurassic formations of Tim Mersoi basin. AREVA is shareholder of 3 mine sites in this area: SOMAIR and COMINAK, both in exploitation since 1960's and IMOURAREN, 80 km further South, whose exploitation is planned for 2015. Mineralization of Imouraren deposit is included in the fluvial formation of Tchirezrine 2 (Jurassic), composed of channels and flood plains. Facies of channel in-fillings range from coarse sandstones to siltstones, while overflow facies are composed of analcimolites. Secondary mineralogy was acquired during 2 stages: 1- diagenesis, with formation of clay minerals, analcime, secondary quartz and albites, and 2- stage of fluids circulations, which induced alteration of detrital and diagenetic minerals, formation of new phases and uranium deposition. A mineralogical zoning, at the scale of deposit resulted from this alteration. The heterogeneity of Tchirezrine 2, at the level of both facies and mineralogy, is also evidenced during ore treatment, as ore reacts differently depending on its source, with sometimes problems of U recovery. Ore treatment tests showed that analcimes and chlorites were both penalizing minerals, because of 1- the sequestration of U-bearing minerals into analcimes, 2- their dissolution which trends to move away from U solubilization conditions (pH and Eh) and to form numerous sulfates, and 3- problems of percolation. A detection method of analcime-rich ores, based on infrared spectroscopy, was developed in order to optimize ore blending and so to reduce negative effects during ore treatment process. (author)

  9. New technology of bio-heap leaching uranium ore and its industrial application in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Meng Yunsheng; Liu Jian; Meng Jin; Li Weicai; Xiao Jinfeng; Chen Sencai; Du Yuhai; Huang Bin

    2006-10-01

    Bioleaching mechanism of uranium ore is discussed. Incubation and selection of new strain, biomembrane oxidizing tank--a kind of new equipment for bacteria culture and oxidation regeneration of leaching agent are also introduced. The results of industrial experiment and industrial production are summarized. Compared with conventional heap leaching, bioleaching period and acid amount are reduced, oxidant and leaching agent are saved, and uranium concentration in leaching solution is increased. It is the first time to realize industrial production by bio-heap leaching in Chinese uranium mine. New equipment-biomembrane oxidizing tank give the basis of bio-heap leaching industrial application. Bio-heap leaching process is an effective technique to reform technique of uranium mine and extract massive low-content uranium ore in China. (authors)

  10. Species of organic matter and their role in the formation of statiform uranium ores

    International Nuclear Information System (INIS)

    Goleva, P.K.; Uspenskij, V.A.

    1983-01-01

    Results of investigation of organic mather (OM) from stratiform uranium ore manifestation in sedimentary Upper Proterozoic rocks of large trough with caledonian folded base are given. Role of OM in concentration of uranium-ore formations of two ore-bearing horizons, presented by rocks of facies of large lakes (''lacustrine'') and continental deltas (''alluvial'') was clarified. Characteristics of OM of rocks of ''lacustrine'' and ''alliivial'' facies, OM types, chemical composition of OM of ''alluvial'' horizon rocks, om spectrograms and diffractograms are presented. It was established that OM of ''lacustrine'' and ''alluvial'' ore-bearing horizons are presented by different morphological and genetic types, which played different roles in t.he process of uranium ore-formation. Faneiy dispersed OM, related to the category of oxidized lower kerites is present in ''lacustrine'' horizon. Ore uranium-arsenide nuneral association substitutes OM of early generation. The latest OM generation is related to epigenetic thread veinlet of dolomite and barite. In ''alluvial'' horizon OM is present in the form of carbonized vegetative residues+ ciosely assocaating with sulfides of different metals, and is presented by high-moiecular carbocyctnc hydroxy compouds. Uranium of carbonized vegetative residues is in finely dispersed state; the form of its fixation was not established. It is proposed that the major part of uranium was sorbed by OM during sedimentogenesis

  11. Improvements on heap leaching process for a refractory uranium ore and yellow cake precipitation process

    International Nuclear Information System (INIS)

    Feng Jianke

    2013-01-01

    Some problems such as formed harden matrix, ore heap compaction, poor permeability, and agglomeration of absorption resin occur during extracting uranium from a refractory uranium ore by heap leaching process. After some measures were taken, i.e. spraying a new ore heap by low concentration acid, two or more ore heaps in series leaching, turning ores in ore heap, the permeability was improved, acid consumption was reduced. Through precipitate circulation and aging, the yellow cake slurry in amorphous or microlite form was transformed to crystal precipitate, thus uranium content in yellow cake was improved, and water content in yellow cake was lowered with good economic benefits. (author)

  12. Uranium and environment in Kazakstan

    International Nuclear Information System (INIS)

    Fyodorov, G.; Bayadilov, E.; Zhelnov, V.; Akhmetov, M.; Abakumov, A.

    1997-01-01

    Kazakstan's data on uranium as a state report has been included for the first time in the Red Book. Therefore the report contains two large themes presented in Suggested Topics for Papers: Country report, based on the 1995 NEA/IAEA Red Book Questionnaire and environmental impact regulations. Kazakstan is considered as one of the world leaders on uranium supply. In Kazakstan there are many well known types of deposits but the main one is the sandstone-rollfront type. That type is represented by the group of deposits of the Syr-Darya uranium ore province. Deposits of that type include that main part of uranium ore of the Republic of Kazakstan and supply almost all of its uranium mining. At the large three enterprises the uranium is extracted by underground leaching. The mining method of uranium extraction is stopped. Because of the poor development of nuclear energy, Kazakstan's need for uranium is not very high. Presence of a large amount of cheap and technological uranium ores allow the Republic to export uranium. There are plans to increase uranium mining and perhaps to establish new mining facilities including joint-ventures. More than 50 uranium deposits are known in Kazakstan. During prospecting and exploitation of these deposits a large amount of rad wastes in the form of ore dumps and tailings were generated. They have a substantial influence on the environment. Moreover, near the sandstone-rollfront type uranium deposits the large amount of underground water has been contaminated by radionuclides. Special investigation of this phenomenon is necessary. In Kazakstan there are the rad waste disposal conception and contaminated earth recultivation regulations. At present ''The Rad Wastes Management Law'' is submitted for approval. (author). 2 figs

  13. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    Science.gov (United States)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water

  14. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang

    2010-01-01

    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  15. Catahoula formation of the Texas coastal plain: origin, geochemical evolution, and characteristics of uranium deposits

    International Nuclear Information System (INIS)

    Galloway, W.E.; Kaiser, W.R.

    1979-01-01

    Uranium was released from volcanic glass deposited within the Catahoula through early pedogenic and diagenetic processes. Pedogenesis was the most efficient process for mobilizing uranium. Original uranium content in fresh Catahoula glass is estimated to have averaged at least 10 ppM; about 5 ppM was mobilized after deposition and made available for migration. Uranium was transported predominantly as uranyl dicarbonate ion. Chlorinity mapping reveals modern ground-water flow patterns. Six utranium deposits representative of the ores were studied. Uranium-bearing meteoric waters were reduced by pre-ore stage pyrite formed by extrinsically introduced fault-leaked sulfide or intrinsically by organic matter. Uranium was concentrated in part by adsorption on Ca-montmorillonite cutans, amorphous TiO 2 , and/or organic matter followed by uranyl reduction to U 4+ in amorphous uranous silicates. Clinoptilolite is not correlative with mineralization. Calcite is pervasive throughout host sands but shows no relationship to uranium mineralization. Presence of marcasite and uranium together at the alteration front strongly supports an acid pH during Catahoula mineralization. Maximum adsorption and minimum solubility of uranium occur at pH 6 in carbonate-rich waters. Log activity ratios of individual waters supersaturated with respect to montmorillonite, taken from montmorillonite-clinoptilolite activity diagrams, show positive correlation with uranium mineralization. High Ca 2+ , Mg 2+ , Al(OH) 4 - , and H + activities promote the formation of montmorillonite relative to clinoptilolite. High saturation ratios for montmorillonite show fair correlation with mineralization. The mineral-solution equilibria approach is a potential method of geochemical exploration. 56 figures, 8 tables

  16. The basement control on Xiazhuang uranium ore field in south sector of Wuyi tumescence and relevant geological problems

    International Nuclear Information System (INIS)

    Xu Dazhong; Xue Zhenhua

    1994-01-01

    Based on the two rift-trench tectonic framework in Wuyi as well as its adjacent areas proposed previously, this study takes Yingtan-Nancheng-Anyuan-Heyuan tenacity fracture belt as the geological boundary between two types of uranium deposits (granite and volcanic rock). It is noted that the distinct function of Caledonian movement in this area is the formation of the linear migmatization and granitization on the basis of rift and tumescence basement. Simultaneously, according to the new discovery of hypometamorphic rock and large scaled ductile mylonitized zone in Xiazhuang uranium ore field and its adjacent area, it is concluded that the Xiazhuang uranium ore field is the result of multiple tectonism and magmatic activations on the Caledonian hot dome on the basis of ancient basement. Because the uranium mineralization is present in two kinds of rocks (ductile and brittle), it is suggested that the types of mineralization in Xiazhuang can be considered in order to guide the further prospecting

  17. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1. [490 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  18. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    Science.gov (United States)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  19. South African gold and uranium ore mining in 1976

    International Nuclear Information System (INIS)

    Hentrich, W.

    1977-01-01

    1976 was a difficult year for the South African gold and uranium ore mining industry, the region of Witwatersrand (Transvaal province) producing some 75% of all the gold mined in the western world besides being an important producer of uranium oxide. Despite the gold production, declining since 1971, not showing a downward tendency anymore as far as the quantity was concerned, the economic result, however, deteriorated as a consequence of continuously falling gold prices, but also on account of the inflationary rise in wages and the prices for energy and materials. Much higher prices for uranium oxide, which some mines produce as interim products from the 'degolded' slurries of their gold ore leaching plants, improved the economic overall result only to a small degree. (orig.) [de

  20. Geochemical prospecting techniques for ore deposits in periglacial regions

    International Nuclear Information System (INIS)

    Pitul'ko, V.M.

    1977-01-01

    Necessity and prospects of the implementation of geochemical methods of search in periglacial regions are discussed. The behaviour of chemical elements under the conditions of oxide and sulphate cryogenic topographies whose development has common regularities is analyzed. According to the specificity of migration the observed elements have been divided into four groups: active, mobile, low-mobile and inert migrants. Uranium which is present in ores in the form of pitchblende in oxide zones of the oxidation is actively redistributed. In zones of the oxidation of rare metal metasomatites connected with alkalic ultrabasic rocks only that part of U is mobile which being released from pyrochlore forms the regenerated uranium black and the partial enrichment of the iron gossan. Th like other elements of the 4-th group in all oxidation zones is observed to accumulate in minerals - concentrators: thorite, pyrochlore and so on. A diagram is plotted which characterizes the migration of elements whithin aureole landscapes as well as in automonous and dependent topographies of ore-free areas. The complex nature of secondary aureoles displays the most complete anomalous spectrum of elements - indicators of mineralization. The table of the most typical elements - indicators of the secondary scattering of some endogenic deposits of the cryolitic zone is given

  1. Permeability restoration and lowering of uranium leakage from leached ore beds

    International Nuclear Information System (INIS)

    Burgman, H.A.; Grant, D.C.

    1981-01-01

    The injection of an ammonium sulfite or bisulfite solution increases the permeability of an uranium ore bed that has suffered permeability losses during the in-situ mining of uranium with an alkaline leach solution containing a peroxide or dissolved oxygen oxidant. Such an injection recovers much of the lost formation permeability, thus decreasing costs and effort required to put needed restoration solutions or further leach solutions through the ore bed. In addition, uranium contamination of the ground water normally occurring after cessation of leaching is significantly lowered by such injection

  2. Treatment of waste water from uranium ore preparation

    International Nuclear Information System (INIS)

    Klicka, V.; Mitas, J.; Vacek, J.

    1976-01-01

    An improved closed-loop process is described for treating waste water resulting from chemical extraction of uranium from ore. The water is evaporated to form a concentrated solution and is then subjected to crystallization of the least soluble salt component thereof via further evaporation, or cooling or simultaneous cooling and a partial vacuum. The crystallized component is then separated from the mother liquor, whereupon the latter is fed back after removal of residual uranium therefrom to the extraction installation to replace the acids used therein. Additionally, the pure condensate produced during evaporation of the waste waters is employed as a replacement for the fresh water employed in processing of the ore. 6 claims, 2 figures

  3. Analyzing regional geological setting of DS uranium deposit based on the extensional research of remote sensing information

    International Nuclear Information System (INIS)

    Liu Dechang; Ye Fawang; Zhao Yingjun

    2006-01-01

    Through analyzing remote sensing image, a special geological environment for uranium ore-formation in Dongsheng-Hangjinqi area consisting of fault-uplift, southern margin fault and annular structure is discovered in this paper. Then the extensional researches on fault-uplift, southern margin fault as well as annular structure are made by using the information-integrated technologies to overlap the remote sensing information with other geoscientific information such as geophysics, geology and so on. Finally, the unusual regional geological setting is analyzed in the view of uranium ore formation, and its influences on the occurrence of DS uranium deposit are also discussed. (authors)

  4. Rirang uranium ore processing: continuous solvent extraction of uranium from Rirang ore acid digestion solution

    International Nuclear Information System (INIS)

    Riza, F.; Nuri, H. L.; Waluya, S.; Subijanto, A.; Sarono, B.

    1998-01-01

    Separation of uranium from Rirang ore acid digestion solution by means of continuous solvent extraction using mixer-settlers has been studied and a mixture of 0.3 M D2EHPA and 0.075 M TOPO extracting agent and kerosene diluent is employed to recover and separate uranium from Th, RE, phosphate containing solution. The experiments have been conducted batch-wise and several parameters have been studied including the aqueous to organic phase ratio, A/O, the extraction and the stripping times, and the operation temperature. The optimum conditions for extraction have been found to be A/O = 2 ratio, five minute extraction time per stage at room temperature. The uranium recovery of 99.07% has been achieved at those conditions whilst U can be stripped from the organic phase by 85% H 3 PO 4 solution with an O/A = 1 for 5 minutes stripping time per stage, and in a there stage operation at room temperature yielding a 100% uranium recovery from the stripping process

  5. Advances in the exploration model for Athabasca unconformity uranium deposits

    International Nuclear Information System (INIS)

    Wheatley, K.; Murphy, J.; Leppin, M.; Cutts, C.; Climie, J.A.

    1997-01-01

    This paper covers the genetic model of ore formation and exploration techniques Uranerz Exploration and Mining is presently using to explore for unconformity uranium deposits in the deeper parts of the Athabasca Basin. The main objectives of this paper are: 1) to present a genetic model for unconformity uranium deposits which is being used in our current exploration strategy, and 2) to present the sequence of exploration techniques used by Uranerz to explore for uranium in areas of the Athabasca Basin with up to 1000 m of sandstone cover. The Athabasca unconformity deposits are located in northern Saskatchewan, Canada. Within the Precambrian Athabasca Basin, exploration companies have discovered 18 uranium deposits. These contain more than 500 million kilograms of uranium, with average grades ranging from 0.3 to 12%. Uranerz discovered the Key Lake deposits in 1975, currently the largest and richest open pit uranium mine in the world. Uranerz also holds interests in the Rabbit Lake, Midwest Lake and McArthur River deposits, all in Saskatchewan, and is also actively exploring for uranium worldwide. The first discovery in the eastern Athabasca Basin was in 1968 at Rabbit Lake, followed by Key Lake in 1975. Both deposits had surficial indicators, such as radioactive boulders, strong geochemical anomalies in the surrounding lakes and swamps, and well-defined geophysical signatures. After the Key Lake discovery, an exploration model was devised which incorporated the underlying graphitic horizon and its strong electro-magnetic signature. Since then, there have been numerous new discoveries made by systematically drilling along these electro-magnetic conductors. The advancements in geophysical and geochemical techniques have led to discoveries at increasing depths. In 1988, the McArthur River deposit was discovered at a depth of 500 m. (author). 6 refs

  6. Study on the relationship between uranium and phosphor in deposit No.60

    International Nuclear Information System (INIS)

    Zhang Wanliang

    1997-01-01

    The deposit No.60 is a large uranium-phosphor one located at the eastern margin of the volcanic basin No.65, and controlled by the stratigraphic horizon of the middle-lower part of the third member of the Ehuling Formation composed of volcaniclastic and terrigeneous classic rocks. Uranium and phosphor were preliminarily concentrated together during the formation of ore-hosting layer, and then reactivated, transported and reprecipitated together under the action of tectonothermal process, leading to the concentration of uranium in cellophane in the adsorption state. Uranium and phosphor are closely associated with the correlation coefficient of up to 0.8-0.9

  7. Distribution characteristics of Shihongtan uranium deposits calcareous sandstone and discussion on their genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Jia Heng; Xu Gaozhong; Li Zhanyou

    2007-12-01

    It is considered that the calcareous sandstone appear at layer along of a bunch of pear lens on and off, localled near up and down surface of sandbody or washed surface, has sandstone of more macro-grain and more gradation through statistics and analysis of calcareous sandstone in goal layer in Shihongtan uranium deposits. The calcareous sandstone accumulation thickness chorogram demonstrated that the calcareous sandstone centralized distribution in the ore body growth area, thus it can be seen, in the oxidation reduction intermediate belt the calcareous sandstone forms with the uranium mine has the certain origin relation. Choropleth map of summed thickness of calcareous sandstone deserves that it mainly appear in area of uranium body and related cause of formation of ore body of interlayer deacidizing--oxidation belt. (authors)

  8. Working and benefit project by the in-situ leaching of the copper-uranium ore of the deposit named Luz del Cobre, in the municipality of Soyopa, state of Sonora, Mexico

    International Nuclear Information System (INIS)

    Parga P, J.de J.

