Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
Directory of Open Access Journals (Sweden)
Xi Liu
2016-09-01
Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
Estimating Torque Imparted on Spacecraft Using Telemetry
Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.
2013-01-01
There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.
Kalman Filter for Spinning Spacecraft Attitude Estimation
Markley, F. Landis; Sedlak, Joseph E.
2008-01-01
This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.
Attitude Estimation in Fractionated Spacecraft Cluster Systems
Hadaegh, Fred Y.; Blackmore, James C.
2011-01-01
An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.
Parameter Estimation of Spacecraft Fuel Slosh Model
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics
2016-09-15
Biology, Control and Artificial Intelligence , MIT Press, Cambridge, MA, USA, 1992. 177 [89] Thompson, R. E., Colombi, J. M., Black, J. T., and Ayres...utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for...this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time- varying
Marginalized particle filter for spacecraft attitude estimation from vector measurements
Institute of Scientific and Technical Information of China (English)
Yaqiu LIU; Xueyuan JIANG; Guangfu MA
2007-01-01
An algorithm based on the marginalized particle filters(MPF)is given in details in this paper to solve the spacecraft attitude estimation problem:attitude and gyro bias estimation using the biased gyro and vector observations.In this algorithm,by marginalizing out the state appearing linearly in the spacecraft model,the Kalman filter is associated with each particle in order to reduce the size of the state space and computational burden.The distribution of attitude vector is approximated by a set of particles and estimated using particle filter,while the estimation of gyro bias is obtained for each one of the attitude particles by applying the Kalman filter.The efficiency of this modified MPF estimator is verified through numerical simulation of a fully actuated rigid body.For comparison,unscented Kalman filter(UKF)is also used to gauge the performance of MPF.The results presented in this paper clearly demonstrate that the MPF is superior to UKF in coping with the nonlinear model.
Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation
Yang, Yaguang; Zhou, Zhiqiang
2016-01-01
Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver
2016-01-01
Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities
A Quantized State Approach to On-line Simulation for Spacecraft Autonomy
DEFF Research Database (Denmark)
Alminde, Lars; Stoustrup, Jakob; Bendtsen, Jan Dimon
2006-01-01
Future space applications will require an increased level of operational autonomy. This calls for declarative methods for spacecraft state estimation and control, so that the spacecraft engineer can focus on modeling the spacecraft rather than implementing all details of the on-line system. Celeb...
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
Three-dimensional modeling, estimation, and fault diagnosis of spacecraft air contaminants.
Narayan, A P; Ramirez, W F
1998-01-01
A description is given of the design and implementation of a method to track the presence of air contaminants aboard a spacecraft using an accurate physical model and of a procedure that would raise alarms when certain tolerance levels are exceeded. Because our objective is to monitor the contaminants in real time, we make use of a state estimation procedure that filters measurements from a sensor system and arrives at an optimal estimate of the state of the system. The model essentially consists of a convection-diffusion equation in three dimensions, solved implicitly using the principle of operator splitting, and uses a flowfield obtained by the solution of the Navier-Stokes equations for the cabin geometry, assuming steady-state conditions. A novel implicit Kalman filter has been used for fault detection, a procedure that is an efficient way to track the state of the system and that uses the sparse nature of the state transition matrices.
Rizvi, Farheen
2013-01-01
A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.
Harman, Richard R.
2006-01-01
The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.
Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.
2016-01-01
Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.
Galileo spacecraft solid-state imaging system view of Antarctica
1990-01-01
Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.
National Research Council Canada - National Science Library
Erwin, R. S; Bernstein, Dennis S
2005-01-01
.... In this paper we use a sampled-data extended Kalman Filter to estimate the trajectory or a target satellite when only range measurements are available from a constellation or orbiting spacecraft...
Contemporary state of spacecraft/environment interaction research
Novikov, L S
1999-01-01
Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.
Jensen, J. K.; Wright, R. L.
1981-01-01
Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.
Estimating spacecraft attitude based on in-orbit sensor measurements
DEFF Research Database (Denmark)
Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias
2014-01-01
of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...
State estimation in networked systems
Sijs, J.
2012-01-01
This thesis considers state estimation strategies for networked systems. State estimation refers to a method for computing the unknown state of a dynamic process by combining sensor measurements with predictions from a process model. The most well known method for state estimation is the Kalman
Optimal Weighting of Multi-Spacecraft Data to Estimate Gradients of Physical Fields
Chanteur, G. M.; Le Contel, O.; Sahraoui, F.; Retino, A.; Mirioni, L.
2016-12-01
Multi-spacecraft missions like the ESA mission CLUSTER and the NASA mission MMS are essential to improve our understanding of physical processes in space plasmas. Several methods were designed in the 90's during the preparation phase of the CLUSTER mission to estimate gradients of physical fields from simultaneous multi-points measurements [1, 2]. Both CLUSTER and MMS involve four spacecraft with identical full scientific payloads including various sensors of electromagnetic fields and different type of particle detectors. In the standard methods described in [1, 2], which are presently in use, data from the four spacecraft have identical weights and the estimated gradients are most reliable when the tetrahedron formed by the four spacecraft is regular. There are three types of errors affecting the estimated gradients (see chapter 14 in [1]) : i) truncature errors are due to local non-linearity of spatial variations, ii) physical errors are due to instruments, and iii) geometrical errors are due to uncertainties on the positions of the spacecraft. An assessment of truncature errors for a given observation requires a theoretical model of the measured field. Instrumental errors can easily be taken into account for a given geometry of the cluster but are usually less than the geometrical errors which diverge quite fast when the tetrahedron flattens, a circumstance occurring twice per orbit of the cluster. Hence reliable gradients can be estimated only on part of the orbit. Reciprocal vectors of the tetrahedron were presented in chapter 4 of [1], they have the advantage over other methods to treat the four spacecraft symmetrically and to allow a theoretical analysis of the errors (see chapters 4 of [1] and 4 of [2]). We will present Generalized Reciprocal Vectors for weighted data and an optimization procedure to improve the reliability of the estimated gradients when the tetrahedron is not regular. A brief example using CLUSTER or MMS data will be given. This approach
Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer
Directory of Open Access Journals (Sweden)
Xiaokun Liu
2016-04-01
Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.
Sedelnikov, A. V.
2018-05-01
Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.
Spin State Estimation of Tumbling Small Bodies
Olson, Corwin; Russell, Ryan P.; Bhaskaran, Shyam
2016-06-01
It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. "tumbling"). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.
Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control
Oshman, Yaakov; Thienel, Julie; Idan, Moshe
2015-01-01
This book presents selected papers of the Itzhack Y. Bar-Itzhack Memorial Sympo- sium on Estimation, Navigation, and Spacecraft Control. Itzhack Y. Bar-Itzhack, professor Emeritus of Aerospace Engineering at the Technion – Israel Institute of Technology, was a prominent and world-renowned member of the applied estimation, navigation, and spacecraft attitude determination communities. He touched the lives of many. He had a love for life, an incredible sense of humor, and wisdom that he shared freely with everyone he met. To honor Professor Bar-Itzhack's memory, as well as his numerous seminal professional achievements, an international symposium was held in Haifa, Israel, on October 14–17, 2012, under the auspices of the Faculty of Aerospace Engineering at the Technion and the Israeli Association for Automatic Control. The book contains 27 selected, revised, and edited contributed chapters written by eminent international experts. The book is organized in three parts: (1) Estimation, (2) Navigation and (3)...
Directory of Open Access Journals (Sweden)
Tamer Mekky Ahmed Habib
2013-06-01
Full Text Available The primary aim of this work is to provide simultaneous spacecraft orbit estimation and control based on the global positioning system (GPS measurements suitable for application to the next coming Egyptian remote sensing satellites. Disturbance resulting from earth’s oblateness till the fourth order (i.e., J4 is considered. In addition, aerodynamic drag and random disturbance effects are taken into consideration.
Gerberich, Matthew W.; Oleson, Steven R.
2013-01-01
The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.
International Nuclear Information System (INIS)
Murata, Takeshi; Matsumoto, Hiroshi; Kojima, Hirotsugu
1995-01-01
We estimate the location of the reconnection line and plasmoid size in the geomagnetic tail using data from the Plasma Wave Instrument onboard the GEOTAIL spacecraft. We first compare AKR onset events with high energy particle observations at geosynchronous orbit. We determine the plasmoid ejection (re-connection) time by the AKR enhancement only when it corrresponds to energetic particle enhancement within five minutes. The traveling time of the plasmoid from the X-line to the spacecraft is calculated by the difference in time of the AKR onset and that of the plasmoid encounter with GEOTAIL. Assuming the plasmoid propagates with the Alfven velocity in the tail lobe as MHD simulations predict, we estimate the location of the reconnection line in 11 events. The results show that the most probable location of the plasmoid edge is distributed around Χ = -60 R E in the GSE coordinates. The estimated size of the plasmoids ranges from 10 to 50 R E in the χ direction. If we apply this result to the alternative plasmoid model in which the evolution of the tearing instability causes the generation of plasmoids, the X-line should be approximately at χ = -35 R E . 15 refs., 3 figs., 1 tab
International Nuclear Information System (INIS)
Kim, So Young; Castet, Jean-Francois; Saleh, Joseph H.
2012-01-01
This article investigates the degradation and failure behavior of spacecraft electrical power subsystem (EPS) on orbit. First, this work provides updated statistical reliability and multi-state failure analyses of spacecraft EPS and its different constituents, namely the batteries, the power distribution, and the solar arrays. The EPS is shown to suffer from infant mortality and to be a major driver of spacecraft unreliability. Over 25% of all spacecraft failures are the result of EPS failures. As a result, satellite manufacturers may wish to pursue targeted improvement to this subsystem, either through better testing or burn-in procedures, better design or parts selection, or additional redundancy. Second, this work investigates potential differences in the EPS degradation and failure behavior for spacecraft in low earth orbits (LEO) and geosynchronous orbits (GEO). This analysis was motivated by the recognition that the power/load cycles and the space environment are significantly different in LEO and GEO, and as such, they may result in different failure behavior for the EPS in these two types of orbits. The results indicate, and quantify the extent to which, the EPS fails differently in LEO and GEO, both in terms of frequency and severity of failure events. A casual summary of the findings can be stated as follows: the EPS fails less frequently but harder (with fatal consequences to the spacecraft) in LEO than in GEO.
State Estimation for Tensegrity Robots
Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas
2016-01-01
Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.
Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft
Directory of Open Access Journals (Sweden)
Liu Zhang
2017-01-01
Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.
Xu, Zheyao; Qi, Naiming; Chen, Yukun
2015-12-01
Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.
Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.
1974-01-01
Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.
Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft
Sepka, Steven A.; Samareh, Jamshid A.
2015-01-01
Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
Practical global oceanic state estimation
Wunsch, Carl; Heimbach, Patrick
2007-06-01
The problem of oceanographic state estimation, by means of an ocean general circulation model (GCM) and a multitude of observations, is described and contrasted with the meteorological process of data assimilation. In practice, all such methods reduce, on the computer, to forms of least-squares. The global oceanographic problem is at the present time focussed primarily on smoothing, rather than forecasting, and the data types are unlike meteorological ones. As formulated in the consortium Estimating the Circulation and Climate of the Ocean (ECCO), an automatic differentiation tool is used to calculate the so-called adjoint code of the GCM, and the method of Lagrange multipliers used to render the problem one of unconstrained least-squares minimization. Major problems today lie less with the numerical algorithms (least-squares problems can be solved by many means) than with the issues of data and model error. Results of ongoing calculations covering the period of the World Ocean Circulation Experiment, and including among other data, satellite altimetry from TOPEX/POSEIDON, Jason-1, ERS- 1/2, ENVISAT, and GFO, a global array of profiling floats from the Argo program, and satellite gravity data from the GRACE mission, suggest that the solutions are now useful for scientific purposes. Both methodology and applications are developing in a number of different directions.
State estimation for a hexapod robot
CSIR Research Space (South Africa)
Lubbe, Estelle
2015-09-01
Full Text Available This paper introduces a state estimation methodology for a hexapod robot that makes use of proprioceptive sensors and a kinematic model of the robot. The methodology focuses on providing reliable full pose state estimation for a commercially...
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
State Alcohol-Impaired-Driving Estimates
... 2012 Data DOT HS 812 017 May 2014 State Alcohol-Impaired-Driving Estimates This fact sheet contains ... alcohol involvement in fatal crashes for the United States and individually for the 50 States, the District ...
State energy data report 1994: Consumption estimates
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.
State energy data report 1994: Consumption estimates
International Nuclear Information System (INIS)
1996-10-01
This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA's energy models. Division is made for each energy type and end use sector. Nuclear electric power is included
UAV State Estimation Modeling Techniques in AHRS
Razali, Shikin; Zhahir, Amzari
2017-11-01
Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.
Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors
State energy data report 1993: Consumption estimates
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.
Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie
2004-01-01
In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further
Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude
2009-12-01
For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this
State Energy Data Report, 1991: Consumption estimates
International Nuclear Information System (INIS)
1993-05-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA's energy models
State energy data report 1995 - consumption estimates
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.