    1976-01-01

    This research was carried out with the object to recover the existing uranium in the copper-uranium deposit of Luz del Cobre located at 1300 Kms. approximately of the NW of Mexico City in the state of Sonora this deposit is geologically formed by a partially mineralized chimney which contains 572,732 tons of uranium ore with an average of 362.26g. of U 3 O 8 per ton, which represents 207,374 tons of U 3 O 8 in situ. To recover the uranium from this deposit, the only technical and economical possibility which presents a real interest is the system of leaching in situ. This operation will consist in the selective dissolution of the copper and uranium through leaching solution with a pH varying from 2.2 to 2.5, leaving the gangue on the ground and collecting the enriched solutions at the lower level of the mine, precipitating the copper subsequently through scrap iron and recovering the uranium from the tails of the copper precipitation plant through an ionic interchange process in counter current and its subsequent elution solvent extraction, reextraction and precipitation. This system makes possible to recover an uranium concentrate up to 98% of U 3 O 8 and practically free from impurities. The production cost would cost exceeding $300.00 Mexican currency per Kg of U 3 O 8 . (author)

  9. Seismicity induced by mining operations in the surrounding of the uranium ore mine Schlema-Alberoda

    International Nuclear Information System (INIS)

    Wallner, Olaf; Hiller, Axel

    2013-01-01

    The uranium mine Schlema-Alberoda of the Wismut GmbH (Chemnitz, Federal Republic of Germany) is situated in the Westerzgebirge between the villages Aue, Schneeberg and Hartenstein. This 22 km 2 large area contains the villages Bad Schlema with the districts Oberschlema, Niederschlema and Wildbach as well as the district Alberode of the village Aue. The most important waters are the Zwickauer Mulde flowing through this territory from the south to the north. This territory can be designated as a densely populated low mountain range landscape being characterized by mining operations for centuries. Subsequently to the year 1945, the former Soviet 'Saxonian mining administration' started the first explorations on uranium ores inter alia in the area around Schneeberg and Schlema. In the year 1946, the intensive exploration and exploitation began in the health resort Oberschlema well-known by the existence of water containing radium. Up to the year 1959, the part deposit Oberschlema was dismantled. The dismantling ranged till to a depth of 750 m. With the expansion of the explorations in north-western direction, in 1948 the first uranium containing corridors of the part deposit Niederschlema-Alberoda was verified. The mining activities began in the year 1949 and culminated in the midst of the 1960ies with an annual production of more than 4,000 tons of uranium. The 1,800 m floor level as the deepest floor level was reached in the year 1986. A total of 49.5 million cubic meters of rocks was dissolved, and a total of 80,500 tons of uranium ores was mined. These were nearly 35% of the total production of the former Soviet-German public limited company Wismut (SDAG Wismut).

  10. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    International Nuclear Information System (INIS)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States

  11. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  12. Types of tectonic structures, sedimentary volcanogenetic formations of a mantle, favourable processes for exogenetic and polygenetic uranium deposits formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.

    1985-01-01

    Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization

  13. Genesis of uranium deposits of the Tono Mine, Japan

    International Nuclear Information System (INIS)

    Katayama, N.; Kubo, K.; Hirono, S.

    1974-01-01

    The uranium deposits of the Tono mine, Gifu Prefecture, Japan, occur in the basal part of the Toki group of Miocene age, and are distributed in the tributaries or at the head of channels on the plane of unconformity under the formation. These features characterize the basal ground-water type of uranium deposit, and they are unique in that their typical ore mineral is a zeolite of the heulandite-clinoptilolite group, uranium being adsorbed in it. The paper presents the history of formation of the Tsukiyoshi deposits, the most intensely explored in the Tono mine. The matrices of conglomerates and sandstones of the Toki group usually contain tuffaceous material, which has been montmorillonitized or zeolitized diagenetically. The conduit of uranium-bearing ground waters that migrated from the basement granites into the Tertiary sediments was controlled by the impermeable barriers, which are rocks in which montmorillonite predominated, or by the Tsukiyoshi fault, as well as by channel structures. Where the waters became rather stagnant, uranium was adsorbed in zeolite from them. Enrichment of uranium further proceeded locally as follows. Pyrite was oxidized to produce sulphuric acid solution which leached the uranium that had been adsorbed in zeolite. The pH of the uranium-rich solution became higher and higher in the course of migration and, as soon as it reached about 4, the uranium in the solution was again adsorbed in zeolite, the uranium content of which may have been enriched up to 0.9%. Coffinites have been formed where uranium was accumulated over the adsorption capacity of zeolite or where strongly reducing conditions were maintained by carbonaceous matter. (author)

  14. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jinsong

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs.

  15. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    International Nuclear Information System (INIS)

    Liu Jinsong.

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs

  16. New exploration results of the Elkon uranium district deposits and prospects for their development

    International Nuclear Information System (INIS)

    Danilov, A.; Krasnykh, S.; Zhuravlev, V.; Kuzmin, E.; Tarkhanov, A.

    2014-01-01

    The Elkon Uranium District (EUD) is located in the Republic of Sakha (Yakutia) and is of strategic importance for the Russian uranium industry. It comprises more than 40% of the entire Russian uranium mineral resource and 4% of the world's uranium resources. Drilling and underground mining completed in 1961-1986 amounted to over 600,000 m and 52,500 m, respectively. The performed activities resulted in the discovery of the Yuzhnaya Zone and the Severnoe deposits. The Yuzhnaya Zone uranium resources (Measured + Indicated + Inferred) amounted to 257.8 kt (grade 0.146%). Uranium mineralisation contains 141 t of gold, 1784 t of silver and 41,5 kt of molybdenum. The Severnoe Inferred resources have been estimated at 58.6 kt (grade 0.149%). During the period of 2007-2011 over 100,000 m of drilling and associated activities was completed within the Yuzhnaya Zone and Severnoe deposits along with optimisation of ore mining and processing methods, and geological and economic revaluation of the deposits.

  17. The large uranium deposits, their position in the geological cycle, their distribution in the world and their economic importance

    International Nuclear Information System (INIS)

    Cuney, M.; Cathelineau, M.; Nguyen Trung, C.; Pagel, M.; Poty, B.; Aumaitre, R.; Leroy, J.; Ruhlman, F.

    1994-01-01

    The nine types of geological formations with uranium deposits (superficial, precambrian conglomerates, sandstones...) are reviewed. U ore deposits are generally the product of successive enrichments during the geological cycle. Two main mechanisms control U fractionation during the cycle: partial melting followed or not by fractional crystallization and redox reactions. Most of the U ore deposits were formed in relation with major geodynamic events. The most interesting deposits from an economical point of view are the Proterozoic unconformity related deposits which contain very large reserves at a much higher grade than in other deposits

  18. More light on the U clan. [Uranium behaviour in complex ores

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.A. (Potchefstroom Univ. for C.H.E. (South Africa). Dept. of Geology)

    1983-07-01

    A thorough knowledge of the geochemistry of uranium is necessary for the exploration and beneficiation of this mineral. At present we lack knowledge of the behaviour of uranium minerals in complex ores. This article deals with the geochemistry of uranium, its group identity, uranium minerals and the extraction mineralogy.

  19. User's guide for the Uranium Ore Reserve Calculation System (URAD)

    International Nuclear Information System (INIS)

    1988-12-01

    The URAD (Uranium Reserves and Data) system consists of four computer programs designed to facilitate the evaluation of uranium ore reserves analysis and the handling of basic uranium assay data. URAD is designed specifically as a training tool for anyone unfamiliar with the methodology, data requirements, and/or general computer applications in the field of uranium ore reserves analysis. However, it can effectively be used in a 'production' environment involving considerable amounts of data. The resulting programs are written in Microsoft FORTRAN (Version 3.1) and may be run on any IBM-compatible microcomputer under DOS 2.1 (or later). Only a basic working knowledge of DOS 2.1 is needed to maintain the system and run the programs. This guide includes the overview of the URAD system, the review of sample data and a complete description of the file structure and sample type formats of the basic sample data files. Program URDAT explains the initial processing of the primary UDAT files to obtain standard output listings and gamma-log interpretations of radiometric data, and to create intermediate UDAT files which are used by the ore reserves programs - RESUV, ORSAC, and SCOR. Figs and tabs

  20. Geology of Crownpoint Sec. 29 uranium deposit, McKinley County

    International Nuclear Information System (INIS)

    Wentworth, D.W.; Porter, D.A.; Jensen, H.N.

    1980-01-01

    The Crownpoint Sec. 29 deposit, located in the west-central part of the Grants mineral belt, represents a relatively recent uranium discovery in the Westwater Canyon Member (Jurassic) of the Morrison Formation. This deposit, estimated as containing up to 10 million pounds of uranium oxide, occurs in four vertically separate sandstone units. The average depth of the ore mineralization is approximately 2,000 ft (610 m) below the ground surface. Present-day structure of the Crownpoint Sec. 29 area is relatively simple and consists of gentle north-northeast-dipping strata with no known faulting. This deposit is located in an east-southeast-trending Westwater Canyon depocenter, whose course is believed to have been influenced by subtle Jurassic structure, which was penecontemporaneous with sedimentation. The deposit has been delineated by drilling on 200-ft (60-m) centers, involving approximately 348 holes and is awaiting shaft sinking and mine development

  1. Uranium exploration, mining and ore enrichment techniques

    International Nuclear Information System (INIS)

    Fuchs, H.D.; Wentzlau, D.

    1985-01-01

    The paper describes the different types of uranium deposits and their importance. It is shown that during the present depressed uranium market situation, mainly high grade deposits such as unconformity-related deposits can be mined economically. The different successive exploration steps are outlined including methods used for uranium. Uranium mining does not greatly differ from normal mining, but the uranium metallurgy needs its own specialized but already classic technology. Only a relative small amount of uranium can be expected from projects where uranium is produced by in situ leach methods or by extraction from phosphoric acid. A short summary of investment costs and operating costs is given for an average uranium mine. The last chapter deals with the definition of different reserve categories and outlines the uranium reserves of the western world including the uranium production (1983) and the expected uranium production capacity for 1985 and 1990. (orig.) [de

  2. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Serebrennikov, V.S.; Dorofeeva, V.A.

    1980-01-01

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO 3 - and CO 3 2- ions, promoting uranium transfer into solution

  3. Uranium-Series Disequilibria in the Groundwater of the Shihongtan Sandstone-Hosted Uranium Deposit, NW China

    Directory of Open Access Journals (Sweden)

    Xinjian Peng

    2015-12-01

    Full Text Available Uranium (U concentration and the activities of 238U, 234U, and 230Th were determined for groundwaters, spring waters, and lake water collected from the Shihongtan sandstone-hosted U ore district and in the surrounding area, NW China. The results show that the groundwaters from the oxidizing aquifer with high dissolved oxygen concentration (O2 and oxidation-reduction potential (Eh are enriched in U. The high U concentration of groundwaters may be due to the interaction between these oxidizing groundwaters and U ore bodies, which would result in U that is not in secular equilibrium. Uranium is re-precipitated as uraninite on weathered surfaces and organic material, forming localized ore bodies in the sandstone-hosted aquifer. The 234U/238U, 230Th/234U, and 230Th/238U activity ratios (ARs for most water samples show obvious deviations from secular equilibrium (0.27–2.86, indicating the presence of water-rock/ore interactions during the last 1.7 Ma and probably longer. The 234U/238U AR generally increases with decreasing U concentrations in the groundwaters, suggesting that mixing of two water sources may occur in the aquifer. This is consistent with the fact that most of the U ore bodies in the deposit have a tabular shape originati from mixing between a relatively saline fluid and a more rapidly flowing U-bearing meteoric water.

  4. Chemical treatment of uranium ores in France

    International Nuclear Information System (INIS)

    Mouret, P.; Sartorius, R.

    1958-01-01

    The various processes of chemical treatment of uranium ores, from the oldest to the more recent, are exposed, considering the following conditions: economics, geography, techniques and safety. The interest of obtaining a final concentrate as uranyl nitrate is discussed. (author) [fr

  5. Recent Pilot Plant Experience on Alkaline Leaching of Low Grade Uranium Ore in India

    Energy Technology Data Exchange (ETDEWEB)

    Suri, A. K; Ghosh, S. K.; Padmanabhan, N. P.H., [Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-15

    Uranium deposits in India are low grade and are relatively smaller in extent as compared to present worldwide commercial practice. So far, the vein type deposits of Singhbhum Thrust Belt (STB) are being exploited for meeting the Indian requirements of uranium. The deposits are currently processed by acid leaching in the mills located at Jaduguda and Turamdih near Jamshedpur in Jharkhand State of India. The deposits at Jaduguda and Narwapahar are being mined by underground mining and are processed in Jaduguda mill using airagitated Pachucas. The deposits at Banduhurang and Turamdih are being mined by open cast and underground mining respectively and are processed at Turamdih by acid leaching in mechanically agitated reactors. The occurrences of uranium in North East and Northern part of Kadapa basin are relatively moderate in size and are expected to be processed in the near future by acid leaching. Uranium is also found to occur near Tummalapalle in granitic and limestone host rocks in Southern part of Kadapa basin (Andhra Pradesh) and in Gogi in Bhima basin (Karnataka). The deposit in Tummalapalle is relatively lower in grade (≈ 0.042% U{sub 3}O{sub 8}) but is a reasonably large reserve, whereas that in Gogi is rich in uranium content (≈0.18% U{sub 3}O{sub 8}) but is relatively small reserve. Laboratory tests based on alkaline leaching have been carried out on both types of deposits. Studies for Tummalapalle deposits have been extended to pilot plant level and a complete flow sheet has been established with the regeneration and recirculation of lixiviants and recovery of sodium sulphate as a by-product. The process involves alkaline leaching under oxygen pressure in batch type and/or continuous leach reactor using sodium carbonate/bicarbonate as a leaching media and uranium is recovered as sodium diuranate. Based on the techno-economic evaluation of the process, an industrial scale mill (3 000 tonnes ore/day) is being set up at Tummalapalle in Andhra Pradesh

  6. Selection of mining method for No.3 uranium ore body in the independent mining area at a uranium mine

    International Nuclear Information System (INIS)

    Ding Fulong; Ding Dexin; Ye Yongjun

    2010-01-01

    Mining operation in the existed mining area at a uranium mine is near completion and it is necessary to mine the No.3 uranium ore body in another mining area at the mine. This paper, based on the geological conditions, used analogical method for analyzing the feasible methods and the low cost and high efficiency mining method was suggested for the No.3 ore body in the independent mining area at the uranium mine. (authors)

  7. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  8. Management of wastes containing radioactivity from mining and milling uranium ores in Northern Australia

    International Nuclear Information System (INIS)

    Costello, J.M.

    1977-01-01

    The procedures and controls to achieve safe management of wastes containing radioactivity during the mining and processing of uranium ores are mainly site-specific depending on the nature, location and distribution of the ore and gangue material. Waste rock and below-ore-grade material containing low levels of radioactivity require disposal at the mine site. In open-cut mining the material is generally stockpiled above ground, with revegetation and collection of run-off water. Some material may be used to backfill open cuts. Management of these wastes requires a thorough investigation of groundwater hydrology and surface soil characteristics to control dissipation of radioactive material. Dust containing radon and radioactive particulate is produced during ore milling, and dusts of ore concentrate are generated during calcination and packaging of the yellowcake product. These dusts are managed by ventilation and filtration systems; working conditions and discharges to atmosphere will be according to the Australian Code of Practice on Radiation Protection during Mining and Milling of Uranium Ores. The chemical waste stream from leaching and processing of the uranium ores contains most of the radioactivity resulting from radium and its decay products. Neutralized effluent is discharged into holding ponds for settling solids. The paper describes the nature of wastes containing radioactivity resulting from the mining and milling of uranium, and illustrates modern engineering practices and monitoring procedures to manage the wastes, as described in the Environmental Impact Statement produced by Ranger Uranium Mines Pty Ltd (RUM) for public hearings. (author)

  9. Alternative leaching processes for uranium ores

    International Nuclear Information System (INIS)

    Ring, R.J.