State Estimation for Humanoid Robots
2015-07-01
how the noise is modeled. In the original paper [23], the UKF formulation does not assume additive noise, and it augments the state mean and covariance...with state constraints is an open research area, and there have been many studies in the past few decades. A recent survey paper on this topic [52...3.1 USB-based microcontroller board, and an adapter board that connects them. The Teensy board provides 3.3V DC power to the IMUs, and receives data
Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions
Carpenter, J. Russell; Markley, F. Landis
2012-01-01
We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the
Parameter and State Estimator for State Space Models
Directory of Open Access Journals (Sweden)
Ruifeng Ding
2014-01-01
Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Self-learning estimation of quantum states
International Nuclear Information System (INIS)
Hannemann, Th.; Reiss, D.; Balzer, Ch.; Neuhauser, W.; Toschek, P.E.; Wunderlich, Ch.
2002-01-01
We report the experimental estimation of arbitrary qubit states using a succession of N measurements on individual qubits, where the measurement basis is changed during the estimation procedure conditioned on the outcome of previous measurements (self-learning estimation). Two hyperfine states of a single trapped 171 Yb + ion serve as a qubit. It is demonstrated that the difference in fidelity between this adaptive strategy and passive strategies increases in the presence of decoherence
Development of realtime cognitive state estimator
International Nuclear Information System (INIS)
Takahashi, Makoto; Kitamura, Masashi; Yoshikaea, Hidekazu
2004-01-01
The realtime cognitive state estimator based on the set of physiological measures has been developed in order to provide valuable information on the human behavior during the interaction through the Man-Machine Interface. The artificial neural network has been adopted to categorize the cognitive states by using the qualitative physiological data pattern as the inputs. The laboratory experiments, in which the subjects' cognitive states were intentionally controlled by the task presented, were performed to obtain training data sets for the neural network. The developed system has been shown to be capable of estimating cognitive state with higher accuracy and realtime estimation capability has also been confirmed through the data processing experiments. (author)
Algorithm of the managing systems state estimation
Directory of Open Access Journals (Sweden)
Skubilin M. D.
2010-02-01
Full Text Available The possibility of an electronic estimation of automatic and automated managing systems state is analyzed. An estimation of a current state (functional readiness of technical equipment and person-operator as integrated system allows to take operatively adequate measures on an exception and-or minimisation of consequences of system’s transition in a supernumerary state. The offered method is universal enough and can be recommended for normalisation of situations on transport, mainly in aircraft.
Linear Covariance Analysis and Epoch State Estimators
Markley, F. Landis; Carpenter, J. Russell
2014-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
State energy data report 1996: Consumption estimates
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-02-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.
State energy data report 1996: Consumption estimates
International Nuclear Information System (INIS)
1999-02-01
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA's energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs
Introduction to quantum-state estimation
Teo, Yong Siah
2016-01-01
Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...
Estimating state-contingent production functions
DEFF Research Database (Denmark)
Rasmussen, Svend; Karantininis, Kostas
The paper reviews the empirical problem of estimating state-contingent production functions. The major problem is that states of nature may not be registered and/or that the number of observation per state is low. Monte Carlo simulation is used to generate an artificial, uncertain production...... environment based on Cobb Douglas production functions with state-contingent parameters. The pa-rameters are subsequently estimated based on different sizes of samples using Generalized Least Squares and Generalized Maximum Entropy and the results are compared. It is concluded that Maximum Entropy may...
State estimation for wave energy converters
Energy Technology Data Exchange (ETDEWEB)
Bacelli, Giorgio; Coe, Ryan Geoffrey
2017-04-01
This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
Estimating GSP and labor productivity by state
Paul W. Bauer; Yoonsoo Lee
2006-01-01
In gauging the health of state economies, arguably the two most important series to track are employment and output. While employment by state is available about three weeks after the end of a month, data on output, as measured by Gross State Product (GSP), are only available annually and with a significant lag. This Policy Discussion Paper details how more current estimates of GSP can be generated using U.S. Gross Domestic Product and personal income along with individual states’ personal in...
Reexamination of optimal quantum state estimation of pure states
International Nuclear Information System (INIS)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-01-01
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input
On state estimation in electric drives
International Nuclear Information System (INIS)
Leon, A.E.; Solsona, J.A.
2010-01-01
This paper deals with state estimation in electric drives. On one hand a nonlinear observer is designed, whereas on the other hand the speed state is estimated by using the dirty derivative from the position measured. The dirty derivative is an approximate version of the perfect derivative which introduces an estimation error few times analyzed in drive applications. For this reason, our proposal in this work consists in illustrating several aspects on the performance of the dirty derivator in presence of both model uncertainties and noisy measurements. To this end, a case study is introduced. The case study considers rotor speed estimation in a permanent magnet stepper motor, by assuming that rotor position and electrical variables are measured. In addition, this paper presents comments about the connection between dirty derivators and observers, and advantages and disadvantages of both techniques are also remarked.
State energy data report 1992: Consumption estimates
Energy Technology Data Exchange (ETDEWEB)
1994-05-01
This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.
State estimation for integrated vehicle dynamics control
Zuurbier, J.; Bremmer, P.
2002-01-01
This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability
An Empirical State Error Covariance Matrix for Batch State Estimation
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
Estimated United States Transportation Energy Use 2005
Energy Technology Data Exchange (ETDEWEB)
Smith, C A; Simon, A J; Belles, R D
2011-11-09
A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.
Approximation to estimation of critical state
International Nuclear Information System (INIS)
Orso, Jose A.; Rosario, Universidad Nacional
2011-01-01
The position of the control rod for the critical state of the nuclear reactor depends on several factors; including, but not limited to the temperature and configuration of the fuel elements inside the core. Therefore, the position can not be known in advance. In this paper theoretical estimations are developed to obtain an equation that allows calculating the position of the control rod for the critical state (approximation to critical) of the nuclear reactor RA-4; and will be used to create a software performing the estimation by entering the count rate of the reactor pulse channel and the length obtained from the control rod (in cm). For the final estimation of the approximation to critical state, a function obtained experimentally indicating control rods reactivity according to the function of their position is used, work is done mathematically to obtain a linear function, which gets the length of the control rod, which has to be removed to get the reactor in critical position. (author) [es
Resting State Network Estimation in Individual Subjects
Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.
2014-01-01
Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260
State estimation of spatio-temporal phenomena
Yu, Dan
This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input
An Empirical Method to Fuse Partially Overlapping State Vectors for Distributed State Estimation
Sijs, J.; Hanebeck, U.; Noack, B.
2013-01-01
State fusion is a method for merging multiple estimates of the same state into a single fused estimate. Dealing with multiple estimates is one of the main concerns in distributed state estimation, where an estimated value of the desired state vector is computed in each node of a networked system.
New developments in state estimation for Nonlinear Systems
DEFF Research Database (Denmark)
Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole
2000-01-01
Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....
Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing
2018-04-01
This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.
Bad Data Detection and Identification for State Estimation
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
state estimations. To achieve this object largest normalized residual test (rNmax) is applied to detect and analysis bad data in phasor measurements, power flow and power injections of buses used for the novel PMU-based state estimation. The main advantage of new PMU-based static state estimation......Bad data analysis is an important part of both dynamic and static state estimations. This paper present novel algorithm of phase measurement unit (PMU)-based static state estimation to detect and identify multiple bad data in critical measurements, which is not possible with traditional static...... is that phasor measurements can be added separately into the proposed state estimation. This paper proposes an ideal method to combine the phasor measurements into the conventional state estimator in a systematic way, so that no significant modification is necessary to the existing algorithm. The main advantage...
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.
Vision Aided State Estimation for Helicopter Slung Load System
DEFF Research Database (Denmark)
Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders
2007-01-01
This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...
Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.
2016-01-01
A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.
Stated Preference Survey Estimating the Willingness to Pay ...
A national stated preference survey designed to elicit household willingness to pay for reductions in impinged and entrained fish at cooling water intake structures. To improve estimation of environmental benefits estimation
Mathematical model of transmission network static state estimation
Directory of Open Access Journals (Sweden)
Ivanov Aleksandar
2012-01-01
Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.
Popov, V. D.; Khamidullina, N. M.
2006-10-01
In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.
Application of square-root filtering for spacecraft attitude control
Sorensen, J. A.; Schmidt, S. F.; Goka, T.
1978-01-01
Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.
Spacecraft momentum control systems
Leve, Frederick A; Peck, Mason A
2015-01-01
The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...
State Estimation for the Automotive SCR Process
DEFF Research Database (Denmark)
Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp
2012-01-01
Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult to me...
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
Artificial Neural Network Based State Estimators Integrated into Kalmtool
DEFF Research Database (Denmark)
Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad
2012-01-01
In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation as...
Exponentially convergent state estimation for delayed switched recurrent neural networks.
Ahn, Choon Ki
2011-11-01
This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.
Effect of Smart Meter Measurements Data On Distribution State Estimation
DEFF Research Database (Denmark)
Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte
2018-01-01
Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements in the phy......Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements...... in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...
On Estimating Marginal Tax Rates for U.S. States
Reed, W. Robert; Rogers, Cynthia L; Skidmore, Mark
2011-01-01
This paper presents a procedure for generating state-specific time-varying estimates of marginal tax rates (MTRs). Most estimates of MTRs follow a procedure developed by Koester and Kormendi (1989) (K&K). Unfortunately, the time-invariant nature of the K&K estimates precludes their use as explanatory variables in panel data studies with fixed effects. Furthermore, the associated MTR estimates are not explicitly linked to statutory tax parameters. Our approach addresses both shortcomings. Usin...
State estimation for large-scale wastewater treatment plants.
Busch, Jan; Elixmann, David; Kühl, Peter; Gerkens, Carine; Schlöder, Johannes P; Bock, Hans G; Marquardt, Wolfgang
2013-09-01
Many relevant process states in wastewater treatment are not measurable, or their measurements are subject to considerable uncertainty. This poses a serious problem for process monitoring and control. Model-based state estimation can provide estimates of the unknown states and increase the reliability of measurements. In this paper, an integrated approach is presented for the optimization-based sensor network design and the estimation problem. Using the ASM1 model in the reference scenario BSM1, a cost-optimal sensor network is designed and the prominent estimators EKF and MHE are evaluated. Very good estimation results for the system comprising 78 states are found requiring sensor networks of only moderate complexity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Power system dynamic state estimation using prediction based evolutionary technique
International Nuclear Information System (INIS)
Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan
2016-01-01
In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.
Optimal state estimation theory applied to safeguards accounting
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.
1977-01-01
This paper presents a unified theory for the application of modern state estimation techniques to nuclear material accountability. First a summary of the current MUF/LEMUF approach is detailed. It is shown that when inventory measurement error is large in comparison to transfer measurement error, improved estimates of the losses can be achieved using the cumulative summation technique. However, the optimal estimator is shown to be the Kalman filter. An enhancement of the retrospective estimation of losses can be achieved using linear smoothing. State space models are developed for a mixed oxide fuel fabrication facility and examples are presented
Multistage optimal PMU placement for hybrid state estimation
DEFF Research Database (Denmark)
Hazra, J.; Das, Kaushik; Roy, B. K. S.
2017-01-01
placed by the proposed method are used in developing a hybrid state estimator (HSE). The HSE estimates the voltage phasor at all the buses of a power system with a limited numbers of PMUs in steady state as well as in the presence of disturbances even in that part of network which is unobservable through...... PMUs. Performance of the proposed phased installation scheme for HSE is evaluated on the number of standard test system and the simulation results shows an improvement in the accuracy of the estimated states as compared to the existing methods in the literature....
Distributed Dynamic State Estimation with Extended Kalman Filter
Energy Technology Data Exchange (ETDEWEB)
Du, Pengwei; Huang, Zhenyu; Sun, Yannan; Diao, Ruisheng; Kalsi, Karanjit; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2011-08-04
Increasing complexity associated with large-scale renewable resources and novel smart-grid technologies necessitates real-time monitoring and control. Our previous work applied the extended Kalman filter (EKF) with the use of phasor measurement data (PMU) for dynamic state estimation. However, high computation complexity creates significant challenges for real-time applications. In this paper, the problem of distributed dynamic state estimation is investigated. One domain decomposition method is proposed to utilize decentralized computing resources. The performance of distributed dynamic state estimation is tested on a 16-machine, 68-bus test system.
National intelligence estimates and the Failed State Index.
Voracek, Martin
2013-10-01
Across 177 countries around the world, the Failed State Index, a measure of state vulnerability, was reliably negatively associated with the estimates of national intelligence. Psychometric analysis of the Failed State Index, compounded of 12 social, economic, and political indicators, suggested factorial unidimensionality of this index. The observed correspondence of higher national intelligence figures to lower state vulnerability might arise through these two macro-level variables possibly being proxies of even more pervasive historical and societal background variables that affect both.
Information geometry of density matrices and state estimation
International Nuclear Information System (INIS)
Brody, Dorje C
2011-01-01
Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)
Estimation methods for nonlinear state-space models in ecology
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro
2011-01-01
The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...
Lubey, D.; Scheeres, D.
Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal
Traffic State Estimation Using Connected Vehicles and Stationary Detectors
Directory of Open Access Journals (Sweden)
Ellen F. Grumert
2018-01-01
Full Text Available Real-time traffic state estimation is of importance for efficient traffic management. This is especially the case for traffic management systems that require fast detection of changes in the traffic conditions in order to apply an effective control measure. In this paper, we propose a method for estimating the traffic state and speed and density, by using connected vehicles combined with stationary detectors. The aim is to allow fast and accurate estimation of changes in the traffic conditions. The proposed method does only require information about the speed and the position of connected vehicles and can make use of sparsely located stationary detectors to limit the dependence on the infrastructure equipment. An evaluation of the proposed method is carried out by microscopic traffic simulation. The traffic state estimated using the proposed method is compared to the true simulated traffic state. Further, the density estimates are compared to density estimates from one detector-based method, one combined method, and one connected-vehicle-based method. The results of the study show that the proposed method is a promising alternative for estimating the traffic state in traffic management applications.
State Estimation-based Transmission line parameter identification
Directory of Open Access Journals (Sweden)
Fredy Andrés Olarte Dussán
2010-01-01
Full Text Available This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%.
Directory of Open Access Journals (Sweden)
M. Lockwood
2004-04-01
Full Text Available Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near-Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field's radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days, for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000 model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the
State and parameter estimation in biotechnical batch reactors
Keesman, K.J.
2000-01-01
In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in
Sellmaier, Florian; Schmidhuber, Michael
2015-01-01
The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).
Power system static state estimation using Kalman filter algorithm
Directory of Open Access Journals (Sweden)
Saikia Anupam
2016-01-01
Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.
Nonlinear Filtering Techniques Comparison for Battery State Estimation
Directory of Open Access Journals (Sweden)
Aspasia Papazoglou
2014-09-01
Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.
Triangular and Trapezoidal Fuzzy State Estimation with Uncertainty on Measurements
Directory of Open Access Journals (Sweden)
Mohammad Sadeghi Sarcheshmah
2012-01-01
Full Text Available In this paper, a new method for uncertainty analysis in fuzzy state estimation is proposed. The uncertainty is expressed in measurements. Uncertainties in measurements are modelled with different fuzzy membership functions (triangular and trapezoidal. To find the fuzzy distribution of any state variable, the problem is formulated as a constrained linear programming (LP optimization. The viability of the proposed method would be verified with the ones obtained from the weighted least squares (WLS and the fuzzy state estimation (FSE in the 6-bus system and in the IEEE-14 and 30 bus system.
Fuzzy filter for state estimation of a glucoregulatory system.
Trajanoski, Z; Wach, P
1996-08-01
A filter based on fuzzy logic for state estimation of a glucoregulatory system is presented. A published non-linear model for the dynamics of glucose and its hormonal control including a single glucose compartment, five insulin compartments and a glucagon compartment was used for simulation. The simulated data were corrupted by an additive white noise with zero mean and a coefficient of variation (CV) of between 2 and 20% and then submitted to the state estimation procedure using a fuzzy filter (FF). The performance of the FF was compared with an extended Kalman filter (EKF) for state estimation. Both the FF and the EKF were evaluated in the following cases: (a) five state variables are measurable; three plasma variables are measurable; only plasma glucose is measurable; (b) for different measurement noise levels (CV of 2-20%); and (c) a mismatch between the glucoregulatory system and the given mathematical model (uncertain or approximate model). In contrast to the FF, in the case of approximate model of the glucose system, the EKF failed to achieve useful state estimation. Moreover, the performance of the FF was independent of the noise level. In conclusion, the FF approach is a viable alternative for state estimation in a noisy environment and with an uncertain mathematical model of the glucoregulatory system.
Minimax estimation of qubit states with Bures risk
Acharya, Anirudh; Guţă, Mădălin
2018-04-01
The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.
State-Level Estimates of Cancer-Related Absenteeism Costs
Tangka, Florence K.; Trogdon, Justin G.; Nwaise, Isaac; Ekwueme, Donatus U.; Guy, Gery P.; Orenstein, Diane
2016-01-01
Background Cancer is one of the top five most costly diseases in the United States and leads to substantial work loss. Nevertheless, limited state-level estimates of cancer absenteeism costs have been published. Methods In analyses of data from the 2004–2008 Medical Expenditure Panel Survey, the 2004 National Nursing Home Survey, the U.S. Census Bureau for 2008, and the 2009 Current Population Survey, we used regression modeling to estimate annual state-level absenteeism costs attributable to cancer from 2004 to 2008. Results We estimated that the state-level median number of days of absenteeism per year among employed cancer patients was 6.1 days and that annual state-level cancer absenteeism costs ranged from $14.9 million to $915.9 million (median = $115.9 million) across states in 2010 dollars. Absenteeism costs are approximately 6.5% of the costs of premature cancer mortality. Conclusions The results from this study suggest that lost productivity attributable to cancer is a substantial cost to employees and employers and contributes to estimates of the overall impact of cancer in a state population. PMID:23969498
Dynamic state estimation assisted power system monitoring and protection
Cui, Yinan
The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the
Estimation of pump operational state with model-based methods
International Nuclear Information System (INIS)
Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha
2010-01-01
Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.
Estimating annualized earthquake losses for the conterminous United States
Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope
2015-01-01
We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.
Directory of Open Access Journals (Sweden)
Tamer Mekky Ahmed Habib
2014-06-01
Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.
Introduction to State Estimation of High-Rate System Dynamics.
Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan
2018-01-13
Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.
Series load induction heating inverter state estimator using Kalman filter
Directory of Open Access Journals (Sweden)
Szelitzky T.
2011-12-01
Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.
Spacecraft Environmental Interactions Technology, 1983
1985-01-01
State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.
Vehicle State Information Estimation with the Unscented Kalman Filter
Directory of Open Access Journals (Sweden)
Hongbin Ren
2014-01-01
Full Text Available The vehicle state information plays an important role in the vehicle active safety systems; this paper proposed a new concept to estimate the instantaneous vehicle speed, yaw rate, tire forces, and tire kinemics information in real time. The estimator is based on the 3DoF vehicle model combined with the piecewise linear tire model. The estimator is realized using the unscented Kalman filter (UKF, since it is based on the unscented transfer technique and considers high order terms during the measurement and update stage. The numerical simulations are carried out to further investigate the performance of the estimator under high friction and low friction road conditions in the MATLAB/Simulink combined with the Carsim environment. The simulation results are compared with the numerical results from Carsim software, which indicate that UKF can estimate the vehicle state information accurately and in real time; the proposed estimation will provide the necessary and reliable state information to the vehicle controller in the future.
Estimating the state of large spatio-temporally chaotic systems
International Nuclear Information System (INIS)
Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.
2004-01-01
We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2014-01-22
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system are capsulized without time stamp and then transmitted to the network node at which the filter is located. The probabilities of time delays are assumed to be known. The event-driven estimation scheme is applied in this paper and the estimate of the states is updated only at each time instant when any measurement arrives. To capture the feature of communication, the system considered is augmented, and the arrived measurements are regarded as the uncertain observations of the augmented system. The corresponding optimal estimation algorithm is proposed and additionally, a numerical simulation represents the performance of this work. © 2014 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Geometry of perturbed Gaussian states and quantum estimation
International Nuclear Information System (INIS)
Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A
2011-01-01
We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)
Campbell, D A; Chkrebtii, O
2013-12-01
Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
State estimation of chemical engineering systems tending to multiple solutions
Directory of Open Access Journals (Sweden)
N. P. G. Salau
2014-09-01
Full Text Available A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF formulations and one constrained EKF formulation (CEKF. As benchmark case studies we have chosen: a a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.
Estimation of Branch Topology Errors in Power Networks by WLAN State Estimation
Energy Technology Data Exchange (ETDEWEB)
Kim, Hong Rae [Soonchunhyang University(Korea); Song, Kyung Bin [Kei Myoung University(Korea)
2000-06-01
The purpose of this paper is to detect and identify topological errors in order to maintain a reliable database for the state estimator. In this paper, a two stage estimation procedure is used to identify the topology errors. At the first stage, the WLAV state estimator which has characteristics to remove bad data during the estimation procedure is run for finding out the suspected branches at which topology errors take place. The resulting residuals are normalized and the measurements with significant normalized residuals are selected. A set of suspected branches is formed based on these selected measurements; if the selected measurement if a line flow, the corresponding branch is suspected; if it is an injection, then all the branches connecting the injection bus to its immediate neighbors are suspected. A new WLAV state estimator adding the branch flow errors in the state vector is developed to identify the branch topology errors. Sample cases of single topology error and topology error with a measurement error are applied to IEEE 14 bus test system. (author). 24 refs., 1 fig., 9 tabs.
Model-based state estimator for an intelligent tire
Goos, J.; Teerhuis, A. P.; Schmeitz, A. J.C.; Besselink, I.; Nijmeijer, H.
2017-01-01
In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into
Model-based State Estimator for an Intelligent Tire
Goos, J.; Teerhuis, A.P.; Schmeitz, A.J.C.; Besselink, I.J.M.; Nijmeijer, H.
2016-01-01
In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into
Effect of Smart Meter Measurements Data On Distribution State Estimation
DEFF Research Database (Denmark)
Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte
2018-01-01
in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...
State estimation for networked control systems using fixed data rates
Liu, Qing-Quan; Jin, Fang
2017-07-01
This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.
Battery state-of-charge estimation using approximate least squares
Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.
2015-03-01
In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.
On state estimation and fusion with elliptical constraints
Energy Technology Data Exchange (ETDEWEB)
Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL
2017-11-01
We consider tracking of a target with elliptical nonlinear constraints on its motion dynamics. The state estimates are generated by sensors and sent over long-haul links to a remote fusion center for fusion. We show that the constraints can be projected onto the known ellipse and hence incorporated into the estimation and fusion process. In particular, two methods based on (i) direct connection to the center, and (ii) shortest distance to the ellipse are discussed. A tracking example is used to illustrate the tracking performance using projection-based methods with various fusers in the lossy long-haul tracking environment.
State Estimation for Landing Maneuver on High Performance Aircraft
Suresh, P. S.; Sura, Niranjan K.; Shankar, K.
2018-01-01
State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.
Full State Estimation for Helicopter Slung Load System
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...
Full State Estimation for Helicopter Slung Load System
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
2007-01-01
This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...
Support vector machines for nuclear reactor state estimation
Energy Technology Data Exchange (ETDEWEB)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.
Support vector machines for nuclear reactor state estimation
International Nuclear Information System (INIS)
Zavaljevski, N.; Gross, K. C.
2000-01-01
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm
Estimated HIV incidence in the United States, 2006-2009.
Directory of Open Access Journals (Sweden)
Joseph Prejean
Full Text Available BACKGROUND: The estimated number of new HIV infections in the United States reflects the leading edge of the epidemic. Previously, CDC estimated HIV incidence in the United States in 2006 as 56,300 (95% CI: 48,200-64,500. We updated the 2006 estimate and calculated incidence for 2007-2009 using improved methodology. METHODOLOGY: We estimated incidence using incidence surveillance data from 16 states and 2 cities and a modification of our previously described stratified extrapolation method based on a sample survey approach with multiple imputation, stratification, and extrapolation to account for missing data and heterogeneity of HIV testing behavior among population groups. PRINCIPAL FINDINGS: Estimated HIV incidence among persons aged 13 years and older was 48,600 (95% CI: 42,400-54,700 in 2006, 56,000 (95% CI: 49,100-62,900 in 2007, 47,800 (95% CI: 41,800-53,800 in 2008 and 48,100 (95% CI: 42,200-54,000 in 2009. From 2006 to 2009 incidence did not change significantly overall or among specific race/ethnicity or risk groups. However, there was a 21% (95% CI:1.9%-39.8%; p = 0.017 increase in incidence for people aged 13-29 years, driven by a 34% (95% CI: 8.4%-60.4% increase in young men who have sex with men (MSM. There was a 48% increase among young black/African American MSM (12.3%-83.0%; p<0.001. Among people aged 13-29, only MSM experienced significant increases in incidence, and among 13-29 year-old MSM, incidence increased significantly among young, black/African American MSM. In 2009, MSM accounted for 61% of new infections, heterosexual contact 27%, injection drug use (IDU 9%, and MSM/IDU 3%. CONCLUSIONS/SIGNIFICANCE: Overall, HIV incidence in the United States was relatively stable 2006-2009; however, among young MSM, particularly black/African American MSM, incidence increased. HIV continues to be a major public health burden, disproportionately affecting several populations in the United States, especially MSM and racial and
Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft
Timothy, VanSant J.; Neergaard, Linda F.
1998-01-01
The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Directory of Open Access Journals (Sweden)
Joseph G Makin
2015-11-01
Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Anderson, Grant A. (Inventor)
2012-01-01
A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.