    1979-01-01

    Laboratory studies have been carried out to compare the extraction of uranium from Australian ores by conventional leaching in sulphuric acid with that obtained using hydrochloric acid and acidified ferric sulphate solutions. Leaching with hydrochloric acid achieved higher extractions of radium-226 but the extraction of uranium was reduced considerably. The use of acidified ferric sulphate solution reduced acid consumption by 20-40% without any detrimental effect on uranium extraction. The ferric ion, which is reduced during leaching, can be reoxidized and recycled after the addition of acid makeup. Hydrogen peroxide was found to be an effective oxidant in conventional sulphuric acid leaching. It is more expensive than alternative oxidants, but it is non-polluting, lesser quantities are required and acid consumption is reduced

  10. Geochronology and Fluid-Rock Interaction Associated with the Nopal I Uranium Deposit, Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    M. Fayek; P. Goodell; M. Ren; A. Simmons

    2005-07-11

    The Nopal I uranium (U) deposit, Pena Blanca District, Mexico, largely consists of secondary U{sup 6+} minerals, which occur within a breccia pipe mainly hosted by the 44 Ma Nopal and Colorados volcanic formations. These two units overly the Pozos conglomerate formation and Cretaceous limestone. Three new vertical diamond drill holes (DDHs) were recently drilled at Nopal I. DDH-PB1 with continuous core was drilled through the Nopal I deposit and two additional DDHs were drilled {approx}50 m on either side of the cored hole. These DDHs terminate 20 m below the current water table, thus allowing the detection of possible gradients in radionuclide contents resulting from transport from the overlying uranium deposit. Primary uraninite within the main ore body is rare and fine-grained ({approx}50 micrometers), thus making geochronology of the Nopal I deposit very difficult. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few {micro}m. Preliminary U-Pb results show that uraninite from the main ore body gives an age of 32 {+-} 8 Ma, whereas uraninite from the uraniferous Pozos conglomerate that lies nearly 100 m below the main ore body and 25 meters above the water table, gives a U-Pb age that is <1 Ma. Oxygen isotopic analyses show that uraninite from the ore body has a {delta}{sup 18}O = -10.8{per_thousand}, whereas the uraninite within the Pozos conglomerate has a {delta}{sup 18}O = +1.5{per_thousand}. If it is assumed that both uraninites precipitated from meteoric water ({delta}{sup 18}O = -7{per_thousand}), then calculated precipitation temperatures are 55 C for the uraninite from the ore body and 20 C for uraninite hosted by the Pozos conglomerate. These temperatures are consistent with previous studies that calculated precipitation

  11. Chemical treatment proceed of poor uranium content ores; Un procede de traitement chimique des minerais pauvres d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pagny, P [Societe Potasse et Engrais Chimiques (France)

    1955-07-01

    The needs in uranium constantly increased inciting to develop new chemical processes for the treatment of uranium ores. we searched processes that permit to get this element from ores poor in uranium, to a reasonable cost price. We used a sulphuric attack and a precipitation of uranium as phosphate uranate or pyrophosphate uranate to separate its from the different impurities. The process permitted to process ores contents of about 0,05% of uranium and to get an end product of sodium carbonate uranate containing 60 to 65% of uranium, with an acceptable cost price and an extraction yield situated between 90 and 95%. (M.B.) [French] Les besoins sans cesse accrus en uranium ont incite de developper de nouveaux procedes chimiques pour le traitement de minerais uranifere. nous avons recherche des procedes qui permettent d'obtenir cet element a partir de minerais pauvres en uranium, a un prix de revient raisonnable. Nous nous sommes orientes vers une attaque sulfurique et une precipitation de l'uranium sous forme de phosphate uraneux ou de pyrophosphate uraneux pour le separer des differentes impuretes. Le procede a permis de descendre a des teneurs en uranium de l'ordre de 0,05 % et d'obtenir un produit final a l'etat d'uranate de soude contenant 60 e 65 % d'uranium, avec un prix de revient acceptable et avec un rendement global d'extraction situe entre 90 et 95 %. (M.B.)

  12. Extraction of prospecting information of uranium deposit based on high spatial resolution satellite data. Taking bashibulake region as an example

    International Nuclear Information System (INIS)

    Yang Xu; Liu Dechang; Zhang Jielin

    2008-01-01

    In this study, the signification and content of prospecting information of uranium deposit are expounded. Quickbird high spatial resolution satellite data are used to extract the prospecting information of uranium deposit in Bashibulake area in the north of Tarim Basin. By using the pertinent methods of image processing, the information of ore-bearing bed, ore-control structure and mineralized alteration have been extracted. The results show a high consistency with the field survey. The aim of this study is to explore practicability of high spatial resolution satellite data for prospecting minerals, and to broaden the thinking of prospectation at similar area. (authors)

  13. Tectonic and sedimentological environments of sandstone-hosted uranium deposits, with special reference to the Karoo Basin of South Africa

    International Nuclear Information System (INIS)

    Le Roux, J.P.

    1985-01-01

    The principal tectonic and sedimentological settings for sandstone-hosted uranium deposits are described. Back-arc basins filled with post-Silurian, fluvial sediments bordering subduction zone magmatic arcs of calc-alkaline composition are considered favourable tectonic environments. The basins should be closed to prevent excessive oxidation of the sediments. Uranium deposits are concentrated near basin rims in the transition zone between uplift and basin subsidence, because of favourable sedimentary facies in those areas. Syn- and post-depositional deformation could have affected the localisation of uranium ore-bodies, while intrusive centres or uplifted arcs commonly have surrounding aprons of potential host rocks. Stratigraphic zoning is also related to source area tectonics and can be used to predict favourable sedimentary environments. Sedimentological processes had a direct influence on the permeability and carbonaceous matter content of sandstones and therefore have often controlled the localisation of ore-bodies. (author)

  14. A metallogenetic model of supergene extraction, releasing and enrichment in the mixed zone for granite-type uranium deposits in south China

    International Nuclear Information System (INIS)

    Li Minglian.

    1986-01-01

    The major geological features and their related geological events provide a base for the modelling of granite-type uranium deposits in South China. This paper presents a metallogenetic model to suggest the process of ore fluid circulation. There are two streams of ore fluids moving in the fracture zone: one comes from meteoric water and extracts uranium from wall rocks, flowing from top to bottom which is named uranium-loading fluid; another derives from the depth of the crust flowing from bottom to top and contains reducing matters as H 2 S etc. called uranium-releasing fluid. These two streams of solutions of different genesis, composition and character encountered and mixed at certain depth to precipitate the uranium. During the process the longitudinal circulation of underground thermal water in fracture zone results in the Bernoulli latitudinal circulation of ore fluids, which caused the ore fluids to ceaselessly flow into the minerogenetic location, where mineralization can be formed continuously in a certain period

  15. Study of a bacterial leaching program for uranium ores by Thiobacillus ferroxidans

    International Nuclear Information System (INIS)

    Garcia Junior, O.

    1989-01-01

    The development of a bacterial leaching program for uranium ores is studied. Three basic points are presented: isolation and purification of Thiobacillus ferroxidans, as well Thiobacillus thio oxidans; physiological studies of growth and respiratory metabolism of T. ferroxidans; uranium leaching from two types of ore by T. ferroxidans action, on laboratory, semi pilot and pilot scales. The bacterial leaching studies were carried out in shake flasks, percolation columns (laboratory and semi pilot) and in heap leaching (pilot). The potential of the ores studied in relation to bacterial action, was first showed in shake flask experiments. The production of H 2 S O 4 and Fe 3+ was a result of the bacterial activity on both ore samples containing pyrite (Fe S 2 ). These two bacterial products resulted in a high uranium and molybdenum extraction and a lower sulfuric acid consumption compared to the sterilized treatments. Similar results were obtained in percolation column at the same scale (lab). (author)

  16. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  17. Ore-forming environment identification and uranium metallogenic features in Manite depression

    International Nuclear Information System (INIS)

    Liu Zhengyi; Liu Wusheng; Jia Licheng; Shi Qingping; Peng Cong; Chen Hua

    2014-01-01

    By using limonitization, the important indicator of uranium ore-forming identification as the product of acid water transportation from the reducing environment to the oxidation environment, based on the specimen examination naked eye, microscopic identification, electron microscopy, electron microprobe were used to study the major elements, trace elements, organic carbon, total sulfur, uranium valence and uranium, thorium isotope "2"3"4U/"2"3"8U, "2"3"0Th/"2"3"2Th ratio, hydrocarbons especially clay mineral species and the total amount, V/(V + Ni) water stratification and bottom hydrodynamic environment and other factors, which can indicate the microphase environment of all types of rocks in Manite depression, and uranium ore-forming factors were identified and evaluation are discussed and some suggestions were submitted. (authors)

  18. The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies

    Science.gov (United States)

    Veríssimo, César Ulisses Vieira; Santos, Roberto Ventura; Parente, Clóvis Vaz; Oliveira, Claudinei Gouveia de; Cavalcanti, José Adilson Dias; Nogueira Neto, José de Araújo

    2016-10-01

    The Itataia phosphate-uranium deposit is located in Santa Quitéria, in central Ceará State, northeastern Brazil. Mineralization has occurred in different stages and involves quartz leaching (episyenitization), brecciation and microcrystalline phase formation of concretionary apatite. The last constitutes the main mineral of Itatiaia uranium ore, namely collophane. Collophanite ore occurs in massive bodies, lenses, breccia zones, veins or episyenite in marble layers, calc-silicate rocks and gneisses of the Itataia Group. There are two accepted theories on the origin of the earliest mineralization phase of Itataia ore: syngenetic (primary) - where the ore is derived from a continental source and then deposited in marine and coastal environments; and epigenetic (secondary) - whereby the fluids are of magmatic, metamorphic and meteoric origin. The characterization of pre- or post-deformational mineralization is controversial, since the features of the ore are interpreted as deformation. This investigation conducted isotopic studies and chemical analyses of minerals in marbles and calc-silicate rocks of the Alcantil and Barrigas Formations (Itataia Group), as well as petrographic and structural studies. Analysis of the thin sections shows at least three phosphate mineral phases associated with uranium mineralizaton: (1) A prismatic fluorapatite phase associated with chess-board albite, arfvedsonite and ferro-eckermannite; (2) a second fluorapatite phase with fibrous radial or colloform habits that replaces calcium carbonate in marble, especially along fractures, with minerals such as quartz, chlorite and zeolite also identified in calc-silicate rocks; and (3) an younger phosphate phase of botryoidal apatite (fluorapatite and hydroxyapatite) related with clay minerals and probably others calcium and aluminum phosphates. Detailed isotopic analysis carried out perpendicularly to the mineralized levels and veins in the marble revealed significant variation in isotopic

  19. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  20. New route for uranium concentrate production from Caetite ore, Bahia State, Brazil; dynamic leaching - direct precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: cmorais@cdtn.br; Gomiero, Luiz A.; Scassiotti Filho, Walter [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)]. E-mails: gomiero@inb.gov.br; scassiotti@inb.gov.br

    2007-07-01

    The common uranium concentrate production consists of ore leaching, uranium purification/concentration by solvent extraction and uranium precipitation as ammonium diuranate steps. In the present work, a new route of uranium concentrate production from Caetite, BA-Brazil ore was investigated. The following steps were investigated: dynamic leaching of the ground ore with sulfuric acid; sulfuric liquor pre-neutralization until pH 3.7; uranium peroxide precipitation. The study was carried out in bath and continuous circuits. In the dynamic leaching of ground ore in agitated tanks the uranium content in the leached ore may be as low as 100 {mu}g/g U{sub 3}O{sub 8}, depending on grinding size. In the pre-neutralization step, the iron content in the liquor is decreased in 99 wt.%, dropping from 3.62 g/L to 0.030 g/L. The sulfate content in the liquor reduces from 46 g/L to 22 g/L. A calcinated final product assaying 99.7 wt.% U{sub 3}O{sub 8} was obtained. The full process recovery was over 94%. (author)

  1. A study on the upgrading by physical means of low grade uranium ore from Phu Wiang District

    International Nuclear Information System (INIS)

    Wihokratna, W.

    1980-01-01

    The purpose of this thesis is to upgrade the uranium ore at Phu Wiang district. Because of the fine grains and high degree of dissemination of uranium in ores, resulting practically complete envelopment of the uranium minerals by the gangue minerals, the ore must first undergo digestion in order to reveal the uranium minerals. After digestion, sodium hydroxide of 0.05 normal was added to the ore and the mixture was fed into the agitator provided with baffles and two specially designed propellers. Due to the 'Push - Pull' motion of the propellers a zone of specially high turbulence was created between them. Also in this region higher concentration of uranium is revealed and the high concentrated uranium ore was regularly stripped off for further analysis. It was found that by using mineral of grain size of 100 mesh and 0.0187% of uranium content a concentration up to 0.063% uranium content (an upgrading better than by a factor of three times) was achieved with the above method. The uranium content was analyzed with 3'' x 3'' NaI (Tl) detector and 1024 channels MCA

  2. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    Erlendsson, G.; Jensen, J.; Kofoed, S.; Paulsen, J.L.

    1983-11-01

    The draft uranium project ''Kvanefjeld'' describes the establishment and operation of an industrial plant for exploiting the uranium deposit at Kvanefjeld. The draft project is part of the overall pre-feasibility project and is based on its results. The draft project includes two alternative locations for the processing plant and the tailings deposit plant. The ore reserve is estimated at 56 million tons with an average content of 365 PPM. The mine will be established as an open pit, with a slope angle of 55deg. Conventional techniques are used in drilling, blasting and handling the ore. Waste rock with no uranium content will be disposed of in two ponds near the mine. The waste rock volume is estimated at 80 million tons. A processing plant for extracting uranium from the ore will be established. The technical layout of the plant is based on the extraction experiments performed at Risoe from 1981-83. Yearly capacity is 4.2 million tons of ore. Electrical energy will be supplied from a hydroelectric station to be built at Johan Dahl Land. Thermal energy (steam/heat) will be supplied from a coal-fired district heating plant to be built in connection with the processing plant. Expected power consumption is estimated at 225 GWh/year. Heat consumption is of the same order. In the third year the plant is expected to operate at full capacity. Operating costs will be Dkr. 121/ton of ore from years 1 through 7. Consumption of chemicals will be reduced from the 7th year, and operating costs will consequently drop to Dkr. 115/ton of ore. Calculations show that industrial extraction of the uranium deposit in Kvanefjeld is economically advantageous. In addition, the economy of the project is expected to improve by extracting byproducts from the ore. (EG)

  3. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  4. The genesis of Kurišková U-Mo ore deposit

    International Nuclear Information System (INIS)

    Demko, R.; Biroň, A.; Novotný, L.; Bartalský, B.

    2014-01-01

    The U-Mo ores of the known uranium deposit Kurišková located in the Huta volcano-sedimentary complex (HVC) of lower Permian age belongs to the Petrova Hora Formation of the North-Gemeric tectonic unit (Western Carpathians). The HVC is built up by volcanic rocks of bimodal basalt-rhyolite association, intercalated with sandstones, mudstones and claystones. Based on the sedimentary facies reconstruction, it is supposed paleoenvironment of seasonally flooded shallow lakes of continental fluvial plain with transition to estuaries and shallow marine facies of continental shelf in the upper part of HVC.

  5. Typology and geographic/geotectonic distribution of uranium deposits

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1980-01-01

    In the last ten years, twenty new uranium deposits have been discovered. They provide nearly 50% of the known and reasonably assured resources. The most important deposits known in the past by size and ore grade were those found in oligomictic quartz pebble conglomerates, sandstones and, to a lesser extent, hydrothermal veins. The type found more recently, which are greater in quantity than the former ones, are of the vein type (Canada, Australia) as well as of the intrusive type (Roessing, Namibia) and in calcretes (Yeelirrie, Australia) and acid volcanic rocks (Mexico). Several classifications have been worked out in the past (E.W. Heinrich, 1958; M. Roubault, 1958; A. Mancher, 1962). More recently new data have enabled these classifications to be extended on a worldwide basis (Ruzicka, 1971; Ziegler, 1974; Dahlkamp, 1974, 1978) or on a regional basis (McMillan for Canada, 1978; Ingram for Australia, 1974). This classification attempt takes all available useful data into consideration to define different types of uranium deposits in as comprehensive and strict a manner as possible

  6. Bacteria heap leaching test of a uranium ore

    International Nuclear Information System (INIS)

    Liu Hui; Liu Jinhui; Wu Weirong; Han Wei

    2008-01-01

    Column bioleaching test of a uranium ore was carried out. The optimum acidity, spraying intensity, spray-pause time ratio were determined. The potential, Fe and U concentrations in the leaching process were investigated. The effect of bacteria column leaching was compared with that of acid column leaching. The results show that bacteria column leaching can shorten leaching cycle, and the leaching rate of uranium increases by 9.7%. (authors)

  7. Study On The Choice Of Leaching System For Thanh My, Quang Nam Province Uranium Ores Treatment

    International Nuclear Information System (INIS)

    Than Van Lien; Nguyen Dinh Van; Tran The Dinh

    2011-01-01

    In order to implement the plan of peaceful uses of atomic energy, the Radioactive and Rare Earth Geology Division have been carried out the uranium ores exploitation project in Thanh My area of Quang Nam province since 2010. The treatment uranium ores samples is one of works of this project. In order to preparing for uranium ores samples treatment, the Institute for Technology of Radioactive and Rare Elements have been studied and have chosen the heap leaching method for Thanh My uranium ore treatment. The ore, which contained less than 0.07% U, was crushed to -1 cm before being placed in the heap. The acid consumption for this heap leach operation was approximately ranged 40 kg - 45 kg of H 2 SO 4 per tonne of ore, and oxidant 4 kg of MnO 2 per tonne of ore. The entire treatment cycle required 20-25 days, the recovery exceeded 80%, the leached tails contained less than 0.01% U. The experimental results were comparable with those obtained in the field scale heap leaching in the world. (author)

  8. Evaluation of the Cerro Solo nuclear ore, province of Chubut. On the economic parameters of the deposit. Pt. 3

    International Nuclear Information System (INIS)

    Navarra, P.R.; Sardin, P.G.; Urquiza, L.; Bernal, G.J.; Guzman Lobos, D.

    1993-01-01

    Preliminary results of the resources estimation carried out in the Cerro Solo uranium ore deposit, located in the Chubut Province, 1900 km SW from Buenos Aires and 380 Km W from Trelew, presented in tonnes of uranium recoverable at costs up to U$S 80/kgU, are as follows: a) Reasonable assured resources (indicated): 800 tU; b) Estimates Additional Resources (inferred): 2200 tU. Economic evaluation at the order-of-magnitude level, performed using the grade-tonnage model of the deposit, resulted a useful tool in the different stages of the project to identify the influence of technical parameters on the potential profitability. Research about feasibility of in-situ leaching method of exploitation for this deposit introduces an interesting alternative for future uranium production in the country. (Author)

  9. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  10. Characteristics of isotope geology of sandstone-type uranium deposit in Turpan-Hami Basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Xia Yuliang; Lin Jinrong; Fan Guang

    2003-01-01

    This paper expounds the isotope characteristics of in-situ leachable sandstone-type uranium deposit of Shihongtan in the southwestern part of Turpan-Hami basin. The results suggest that uranium mineralization age of 48 ± 2 Ma and 28 ± 4 Ma are obtained. The ages of the porphyritic granite and gneissic granite from the southwestern area are 422 ± 5 Ma and 268 ± 23 Ma. The U-Pb age of clastic zircons from ore-bearing sandstone is 283 ± 67 Ma, which is corresponding to the age of gneissic granite of the provenance area indicating the material source of uraniferous sandstone.Based. The sources are uraniferous sandstone accumulated during the deposition and the uranium leached from provenance area rocks by weathering. (authors)

  11. Radioactivity and the French uranium bearing minerals

    International Nuclear Information System (INIS)

    Guiollard, P.Ch.; Boisson, J.M.; Leydet, J.C.; Meisser, N.

    1998-01-01

    This special issue of Regne Mineral journal is entirely devoted to the French uranium mining industry. It comprises 4 parts dealing with: the uranium mining industry in France (history, uranium rush, deposits, geologic setting, prosperity and recession, situation in 1998, ore processing); radioactivity and the uranium and its descendants (discovery, first French uranium bearing ores, discovery of radioactivity, radium and other uranium descendants, radium mines, uranium mines, atoms, elements and isotopes, uranium genesis, uranium decay, isotopes in an uranium ore, spontaneous fission, selective migration of radionuclides, radon in mines and houses, radioactivity units, radioprotection standards, new standards and controversies, natural and artificial radioactivity, hazards linked with the handling and collecting of uranium ores, conformability with radioprotection standards, radioactivity of natural uranium minerals); the French uranium bearing minerals (composition, crystal structure, reference, etymology, fluorescence). (J.S.)

  12. Uranium mining and milling

    International Nuclear Information System (INIS)

    Floeter, W.

    1976-01-01

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK) [de

  13. Uranium mineralization environment and prospecting potential of Dawan ore field in Nanling metallogenic belt

    International Nuclear Information System (INIS)

    Yang Shanghai

    2011-01-01

    Located in the middle part of Jiuyishan complex pluton, Nanling metallogenic belt, Dawan uranium ore field in Hunan Province is an important uranium-producing and rare metal, nonferrous metal cluster area due to the favourable mineralization environment. The Cambrian is the main uranium source bed and their contact zone to the pluton is the favorable part for mineralization. The uranium deposits which have been explored are all located in the exocontact zone of Jinjiling pluton in the middle part of Jiuyishan complex pluton which is composed of the independent eastern and western magma evolution centers. In the west center, Jinjiling pluton is closely related to uranium mineralization where the trinity geologic setting was formed with magma evolution, hydrothermal fluid action and mineralization. The deep slitted and large faults provide the pathway and thermodynamic source for circulating migration of mineralizing fluid. The uranium mineralization mainly occurred in crustal stress conversion period of Late Cretaceous and related to the tensive NW extending fault and deep originated fluid. The gravity, aero magnetic, airborne gamma-ray spectrometry anomalies and radioactivity hydrochemical anomaly are important criteria for uranium prospecting. Based on the analysis of regional uranium mineralization environment, the prospecting potential is forecasted. (authors)

  14. Technical application of agglomerated acidic heap leaching of clay-bearing uranium ore in China

    International Nuclear Information System (INIS)

    Zeng Yijun; Li Jianhua; Li Tieqiu; Zhong Pingru

    2002-01-01

    The permeability of ore mass has a great influence on the leaching period of heap leaching and the leaching efficiency, hence the uranium ores with high content of clay is difficult to acidic heap leaching. The Research Institute of Uranium Mining has engaged several years studies on the cementing agents of acidic agglomeration, agglomeration conditions, as well as the curing measures of agglomerated balls. On the basis of these studies, several types of clay-bearing ores have been tested with good results. The technique of agglomerated acidic heap leaching has been successfully applied in a uranium mine. Since agglomeration has effectively increased the permeability of ore heap, its leaching period is decreased from 200 days to 60 days, the leaching efficiency is increased to 96% from less than 40% comparing with direct heap leaching program

  15. Management of wastes containing radioactivity from mining and milling of uranium ores in Northern Australia

    International Nuclear Information System (INIS)

    Costello, J.M.

    1977-01-01

    The procedures and controls to achieve safe management of wastes containing radioactivity during the mining and processing of uranium ores are mainly site specific depending on the nature, location and distribution of the ore and gangue material. Waste rock and below-ore-grade material containing low levels of radioactivity require disposal at the mine site. In open cut mining the material is generally stockpiled above ground, with revegetation and collection of run-off water. Some material may be used to backfill open cuts. Management of these wastes requires a thorough investigation of ground water hydrology and surface soil characteristics to control dissipation of radioactive material. Dust containing radon and radioactive particulate is produced during ore milling, and dusts of ore concentrate are generated during calcination and packaging of the yellowcake product. These dusts are managed by ventilation and filtration systems, working conditions, and discharges to atmosphere will be according to the Australian Code of Practice on Radiation Protection during Mining and Milling of Uranium Ores. The chemical waste stream from leaching and processing of the uranium ores contains the majority of the radioactivity resulting from radium and its decay products. Neutralised effluent is discharged into holding ponds for settling of solids. This paper describes the nature of wastes containing radioactivity resulting from the mining and milling of uranium, and illustrates modern engineering practices and monitoring procedures to manage the wastes, as described in the Environmental Impact statement produced by Ranger Uranium Mines Proprietary Limited for public hearings

  16. Ore reserve calculations of a sedimentary uranium deposit in Figueira, PR-Brazil

    International Nuclear Information System (INIS)

    Guerra, P.A.G.; Censi, A.C.; Marques, J.P.M.; Huijbregts, Ch.

    1978-01-01

    The are reserve calculations of a sedimentary uranium deposit in Figueira-PR-Brazil are presented. The evalution of reserves was based on chemical and/or radiometric analisys from boreholes. Geoestatistical methods were used to study the spacial correlation between radiometric and'in situ' uranium content and to calculate the equivalent uranium content without the need for chemical analysis. To this end, a new method was developed based on the regression between accumulated chemical and radiometric grades as determined by increasing thicknesses defined from the maximum peak of the γ-ray logs. Thus, the effect of non-focalization of the probe and of the continuous logging was eliminated. The system of evalution used was two-dimensional using classical Kriging to calculate thicknesses and accumulations determined using distinct cut-off grades. (Author) [pt

  17. Investigation of the degree of equilibrium of the long-lived uranium-238 decay-chain members in airborne and bulk uranium-ore dusts

    International Nuclear Information System (INIS)

    Jackson, P.O.; Thomas, C.W.

    1982-08-01

    The degree of disequilibrium among 238 U decay chain members in some airborne dusts and typical ores has been established by precise radiochemical analyses. This information is necessary to evaluate the lung dose model currently used for estimating the effect of the inhalation of uranium ore dust. The particle size distributions of airborne decay chain components in dusts at one uranium mill have been investigated. Statistically significant disequilibria were observed for 230 Th, 226 Ra, and 210 Pb in both airborne dusts and composite ore samples. With the exception of ore from one mill in the United States, most of the daughter concentrations in powdered ore composites were within 10% of 238 U. In airborne dusts, the concentration of 226 Ra was typically below 238 U; the minimum 226 Ra concentration observed for airborne ore dusts was 56% of equilibrium. A statistically significant particle size dependence was observed for 226 Ra/ 238 U ratios in several airborne dusts collected at a uranium mill

  18. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  19. Metallogenetic regularity exploration model and prospecting potential of the mesocenozoic volcanic type uranium deposit in the east of south China

    International Nuclear Information System (INIS)

    Wang Yusheng; Li Wenjun

    1995-01-01

    During the Meso-Cenozoic era, the crust in the east of South China experienced an evolutional process of compression-relaxed extension-local disintegration, correspondingly, three periods of volcanic activity were developed, forming initial volcanic cycle, principal volcanic cycle and caldera volcanic cycle. The caldera volcanic cycle was expressed as a 'bimodal type' rock suite, indicating the entering of the region into an evolutional stage of new embryonic refitting. The volcanic type uranium deposit is characterized by ore-formation during caldera volcanic cycle, ore control by the mobile belt of caldera volcanic cycle and double superposition and concentration, and it can be summarized as a new unconformity-related type uranium deposit of caldera volcanic series, which is divided into three morphological types: body type, layer type and vein type and relevant exploration models are proposed. The new unconformity-related type uranium deposits of the caldera volcanic series in the east of South China have a great prospecting potential. The tectonomagmatic complex area of the caldera volcanic cycle developed on the granite basement is the favourable target area in searching for large uranium deposits from now on

  20. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  1. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  2. Metalogenic study of the uraniferous ore deposit at La Coma, Municipio of General Bravo, N.L. Mexico

    International Nuclear Information System (INIS)

    Ferriz D, H.

    1977-01-01

    The uraniferous ore deposit at la Coma is located in a sandy-clayish sequence of the cold formation (non marine member) of the middle oligocene under peneconcordant lenses within a sandy body, situated on the North flank of a microdelta formed by small streams which ran from West to East. The metalogenic study of this ore deposit, permits us to establish mineralization controls and guides for the optimization of the uranium prospecting in the miogeoclinical of the Gulf of Mexico setting. The study was carried out on the basis of sedimentalogic and metalogenic criteria, and it was found that the mineralization process seems to be related to the formation and filling of a paleochannel which cut the microdelta permeable beds. The uraniferous solutions migrated through the conglomeratic filling of the paleochannel and reached this way the permeable horizons of the microdelta, where they infiltrated adopting a pattern like an apron. In the sites where the solutions reached sandy lenses rich in organic matter, the soluble compounds containing the uranium suffered a decomposition with the consequent absorption of the uranium by the organic matter, due to the decrease of the pH value. In conclusion, the favorableness of the environment for mineralization is defined by the convergence of the described paleo-geomorphologic elements. (author)

  3. Recovery of uranium from low-grade sandstone ores and phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R H [United States Atomic Energy Commission, Washington, D. C. (United States)

    1967-06-15

    This paper is concerned principally with commercial-scale experience in the United States in the recovery of uranium from low-grade sources. Most of these operations have been conducted by the operators of uranium mills as an alternative to processing normal-grade ores. The operations have been generally limited, therefore, to the treatment of low-grade materials generated in the course of mining normal-grade ores. In some circumstances such materials can be treated by simplified procedures as an attractive source of additional production. The experience gained in uranium recovery from phosphate rock will be treated in some detail. The land pebble phosphate rock of central Florida generally contains about 0.01 to 0.02% U{sub 3}O{sub 8}. While no uranium is being recovered from this source at the present time, it does represent a significant potential source of by-product uranium production because of the large tonnages being mined. (author)

  4. A procedure for oxidation during the acid leaching of non-ferrous ores, particularly uranium ores

    International Nuclear Information System (INIS)

    Zubcek, L.; Baloun, S.; Martinek, K.; Vebr, Z.; Krepelka, J.; Lasica, S.

    1989-01-01

    It is suggested that dust from the production of ferroalloys of manganese, particularly ferrosilicomanganese and ferromanganese, can be conveniently used for oxidation during the acid leaching of non-ferrous ores, particularly uranium ores. This dust contains 30 to 40% oxides of manganese, about one-half of this is MnO 2 . Iron in the dust is present in the trivalent form, and the dust is pefectly dry. The conventional grinding of oxidants for the ore processing is eliminated, the dust being available in particle size below 0.2 mm. The dust is added in amounts of 5 to 100 kg per ton of the ore, and the suspension is typically heated at 115 degC for 3.5 hr. (P.A.)

  5. Laboratory investigations of refractory uranium minerals from the Kvanefjeld uranium deposit, Greenland

    International Nuclear Information System (INIS)

    Rose-Hansen, J.; Soerensen, H.; Makovicky, M.; Konnerup-Madsen, J.; Holm, P.M.

    1982-01-01

    The project described in this report is a contribution to a large project on the beneficiation of the Kvanefjeld uranium deposit in the Ilimaussaq intrusion in South Greenland. The main object of our project has been to undertake laboratory experiments on steenstrupine in order to define the optimum extraction conditions. A pressurized carbonate leaching method was introduced. The Risoe experiments are carried out on bulk samples of the ore while we decided to study the minerals, first of all steenstrupine, and carbonate solutions as leaching media. Our experiments demonstrated that the leaching conditions arrived at by the Risoe group give the highest recovery and thus may be termed the optimum conditions using sodium carbonate leaching methods. Studies of the solid products left after the leaching experiments by means of the electron microprobe show that the grains of steenstrupine remain and that the leaching of uranium proceeds from the margins of the grains and towards their interior. We decided also to study the effect of applying ammonium sulphate solutions. These gave significantly higher recoveries. We consider the results of the experiments using ammonium sulphate solutions as an essential new information on the extractability of the Kvanefjeld ore and as a main result of our study. It is demonstrated that in the 13 types of rocks examined, including lujavrites, 25-75 % of the thorium and 2-58 % of the uranium contained in the rocks can be leached out and are thus not firmly bound in the minerals. (author)

  6. Analytic study of organic matters in Lodeve uranium ore

    International Nuclear Information System (INIS)

    Campuzano, E.J.