Estimating Climate Trends: Application to United States Plant Hardiness Zones
Directory of Open Access Journals (Sweden)
Nir Y. Krakauer
2012-01-01
Full Text Available The United States Department of Agriculture classifies plant hardiness zones based on mean annual minimum temperatures over some past period (currently 1976–2005. Since temperatures are changing, these values may benefit from updating. I outline a multistep methodology involving imputation of missing station values, geostatistical interpolation, and time series smoothing to update a climate variable’s expected value compared to a climatology period and apply it to estimating annual minimum temperature change over the coterminous United States. I show using hindcast experiments that trend estimation gives more accurate predictions of minimum temperatures 1-2 years in advance compared to the previous 30 years’ mean alone. I find that annual minimum temperature increased roughly 2.5 times faster than mean temperature (~2.0 K versus ~0.8 K since 1970, and is already an average of 1.2 0.5 K (regionally up to ~2 K above the 1976–2005 mean, so that much of the country belongs to warmer hardiness zones compared to the current map. The methods developed may also be applied to estimate changes in other climate variables and geographic regions.
State-Space Estimation of Soil Organic Carbon Stock
Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.
2014-04-01
Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.
Optimization-based particle filter for state and parameter estimation
Institute of Scientific and Technical Information of China (English)
Li Fu; Qi Fei; Shi Guangming; Zhang Li
2009-01-01
In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.
Adaptive optimisation-offline cyber attack on remote state estimator
Huang, Xin; Dong, Jiuxiang
2017-10-01
Security issues of cyber-physical systems have received increasing attentions in recent years. In this paper, deception attacks on the remote state estimator equipped with the chi-squared failure detector are considered, and it is assumed that the attacker can monitor and modify all the sensor data. A novel adaptive optimisation-offline cyber attack strategy is proposed, where using the current and previous sensor data, the attack can yield the largest estimation error covariance while ensuring to be undetected by the chi-squared monitor. From the attacker's perspective, the attack is better than the existing linear deception attacks to degrade the system performance. Finally, some numerical examples are provided to demonstrate theoretical results.
Inline state of health estimation of lithium-ion batteries using state of charge calculation
Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann
2015-12-01
The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.
Estimating irrigation water use in the humid eastern United States
Levin, Sara B.; Zarriello, Phillip J.
2013-01-01
Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to
Spacecraft exploration of asteroids
International Nuclear Information System (INIS)
Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.
1989-01-01
After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets
State Estimation in the Automotive SCR DeNOx Process
DEFF Research Database (Denmark)
Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe
2012-01-01
on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...
State Estimation for Sensor Monitoring System with Uncertainty and Disturbance
Directory of Open Access Journals (Sweden)
Jianhong Sun
2014-10-01
Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.
Estimated use of water in the United States in 1970
Murray, Charles Richard; Reeves, E. Bodette
1972-01-01
Estimates of water use in the United States in 1970 indicate that an average of about 370 bgd (billion gallons per day)about 1,800 gallons per capita per day--was withdrawn for the four principal off-channel uses which are (1) public-supply (for domestic, commercial, and industrial uses), (2) rural (domestic and livestock), (3) irrigation, and (4) self-supplied industrial (including thermoelectric power). In 1970, withdrawals for these uses exceeded by 19 percent the 310 bgd estimated for 1965. Increases in the various categories of off-channel water use since 1965 were: approximately 25 percent for self-supplied industry (mainly in electric-utility thermoelectric plants), 13 percent for public supplies, 13 percent for rural supplies, and 8 percent for irrigation. Industrial water withdrawals included 54 bgd of saline water, a 20 percent increase in 5 years. The fifth principal withdrawal use, hydroelectric power (an in-channel use), amounted to 2,800 bgd, a 5-year increase of 22 percent. In computing total withdrawals, recycling within a plant (reuse) is not counted, but withdrawal of the same water by a downstream user (cumulative withdrawals) is counted. The quantity of fresh water consumed--that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in crops and manufactured products, and other causes--was estimated to average 87 bgd for 1970, an increase of about 12 percent since 1965.
Improving Distribution Resiliency with Microgrids and State and Parameter Estimation
Energy Technology Data Exchange (ETDEWEB)
Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Yannan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Chen-Ching [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Yin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gourisetti, Sri Nikhil Gup [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-09-30
Modern society relies on low-cost reliable electrical power, both to maintain industry, as well as provide basic social services to the populace. When major disturbances occur, such as Hurricane Katrina or Hurricane Sandy, the nation’s electrical infrastructure can experience significant outages. To help prevent the spread of these outages, as well as facilitating faster restoration after an outage, various aspects of improving the resiliency of the power system are needed. Two such approaches are breaking the system into smaller microgrid sections, and to have improved insight into the operations to detect failures or mis-operations before they become critical. Breaking the system into smaller sections of microgrid islands, power can be maintained in smaller areas where distribution generation and energy storage resources are still available, but bulk power generation is no longer connected. Additionally, microgrid systems can maintain service to local pockets of customers when there has been extensive damage to the local distribution system. However, microgrids are grid connected a majority of the time and implementing and operating a microgrid is much different than when islanded. This report discusses work conducted by the Pacific Northwest National Laboratory that developed improvements for simulation tools to capture the characteristics of microgrids and how they can be used to develop new operational strategies. These operational strategies reduce the cost of microgrid operation and increase the reliability and resilience of the nation’s electricity infrastructure. In addition to the ability to break the system into microgrids, improved observability into the state of the distribution grid can make the power system more resilient. State estimation on the transmission system already provides great insight into grid operations and detecting abnormal conditions by leveraging existing measurements. These transmission-level approaches are expanded to using
Energy Technology Data Exchange (ETDEWEB)
Meliopoulos, Sakis [Georgia Inst. of Technology, Atlanta, GA (United States); Cokkinides, George [Georgia Inst. of Technology, Atlanta, GA (United States); Fardanesh, Bruce [New York Power Authority, NY (United States); Hedrington, Clinton [U.S. Virgin Islands Water and Power Authority (WAPA), St. Croix (U.S. Virgin Islands)
2013-12-31
This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based
Remaining lifetime modeling using State-of-Health estimation
Beganovic, Nejra; Söffker, Dirk
2017-08-01
Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model
Estimated Use of Water in the United States in 1985
Solley, Wayne B.; Merk, Charles F.; Pierce, Robert R.
1988-01-01
Water withdrawals in the United States during 1985 were estimated to average 399,000 million gallons per day (Mgal/d) of freshwater and saline water for offstream uses--10 percent less than the 1980 estimate. Average per-capita use for all offstream uses was 1,650 gallons per day (gal/d) of freshwater and saline water combined and 1,400 gal/d of freshwater alone. Offstream water-use categories are classified in this report as public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power. During 1985, public-supply withdrawals were estimated to be 36,500 Mgal/d, and self-supplied withdrawals were estimated as follows: domestic, 3,320 Mgal/d: commercial, 1,230 Mgal/d; irrigation, 137,000 Mgal/d: livestock, 4,470 Mgal/d; industrial, 25,800 Mgal/d; mining, 3,440 Mgal/d; and thermoelectric power, 187,000 Mgal/d. Water use for hydroelectric power generation, the only instream use compiled in this report, was estimated to be 3,050,000 Mgal/d during 1985, or 7 percent less than during 1980. This is in contrast to an increasing trend that persisted from 1950 to 1980. Estimates of withdrawals by source indicate that, during 1985, total surface-water withdrawals were 325,000 Mgal/d, or 10 percent less than during 1980, and total ground-water withdrawals were 74,000 Mgal/d, or 12 percent less than during 1980. Total saline-water withdrawals during 1985 were 60,300 Mgal/d, or 16 percent less than during 1980; most was saline surface water. Reclaimed sewage averaged about 579 Mgal/d during 1985, or 22 percent more than during 1980. Total freshwater consumptive use was estimated to be 92,300 Mgal/d during 1985, or 9 percent less than during 1980. Consumptive use by irrigation accounted for the largest part of consumptive use during 1985 and was estimated to be 73,800 Mgal/d. A comparison of total withdrawals (fresh and saline) by State indicates that 37 States and Puerto Rico had less water withdrawn for offstream uses during 1985 than
Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling
Computer simulation of spacecraft/environment interaction
International Nuclear Information System (INIS)
Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.
1999-01-01
This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language
Computer simulation of spacecraft/environment interaction
Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V
1999-01-01
This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.
International Nuclear Information System (INIS)
Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh
2011-01-01
We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.
Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University
2017-12-01
Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.
An efficient algebraic approach to observability analysis in state estimation
Energy Technology Data Exchange (ETDEWEB)
Pruneda, R.E.; Solares, C.; Conejo, A.J. [University of Castilla-La Mancha, 13071 Ciudad Real (Spain); Castillo, E. [University of Cantabria, 39005 Santander (Spain)
2010-03-15
An efficient and compact algebraic approach to state estimation observability is proposed. It is based on transferring rows to columns and vice versa in the Jacobian measurement matrix. The proposed methodology provides a unified approach to observability checking, critical measurement identification, determination of observable islands, and selection of pseudo-measurements to restore observability. Additionally, the observability information obtained from a given set of measurements can provide directly the observability obtained from any subset of measurements of the given set. Several examples are used to illustrate the capabilities of the proposed methodology, and results from a large case study are presented to demonstrate the appropriate computational behavior of the proposed algorithms. Finally, some conclusions are drawn. (author)
Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo
1992-01-01
Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.
INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS
Directory of Open Access Journals (Sweden)
T. A. Kharkovskaia
2016-07-01
Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.
Using support vector machines in the multivariate state estimation technique
International Nuclear Information System (INIS)
Zavaljevski, N.; Gross, K.C.
1999-01-01
One approach to validate nuclear power plant (NPP) signals makes use of pattern recognition techniques. This approach often assumes that there is a set of signal prototypes that are continuously compared with the actual sensor signals. These signal prototypes are often computed based on empirical models with little or no knowledge about physical processes. A common problem of all data-based models is their limited ability to make predictions on the basis of available training data. Another problem is related to suboptimal training algorithms. Both of these potential shortcomings with conventional approaches to signal validation and sensor operability validation are successfully resolved by adopting a recently proposed learning paradigm called the support vector machine (SVM). The work presented here is a novel application of SVM for data-based modeling of system state variables in an NPP, integrated with a nonlinear, nonparametric technique called the multivariate state estimation technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of nuclear plant applications
HIV Trends in the United States: Diagnoses and Estimated Incidence.
Hall, H Irene; Song, Ruiguang; Tang, Tian; An, Qian; Prejean, Joseph; Dietz, Patricia; Hernandez, Angela L; Green, Timothy; Harris, Norma; McCray, Eugene; Mermin, Jonathan
2017-02-03
The best indicator of the impact of human immunodeficiency virus (HIV) prevention programs is the incidence of infection; however, HIV is a chronic infection and HIV diagnoses may include infections that occurred years before diagnosis. Alternative methods to estimate incidence use diagnoses, stage of disease, and laboratory assays of infection recency. Using a consistent, accurate method would allow for timely interpretation of HIV trends. The objective of our study was to assess the recent progress toward reducing HIV infections in the United States overall and among selected population segments with available incidence estimation methods. Data on cases of HIV infection reported to national surveillance for 2008-2013 were used to compare trends in HIV diagnoses, unadjusted and adjusted for reporting delay, and model-based incidence for the US population aged ≥13 years. Incidence was estimated using a biomarker for recency of infection (stratified extrapolation approach) and 2 back-calculation models (CD4 and Bayesian hierarchical models). HIV testing trends were determined from behavioral surveys for persons aged ≥18 years. Analyses were stratified by sex, race or ethnicity (black, Hispanic or Latino, and white), and transmission category (men who have sex with men, MSM). On average, HIV diagnoses decreased 4.0% per year from 48,309 in 2008 to 39,270 in 2013 (Pyear (Pyears, overall, the percentage of persons who ever had received an HIV test or had had a test within the past year remained stable; among MSM testing increased. For women, all 3 incidence models corroborated the decreasing trend in HIV diagnoses, and HIV diagnoses and 2 incidence models indicated decreases among blacks and whites. The CD4 and Bayesian hierarchical models, but not the stratified extrapolation approach, indicated decreases in incidence among MSM. HIV diagnoses and CD4 and Bayesian hierarchical model estimates indicated decreases in HIV incidence overall, among both sexes and all
Pipeline heating method based on optimal control and state estimation
Energy Technology Data Exchange (ETDEWEB)
Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu
2010-07-01
In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem
Attitude coordination for spacecraft formation with multiple communication delays
Directory of Open Access Journals (Sweden)
Guo Yaohua
2015-04-01
Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.
Estimated use of water in the United States, 1960
MacKichan, K.A.; Kammerer, J.C.
1961-01-01
The estimated overage withdrawal use of water in the United States during 1960 was almost 270,000 mgd (million gallons per day), exclusive of water used to develop water power. This estimated use amounts to about 1,500 gpd (galIons per day) per capita. An additional 2,000,000 mgd were used to develop waterpower.Withdrawal use of water requires that the water be removed from the ground or diverted from a stream or lake. In this report the use is divided into five types: public supplies, rural, irrigation, self-supplied industrial, and waterpower. Consumptive use of water is the quantity discharged to the atmosphere or incorporated in the products of the process in which it was used. Only 61,000 mgd of the 270,000 mgd withdrawn was consumed.Of the water withdrawn in 1960, 220,000 mgd (including irrigation conveyance losses) was taken from surface sources and 47,000 from underground sources. Withdrawal of water for uses other than waterpower has increased 12 percent since 1955. The amount of water used for generation of waterpower has! increased 33 percent since 1955. The use of saline water was almost twice as great in 1960 as in 1955.The upper limit of our water supply is the average annual runoff, nearly 1,200,000 mgd. The supply in 1960 was depleted by 61,000 mgd, the amount of water consumed. However, a large part of the water withdrawn but not consumed was deteriorated in quality.