    1981-01-01

    Exploitation of uranium in the Permian basin of Lodeve is difficult because of simultaneous extraction of organic matters which are found, in small proportion, in ammonium diuranate and a supplementary purification is required. Available information on natural organic matters are briefly reviewed. Natural organic matters contained in the Lodeve uranium ore processing fluid is separated and fractionated. Physicochemical properties of ligands in each fraction are studied. The existence of bonds between these ligands and dissolved uranium is experimentally demonstrated [fr

  7. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    Natarajan, K.A.

    2012-01-01

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  8. Geochemical and sedimentologic problems of uranium deposits of Texas Gulf Coastal Plain

    International Nuclear Information System (INIS)

    Huang, W.H.

    1978-01-01

    Exploration targets for sedimentary uranium ore bodies in the Texas Gulf Coastal Plain include: (1) favorable source rocks for uranium, (2) favorable conditions for uranium leached and transported out of the source rocks, and (3) favorable geologic characteristics of the host rocks for the accumulation of uranium of economic importance. However, data available from known deposits point out more questions of research than answers. Mobility and accumulation of uranium of economic importance in host rocks are controlled by at least three factors - physical, chemical-mineralogic, and hydrologic - that interact dynamically. Physical factors include the nature (viscosity) of the transporting fluid, the permeability of host rock with respect to transporting solution in terms of medium rate, potential differentials, and temperature of the uranium-bearing solution in the macroenvironment. Chemical-mineralogic factors include the ionic strength of solution, chemical activities of species in the solution, chemical activities of pore water in host rocks, surface activity and surface energy of mineral constituents in host rocks, solubilities of ore and gangue minerals, pH, and Eh in the microenvironment. Hydrologic factors include fluctuation of the depth of the oxidation-reduction interfaces in the paleoaquifer host rocks, and their subsequent modification by present hydrologic factors. Geochemical mechanisms that are likely to have been in operation for uranium accumulation are precipitation, adsorption, and/or complexing. 4 figures

  9. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    Science.gov (United States)

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these

  10. Ore-concentrating structures with telescoped uranium mineralization

    International Nuclear Information System (INIS)

    Shchetochkin, V.N.; Dmitriyev, V.I.; Tkachenko, I.I.

    1986-01-01

    Deep faults are the main controlling elements in uranium ore fields, although the immediate geologic environments may be quite varied. Within the fault zones, the uranium fields are usually associated with areas where major transverse and diagonal faults intersect or link, and with points of splitting or change in strike in disjunctive zones. Another distinctive feature of the mineralized structure is their long history, with a combination of tectonic elements differing in age and type, usually associated with retrograde dislocation metamorphism. The specific features of these structures control the uranium mineralization, which is usually localized in foci with telescoped tectonic, magmatic, hydrothermal, metasomatic, and sometimes exogenous processes. The unnamed area (in the Ukraine?) furnishes a good example of how successive stages of a complex geologic history affect the occurrence of such a highly mobile element as uranium. 12 references, 4 figures

  11. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  12. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A.J.

    2009-01-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low (∼10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that 230 Th/ 238 U activity ratios range from 0.005-0.48 and 226 Ra/ 238 U activity ratios range from 0.006-113. 239 Pu/ 238 U mass ratios for the saturated zone are -14 , and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order 238 U∼ 226 Ra > 230 Th∼ 239 Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  13. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  14. Application of mathematical methods to the investigation of uranium deposits; Application des methodes mathematiques a l'etude des gisements d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Formery, P; Ziegler, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    It may be considered approximately that grades, widths and accumulations (grade-width products), in french uranium deposits are distributed according to a lognormal law. This property associated to KRIGE'S and de WIGE'S formulae make a powerful tool in ore deposits surveys. The correlation between radioactivities and grades is realized, in logarithmic coordinates, through a straight line the properties of which are analysed in the paper. MATHERON'S recent works, in association with data of classical statistics and the above mentioned formulae make possible to complete the ore reserves evaluation by computing the accuracy. Statistical methods applied to ore deposits have given birth to a parameter which is as important as the mean grade for characterisation of deposits: the absolute dispersion. (author) [French] On peut considerer en premiere approximation que les teneurs, les puissances et les accumulations se distribuent dans les gisements fran is d'uranium suivant une loi log normale. Cette propriete, associee aux hypotheses de De WIGE et de KRIGE, constitue un puissant instrument d'etude des gisements. La correspondance des radioactivites et des teneurs s'effectue, en coordonnees bilogarithmiques, par une droite dont on etudie les proprietes. Grace aux travaux recents de MATHERON, associes aux donnees de la statistique classique ainsi qu'aux hypotheses enumerees plus haut, il est possible de completer le calcul des reserves d'un gisement par une evaluation de l'erreur commise. Les methodes statistiques ont fait apparaitre un parametre aussi important pour caracteriser un gisement, que la teneur moyenne: la dispersion absolue. (auteur)

  15. Origin of granite and mineralization of uranium ore field No.6210

    International Nuclear Information System (INIS)

    Xu Guoqing.

    1987-01-01

    Uranium ore field No.6210 is of granitic type. A lot of work about the origin of the granite and mineralization has been done by many geologists over the years, but the conclusion remains disputable. Some authors suggest that the granitic magma was derived from mantle, others maintain that it was resulted from partial melting of crustal materials. There are two main points of view about the genesis of mineralization: magmatic hydrothermal and vadose. Therefore, with the exception of field investigation, strontium, sulfur, oxygen, carbon and lead isotopes were studied. REE distribution pattern, chemical compositions of biotite and whole rocks were explored. In granite the values of δ 34 S scatter in the range from -0.5 to 2.5per mille with a mean value of 0.77per mille, the values of δ 18 O lie in the range from 7.59 to 13.0per mille with an average of 10.55per mille. The ratio of ( 87 Sr/ 86 Sr)i of whole rocks is 0.7197. Biotite index MF 8 pa. In ore deposits, the values of δ 34 S range from -1.2 to 4.6per mille with a mean value of 1.52per mille, the values of δ 18 O fall in the range from -9.88 to 12.02per mille with an average amount of 3.56per mille, the values of δ 13 C are in the narrow range between -7.15 and -9.79per mille with an average of -8.96per mille and the ratios of 206 Pb/ 204 Pb 208 Pb/ 204 Pb < 39.5. Therefore, by the sulfur, carbon and lead isotopes, it is shown that the ore-forming solution in the ore field is magmatic hydrothermal, but by the oxygen isotope, it is implicated that after the fromation of hydrothermal ineralization, the ore deposits were reformed by meteoric water

  16. An review on geology study of carbonaceous-siliceous-pelitic rock type uranium deposit in China and the strategy for its development

    International Nuclear Information System (INIS)

    Zhao Fengmin

    2009-01-01

    Carbonaceous-siliceous-pelitic rock type uranium deposit was founded by Chinese uranium geologist, it refers to the uranium deposit hosted by non or light metamophosed carbonate,siliceous rock, pelitic rock and their intermediates. It is one of the important types uranium deposit in China. A lot of this type deposits have been discovered in China and their temporal-spatial distribution pattern and mineralization features have been basically identified, and the rich experience have layed a good foundation for the future exploration. Although the ore of this type is not favourable economically, it is still available. Because carbonaceous-siliceous-pelitic rock type uranium deposit has great resource potential, metallogenic study and exploration efforts should be projected differentially according to their economic profit so as to meet the uranium resource demand of nuclear power development in China. (authors)

  17. Method of removing uranium and its compounds from mine wastewaters and from aqueous solutions discharged in hydrometallurgical uranium ore treatment

    International Nuclear Information System (INIS)

    Jilek, R.; Prochazka, H.; Kuhr, I.; Fuska, J.; Nemec, P.; Katzer, J.

    1974-01-01

    The separation of uranium and its compounds from mine wastewaters and from water solutions discharged from uranium ore hydrometallurgical treatment, and its eventual simultaneous concentration in the biomass during uranium ore technological processing are described. The solutions are replenished with nutrients necessary for the growth of microorganisms, mainly with nitrogen, carbon and phosphorus and inoculated with fungi. During submersion cultivation, uranium incorporates in the mycelium, or is bound physico-chemically to the mycelium components. Together with these components, uranium is mechanically separated, i.e., by filtration, centrifugation or sedimentation. Organisms of the Fungi imperfecti class, mainly the Aspergillus and Penicillium genera are used for cultivation which may be continuous or semicontinuous. (B.S.)

  18. Hydrogeological analysis applied to regional evaluation of sandstone-type uranium ore-formation in sedimentary basins

    International Nuclear Information System (INIS)

    Xu Laisheng

    2005-01-01

    The main purpose of regional evaluation of uranium ore-formation is to preliminarily divide environmental zones and to delineate favourable areas for uranium ore-formation in order to provide basis for further detailed prospecting work. Of the various kinds of prospecting work, the hydrogeologic work should be mainly carried out in following aspects: division of hydrogeological units, the determination of artesian water-bearing system and the identification of prospecting target horizon; the analysis on hydrodynamic regime, the analysis on hydrogeochemical environments, the paleo-hydrogeologic analysis and the delineation of redox front and favourable area for uranium ore-formation. (author)

  19. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  20. Bioleaching of UO22+ ions from a Romanian poor uranium ore

    International Nuclear Information System (INIS)

    Cecal, Al.; Popa, K.; Moraru, R.T.; Patachia, S.

    2002-01-01

    An experimental study on the bioleaching of a poor uranium ore by means of hydrophytic plants Lemna minor and Riccia fluitans, under various operating conditions is discussed. The maximum degree of bioleaching (42%) of the reduced uranium species to U(VI) has been attained for the ore-Lemna minor-alkaline carbonate solution system. The UO 2 2+ ions amount accumulated in the plants is negligible as compared to the dissolved quantity, owing to the ionic competition between uranyl ions and the cations necessary to the mineral nutrition. The X-ray diffraction patterns prove that the uranium species in pyrochlore mineral are completely oxidized to U(VI), while thucolite is only partially turned into UO 2 2+ ions, in the presence of living plants. (author)

  1. Geochronology and Fluid-Rock Interaction Associated with the Nopal I Uranium Deposit, Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Fayek, M.; Goodell, P.; Ren, M.; Simmons, A.

    2005-01-01

    The Nopal I uranium (U) deposit, Pena Blanca District, Mexico, largely consists of secondary U 6+ minerals, which occur within a breccia pipe mainly hosted by the 44 Ma Nopal and Colorados volcanic formations. These two units overly the Pozos conglomerate formation and Cretaceous limestone. Three new vertical diamond drill holes (DDHs) were recently drilled at Nopal I. DDH-PB1 with continuous core was drilled through the Nopal I deposit and two additional DDHs were drilled ∼50 m on either side of the cored hole. These DDHs terminate 20 m below the current water table, thus allowing the detection of possible gradients in radionuclide contents resulting from transport from the overlying uranium deposit. Primary uraninite within the main ore body is rare and fine-grained (∼50 micrometers), thus making geochronology of the Nopal I deposit very difficult. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few (micro)m. Preliminary U-Pb results show that uraninite from the main ore body gives an age of 32 ± 8 Ma, whereas uraninite from the uraniferous Pozos conglomerate that lies nearly 100 m below the main ore body and 25 meters above the water table, gives a U-Pb age that is 18 O = -10.8(per t housand), whereas the uraninite within the Pozos conglomerate has a (delta) 18 O = +1.5(per t housand). If it is assumed that both uraninites precipitated from meteoric water ((delta) 18 O = -7(per t housand)), then calculated precipitation temperatures are 55 C for the uraninite from the ore body and 20 C for uraninite hosted by the Pozos conglomerate. These temperatures are consistent with previous studies that calculated precipitation temperatures for clay minerals associated with uraninite

  2. Heap leaching of clay ish uranium ores

    International Nuclear Information System (INIS)

    Gonzalez, E.; Sedano, A.

    1973-01-01

    This paper describes an experimental facility, built near El Lobo mine. In it we study the beneficiation of low-grade uranium ore. The mineral has a great amount of clay and fines. The flow-sheet used has four steps: head leaching, ph-ajustement, ion-exchange and participation. We show, also, the most interesting results. (Author)

  3. Athabasca basin unconformity-type uranium deposits. A special class of sandstone-type deposits

    International Nuclear Information System (INIS)

    Hoeve, J.

    1980-01-01

    Two major episodes of uranium metallogenesis are recognized in Northern Saskatchewan. The first is of late-Hudsonian age and gave rise to metamorphic-hydrothermal pitchblende deposits of simple mineralogy at Beaverlodge (primary mineralization: 1780+-20 m.y.). The second and more important episode of approximately Grenvillian age rendered unconformity-type deposits in the Athabasca Basin (primary mineralization: 1000-1300 m.y.). The late-Hudsonian deposits at Beaverlodge were overprinted by this second event and new deposits of complex mineralogy were formed in that area. The metallogenetic importance of a third and much later episode which gave rise to mineralization within the Athabasca Formation is uncertain at the moment. With regards to metallogenesis of the unconformity-type deposits, presently available evidence favours a diagenetic-hydrothermal rather than a near-surface supergene or a magmatic/metamorphic hydrothermal model. The diagenetic-hydrothermal model relates uranium mineralization to 'red bed-type' diagenetic processes in the Athabasca Formation involving post-depositional oxidation and leaching, which continued for several hundred million years after deposition. Ore deposits were formed by interaction, under conditions of deep burial at elevated temperatures and pressures, of a uraniferous oxidizing Athabasca aquifer with reducing, graphite-bearing, metamorphic rocks of the basin floor. The large-scale convection required for such interaction may have been induced by mafic magmatic activity coeval with the episode of mineralization. The diagenetic-hydrothermal model displays close similarities with metallogenetic models developed for certain sandstone-type deposits. (author)

  4. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ 37Cl analysis of fluid inclusions

    Science.gov (United States)

    Richard, Antonin; Banks, David A.; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Cathelineau, Michel

    2011-05-01

    Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl 2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ˜100 to ˜900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ 37Cl values are between -0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl 2-rich brines. Slight discrepancies between the Cl concentration, Cl/Br, δ 37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition. The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ˜80% of the sedimentary pile, Cl/Br ratios and δ 37Cl values of brines have behaved conservatively at the basin

  5. Australia's uranium export potential

    International Nuclear Information System (INIS)

    Mosher, D.V.

    1981-01-01

    During the period 1954-71 in Australia approximately 9000 MT of U 3 O 8 was produced from five separate localities. Of this, 7000 MT was exported to the United Kingdom and United States and the balance stockpiled by the Australian Atomic Energy Commission (AAEC). Australia's uranium ore reserves occur in eight deposits in three states and the Northern Territory. However, 83% of Australia's reserves are contained in four deposits in lower Proterozoic rocks in the East Alligator River region of the Northern Territory. The AAEC has calculated Australia's recoverable uranium reserves by eliminating estimated losses during the mining and milling of the ores. AAEC has estimated reasonably assured resources of 289,000 MT of uranium at a recovery cost of less than US$80 per kilogram uranium. The companies have collectively announced a larger ore reserve than the Australian Atomic Energy Commission. This difference is a result of the companies adopting different ore reserve categories. On August 25, 1977, the federal government announced that Australia would develop its uranium resources subject to stringent environmental controls, recognition of Aboriginal Land Rights, and international safeguards. Australian uranium production should gradually increase from 1981 onward, growing to 10,000 to 15,000 MT by 1985-86. Further increases in capacity may emerge during the second half of the 1980s when expansion plans are implemented. Exploration for uranium has not been intensive due to delays in developing the existing deposits. It is likely that present reserves can be substantially upgraded if more exploration is carried out. 6 figures, 3 tables

  6. Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Lalor, J.H.

    1986-01-01

    The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologic modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben

  7. Paradigmatic Shifts in Exploration Process: The Role of Industry-Academia Collaborative Research and Development in Discovering the Next Generation of Uranium Ore Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, J., E-mail: jmarlatt5@cogeco.ca [Raven Minerals Corp.,Toronto (Canada); Kyser, K. [Queen’s Facility for Isotope Research, Queen’s University, Kingston (Canada)

    2014-05-15

    Uranium exploration increased over the past decade in a sympathetic response to a rapid increase in the price of uranium, inspired by fuel supply-demand and stock market dynamics. Exploration activity likely peaked during this cycle in 2008 with in excess of 900 companies engaged in the global exploration of a portfolio of over 3000 projects. Global uranium exploration expenditures for the period 2004–2008 are estimated at US$3.2 billion — from US$130 million in 2004 to an estimated peak of US$1.2 billion in 2008. A major focus of the exploration effort has been on brown-fields exploration in historical uranium districts. Less effort has been devoted to exploration at green-field frontiers. A significant reduction in global exploration expenditures in 2009 and beyond is anticipated concurrent with the global recession. There is not much evidence to indicate that brand-new, large, and higher grade, uranium deposits have been discovered during this uranium exploration cycle. It is likely that future uranium explorers will need to be more efficient and effective in their efforts and to adopt new and innovative business strategies for their survival and success. This paper addresses some of the fundamental reasons why major economic discoveries of uranium ore bodies have been elusive over the past two decades, through a cyclical model know as the ‘learning curve’, using the prolific Athabasca Basin, Saskatchewan, as an exemplar. This model relates exploration expenditure, quantities of discovered uranium, and the sequence of uranium deposit discoveries, to reveal that discovery cycles are epochal in nature and that they are also intimately related to the development and deployment of new exploration technologies. The history of uranium exploration is parsed into the early ‘prospector’ exploration phase (1960–1980) and the current ‘model driven’ phase (1981–present). The future of successful uranium exploration is envisaged as

  8. Organic geochemistry of the Dongsheng sedimentary uranium ore deposits, China

    International Nuclear Information System (INIS)

    Tuo Jincai; Ma Wanyun; Zhang Mingfeng; Wang Xianbin

    2007-01-01

    Organic matter (OM) associated with the Dongsheng sedimentary U ore hosting sandstone/siltstone was characterized by Rock-Eval, gas chromatography-mass spectrometry and stable C isotope analysis and compared to other OM in the sandstone/siltstone interbedded organic matter-rich strata. The OM in all of the analyzed samples is Type III with Ro less than 0.6%, indicating that the OM associated with these U ore deposits can be classified as a poor hydrocarbon source potential for oil and gas. n-Alkanes in the organic-rich strata are characterized by a higher relative abundance of high-molecular-weight (HMW) homologues and are dominated by C 25 , C 27 or C 29 with distinct odd-to-even C number predominances from C 23 to C 29 . In contrast, in the sandstone/siltstone samples, the n-alkanes have a higher relative abundance of medium-molecular-weight homologues and are dominated by C 22 with no or only slight odd-to-even C number predominances from C 23 to C 29 . Methyl alkanoates in the sandstone/siltstone extracts range from C 14 to C 30 , maximizing at C 16 , with a strong even C number predominance, but in the organic-rich layers the HMW homologues are higher, maximizing at C 24 , C 26 or C 28 , also with an even predominance above C 22 . n-Alkanes in the sandstone/siltstone sequence are significantly depleted in 13 C relative to n-alkanes in most of the organic-rich strata. Diasterenes, ββ-hopanes and hopenes are present in nearly all the organic-rich sediments but in the sandstone/siltstone samples they occur as the geologically mature isomers. All the results indicate that the OM in the Dongsheng U ore body is derived from different kinds of source materials. The organic compounds in the organic-rich strata are mainly terrestrial, whereas, in the sand/siltstones, they are derived mainly from aquatic biota. Similar distribution patterns and consistent δ 13 C variations between n-alkanes and methyl alkanoates in corresponding samples suggest they are derived from

  9. The progress in the researches for uranium mill tailings cleaning treatment and no-waste uranium ore milling processes

    International Nuclear Information System (INIS)

    Wang Jintang

    1990-01-01

    The production of uranium mill tailings and their risk assessment are described. The moethods of uranium mill tailings disposal and management are criticized and the necessity of the researches for uranium mill tailings cleaning treatment and no-wasle uranium ore milling process are demonstrated. The progress for these researches in China and other countries with uranium production is reviewed, and the corresponding conclusions are reported

  10. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage

  11. Mineralization mechanism and geodynamic setting of No. 337 deposit in Xiazhuang uranium orefield

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Wu Jianhua; Liu Shuai; Hua Renmin

    2009-01-01

    Uranium deposit No.337 in Xiazhuang uranium orefield has been regarden as a representative of the earliest forming, relatively high temperature and short time gap between the formation of pluton and the mineralization. But the latest study revealed that the formation age of the Maofeng pluton, which is the most important uranium host granite in Xiazhuang uranium orefield, is 206-238.2 Ma by LA-ICP-MS zircon dating, while the secondary origin muscovite in Maofeng pluton has the age of 131-136 Ma by 40 Ar/ 39 Ar dating which correspond to the main mineralization age of 130.3-138 Ma in uranium deposit No.337. In Guidong granitic complex, Maofeng pluton shown some unique characteristics. It has the Al 2 O 3 /TiO 2 ratio that infers the lowest forming temperature, the lowest ΣREE and it is the only pluton which presents typical tetrad effects of REE, it is also shown a varying δ 18 O values and the lowest( 87 Sr/ 86 Sr) i values. According to the above findings, a concept model of uranium mineralization and geodynamic setting for No.337 uranium deposit might be presented: in late or post-collision stage of Indosinian orogeny, strongly peraluminous granite of Maofeng pluton formed from partial melting of uranium rich formations. Intrusion of maficdyke in late Yanshanian Period(<140 Ma), caused large fluid movement. Uranium was reactivated and extracted from the altered granite,and precipitated in some favorite places to form uranium ore bodies. Uranium deposit No.337 is the typical representative of the first stage uranium mineralization in Xiazhuang uranium orefield. (authors)

  12. The geologic character of nappe structure and its relation to uranium mineralization of Xiangshan ore-field in the middle of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Yang Song

    2012-01-01

    Started with the spatial distribution of nappe structure, the geologic features are discussed and its effect on uranium mineralization in systematically summarized for Xiangshan ore-field in the middle of Jiangxi Province. The nappe structure not only formed a 'cross-over' lithologic combination which creates a network system which can connect, transport, migrate the mineralized matter, but also formed some close or semi-close geologic setting beneath the nappe which can act as the store ore shield space for the mineralized liquid to form uranium deposit. The mineralization is concentrated at the varied place of occurrences or shape of sub-volcanic rocks and the intersection of concealed overthrust and NE strike basic fractures. (authors)

  13. Mining the high grade McArthur River uranium deposit

    International Nuclear Information System (INIS)

    Jamieson, B.W.

    2002-01-01

    The McArthur River deposit, discovered in 1988, is recognized as the world's largest, highest grade uranium deposit, with current mineable reserves containing 255 million lb U 3 O 8 at an average grade of 17.33% U 3 O 8 . In addition the project has resources of 228 million pounds U 3 O 8 averaging 12.02% U 3 O 8 . Mining this high-grade ore body presents serious challenges in controlling radiation and in dealing with high water pressures. Experience from the underground exploration programme has provided the information needed to plan the safe mining of the massive Pelite ore zone, which represents the most significant source of ore discovered during the underground drilling programme, with 220 million pounds of U 3 O 8 at an average grade in excess of 17%. Non-entry mining will be used in the high-grade ore zones. Raise boring will be the primary method to safely extract the ore, with all underground development in waste rock to provide radiation shielding. Water will be controlled by grouting and perimeter freezing. The ore cuttings from the raise boring will be ground underground and pumped to surface as slurry, at an average daily production of 150 tonnes. The slurry will be transported to the Key Lake mill and diluted to 4% before processing. The annual production is projected to be 18 million lb U 3 O 8 . The paper focuses on the activities undertaken since discovery, including the initiation of the raise bore mining method utilized to safely mine this high grade ore body. Radiation protection, environmental protection and worker health and safety are discussed in terms of both design and practical implementation. (author)

  14. Jachymov uranium ore and research into radioactivity at the end of the 19th century and beginning of the 20th century

    International Nuclear Information System (INIS)

    Seidlerova, I.; Seidler, J.

    2007-01-01

    The publication describes uranium ore deposits and mining at Jachymov in the Czech Republic (then Austria-Hungary) in relation especially to the discovery of new elements. The treatment is divided into the periods of 1898-1903, 1904-1906, and 1907-1910 (trends). (P.A.)

  15. Practice of the counter-current trickle leaching of uranium ore by refreshed liquor of bacterial oxidation

    International Nuclear Information System (INIS)

    Chen Shian; Huang Xiangfu; Fan Baotuan

    1995-01-01

    The uranium ore of the Mine No. 753 is a high-silicate type primary one, in which the tetravalent uranium accounts for 85%, and the uranium grade is in the range of 0.36% to 0.442%. To reduce the engineering investment and the operating cost a four-stage counter-current trickle leaching pilot-plant test was carried out with the leaching time 50 days and acid consumption 38 kg per ton of ore, and the recovery of more than 95% was obtained. Using the counter-current trickle leaching mode and controlling the limit concentration of the harmful matters in the bacterial leaching liquor, the latter can be effectively oxidized by the synchronical regeneration. A trickle leaching comparative test of 25 ton ore single heap also gave a good result of more than 95% in extraction rate, and 30% acid consumption was saved and the 2.0% pyrolusite (containing MnO 2 40%) was eliminated. This process is feasible in technology and worth-while in economy for treating the uranium ore of Mine No. 753, and provides a new method of uranium ore trickle leaching

  16. Contribution to the methods for estimating uranium deposits (1963); Contribution aux methodes d'estimation des gisements d'uranium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-02-15

    Having defined a deposit of economic value according to the marginal theory, the author discriminates several categories of ore reserves according to the degree of knowledge of the deposit and according to the mining stage where the ore is considered. He dismisses the conventional French classification of 'on sight', 'probable' and 'possible' ore categories and suggests more suitable ones. The 'sensu stricto', ore reserves are those for which the random error can be calculated. The notion of the natural contrast of grades in an ore deposit (absolute dispersion coefficient {alpha}) is introduced in relation to this topic. The author considers three types of mining exploration. The first is the random exploration so often met; the second is the logical exploration based on a systematic location of underground works, bore-holes, etc. The third, and hardest to achieve, is the one which minimizes exploration costs for a given level of accuracy. Part of the publication deals with sampling errors such as those resulting from the quartering of a heap of ore (theory of Pierre GY) or those resulting from the use of radiometric measurement of grade. Another part deals with the extension error (entailed by the assimilation of samples to the deposit they are issued from) and gives the essential formulae in order to appraise the random error (Geo-statistics of Matheron). As to the estimator itself the work shows how the disharmony between the ore sample and the associated influence zone can be solved by the way of 'kriging'. The thesis gives numerous examples of the various numerical parameters, characteristics of an uranium deposit (absolute dispersion coefficient) or of an uranium ore (liberation parameter) as well as a few examples of linear correlations between gamma radioactivity and uranium grade. Three complete examples of reserve evaluation are given. The end of the thesis deals with the notion of ruin risk which has to be taken in some cases. A detailed alphabetical

  17. U(VI) speciation and reduction in acid chloride fluids in hydrothermal conditions: from transport to deposition of uranium in unconformity-related deposits

    International Nuclear Information System (INIS)

    Dargent, Maxime

    2014-01-01

    Circulations of acidic chloride brines in the earth's crust are associated with several types of uranium deposits, particularly unconformity-related uranium (URU) deposits. The spectacular high grade combined with the large tonnage of these deposits is at the origin of the key questions concerning the geological processes responsible for U transport and precipitation. The aim of this work is to performed experimental studies of U(VI) speciation and its reduction to U(IV) subsequently precipitation to uraninite under hydrothermal condition. About uranium transport, the study of U(VI) speciation in acidic brines at high temperature is performed by Raman and XAS spectroscopy, showing the coexistence of several uranyl chloride complexes UO 2 Cl n 2-n (n = 0 - 5). From this study, complexation constants are proposed. The strong capability of chloride to complex uranyl is at the origin of the transport of U(VI) at high concentration in acidic chloride brines. Concerning uranium precipitation, the reactivity of four potential reductants under conditions relevant for URU deposits genesis is investigated: H 2 , CH 4 , Fe(II) and the C-graphite. The kinetics of reduction reaction is measured as a function of temperature, salinity, pH and concentration of reductant. H 2 , CH 4 , and the C-graphite are very efficient while Fe(II) is not able to reduce U(VI) in same conditions. The duration of the mineralizing event is controlled by (i) the U concentration in the ore-forming fluids and (ii) by the generation of gaseous reductants, and not by the reduction kinetics. These mobile and efficient gaseous reductant could be at the origin of the extremely focus and massive character of ore in URU deposits. Finally, first partition coefficients uraninite/fluid of trace elements are obtained. This last part opens-up new perspectives on (i) REE signatures interpretation for a given type of uranium deposit (ii) and reconstruction of mineralizing fluids composition. (author) [fr

  18. Metallogenic condition and regularity of inter layered oxidation zone-type sandstone uranium deposit in southwestern part of Turpan-Hami basin, Northwestern China

    International Nuclear Information System (INIS)

    Xiang Weidong; Chen Zhaobo; Chen Zuyi; Yin Jinshuang

    2001-01-01

    Regional geological surveying and drilling evaluation in recent years show that there are very large potential resources of sandstone-type uranium deposits in the southwestern part of Turpan-Hami basin. According to the characteristics of tectonic evolution and sedimentary cover of the basin, the evolution stages and types of the basin are divided, and the favorable development stages for the ore-bearing formation and the formation of uranium deposits in the evolution process are identified. The metallogenic conditions of uranium deposits are deeply discussed from four aspects: basic tectonics, paleoclimate evolution, hydrogeology and uranium source of the region. All these have laid an important foundation for accurate prediction and evaluation of uranium resources in this region. The research indicates that the uranium metallogeny is a process of long-term, multi-stage and pulsation. The authors try to ascertain the role of organic matter in concentrating uranium. The organic matter is of humic type in sandstone host-rock in the studied area, whose original mother material mainly belongs to terrestrial high plant. The maturity of the organic matter is very low, being in low-grade stage of thermal evolution. Correlation analysis and separation experiments show that uranium concentration is closely related with the organic matter, and the organic matter in uranium ore is mainly in the form of humic acid adsorption and humate. For this reason the total organic carbon content is often increased in the geochemical redox zone in epigenetic sandstone-type uranium deposits. It is suggested that the north of China is of great potential for sandstone-type uranium resources

  19. Regularities of the vertical distribution of uranium-molybdenum mineralization

    International Nuclear Information System (INIS)

    Konstantinov, V.M.; Kazantsev, V.V.; Protasov, V.N.

    1980-01-01

    The geological structure of one of ore fields of the uranium-molybdenum formation pertaining to the northern framing of a large volcano-tectonic depression is studied. The main uranium deposits are related to necks formed by neck facies of brown liparites. Three zones are singled out within the limits of the ore field. In the upper one there are small ore bodies with a low uranium content represented by phenolite-chlorite, pitchblende 3-coffinite 3-jordizite and calcinite-sulphide associations, in the middle one - the main ore bodies formed by pitchblende 1-chlorite, molybdenite 2 (jordizite)-pitchblende 2-hydromica, coffinite 2-pyrite associations; in the lower one-thin veinlets formed by coffinite-molybdenite 1-chlorite, brannerite-pyrite and pitchblende 1-chlorite associations. Dimensions of the ore deposits depend on the neck sizes: in small necks the middle zone and, rarely, the lower one are of the industrial interest; in the large ones - the upper middle and, probably, lower ones. The regularities found can be extended to other deposits of the uranium-molybdenum formation [ru

  20. Chlorination separation of uranium, thorium, and radium from low-grade ores

    International Nuclear Information System (INIS)

    Sastri, V.S.; Perumareddi, J.R.

    1995-01-01

    Low-temperature chlorination of low-grade uranium ores containing uranium in the 0.02 to 0.06% range, thorium in the 0.036 to 0.12% range, and radium in the 70 to 200 pci/g range resulted in the extraction of >90% of the constituents. The residue left after chlorination was found to be innocuous and suitable for disposal as a waste acceptable to the environment. Use of sodium chloride in the charge was useful in reducing the chlorination temperature and in the formation of nonvolatile anionic chloro complexes of the metal ions in the ore

  1. Management of wastes from the refining and conversion of uranium ore concentrate to uranium hexafluoride

    International Nuclear Information System (INIS)

    1981-01-01

    This report is the outcome of an IAEA Advisory Group Meeting on ''Waste Management Aspects in Relation to the Refining of Uranium Ore Concentrates and their Conversion to Uranium Hexafluoride'', which was held in Vienna from 17 to 21 December 1979. The report summarizes the main topics discussed at the meeting and gives an overview of uranium refining processes, being used in nuclear industry. The meeting was organized by the International Atomic Energy Agency, Radioactive Waste Management Section

  2. Calculation of gamma ray exposure rates from uranium ore bodies

    International Nuclear Information System (INIS)

    Thomson, J.E.; Wilson, O.J.