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo
2014-01-01
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system
National scale biomass estimators for United States tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2003-01-01
Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...
Estimated use of water in the United States in 2015
Dieter, Cheryl A.; Maupin, Molly A.; Caldwell, Rodney R.; Harris, Melissa A.; Ivahnenko, Tamara I.; Lovelace, John K.; Barber, Nancy L.; Linsey, Kristin S.
2018-06-19
Water use in the United States in 2015 was estimated to be about 322 billion gallons per day (Bgal/d), which was 9 percent less than in 2010. The 2015 estimates put total withdrawals at the lowest level since before 1970, following the same overall trend of decreasing total withdrawals observed from 2005 to 2010. Freshwater withdrawals were 281 Bgal/d, or 87 percent of total withdrawals, and saline-water withdrawals were 41.0 Bgal/d, or 13 percent of total withdrawals. Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/day) were about 8 percent greater than in 2010. Saline surface-water withdrawals were 38.6 Bgal/d, or 14 percent less than in 2010. Total saline groundwater withdrawals in 2015 were 2.34 Bgal/d, mostly for mining use.Thermoelectric power and irrigation remained the two largest uses of water in 2015, and total withdrawals decreased for thermoelectric power but increased for irrigation. Withdrawals in 2015 for thermoelectric power were 18 percent less and withdrawals for irrigation were 2 percent greater than in 2010. Similarly, other uses showed reductions compared to 2010, specifically public supply (–7 percent), self-supplied domestic (–8 percent), self-supplied industrial (–9 percent), and aquaculture (–16 percent). In addition to irrigation (2 percent), mining (1 percent) reported larger withdrawals in 2015 than in 2010. Livestock withdrawals remained essentially the same in 2015 compared to 2010 (0 percent change). Thermoelectric power, irrigation, and public-supply withdrawals accounted for 90 percent of total withdrawals in 2015.Withdrawals for thermoelectric power were 133 Bgal/d in 2015 and represented the lowest levels since before 1970. Surface-water withdrawals accounted for more than 99 percent of total thermoelectric-power withdrawals, and 72 percent of those surface-water withdrawals were from freshwater sources. Saline surface-water withdrawals for
Jonsen, Ian
2016-02-08
State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
International Nuclear Information System (INIS)
Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet
2017-01-01
Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.
Steady-state evoked potentials possibilities for mental-state estimation
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...
State and parameter estimation of state-space model with entry-wise correlated uniform noise
Czech Academy of Sciences Publication Activity Database
Pavelková, Lenka; Kárný, Miroslav
2014-01-01
Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf
Online State Space Model Parameter Estimation in Synchronous Machines
Directory of Open Access Journals (Sweden)
Z. Gallehdari
2014-06-01
The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.
Particle filter based MAP state estimation: A comparison
Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha
2009-01-01
MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi
A novel Gaussian model based battery state estimation approach: State-of-Energy
International Nuclear Information System (INIS)
He, HongWen; Zhang, YongZhi; Xiong, Rui; Wang, Chun
2015-01-01
Highlights: • The Gaussian model is employed to construct a novel battery model. • The genetic algorithm is used to implement model parameter identification. • The AIC is used to decide the best hysteresis order of the battery model. • A novel battery SoE estimator is proposed and verified by two kinds of batteries. - Abstract: State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that different kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to construct the battery model. What is more, the genetic algorithm is employed to locate the optimal parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best hysteresis order of the combined battery model. Results from a comparative analysis show that the first-order hysteresis battery model is thought of being the best based on the AIC values. (3) The central difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is considered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error is within 1% for both LiFePO 4 and LiMn 2 O 4 battery datasets
Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001
L. S. Heath; R. A. Birdsey; D. W. Williams
2002-01-01
The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Liu, Bo
2013-01-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2013-04-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
International Nuclear Information System (INIS)
Ng, Kong Soon; Moo, Chin-Sien; Chen, Yi-Ping; Hsieh, Yao-Ching
2009-01-01
The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.
Goembel, L.
2003-12-01
We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.
State and Substate Estimates of Nonmedical Use of Prescription Pain Relievers
... with other local area data to enhance statistical power and analytic capability. 10 Delete Template National, Regional, and State Estimates In this section, estimates of past year nonmedical use of prescription pain relievers among people aged 12 or older are ...
Estimates of the Resident Nonimmigrant Population in the United States: 2008
Department of Homeland Security — This report presents estimates on the size and characteristics of the resident nonimmigrant population in the United States in 2008.1 The estimates were based on...
Power requirements for commercial communications spacecraft
Billerbeck, W. J.
1985-01-01
Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.
Moroz, V. I.
2001-02-01
In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.
Study of the mode of angular velocity damping for a spacecraft at non-standard situation
Davydov, A. A.; Sazonov, V. V.
2012-07-01
Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.
Implementation of a Simplified State Estimator for Wind Turbine Monitoring on an Embedded System
DEFF Research Database (Denmark)
Rasmussen, Theis Bo; Yang, Guangya; Nielsen, Arne Hejde
2017-01-01
system, including individual DER, is time consuming and numerically challenging. This paper presents the approach and results of implementing a simplified state estimator onto an embedded system for improving DER monitoring. The implemented state estimator is based on numerically robust orthogonal......The transition towards a cyber-physical energy system (CPES) entails an increased dependency on valid data. Simultaneously, an increasing implementation of renewable generation leads to possible control actions at individual distributed energy resources (DERs). A state estimation covering the whole...
Estimating mental states of a depressed person with bayesian networks
Klein, Michel C.A.; Modena, Gabriele
2013-01-01
In this work in progress paper we present an approach based on Bayesian Networks to model the relationship between mental states and empirical observations in a depressed person. We encode relationships and domain expertise as a Hierarchical Bayesian Network. Mental states are represented as latent
Short rendezvous missions for advanced Russian human spacecraft
Murtazin, Rafail F.; Budylov, Sergey G.
2010-10-01
The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.
Event-based state estimation a stochastic perspective
Shi, Dawei; Chen, Tongwen
2016-01-01
This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs ...
Response-Based Estimation of Sea State Parameters
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2007-01-01
of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence...... calculated by a 3-D time domain code and by closed-form (analytical) expressions, respectively. Based on comparisons with wave radar measurements and satellite measurements it is seen that the wave estimations based on closedform expressions exhibit a reasonable energy content, but the distribution of energy...
State of the Art in Photon-Density Estimation
DEFF Research Database (Denmark)
Hachisuka, Toshiya; Jarosz, Wojciech; Georgiev, Iliyan
2013-01-01
scattering. Since its introduction, photon-density estimation has been significantly extended in computer graphics with the introduction of: specialized techniques that intelligently modify the positions or bandwidths to reduce visual error using a small number of photons, approaches that eliminate error...
State of the Art in Photon Density Estimation
DEFF Research Database (Denmark)
Hachisuka, Toshiya; Jarosz, Wojciech; Bouchard, Guillaume
2012-01-01
scattering. Since its introduction, photon-density estimation has been significantly extended in computer graphics with the introduction of: specialized techniques that intelligently modify the positions or bandwidths to reduce visual error using a small number of photons, approaches that eliminate error...
On algebraic time-derivative estimation and deadbeat state reconstruction
DEFF Research Database (Denmark)
Reger, Johann; Jouffroy, Jerome
2009-01-01
This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...
estimation of background radiation at rivers state university
African Journals Online (AJOL)
DJFLEX
State University of Science and Technology was measured using a specialize digital, radiation meter type, radalert ... KEYWORDS: Radiation, Radalert-50, electronic devices, radiation limit ... electron gun and the back of CRT (Philip and pick,.
Property measurements and inner state estimation of simulated fuel debris
Energy Technology Data Exchange (ETDEWEB)
Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)
2014-07-01
Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)
Fidelity estimation between two finite ensembles of unknown pure equatorial qubit states
Energy Technology Data Exchange (ETDEWEB)
Siomau, Michael, E-mail: siomau@physi.uni-heidelberg.de [Physikalisches Institut, Heidelberg Universitaet, D-69120 Heidelberg (Germany); Department of Theoretical Physics, Belarussian State University, 220030 Minsk (Belarus)
2011-09-05
Suppose, we are given two finite ensembles of pure qubit states, so that the qubits in each ensemble are prepared in identical (but unknown for us) states lying on the equator of the Bloch sphere. What is the best strategy to estimate fidelity between these two finite ensembles of qubit states? We discuss three possible strategies for the fidelity estimation. We show that the best strategy includes two stages: a specific unitary transformation on two ensembles and state estimation of the output states of this transformation. -- Highlights: → We search for the best strategy for the fidelity estimation. → A measurement-based, a cloning-based and a unified strategies are considered. → The last strategy includes a specific unitary transformation and state estimation. → The unified strategy is shown to be the best among the three.
Directory of Open Access Journals (Sweden)
Hicham Chaoui
2017-04-01
Full Text Available Online estimation techniques are extensively used to determine the parameters of various uncertain dynamic systems. In this paper, online estimation of the open-circuit voltage (OCV of lithium-ion batteries is proposed by two different adaptive filtering methods (i.e., recursive least square, RLS, and least mean square, LMS, along with an adaptive observer. The proposed techniques use the battery’s terminal voltage and current to estimate the OCV, which is correlated to the state of charge (SOC. Experimental results highlight the effectiveness of the proposed methods in online estimation at different charge/discharge conditions and temperatures. The comparative study illustrates the advantages and limitations of each online estimation method.
Rankings & Estimates: Rankings of the States 2016 and Estimates of School Statistics 2017
National Education Association, 2017
2017-01-01
The data presented in this combined report provide facts about the extent to which local, state, and national governments commit resources to public education. NEA Research offers this report to its state and local affiliates as well as to researchers, policymakers, and the public as a tool to examine public education policies, programs, and…
FISH PRODUCTION ESTIMATES FOR GBEDIKERE LAKE, BASSA, KOGI STATE, NIGERIA
Directory of Open Access Journals (Sweden)
Samuel Olusegun Adeyemi
2013-10-01
Full Text Available Annual estimates of the fish caught by local fishermen in randomly selected fishing villages adjacent to Gbedikere Lake were determined using Catch Assessment (CAS. The studies were carried out within two seasons of low water (February and high water (September periods between 2006 to 2008. Annual fish catch varied from 537.4 mts to 576.9 mts at high water. Mean catch per boat ranged from 7.40 kg to 10.60 kg among the landing sites. A total of 12 fish species were identified belonging to ten families. The catches were dominated by the cichlids with Orechromis niloticus dominating the overall catch compositions. Production estimate was compared with the catches obtained through experimental gill-net sampling and potential fish yield estimates using Ryder’s Morpho - Edaphic Index (MEI as modified by Henderson and Welcomme (1974. Contributions of the gears in use were also done with cast nets ranking above others (29%, followed by the set net (25%, hook and lines (16.6%, traps (16.6%, clap net (8.3%. Management measures were suggested.
State of the art on wind resource estimation
Energy Technology Data Exchange (ETDEWEB)
Maribo Pedersen, B.
1998-12-31
With the increasing number of wind resource estimation studies carried out for regions, countries and even larger areas all over the world, the IEA finds that the time has come to stop and take stock of the various methods used in these studies. The IEA would therefore like to propose an Experts Meeting on wind resource estimation. The Experts Meeting should describe the models and databases used in the various studies. It should shed light on the strengths and shortcomings of the models and answer questions like: where and under what circumstances should a specific model be used? what is the expected accuracy of the estimate of the model? and what is the applicability? When addressing databases the main goal will be to identify the content and scope of these. Further, the quality, availability and reliability of the databases must also be recognised. In the various studies of wind resources the models and databases have been combined in different ways. A final goal of the Experts Meeting is to see whether it is possible to develop systems of methods which would depend on the available input. These systems of methods should be able to address the simple case (level 0) of a region with barely no data, to the complex case of a region with all available measurements: surface observations, radio soundings, satellite observations and so on. The outcome of the meeting should be an inventory of available models as well as databases and a map of already studied regions. (au)
Application of advanced electronics to a future spacecraft computer design
Carney, P. C.
1980-01-01
Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.
Fractionated Spacecraft Architectures Seeding Study
National Research Council Canada - National Science Library
Mathieu, Charlotte; Weigel, Annalisa
2006-01-01
.... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...