    1980-02-01

    The planning of operations associated with uranium mines often requires that estimates be made of the exposure rates from various ore bodies. A straight-forward method of calculating the exposure rate from an arbitrarily shaped body is presented. Parameters for the calculation are evaluated under the assumption of secular equilibrium of uranium with its daughters and that the uranium is uniformly distributed throughout an average soil mixture. The spectral distribution of the emitted gamma rays and the effect of air attenuation are discussed. Worked examples are given of typical situations encountered in uranium mines

  3. Contribution to study of effects consecutive to alpha decay of uranium 238 in some uranium compounds and uranium ores

    International Nuclear Information System (INIS)

    Ordonez-Regil, E.

    1985-06-01

    The consequences of alpha decay of 238 U in uranium compounds and in uranium bearing ores have been examined in two ways: leaching of 234 Th and determination of the activity ratio of 234 U and 238 U. The results have been interpreted mainly in terms of the ''hot'' character of the nascent 234 Th atoms [fr

  4. Preconcentration of low-grade uranium ores with environmentally acceptable tailings, part I

    International Nuclear Information System (INIS)

    Raicevic, D.; Raicevic, M.; McCarthy, D.R.

    1979-08-01

    The low-grade ore sample used for this investigation originated from Agnew Lake Mines Limited, Espanola, Ontario. It contained about 1% pyrite and 0.057% uranium, mainly as uranothorite with a small amount of brannerite. Both of these minerals occur in the quartz-sericite matrix of a conglomerate. A preconcentration process has been developed to give a high uranium recovery, reject pyrite, radium and thorium from the ore and produce environmentally acceptable tailings. This process applies flotation in combination with high intensity magnetic separation and gravity concentration

  5. Some problems on target-area selection for searching interstratified infiltration sandstone-type uranium deposits suitable to in-situ leaching

    International Nuclear Information System (INIS)

    Hu Shaokang

    2005-01-01

    The sandstone-type uranium deposits are widely distributed in the world, but only 3 regions where deposits reach uranium province size and are suitable for in-situ leaching have been found. Deposits are all of the interstratified-oxidation type, and developed at the combination sites of the most recent orogenic belt with young or old platforms in form of 'branching, inclining and disappearing' of the former. Geomorphologically, these regions consist of 3 big 'steps' from high mountain regions through lower mountains or hills to the margins of the basin, which are in form of declining slope and form a good hydrodynamic conditions. Climatically, an arid climate was always required for the period of sandstone-type uranium ore formation, while annual evaporation is higher than the annual precipitation, the high mountain regions with high potential energy of water melted from glacier and snow which is thought to be a long-term and steady underground water supplier for lower mountains or hill regions and the margins of the basin. However, in orogenic belt there is a good number of inter-mountain basins with at least two big 'steps' indicating a good potential to discover interstratified-oxidation sandstone-type uranium deposits in coal-bearing basins. Many Chinese and foreign uranium geologists have noticed that there is an east-west oriented Hercynian uranium mineralization belt lying across the middle of Europe, the eastern section is superimposed on the Ural-Tianshan-Mongolian mobile belt and together with the latter it was infected by the Alpine-Himalayan movement in Meso-Cenozoic. This resulted in a complicated metallogenic scene with different ore-forming times, multiple types of deposits, and spatial concentration. In addition, a sub-meridional-oriented 'Vebris belt' running through the eastern part of Asia is considered as combination part of the Central Asian mobile belt with the Western Pacific mobile belt which reflects inhomogeneity in crustal construction of

  6. The analyzing stratum formation and sediment environment using TEM for finding sandstone type uranium deposits in Mahuangquan area

    International Nuclear Information System (INIS)

    Zhao Xigang; He Jianguo; Zhao Cuiping; Lou Hansheng

    2010-01-01

    Transient electromagnetic method (TEM) is used to detect deep geological information for insidious sandstone type uranium deposits in Mahuangquan area. TEM surveying data is processed to build the relation between resistance rate and different petrology, to ensure three large electronic strata, and to explain the space position of sediment center and alluvial fan. Combining with ore control factors of sandstone type uranium deposit, it can conclude that the slope area and the alluvial fan are the key areas for further exploration work. (authors)

  7. Uranium Potential and Socio-Political Environment for Uranium Mining in the Eastern United States Of America with Emphasis on the Coles Hill Uranium Deposit

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, N.W., E-mail: MMastilovic@vaunic.com [Virginia Uranium, Inc., Chatham, VA (United States)

    2014-05-15

    Virginia Uranium, Inc. (“VUI”) is an exploration and development company that holds exclusive rights to the world class Coles Hill uranium project in Pittsylvania County, Virginia. This project has the potential to supply significant uranium to the market. Since the 1980s over US$60 million has been expended to advance the project. The Coles Hill uranium deposit is located in south central Virginia and is probably the largest undeveloped uranium deposit in the United States. It has a measured and indicated resource of 119 million pounds of U{sub 3}O{sub 8}{sup (A)} {sup (B)} at a cut-off grade of 0.025% U{sub 3}O{sub 8} based on a National Instrument 43-101 technical report prepared for Santoy Resources Ltd. and Virginia Uranium, Inc. by Behre Dolbear and Company, Ltd., Marshall Miller and Associates, Inc., and PAC Geological Consulting Inc. dated February 2, 2009 and revised April, 2009. The whole rock analyses of the deposit indicate a relatively monomineralic ore that does not contain quantities of heavy metals that are typical of uranium ores of the southwestern United States. The Colorado School of Mines Research Institute conducted mill mineral processing tests in the 1980s. Project pre-feasibility studies and other plans completed in the 1980s will be updated over the next 12 months.Mining and support personnel can reasonably be recruited from the local area, as the skill sets needed for miners exist already among people and companies who are comfortable with farming and heavy equipment. Virginia currently requires that uranium mining regulations and permitting be adopted by law prior to approving a mining operation at Coles Hill. Virginia has regulated and permitted many similar mining industries. In fact, lead has been mined in the state from 1750–1981 and heavy metal sands have been mined since 1991 in Dinwiddie County that is over 90 miles/144 kilometers east of Coles Hill. A process to evaluate uranium mining through the Virginia Coal and Energy

  8. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    Science.gov (United States)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  9. Method of gradual acid leaching of uranium ores of silicate and aluminosilicate nature

    International Nuclear Information System (INIS)

    Bosina, B.; Krepelka, J.; Urban, P.; Kropacek, J.; Stransky, J.

    1987-01-01

    Leaching uranium ore pulp is divided into two stages. The first stage takes place without any addition of a leaching agent at elevated pressure and temperature. In the second stage, sulfuric acid is added to the pulp (50 to 1000 kg per tonne of ore) or an oxidation agent. Leaching then proceeds according to routine procedures. The procedure is used to advantage for silicate or aluminosilicate ores which contain uranium minerals which are difficult to leach, pyrite and reducing substances. The two stage leaching allows to use the technology of pressure leaching, reduces consumption of sulfuric acid and oxidation agents and still achieves the required reduction oxidation potential. (E.S.)

  10. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance

    International Nuclear Information System (INIS)

    Gaboreau, St.

    2005-01-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO 2 and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  11. Basic feature of host rock and its relation to the formation of leachable sandstone type uranium deposit in Shihongtan

    International Nuclear Information System (INIS)

    Quan Zhigao; Zhang Jiamin; Ji Haijun; Sun Yanhuan; Zhang Fa

    2012-01-01

    Basic feature of sedimentology and petrology and lithogeochemistry of middle Jurassic Xishanyao formation were discussed for Shihongtan uranium deposit in the paper. The relation between host rock and ore formation was analysed. It is indicated that the formation of Shihongtan uranium deposit de-ponds on the following host features in sedimentology, petrology, lithogeochemistry and the intense oxidized epigenetic alteration under hot dry climate condition during the formation of peneplain caused by the slow tilting uplift. (authors)

  12. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  13. Hydrothermal convection and uranium deposits in abnormally radioactive plutons

    International Nuclear Information System (INIS)

    1978-09-01

    Hydrothermal uranium deposits are often closely associated with granites of abnormally high uranium content. We have studied the question whether the heat generated within such granites can cause fluid convection of sufficient magnitude to develop hydrothermal uranium deposits. Numerical models of flow through porous media were used to calculate temperatures and fluid flow in and around plutons similar to the Conway Granite, New Hampshire, i.e. with a halfwidth of 17 km, a thickness of 6.25 km, and with a uniform internal heat generation rate of 20 x 10 -13 cal/cm 3 -sec. Fluid convection was computed for plutons with permeabilities between 0.01 and 5 millidarcies (1 x10 -13 cm 2 to 5 x 10 -11 cm 2 . Flow rates and the size and location of convection cells in and around radioactive plutons like the Conway Granite were found to depend critically on the permeability distribution within the pluton and in adjacent country rocks. The depth of burial, the distribution of heat sources within the pluton, and small rates of heat generation in the country rock are only of minor importance. Topographic relief is unlikely to effect flow rates significantly, but can have a major influence on the distribution of recharge and discharge areas. Within a few million years, the mass of water transported by steady state convection through such radioactive plutons can equal the mass of water which can convect through them during initial cooling from magmatic temperatures. If the permeability in a Conway-type pluton is on the order of 0.5 millidarcies, the rate of fluid convection is probably sufficient to develop a hydrothermal ore deposit containing 10,000 tons of uranium in a period of two million years. Such a uranium deposit is most likely to develop in an area of strong upwelling or strong downwelling flow

  14. Method of impact evaluation of storage sites for uranium ore tailings

    International Nuclear Information System (INIS)

    Servant, A.C.; Cessac, B.

    2001-11-01

    Mining and ore processing generate liquid effluents and solid waste ( tailings) in important quantities. On fifty years exploitation, 50 millions tons of tailings have been stored on twenty sites in France. From a radiological point of view, the uranium tailings contain only natural radioisotopes, daughters of 238 U and 235 U families and for a low part daughter's of 232 Th family. Their activity stay low to very low, under the ore activity. It decreases very slowly because of the long period of some radionuclides ( 230 Th, 75 000 years, 226 Ra, 1600 years). generally stored on the exploitation site, these tailings constitute a radiological source term of which it is necessary to evaluate the impact on man and environment. At close-down of an uranium ore exploitation site, the operator is required to give to the prefect of his region a file of rehabilitation with the dispositions to take to limit the radiological impact of the storage. It is in this frame that the direction of pollutions and risks prevention (D.P.P.R.) from the Minister of Territory landscaping and the Institute of protection and nuclear safety (I.R.S.N.) established a convention, reference 56/2000, relative to investigations in matter of radiological impact evaluation of uranium tailings storage sites, in order to supply a document allowing to judge the pertinence of the different files made by Cogema in the frame of tailings storage of uranium ore processing. The present document constitutes the report planned at the 3. article ( 3. paragraph) of the convention. It gives the information necessary to the evaluation of impact studies for the sites in question. (N.C.)

  15. Novel geochemical techniques integrated in exploration for uranium deposits at depth

    International Nuclear Information System (INIS)

    Kyser, K.

    2014-01-01

    unique to uranium-rich sources. Isotopic compositions of C and N indicate microbial interactions with the uranium deposits, which is the likely process by which elements are mobilized out of the deposits and into the surrounding environment for us to use as vectors to ore. Correlations among pathfinder elements occur in fractures in core, but also in various surface media. Multi-element analyses including Pb isotopes of the clay-sized fractions of all soil horizons and vegetation provide compelling evidence that a robust geochemical signature exists. All of the processes that operate to produce geochemical anomalies at the surface above unconformity-related deposits are applicable to all other types of uranium deposits and should be integrated into learning curves for effective exploration of uranium. (author)

  16. Laboratory study on leaching of a sandstone-type uranium deposit for acid in-situ leaching

    International Nuclear Information System (INIS)

    Wen Zhenqian; Yao Yixuan; Zheng Jianping; Jiang Yan; Cui Xin; Xing Yongguo; Hao Jinting; Tang Huazhang

    2013-01-01

    Ore samples were took from in-situ leaching experiment boreholes in a sandstone-type uranium deposit. Technological mineralogy study, agitating leaching and column leaching experiments were carried. The results show that the content of minerals consuming acid and deoxidized minerals is low. When sulfuric acid concentration was 1O g/L, initial uranium content was 0.0224%, and liquid-to-solid ratio was l.91, leaching rate of column leaching experiments is 89.19%, acid consumption is 8.2 kg/t ore, acid consumption is 41.88 t/tU. Acid leaching, technology is recommend for field in-situ leaching experiment, sulfuric acid concentration in confecting solution is 10 g/L, and oxidizing agent is needless during leaching process. (authors)

  17. Bacterial leaching of uranium ores - a review

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-11-01

    The bacterial leaching of uranium ores involves the bacterially catalysed oxidation of associated pyrite to sulphuric acid and Fe 3+ by autotrophic bacteria and the leaching of the uranium by the resulting acidic, oxidising solution. Industrial application has been limited to Thiobacillus thiooxidans and Thiobacillus ferrooxidans at pH 2 to 3, and examples of these are described. The bacterial catalysis can be improved with nutrients or prevented with poisons. The kinetics of leaching are controlled by the bed depth, particle size, percolation rate, mineralogy and temperature. Current work is aimed at quantitatively defining the parameters controlling the kinetics and extending the method to alkaline conditions with other autotrophic bacteria. (author)

  18. Bernabe Montano uranium deposit, Sandoval County

    International Nuclear Information System (INIS)

    Kozusko, R.G.; Saucier, A.E.

    1980-01-01

    Uranium mineralization was discovered on the Bernabe Montano Grant early in 1971. This old land grant, which is part of the Laguna Indian Reservation, is approximately 25 mile northwest of Albuquerque, New Mexico. About 2,000 holes have been drilled on this property to date, and an ore reserve of 10 to 20 million lbs of uranium oxide has been delineated in the Westwater Canyon Member of the Morrison Formation. The mineralization consists of multiple, stacked blankets of mineralized humate which appear to be localized in an area of slightly thicker and more laterally continuous sandstones. The blankets occur along a relatively straight mineral trend about a half mile wide and several miles in length. Holes drilled on-trend usually encounter gamma anomalies, whereas holes drilled off-trend are barren. The uranium is believed to have been carried through the Westwater Canyon Member by ground water that followed the palochannel systems shortly after burial in Late Jurassic time. This discovery once again confirms the trend-ore concept, and it probably represents the present eastern economic limit of the Grants mineral belt. The orebody is unusual because it occurs in a structurally deformed area called the Rio Puerco fault zone. The mineralization, which does not conform to a roll-front model, represents an important addition to the ore reserves of the Grants uranium region

  19. Comparative toxicity in rats vs hamsters of inhaled radon daughters with and without uranium ore dust

    International Nuclear Information System (INIS)

    Gaven, J.C.; Palmer, R.F.; McDonald, K.E.; Lund, J.E.; Stuart, B.O.

    1977-01-01

    Simultaneous exposures of rats and hamsters to inhaled radon daughters, with and without uranium ore dust, were performed daily for five months. Pulmonary pathology developing in 6 to 13 mo after cessation of daily exposures included interstitial fibrosis, emphysema, epithelial hyperplasia, squamous metaplasia, and malignant neoplasia. Rats showed a greater variety and more severe response to these uranium mine inhalation exposures than did hamsters. Inhalation of radon daughters with uranium ore dust displayed the site of greatest damage, including squamous carcinoma, from the nasopharynx to the lungs. Sixty percent of the rats exposed to radon daughters with ore dust developed primary pulmonary carcinomas, providing an appropriate short-term experimental animal model for investigation of respiratory tract carcinogenesis in uranium miners

  20. Development of lesions in Syrian golden hamsters following exposure to radon daughters and uranium ore dust

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Busch, R.H.; Filipy, R.E.; Stuart, B.O.

    1981-01-01

    The development of lesions in Syrian Golden hamsters was studied following life-span inhalation exposures to radon, radon daughters and uranium ore dust. Clinical measurements revealed that life-span exposures to radon daughters and uranium ore dust, singly or in combination, caused no significant changes in mortality patterns, body weights or hematological parameters compared with controls. Pulmonary and nonpulmonary lesions are presented. Exposure to uranium ore dust provoked inflammatory and proliferative responses in the lungs consisting of macrophage accumulation, alveolar cell hyperplasia, and adenomatous alteration of alveolar epithelium. The adenomatous lesions did not undergo further morphologic change. Exposure to radon and radon daughters was associated with increased occurrence of bronchiolar epithelial hyperplasia and with metaplastic changes of alveolar epithelium. Squamous carcinoma developed in only a few hamsters and only in those animals receiving radon daughter exposures exceeding 8000 WLM. It is concluded that an animal model other than the hamster would be more appropriate for study of the pulmonary carcinogenic potential of uranium ore alone. (author)

  1. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  2. Research on metallogenetic system and palaeo-hydrodynamic analysis on exogenic uranium deposits

    International Nuclear Information System (INIS)

    Ma Liang; Wang Ping

    2008-01-01

    The research and current development trends of sandstone-type uranium deposit at home and abroad are analyzed. A new study idea is put forward in the view of evolution of metallogenetic system i.e. taking the dynamics of matter transportation as main clue to restore the regional palaeo- topography at pre-ore stage, ore forming stage and post-ore stage under the principle of system theory in the way of background evolution of regional geology, especially tectonic dynamic evolution and lithofacies and palaeogeography. Palaeo-flowing field at different geological periods in the processing of regional evolution is reestablished by the usage of palaeohydrogeological analysis combined with the theory of groundwater flowing system. Dynamical process of source-transportation-accumulation- reservation of metallogenetic matter is focused on region scale. (authors)

  3. Geostatistical ore reserve estimation for a roll-front type uranium deposit (practitioner's guide)

    International Nuclear Information System (INIS)

    Kim, Y.C.; Knudsen, H.P.