Estimation of health state utilities in breast cancer
Directory of Open Access Journals (Sweden)
Kim SH
2017-03-01
Full Text Available Seon-Ha Kim,1 Min-Woo Jo,2 Minsu Ock,2 Hyeon-Jeong Lee,2 Jong-Won Lee3,4 1Department of Nursing, College of Nursing, Dankook University, Cheonan, 2Department of Preventive Medicine, University of Ulsan College of Medicine, Seoul, 3Department of Breast and Endocrine Surgery, Asan Medical Center, Seoul, 4Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea Purpose: The aim of this study is to determine the utility of breast cancer health states using the standard gamble (SG and visual analog scale (VAS methods in the Korean general population.Materials and methods: Eight hypothetical breast cancer health states were developed based on patient education material and previous publications. Data from 509 individuals from the Korean general population were used to evaluate breast cancer health states using the VAS and the SG methods, which were obtained via computer-assisted personal interviews. Mean utility values were calculated for each human papillomavirus (HPV-related health state.Results: The rank of health states was identical between two valuation methods. SG values were higher than VAS values in all health states. The utility values derived from SG were 0.801 (noninvasive breast cancer with mastectomy and followed by reconstruction, 0.790 (noninvasive breast cancer with mastectomy only, 0.779 (noninvasive breast cancer with breast-conserving surgery and radiation therapy, 0.731 (invasive breast cancer with surgery, radiation therapy, and/or chemotherapy, 0.610 (locally advanced breast cancer with radical mastectomy with radiation therapy, 0.587 (inoperable locally advanced breast cancer, 0.496 (loco-regional recurrent breast cancer, and 0.352 (metastatic breast cancer.Conclusion: Our findings might be useful for economic evaluation of breast cancer screening and interventions in general populations. Keywords: breast neoplasm, Korea, quality-adjusted life years, quality of life
Spacecraft Material Outgassing Data
National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...
Spacecraft Fire Safety Demonstration
National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...
Quick spacecraft charging primer
International Nuclear Information System (INIS)
Larsen, Brian Arthur
2014-01-01
This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.
Deployable Brake for Spacecraft
Rausch, J. R.; Maloney, J. W.
1987-01-01
Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.
Improving the accuracy of estimation of eutrophication state index ...
African Journals Online (AJOL)
Trophic Level Index (TLI) is oen used to assess the general eutrophication state of inland lakes in water science, technology, and engineering. In this paper, a data-driven inland-lake eutrophication assessment method was proposed by using an articial neural network (ANN) to build relationships from remote sensing data ...
Estimated prevalence of compulsive buying behavior in the United States.
Koran, Lorrin M; Faber, Ronald J; Aboujaoude, Elias; Large, Michael D; Serpe, Richard T
2006-10-01
Compulsive buying (uncontrolled urges to buy, with resulting significant adverse consequences) has been estimated to affect from 1.8% to 16% of the adult U.S. population. To the authors' knowledge, no study has used a large general population sample to estimate its prevalence. The authors conducted a random sample, national household telephone survey in the spring and summer of 2004 and interviewed 2,513 adults. The interviews addressed buying attitudes and behaviors, their consequences, and the respondents' financial and demographic data. The authors used a clinically validated screening instrument, the Compulsive Buying Scale, to classify respondents as either compulsive buyers or not. The rate of response was 56.3%, which compares favorably with rates in federal national health surveys. The cooperation rate was 97.6%. Respondents included a higher percentage of women and people ages 55 and older than the U.S. adult population. The estimated point prevalence of compulsive buying among respondents was 5.8% (by gender: 6.0% for women, 5.5% for men). The gender-adjusted prevalence rate was 5.8%. Compared with other respondents, compulsive buyers were younger, and a greater proportion reported incomes under 50,000 US dollars. They exhibited more maladaptive responses on most consumer behavior measures and were more than four times less likely to pay off credit card balances in full. A study using clinically valid interviews is needed to evaluate these results. The emotional and functional toll of compulsive buying and the frequency of comorbid psychiatric disorders suggests that studies of treatments and social interventions are warranted.
Diagnostic Inspection of Pipelines for Estimating the State of Stress in Them
Subbotin, V. A.; Kolotilov, Yu. V.; Smirnova, V. Yu.; Ivashko, S. K.
2017-12-01
The diagnostic inspection used to estimate the technical state of a pipeline is described. The problems of inspection works are listed, and a functional-structural scheme is developed to estimate the state of stress in a pipeline. Final conclusions regarding the actual loading of a pipeline section are drawn upon a cross analysis of the entire information obtained during pipeline inspection.
State Estimation in Fermentation of Lignocellulosic Ethanol. Focus on the Use of pH Measurements
DEFF Research Database (Denmark)
Mauricio Iglesias, Miguel; Gernaey, Krist; Huusom, Jakob Kjøbsted
2015-01-01
The application of the continuous-discrete extended Kalman filter (CD-EKF) as a powerful tool for state estimation in biochemical systems is assessed here. Using a fermentation process for ethanol production as a case study, the CD-EKF can effectively estimate the model states even when highly non...
Addressing Single and Multiple Bad Data in the Modern PMU-based Power System State Estimation
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
utilization in state estimation can detect and identify single and multiple bad data in redundant and critical measurements. To validate simulations, IEEE 30 bus system are implemented in PowerFactory and Matlab is used to solve proposed state estimation using postprocessing of PMUs and mixed methods. Bad...
Distributed state estimation for multi-agent based active distribution networks
Nguyen, H.P.; Kling, W.L.
2010-01-01
Along with the large-scale implementation of distributed generators, the current distribution networks have changed gradually from passive to active operation. State estimation plays a vital role to facilitate this transition. In this paper, a suitable state estimation method for the active network
Zayane, Chadia
2014-06-01
In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.
Study of the Convergence in State Estimators for LTI Systems with Event Detection
Directory of Open Access Journals (Sweden)
Juan C. Posada
2016-01-01
Full Text Available The methods frequently used to estimate the state of an LTI system require that the precise value of the output variable is known at all times, or at equidistant sampling times. In LTI systems, in which the output signal is measured through binary sensors (detectors, the traditional way of state observers design is not applicable even though the system has a complete observability matrix. This type of state observers design is known as passive. It is necessary, then, to introduce a new state estimation technique, which allows reckoning the state from the information of the variable’s crossing through a detector’s action threshold (switch. This paper seeks, therefore, to study the convergence in this type of estimators in finite time, allowing establishing, theoretically, whether some family of the proposed models can be estimated in a convergent way through the use of the estimation technique based on events.
Directory of Open Access Journals (Sweden)
Ibrahim M. Safwat
2017-11-01
Full Text Available State-of-charge (SOC estimations of Li-ion batteries have been the focus of many research studies in previous years. Many articles discussed the dynamic model’s parameters estimation of the Li-ion battery, where the fixed forgetting factor recursive least square estimation methodology is employed. However, the change rate of each parameter to reach the true value is not taken into consideration, which may tend to poor estimation. This article discusses this issue, and proposes two solutions to solve it. The first solution is the usage of a variable forgetting factor instead of a fixed one, while the second solution is defining a vector of forgetting factors, which means one factor for each parameter. After parameters estimation, a new idea is proposed to estimate state-of-charge (SOC of the Li-ion battery based on Newton’s method. Also, the error percentage and computational cost are discussed and compared with that of nonlinear Kalman filters. This methodology is applied on a 36 V 30 A Li-ion pack to validate this idea.
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Estimating Rn-induced lung cancer in the United States
International Nuclear Information System (INIS)
Lubin, J.H.; Boice, J.D. Jr.
1989-01-01
The proportion of lung cancer deaths attributable to Rn among residents of single-family homes in the U.S. (approximately 70% of the housing stock) is estimated using the log-normal distribution of Rn concentrations proposed by Nero et al. (1986) and the risk model developed by the National Academy of Sciences' BEIR IV Committee. The risk model, together with the exposure distribution, predicts that approximately 14% of lung cancer deaths among such residents (about 13,300 deaths per year, or 10% of all U.S. lung cancer deaths) may be due to indoor Rn exposure. The 95% confidence interval is 7%-25%, or approximately 6600 to 24,000 lung cancer deaths. These estimated attributable risks due to Rn are similar for males and females and for smokers and nonsmokers, but higher baseline risks of lung cancer result in much larger absolute numbers of Rn-attributable cancers among males (approximately 9000) and among smokers (approximately 11,000). Because of the apparent skewness of the exposure distribution, most of the contribution to the attributable risks arises from exposure rates below 148 Bq m-3 (4 pCi L-1), i.e., below the EPA action level. As a result, if all exposure rates that exceed 148 Bq m-3 (approximately 8% of homes) were eliminated, the models predict that the total annual lung cancer burden in the U.S. would drop by 4-5%, or by about 3800 lung cancer deaths, in contrast to a maximum reduction of 14% if all indoor Rn exposure above the 1st percentile were eliminated
Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.
Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing
2017-10-11
In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.
State Estimation for Robots with Complementary Redundant Sensors
Directory of Open Access Journals (Sweden)
Daniele Carnevale
2015-10-01
Full Text Available In this paper, robots equipped with two complementary typologies of redundant sensors are considered: one typology provides sharp measures of some geometrical entity related to the robot pose (e.g., distance or angle but is not univocally associated with this quantity; the other typology is univocal but is characterized by a low level of precision. A technique is proposed to properly combine these two kinds of measurement both in a stochastic and in a deterministic context. This framework may occur in robotics, for example, when the distance from a known landmark is detected by two different sensors, one based on the signal strength or time of flight of the signal, while the other one measures the phase-shift of the signal, which has a sharp but periodical dependence on the robot-landmark distance. In the stochastic case, an effective solution is a two-stage extended Kalman filter (EKF which exploits the precise periodic signal only when the estimate of the robot position is sufficiently precise. In the deterministic setting, an approach based on a switching hybrid observer is proposed, and results are analyzed via simulation examples.
Internet Technology on Spacecraft
Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)
2000-01-01
The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current
Mechanical Design of Spacecraft
1962-01-01
In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.
Real-time measurements and their effects on state estimation of distribution power system
DEFF Research Database (Denmark)
Han, Xue; You, Shi; Thordarson, Fannar
2013-01-01
between the estimated values (voltage and injected power) and the measurements are applied to evaluate the accuracy of the estimated grid states. Eventually, some suggestions are provided for the distribution grid operators on placing the real-time meters in the distribution grid.......This paper aims at analyzing the potential value of using different real-time metering and measuring instruments applied in the low voltage distribution networks for state-estimation. An algorithm is presented to evaluate different combinations of metering data using a tailored state estimator....... It is followed by a case study based on the proposed algorithm. A real distribution grid feeder with different types of meters installed either in the cabinets or at the customer side is selected for simulation and analysis. Standard load templates are used to initiate the state estimation. The deviations...
DEFF Research Database (Denmark)
Mohd. Azam, Sazuan Nazrah
2017-01-01
In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....
A Best-Estimate Reactor Core Monitor Using State Feedback Strategies to Reduce Uncertainties
International Nuclear Information System (INIS)
Martin, Robert P.; Edwards, Robert M.
2000-01-01
The development and demonstration of a new algorithm to reduce modeling and state-estimation uncertainty in best-estimate simulation codes has been investigated. Demonstration is given by way of a prototype reactor core monitor. The architecture of this monitor integrates a control-theory-based, distributed-parameter estimation technique into a production-grade best-estimate simulation code. The Kalman Filter-Sequential Least-Squares (KFSLS) parameter estimation algorithm has been extended for application into the computational environment of the best-estimate simulation code RELAP5-3D. In control system terminology, this configuration can be thought of as a 'best-estimate' observer. The application to a distributed-parameter reactor system involves a unique modal model that approximates physical components, such as the reactor, by describing both states and parameters by an orthogonal expansion. The basic KFSLS parameter estimation is used to dynamically refine a spatially varying (distributed) parameter. The application of the distributed-parameter estimator is expected to complement a traditional nonlinear best-estimate simulation code by providing a mechanism for reducing both code input (modeling) and output (state-estimation) uncertainty in complex, distributed-parameter systems
Spacecraft Attitude Determination
DEFF Research Database (Denmark)
Bak, Thomas
This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...
Monitoring hydraulic fractures: state estimation using an extended Kalman filter
International Nuclear Information System (INIS)
Rochinha, Fernando Alves; Peirce, Anthony
2010-01-01
There is considerable interest in using remote elastostatic deformations to identify the evolving geometry of underground fractures that are forced to propagate by the injection of high pressure viscous fluids. These so-called hydraulic fractures are used to increase the permeability in oil and gas reservoirs as well as to pre-fracture ore-bodies for enhanced mineral extraction. The undesirable intrusion of these hydraulic fractures into environmentally sensitive areas or into regions in mines which might pose safety hazards has stimulated the search for techniques to enable the evolving hydraulic fracture geometries to be monitored. Previous approaches to this problem have involved the inversion of the elastostatic data at isolated time steps in the time series provided by tiltmeter measurements of the displacement gradient field at selected points in the elastic medium. At each time step, parameters in simple static models of the fracture (e.g. a single displacement discontinuity) are identified. The approach adopted in this paper is not to regard the sequence of sampled elastostatic data as independent, but rather to treat the data as linked by the coupled elastic-lubrication equations that govern the propagation of the evolving hydraulic fracture. We combine the Extended Kalman Filter (EKF) with features of a recently developed implicit numerical scheme to solve the coupled free boundary problem in order to form a novel algorithm to identify the evolving fracture geometry. Numerical experiments demonstrate that, despite excluding significant physical processes in the forward numerical model, the EKF-numerical algorithm is able to compensate for the un-modeled dynamics by using the information fed back from tiltmeter data. Indeed the proposed algorithm is able to provide reasonably faithful estimates of the fracture geometry, which are shown to converge to the actual hydraulic fracture geometry as the number of tiltmeters is increased. Since the location of
Revamping Spacecraft Operational Intelligence
Hwang, Victor
2012-01-01
The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.