    1977-01-01

    This report comprises two parts. Part I contains illustrative examples of each phase of a geostatistical study using a roll-front type uranium deposit. Part II contains five computer programs and comprehensive users' manuals for these programs which are necessary to make a practical geostatistical study

  4. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Wilpolt, R.H.; Simov, S.D.

    1979-01-01

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  5. Neutron activation probe for measuring the presence of uranium in ore bodies

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Smith, R.C.

    1979-01-01

    A neutron activation proble comprises a pulsed neutron source in series with a plurality of delayed neutron detectors for measuring radioactivity in a well borehole together with a NaI (Tl) counter for measuring the high energy 2.62 MeV gamma line from thorium. The neutron source emits neutrons which produce fission in uranium and thorium in the ore body and the delayed neutron detectors measure the delayed neutrons produced from such fission while the NaI (Tl) counter measures the 2.62 MeV gamma line from the undisturbed thorium in the ore body. The signal from the NaI (Tl) counter is processed and subtracted from the signal from the delayed neutron detectors with the result being indicative of the amount of uranium present in the ore body

  6. Methods for the exploration and recovering of uranium

    International Nuclear Information System (INIS)

    Kegel, K.E.

    1982-01-01

    The uranium reserves in the western world occur basically in two types of deposits a) vein type and vein like types b) sedimentary types, with the vein deposits providing only 5 percent of the actual uranium production. 85% of the known uranium reserves in the western world, amounting to about 5 million metric tons U occur in a relatively small number of countries (U.S.A., Canada, Australia, South Africa and Namibia, France, Niger and Gabun). Exploration on uranium deposits is carried out by using geophysical and geochemical methods. Radiometry, i.e. the determination of the radioactivity of the ground in a prospective area, is the main geophysical tool. In the mining of uranium ores, practically all mining methods, applied in other metal mining branches, are being used. The benefication of uranium ore is characterized by a large up-grading factor (i.e. the ratio between the uranium content in the concentrates and the uranium content in the ore) which is higher than in most other metal mining operations. In the field of health and safety in uranium mines, the radiation protection of the workers plays a paramount role. Strict rules exist for maximum values of certain elements in waste air and waste water of uranium mining operations, emitted into the environment. (orig.)

  7. World Distribution of Uranium Deposits (UDEPO) with uranium deposit classification. 2009 ed

    International Nuclear Information System (INIS)

    2009-10-01

    The World Distribution of Uranium Deposits (UDEPO) database provides general, technical and geological information, including references, about the worldwide uranium deposits. UDEPO has been published on the internet which allows the users to register freely and to work with datasets (http://www-nfcis.iaea.org). The UDEPO web site is designed to allow users to retrieve data sets on a variety of deposit related topics ranging from specific information on individual uranium deposits to statistical information on uranium deposits worldwide. The basic building blocks for the UDEPO database are the more than 900 individual deposits for which information is available in the database. The database is arranged in a relational database format which has one main table and a number of associated tables. Structured nature of the database allows filtering and querying the database in more systematic way. The web site provides filtering and navigation to the data from the database. It has also a statistical tool which provides summary information on number of deposits and uranium resources by type and status, and by country and status. In this respect and with regard to the data presented, the UDEPO database is a unique database which provides freely accessible information on worldwide uranium deposits. Although a great effort is spent to have complete and accurate database, the users should take into consideration that there still might be missing or outdated data for individual deposits due to the rapid changes in the uranium industry due to the new exploration works which are ongoing everyday. This document and its supplementary CD-ROM represent a snapshot of the status of the database as of the end of 2008. However, the database is being continuously updated and the latest updates and additions can be accessed from the database web site (http://wwwnfcis.iaea.org)

  8. Vein-type uranium deposits

    International Nuclear Information System (INIS)

    Rich, R.A.; Holland, H.D.; Petersen, U.

    1975-01-01

    A critical review is presented of published data bearing on the mineralogy, paragenesis, geochemistry, and origin of veiw-type uranium deposits. Its aim is to serve as a starting point for new research and as a basis for the development of new exploration strategies. During the formation of both vein and sandstone types of deposits uranium seems to have been dissolved by and transported in rather oxidized solutions, and deposited where these solutions encountered reducing agents such as carbon, sulfides, ferrous minerals and hydrocarbons. Granitic rocks abnormally enriched in uranium have apparently been the most common source for uranium in vein-type deposits. Oxidizing solutions have been derived either from the surface or from depth. Surface solutions saturated with atmospheric oxygen have frequently passed through red bed or clean sandstone conduits on their way to and from uranium source rocks. Deep solutions of non-surface origin have apparently become sufficiently oxidizing by passage through and equilibration with red beds. The common association of clean sandstones or red beds with uranium-rich granites in the vicinity of vein-type uranium deposits is probably not fortuitous, and areas where these rock types are found together are considered particularly favorable targets for uranium exploration

  9. Effect of reagent parameters on recovery of South Africa uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Afolabi, A.S., E-mail: afolaas@unisa.ac.za [Univ. of South Africa, Dept. of Civil and Chemical Engineering, Johannesburg (South Africa); Muzenda, E. [Univ. of Johannesburg, Chemical Engineering Technology Dept., Johannesburg (South Africa); Sigwadi, R. [SGS Lakefield Research Africa (Pty) Ltd., Johannesburg (South Africa)

    2010-07-01

    The effects of leach parameters to determine the variability of reagents consumption on a uranium ore was investigated in this work. The effects of time, temperature sulphates, and acid consumption on the rate of dissolution of the comminuted uranium ore samples were also studied. It was found that 77% dissolution of uranium was achieved after 8 hours while maximum uranium leaching of 92% was achieved at temperature 30{sup o}C for 1 hour. The addition of ferric sulphate at 30{sup o}C showed a decrease in acid consumption from 79.32 kg/t to 32.32 kg/t as well as decrease in the MnO{sub 2} consumption from 21.03 kg/t to 15.06 kg/t. At elevated temperature of 6{sup o}C a higher acid consumption of 100 kg/t was obtained and this is attributed to the fact that other acid consuming minerals were leached at this temperature. Maximum uranium dissolution of 89.37% was achieved after 24 hours and the acid consumption was 31 kg/t with a MnO{sub 2} addition of 24.26 kg/t. (author)

  10. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  11. High-resolution sequence stratigraphic character and sandstone-type uranium ore formation. A case from Saihan Formation in Baiyinwula area, Erlian Basin

    International Nuclear Information System (INIS)

    He Zhongbo; Qin Mingkuan

    2006-01-01

    High-resolution sequence stratigraphy has been applied widely in the petroleum exploration and development, many achievements have been achieved. However, it is in the beginning stage that high-resolution sequence stratigraphy is applied to explore the sandstone-type uranium deposits in Erlian Basin. By applying principles of high-resolution sequence stratigraphy and taking typical boreholes as an example, sedimentary cycles of Saihan Formation, the ore-bearing formation in Baiyinwula area are divided and correlated through cross sections. One long-term cycle (LSC 1 ), two middle-term cycles (MSC 1 , MSC 2 ) have been identified in this study. Based on this and combined with the mineralization character of sandstone uranium deposits in this area, it is presented that the interlayer oxidation zone is developed mainly in the rising hemicycle of MSC 1 and uranium ore bodies predominantly in channel sand bodies that were developed in the system tract with low accommodation; furthermore, it is recognized that these sand bodies are moderate (10-15 m) in thickness, fairly good in interconnectivity, relatively thin (<3 m) with the argillaceous interbed, and good in permeability, abundant in the organic matter and thus it is favorable for the development of the interlayer oxidization zone. (authors)

  12. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  13. Uranium mineralization in the central region of Cuba

    International Nuclear Information System (INIS)

    Valdez, M.G.; Olivera, J.; Fernandez, P.

    1995-01-01

    The present work shows different geological and geophysical index for uranium mineralization found at Loma Alta iron ore deposit, located in the central region of Cuba. In this deposit was carried out pull work of iron ore. The tunnels were radiometrically documented in the wall and the floor observing some anomalies of the gamma ray intensity (up to 1700 c.p.s.) associated with the poor iron ore. In those points were collected solid sample. The obtained results were very important (uranium concentrations values up to 3500 ppm)

  14. Low grade uranium deposits of India - a bane or boon

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2010-01-01

    northern parts of Cuddapah basin in Andhra Pradesh is the host for unconformity related low grade uranium deposits. Four low grade low to medium tonnage deposits viz. Lambapur, Peddagattu, Chitrial and Koppunuru have been established in this province along the contact between basement granite and Proterozoic sedimentary rocks. This province also holds promise for large tonnage high grade mineralization in the deeper unexplored parts of the basin. The North Delhi Fold Belt in the states of Rajasthan and Haryana is the host for albitite/vein type uranium mineralization. A 320km long NE-SW trending zone of deep seated fractures and soda metasomatism hosted the low grade mineralization.. A low grade uranium deposit is already established at Rohil associated with albitites and vast areas in this zone is open for exploration. The Cigar lake deposit, one of the two very high grade deposits in the world, though discovered in the year 1991 remains unexploited because of it high grade and requirement of remote handling and high end mining technology. The Mc Arthur deposit is being mined by raisebore mining method and the entire operation is carried out by 750 employees. Because of the high grade nature of the ore, it is diluted with barren rocks to bring the grade into manageable level before the beneficiation. The Rossing uranium deposit in Namibia, the biggest opencast mine for uranium, is of low grade and produces nearly 8% of the global output. As a result of the massive mining and beneficiation operation, the employment of manpower is also very high compare to the high grade deposits. India, being a developing country with a high rate of unemployment, should treat the low grade deposits as an opportunity for employment. The operation of Rossing mine in Namibia is a shining example of as to how a low grade deposit could be economically exploited in the national interest and still be among the top five countries in terms of production. In spite of mining the low grade resources

  15. Use of gamma logging for calculating reserves of hydrogenic deposits

    International Nuclear Information System (INIS)

    Polkanov, Yu.G.

    1992-01-01

    Recently, in studies of hydrogenic deposits of uranium, great importance was laid on investigating the effect of radium halos, incorrect accounting of which leads to overestimates of the depth of the mineralization and to errors in determining the uranium content by radiographic methods. Radium halos are located both in the rear and in the front of ore deposits. Ores located in the front of ore deposits are primarily formed from the diffusion of radium into rocks near the ores. Radium halos located in the rear of the deposits are called residual halos. They are caused by the retention of radium in sections from which the uranium already has been carried away. In order to consider the radium halos, which are confined to zones of stratified oxidation and adjoining ore intervals, one uses the dependence of the edge mass fraction of radium at the boundaries of the (uranium) ore intervals on the average radium mass fraction in the intervals. This method makes it possible to separate with satisfactory accuracy sections on the γ-ray logging curves which corresponds to zones of stratified oxidation (red-colored rock) and to exclude them in calculating the reserves

  16. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Espenscheid, W.F.; Yan, F.Y.

    1983-01-01

    The present invention relates to the recovery of uranium from subterranean ore deposits, and more particularly to an in-situ leaching operation employing an aqueous solution of sulfuric acid and carbon dioxide as the lixiviant. Uranium is solubilized in the lixiviant as it traverses the subterranean uranium deposit. The lixiviant is subsequently recovered and treated to remove the uranium

  17. Geochemistry and ore prospecting

    International Nuclear Information System (INIS)

    Le Caignec, R.

    1954-01-01

    Applied geochemistry is a new technique which helps the geologist in detecting ore deposits. Some deposits, even when they are covered with rather thick surface structures, form around these zones where the infinitesimal content of some elements of soils or waters is notably different. These 'anomalies' may be contemporaneous to the deposit-structure (primary dispersion) or may have occurred later (secondary dispersion). Various factors rule these anomalies: ore-stability, soil homogeneity, water conditions, topography, vegetation, etc... Applied geochemistry is in fact the study of analysis techniques of metal traces in soils as well as the geological interpretation of observed anomalies. This report gives practical data on sampling methods, yields, costs and also on special problems of uranium geochemistry. (author) [fr

  18. Spectrophotometric determination of trace uranium in phosphate ore samples from kurum and uro areas, Nuba mountains, Sudan

    International Nuclear Information System (INIS)

    Mohamed, A. A.; Ali, A. H.; Altayeb, M. A. H.

    2004-01-01

    A method was proposed for the spectrophotometric determination of uranium content in phosphate ores. the method is based on the use of nitrogen (v) acid for leaching the rock, and treatment with ammonium carbonate solution, whereby uranium (Vi) is kept in solution as its carbonate complex. The ion-exchange technique was used for the recovery of uranium. Uranium was determined spectrophotometrically by measurement of the absorbance of the yellow uranium (Vi)-8-hydroxyquinolate complex at λ 425 nm. The procedure was used for the determination of trace uranium content in 30 phosphate ore samples collected from Kurun and Uro areas in Nuba mountains in Sudan. X-ray fluorescence technique was employed for the assessment of the method used. The spectrophotometric method results show a high similarity with those obtained by XRF technique. This agreement indicates that the procedure proposed here has been successfully applied for the determination of uranium in phosphate ores. (Author)

  19. Pattern recognition applied to uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, P L; Press, F [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences

    1977-07-14

    It is stated that pattern recognition techniques provide one way of combining quantitative and descriptive geological data for mineral prospecting. A quantified decision process using computer-selected patterns of geological data has the potential for selecting areas with undiscovered deposits of uranium or other minerals. When a natural resource is mined more rapidly than it is discovered, its continued production becomes increasingly difficult, and it has been noted that, although a considerable uranium reserve may remain in the U.S.A., the discovery rate for uranium is decreasing exponentially with cumulative exploration footage drilled. Pattern recognition methods of organising geological information for prospecting may provide new predictive power, as well as insight into the occurrence of uranium ore deposits. Often the task of prospecting consists of three stages of information processing: (1) collection of data on known ore deposits; (2) noting any regularities common to the known examples of an ore; (3) selection of new exploration targets based on the results of the second stage. A logical pattern recognition algorithm is here described that implements this geological procedure to demonstrate the possibility of building a quantified uranium prospecting guide from diverse geologic data.

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Spain

    International Nuclear Information System (INIS)

    1977-10-01

    Spain, with an area of 504 748 km''2, occupies a large part of the Iberian Peninsula. At present the country appears to have about 6300 t of reasonably assured uranium reserves and 8500 t of additional estimated reserves (all at less than $30/lb of U 3 O 8 ). Spain has devoted some $33 million to prospecting for uranium since the beginning of such work. Most of the reasonably assured reserves are located in ores impregnating Cambrian schists intersected by Hercynian granites (of so-called 'Iberian type'); a small amount, however, is found in veins in Hercynian granites of the Spanish Meseta. The additional estimated reserves are situated in the peripheral post-Hercynian continental basins of the Meseta. Apart from these classical ores, sub-ores have been identified in Silurian quartzites with low concentrations of uranium associated with refractory minerals, totalling more than 200,000 t of U (at concentrations of a few hundred ppm); there are likewise uranium-bearing Oligocene lignites in the Ebro Basin with some 140,000 t of U. These facts, and also the very wide distribution of uranium in space and time (from the Cambrian to the Miocene!) and the country's favourable geological characteristics, suggest that Spain ought in fact to have large reserves of uranium, a conclusion unfortunately belied by the paucity of the economic reserves identified so far. Two things must be borne in mind, however; firstly, Spain's financial outlay for uranium prospecting up till now represents only a quarter of what has been invested in France, for example, and, secondly, the nature of the mineralised bodies in Spain makes exploration difficult. In conclusion it seems that prospecting both of the Iberian-type deposits in the Meseta region and of the deposits associated with detrital sediments in the peripheral continental basins - especially blind mineralized bodies - should hold out excellent prospects for Spain. Consequently we propose that Spain should be placed at least in