Dips spacecraft integration issues
International Nuclear Information System (INIS)
Determan, W.R.; Harty, R.B.
1988-01-01
The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy
Parameter and state estimation of experimental chaotic systems using synchronization
Quinn, John C.; Bryant, Paul H.; Creveling, Daniel R.; Klein, Sallee R.; Abarbanel, Henry D. I.
2009-07-01
We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily
Directory of Open Access Journals (Sweden)
Ngoc-Tham Tran
2017-01-01
Full Text Available State of charge (SOC and state of health (SOH are key issues for the application of batteries, especially the absorbent glass mat valve regulated lead-acid (AGM VRLA type batteries used in the idle stop start systems (ISSs that are popularly integrated into conventional engine-based vehicles. This is due to the fact that SOC and SOH estimation accuracy is crucial for optimizing battery energy utilization, ensuring safety and extending battery life cycles. The dual extended Kalman filter (DEKF, which provides an elegant and powerful solution, is widely applied in SOC and SOH estimation based on a battery parameter model. However, the battery parameters are strongly dependent on operation conditions such as the SOC, current rate and temperature. In addition, battery parameters change significantly over the life cycle of a battery. As a result, many experimental pretests investigating the effects of the internal and external conditions of a battery on its parameters are required, since the accuracy of state estimation depends on the quality of the information regarding battery parameter changes. In this paper, a novel method for SOC and SOH estimation that combines a DEKF algorithm, which considers hysteresis and diffusion effects, and an auto regressive exogenous (ARX model for online parameters estimation is proposed. The DEKF provides precise information concerning the battery open circuit voltage (OCV to the ARX model. Meanwhile, the ARX model continues monitoring parameter variations and supplies information on them to the DEKF. In this way, the estimation accuracy can be maintained despite the changing parameters of a battery. Moreover, online parameter estimation from the ARX model can save the time and effort used for parameter pretests. The validation of the proposed algorithm is given by simulation and experimental results.
International Nuclear Information System (INIS)
Horodecki, Pawel
2003-01-01
Possibility of some nonlinear-like operations in quantum mechanics are studied. Some general formula for real linear maps are derived. With the results we show how to perform physically separability tests based on any linear contraction (on product states) that either is real or Hermitian. We also show how to estimate either product or linear combinations of quantum states without knowledge about the states themselves. This can be viewed as a sort of quantum computing on quantum states algebra
Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method
DEFF Research Database (Denmark)
Zhao, Junbo; Zhang, Gexiang; Das, Kaushik
2016-01-01
Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...
Equations for estimating stand establishment, release, and thinning costs in the Lake States.
Jeffrey T. Olson; Allen L. Lundgren; Dietmar Rose
1978-01-01
Equations for estimating project costs for certain silvicultural treatments in the Lake States have been developed from project records of public forests. Treatments include machine site preparation, hand planting, aerial spraying, prescribed burning, manual release, and thinning.
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2008
Department of Homeland Security — This report provides estimates of the number of unauthorized immigrants residing in the United States as of January 2008 by period of entry, region and country of...
DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING
National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2007
Department of Homeland Security — This report provides estimates of the number of unauthorized immigrants residing in the United States as of January 2007 by period of entry, region and country of...
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2012
Department of Homeland Security — This report provides estimates of the size of the unauthorized immigrant population residing in the United States as of January 2012 by period of entry, region and...
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2009
Department of Homeland Security — This report provides estimates of the number of unauthorized immigrants residing in the United States as of January 2009 by period of entry, region and country of...
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2006
Department of Homeland Security — This report provides estimates of the number of unauthorized immigrants residing in the United States as of January 2006 by period of entry, region and country of...
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2011
Department of Homeland Security — This report provides estimates of the size of the unauthorized immigrant population residing in the United States as of January 2011 by period of entry, region and...
National Research Council Canada - National Science Library
Sullivan, Michael J
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...
Estimates of the Lawful Permanent Resident Population in the United States: January 2013
Department of Homeland Security — This report presents estimates of the lawful permanent resident (LPR) population living in the United States on January 1, 2013. The LPR population includes persons...
Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering
El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.
2013-01-01
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2010
Department of Homeland Security — This report provides estimates of the size of the unauthorized immigrant population residing in the United States as of January 2010 by period of entry, region and...
Estimates of the Lawful Permanent Resident Population in the United States: January 2014
Department of Homeland Security — This report presents estimates of the lawful permanent resident (LPR) population living in the United States on January 1, 2014. The LPR population includes persons...
Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2016-07-01
This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.
Radiation Effects on Spacecraft Structural Materials
International Nuclear Information System (INIS)
Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.
2002-01-01
Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)
An improved fuzzy Kalman filter for state estimation of nonlinear systems
International Nuclear Information System (INIS)
Zhou, Z-J; Hu, C-H; Chen, L; Zhang, B-C
2008-01-01
The extended fuzzy Kalman filter (EFKF) is developed recently and used for state estimation of the nonlinear systems with uncertainty. Based on extension of the orthogonality principle and the extended fuzzy Kalman filter, an improved fuzzy Kalman filters (IFKF) is proposed in this paper, which is more applicable and can deal with the state estimation of the nonlinear systems better than the EFKF. A simulation study is provided to verify the efficiency of the proposed method
Dual extended Kalman filter for combined estimation of vehicle state and road friction
Zong, Changfu; Hu, Dan; Zheng, Hongyu
2013-03-01
Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.
Drug use and AIDS: estimating injection prevalence in a rural state.
Leukefeld, Carl G; Logan, T K; Farabee, David; Clayton, Richard
2002-01-01
This paper presents approaches used in one rural U.S. state to describe the level of injecting drug use and to estimate the number of injectors not receiving drug-user treatment. The focus is on two broad areas of estimation that were used to present the prevalence of injecting drug use in Kentucky. The first estimation approach uses available data from secondary data sources. The second approach involves three small community studies.
Optic Flow Based State Estimation for an Indoor Micro Air Vehicle
Verveld, M.J.; Chu, Q.P.; De Wagter, C.; Mulder, J.A.
2010-01-01
This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude
Response-based estimation of sea state parameters - Influence of filtering
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2007-01-01
Reliable estimation of the on-site sea state parameters is essential to decision support systems for safe navigation of ships. The wave spectrum can be estimated from procedures based on measured ship responses. The paper deals with two procedures—Bayesian Modelling and Parametric Modelling...
Sea state estimation from an advancing ship – A comparative study using sea trial data
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Stredulinsky, David C.
2012-01-01
of a traditional wave rider buoy. The paper studies the ‘wave buoy analogy’, and a large set of full-scale motion measurements is considered. It is shown that the wave buoy analogy gives fairly accurate estimates of integrated sea state parameters when compared to corresponding estimates from real wave rider buoys...
Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models
Spitoni, C.; Verduijn, M.; Putter, H.
2012-01-01
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional
Urano, Shoichi; Mori, Hiroyuki
This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.
Uzunoglu, B.; Hussaini, Y.
2017-12-01
Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.
Metric Indices for Performance Evaluation of a Mixed Measurement based State Estimator
Directory of Open Access Journals (Sweden)
Paula Sofia Vide
2013-01-01
Full Text Available With the development of synchronized phasor measurement technology in recent years, it gains great interest the use of PMU measurements to improve state estimation performances due to their synchronized characteristics and high data transmission speed. The ability of the Phasor Measurement Units (PMU to directly measure the system state is a key over SCADA measurement system. PMU measurements are superior to the conventional SCADA measurements in terms of resolution and accuracy. Since the majority of measurements in existing estimators are from conventional SCADA measurement system, it is hard to be fully replaced by PMUs in the near future so state estimators including both phasor and conventional SCADA measurements are being considered. In this paper, a mixed measurement (SCADA and PMU measurements state estimator is proposed. Several useful measures for evaluating various aspects of the performance of the mixed measurement state estimator are proposed and explained. State Estimator validity, performance and characteristics of the results on IEEE 14 bus test system and IEEE 30 bus test system are presented.
An open source framework for tracking and state estimation ('Stone Soup')
Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger
2017-05-01
The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,
Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards
Energy Technology Data Exchange (ETDEWEB)
Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.
2014-05-01
Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.
Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.
2013-01-01
A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.
International Nuclear Information System (INIS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu
2017-01-01
Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.
State estimation and synchronization of pendula systems over digital communication channels
Fradkov, A. L.; Andrievsky, B.; Ananyevskiy, M.
2014-04-01
The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.
Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay
Directory of Open Access Journals (Sweden)
Mahmoud Magdi S.
2001-01-01
Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.
State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer
DEFF Research Database (Denmark)
Larose, Claude Alain; Jørgensen, Sten Bay
2001-01-01
This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...... if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks....
Nonlinear Adaptive Descriptor Observer for the Joint States and Parameters Estimation
2016-08-29
In this note, the joint state and parameters estimation problem for nonlinear multi-input multi-output descriptor systems is considered. Asymptotic convergence of the adaptive descriptor observer is established by a sufficient set of linear matrix inequalities for the noise-free systems. The noise corrupted systems are also considered and it is shown that the state and parameters estimation errors are bounded for bounded noises. In addition, if the noises are bounded and have zero mean, then the estimation errors asymptotically converge to zero in the mean. The performance of the proposed adaptive observer is illustrated by a numerical example.
Nonlinear Adaptive Descriptor Observer for the Joint States and Parameters Estimation
Unknown author
2016-01-01
In this note, the joint state and parameters estimation problem for nonlinear multi-input multi-output descriptor systems is considered. Asymptotic convergence of the adaptive descriptor observer is established by a sufficient set of linear matrix inequalities for the noise-free systems. The noise corrupted systems are also considered and it is shown that the state and parameters estimation errors are bounded for bounded noises. In addition, if the noises are bounded and have zero mean, then the estimation errors asymptotically converge to zero in the mean. The performance of the proposed adaptive observer is illustrated by a numerical example.
Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering
El Gharamti, Mohamad
2013-10-01
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the
Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator
DEFF Research Database (Denmark)
Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage
2018-01-01
Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...
Dynamic state estimation and prediction for real-time control and operation
Nguyen, P.H.; Venayagamoorthy, G.K.; Kling, W.L.; Ribeiro, P.F.
2013-01-01
Real-time control and operation are crucial to deal with increasing complexity of modern power systems. To effectively enable those functions, it is required a Dynamic State Estimation (DSE) function to provide accurate network state variables at the right moment and predict their trends ahead. This
Branch current state estimation of three phase distribution networks suitable for paralellization
Blaauwbroek, N.; Nguyen, H.P.; Gibescu, M.; Slootweg, J.G.
2017-01-01
The evolution of distribution networks from passive to active distribution systems puts new requirements on the monitoring and control capabilities of these systems. The development of state estimation algorithms to gain insight in the actual system state of a distribution network has resulted in a
Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2016-01-01
HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State...
Estimates of lifetime infertility from three states: the behavioral risk factor surveillance system.
Crawford, Sara; Fussman, Chris; Bailey, Marie; Bernson, Dana; Jamieson, Denise J; Murray-Jordan, Melissa; Kissin, Dmitry M
2015-07-01
Knowledge of state-specific infertility is limited. The objectives of this study were to explore state-specific estimates of lifetime prevalence of having ever experienced infertility, sought treatment for infertility, types of treatments sought, and treatment outcomes. Male and female adult residents aged 18-50 years from three states involved in the States Monitoring Assisted Reproductive Technology Collaborative (Florida, Massachusetts, and Michigan) were asked state-added infertility questions as part of the 2012 Behavioral Risk Factor Surveillance System, a state-based, health-related telephone survey. Analysis involved estimation of lifetime prevalence of infertility. The estimated lifetime prevalence of infertility among 1,285 adults in Florida, 1,302 in Massachusetts, and 3,360 in Michigan was 9.7%, 6.0%, and 4.2%, respectively. Among 736 adults in Florida, 1,246 in Massachusetts, and 2,742 in Michigan that have ever tried to get pregnant, the lifetime infertility prevalence was 25.3% in Florida, 9.9% in Massachusetts, and 5.8% in Michigan. Among those with a history of infertility, over half sought treatment (60.7% in Florida, 70.6% in Massachusetts, and 51.6% in Michigan), the most common being non-assisted reproductive technology fertility treatments (61.3% in Florida, 66.0% in Massachusetts, and 75.9% in Michigan). State-specific estimates of lifetime infertility prevalence in Florida, Massachusetts, and Michigan varied. Variations across states are difficult to interpret, as they likely reflect both true differences in prevalence and differences in data collection questionnaires. State-specific estimates are needed for the prevention, detection, and management of infertility, but estimates should be based on a common set of questions appropriate for these goals.
Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems
Directory of Open Access Journals (Sweden)
Feten Gannouni
2017-01-01
Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.
H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
International Nuclear Information System (INIS)
Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A
2013-01-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1998-01-01
Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).
International Nuclear Information System (INIS)
Liang Jinling; Lam, James; Wang Zidong
2009-01-01
This Letter is concerned with the robust state estimation problem for uncertain time-delay Markovian jumping genetic regulatory networks (GRNs) with SUM logic, where the uncertainties enter into both the network parameters and the mode transition rate. The nonlinear functions describing the feedback regulation are assumed to satisfy the sector-like conditions. The main purpose of the problem addressed is to design a linear estimator to approximate the true concentrations of the mRNA and protein through available measurement outputs. By resorting to the Lyapunov functional method and some stochastic analysis tools, it is shown that if a set of linear matrix inequalities (LMIs) is feasible, the desired state estimator, that can ensure the estimation error dynamics to be globally robustly asymptotically stable in the mean square, exists. The obtained LMI conditions are dependent on both the lower and the upper bounds of the delays. An illustrative example is presented to demonstrate the feasibility of the proposed estimation schemes.
Yin, J.; Shen, Y.; Liu, X. T.; Zeng, G. J.; Liu, D. C.
2017-11-01
The traditional current integral method for the state-of-charge (SOC) estimation has an unusable estimation accuracy because of the current measuring error. This paper proposed a closed-loop temperature compensation method to improve the SOC estimation accuracy of current integral method by eliminating temperature drift. Through circuit simulation result in Multisim, the stability of current measuring accuracy is improved by more than 10 times. In a designed 70 charge-discharge experimental circle, the SOC estimation error with temperature compensation had 30 times less than error in normal situation without compensation.
DEFF Research Database (Denmark)
Hahn, Tobias; Hansen, Søren; Blanke, Mogens
2012-01-01
Aiming at survival from contingency situations for unmanned aerial vehicles, a square root spherical simplex unscented Kalman filter is applied for state and parameter estimation and a rough model is used for state prediction when essential measurements are lost. Processing real flight data, rece...... efficient square root implementation of the filter algorithm. A case of loss of GPS signal demonstrates the use of the state estimates to obtain return of the UAV to close to it’s home base where safe recovery is possible....
Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools
Directory of Open Access Journals (Sweden)
M. Anushka S. Perera
2015-07-01
Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.
Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries
International Nuclear Information System (INIS)
Burgos-Mellado, Claudio; Orchard, Marcos E.; Kazerani, Mehrdad; Cárdenas, Roberto; Sáez, Doris
2016-01-01
Highlights: • Approach to estimate the state of maximum power available in Lithium-Ion battery. • Optimisation problem is formulated on the basis of a non-linear dynamic model. • Solutions of the optimisation problem are functions of state of charge estimates. • State of charge estimates computed using particle filter algorithms. - Abstract: Battery Energy Storage Systems (BESS) are important for applications related to both microgrids and electric vehicles. If BESS are used as the main energy source, then it is required to include adequate procedures for the estimation of critical variables such as the State of Charge (SoC) and the State of Health (SoH) in the design of Battery Management Systems (BMS). Furthermore, in applications where batteries are exposed to high charge and discharge rates it is also desirable to estimate the State of Maximum Power Available (SoMPA). In this regard, this paper presents a novel approach to the estimation of SoMPA in Lithium-Ion batteries. This method formulates an optimisation problem for the battery power based on a non-linear dynamic model, where the resulting solutions are functions of the SoC. In the battery model, the polarisation resistance is modelled using fuzzy rules that are function of both SoC and the discharge (charge) current. Particle filtering algorithms are used as an online estimation technique, mainly because these algorithms allow approximating the probability density functions of the SoC and SoMPA even in the case of non-Gaussian sources of uncertainty. The proposed method for SoMPA estimation is validated using the experimental data obtained from an experimental setup designed for charging and discharging the Lithium-Ion batteries.
Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models
Ting, Chee-Ming
2017-12-06
We consider the challenges in estimating state-related changes in brain connectivity networks with a large number of nodes. Existing studies use sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms K-means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to resting-state fMRI data, our method successfully identifies modular organization in resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.
Smith, James F.
2017-11-01
With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.
State Estimation of Permanent Magnet Synchronous Motor Using Improved Square Root UKF
Directory of Open Access Journals (Sweden)
Bo Xu
2016-06-01
Full Text Available This paper focuses on an improved square root unscented Kalman filter (SRUKF and its application for rotor speed and position estimation of permanent magnet synchronous motor (PMSM. The approach, which combines the SRUKF and strong tracking filter, uses the minimal skew simplex transformation to reduce the number of the sigma points, and utilizes the square root filtering to reduce computational errors. The time-varying fading factor and softening factor are introduced to self-adjust the gain matrices and the state forecast covariance square root matrix, which can realize the residuals orthogonality and force the SRUKF to track the real state rapidly. The theoretical analysis of the improved SRUKF and implementation details for PMSM state estimation are examined. The simulation results show that the improved SRUKF has higher nonlinear approximation accuracy, stronger numerical stability and computational efficiency, and it is an effective and powerful tool for PMSM state estimation under the conditions of step response or load disturbance.
Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft
Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish
2017-01-01
In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.
Hurlbert, Kathryn Miller
2009-01-01
In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented
Robust Spacecraft Component Detection in Point Clouds
Directory of Open Access Journals (Sweden)
Quanmao Wei
2018-03-01
Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
Robust Spacecraft Component Detection in Point Clouds.
Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng
2018-03-21
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
International Nuclear Information System (INIS)
Zheng Hong; Liu Xu; Wei Min
2015-01-01
In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. (paper)
Estimation of the number of wild pigs found in the United States
Energy Technology Data Exchange (ETDEWEB)
Mayer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2014-08-01
Based on a compilation of three estimation approaches, the total nationwide population of wild pigs in the United States numbers approximately 6.3 million animals, with that total estimate ranging from 4.4 up to 11.3 million animals. The majority of these numbers (99 percent), which were encompassed by ten states (i.e., Alabama, Arkansas, California, Florida, Georgia, Louisiana, Mississippi, Oklahoma, South Carolina and Texas), were based on defined estimation methodologies (e.g., density estimates correlated to the total potential suitable wild pig habitat statewide, statewide harvest percentages, statewide agency surveys regarding wild pig distribution and numbers). In contrast to the pre-1990 estimates, none of these more recent efforts, collectively encompassing 99 percent of the total, were based solely on anecdotal information or speculation. To that end, one can defensibly state that the wild pigs found in the United States number in the millions of animals, with the nationwide population estimated to arguably vary from about four million up to about eleven million individuals.
Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints
Directory of Open Access Journals (Sweden)
Shun Xiang
2018-01-01
Full Text Available The paper aims to realize a rapid online estimation of the state-of-power (SOP with multiple constraints of a lithium-ion battery. Firstly, based on the improved first-order resistance-capacitance (RC model with one-state hysteresis, a linear state-space battery model is built; then, using the dual extended Kalman filtering (DEKF method, the battery parameters and states, including open-circuit voltage (OCV, are estimated. Secondly, by employing the estimated OCV as the observed value to build the second dual Kalman filters, the battery SOC is estimated. Thirdly, a novel rapid-calculating peak power/SOP method with multiple constraints is proposed in which, according to the bisection judgment method, the battery’s peak state is determined; then, one or two instantaneous peak powers are used to determine the peak power during T seconds. In addition, in the battery operating process, the actual constraint that the battery is under is analyzed specifically. Finally, three simplified versions of the Federal Urban Driving Schedule (SFUDS with inserted pulse experiments are conducted to verify the effectiveness and accuracy of the proposed online SOP estimation method.
Directory of Open Access Journals (Sweden)
Haorui Liu
2016-01-01
Full Text Available In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved Elman neural network is proposed. Combining with nonlinear vehicle model of three degrees of freedom (3 DOF, longitudinal, lateral, and yaw motion, this paper applies the method to the soft sensor of the vehicle states. The simulation results of the double lane change tested by Matlab/SIMULINK cosimulation prove the KPCA-IENN algorithm (kernel principal component algorithm and improved Elman neural network to be quick and precise when tracking the vehicle states within the nonlinear area. This algorithm method can meet the software performance requirements of the vehicle states estimation in precision, tracking speed, noise suppression, and other aspects.
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-01-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.
Ait-El-Fquih, Boujemaa
2016-08-12
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model\\'s state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.
Event-triggered attitude control of spacecraft
Wu, Baolin; Shen, Qiang; Cao, Xibin
2018-02-01
The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.
Planning Inmarsat's second generation of spacecraft
Williams, W. P.
1982-09-01
The next generation of studies of the Inmarsat service are outlined, such as traffic forecasting studies, communications capacity estimates, space segment design, cost estimates, and financial analysis. Traffic forecasting will require future demand estimates, and a computer model has been developed which estimates demand over the Atlantic, Pacific, and Indian ocean regions. Communications estimates are based on traffic estimates, as a model converts traffic demand into a required capacity figure for a given area. The Erlang formula is used, requiring additional data such as peak hour ratios and distribution estimates. Basic space segment technical requirements are outlined (communications payload, transponder arrangements, etc), and further design studies involve such areas as space segment configuration, launcher and spacecraft studies, transmission planning, and earth segment configurations. Cost estimates of proposed design parameters will be performed, but options must be reduced to make construction feasible. Finally, a financial analysis will be carried out in order to calculate financial returns.
Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies
Hirsch, David B.; Beeson, Harold D.
2012-01-01
Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.
Methods for Estimating Water Withdrawals for Mining in the United States, 2005
Lovelace, John K.
2009-01-01
The mining water-use category includes groundwater and surface water that is withdrawn and used for nonfuels and fuels mining. Nonfuels mining includes the extraction of ores, stone, sand, and gravel. Fuels mining includes the extraction of coal, petroleum, and natural gas. Water is used for mineral extraction, quarrying, milling, and other operations directly associated with mining activities. For petroleum and natural gas extraction, water often is injected for secondary oil or gas recovery. Estimates of water withdrawals for mining are needed for water planning and management. This report documents methods used to estimate withdrawals of fresh and saline groundwater and surface water for mining during 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Fresh and saline groundwater and surface-water withdrawals during 2005 for nonfuels- and coal-mining operations in each county or county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands were estimated. Fresh and saline groundwater withdrawals for oil and gas operations in counties of six states also were estimated. Water withdrawals for nonfuels and coal mining were estimated by using mine-production data and water-use coefficients. Production data for nonfuels mining included the mine location and weight (in metric tons) of crude ore, rock, or mineral produced at each mine in the United States, Puerto Rico, and the U.S. Virgin Islands during 2004. Production data for coal mining included the weight, in metric tons, of coal produced in each county or county equivalent during 2004. Water-use coefficients for mined commodities were compiled from various sources including published reports and written communications from U.S. Geological Survey National Water-use Information Program (NWUIP) personnel in several states. Water withdrawals for oil and gas extraction were estimated for six States including California, Colorado, Louisiana, New
Sullivan, Michael J.
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Dexin; Yang, Liuqing; Florita, Anthony; Alam, S.M. Shafiul; Elgindy, Tarek; Hodge, Bri-Mathias
2016-08-01
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the help of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.
State estimation and control for low-cost unmanned aerial vehicles
Hajiyev, Chingiz; Yenal Vural, Sıtkı
2015-01-01
This book discusses state estimation and control procedures for a low-cost unmanned aerial vehicle (UAV). The authors consider the use of robust adaptive Kalman filter algorithms and demonstrate their advantages over the optimal Kalman filter in the context of the difficult and varied environments in which UAVs may be employed. Fault detection and isolation (FDI) and data fusion for UAV air-data systems are also investigated, and control algorithms, including the classical, optimal, and fuzzy controllers, are given for the UAV. The performance of different control methods is investigated and the results compared. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles covers all the important issues for designing a guidance, navigation and control (GNC) system of a low-cost UAV. It proposes significant new approaches that can be exploited by GNC system designers in the future and also reviews the current literature. The state estimation, control and FDI methods are illustrated by examples and MATLAB...
Dynamic state estimation techniques for large-scale electric power systems
International Nuclear Information System (INIS)
Rousseaux, P.; Pavella, M.
1991-01-01
This paper presents the use of dynamic type state estimators for energy management in electric power systems. Various dynamic type estimators have been developed, but have never been implemented. This is primarily because of dimensionality problems posed by the conjunction of an extended Kalman filter with a large scale power system. This paper precisely focuses on how to circumvent the high dimensionality, especially prohibitive in the filtering step, by using a decomposition-aggregation hierarchical scheme; to appropriately model the power system dynamics, the authors introduce new state variables in the prediction step and rely on a load forecasting method. The combination of these two techniques succeeds in solving the overall dynamic state estimation problem not only in a tractable and realistic way, but also in compliance with real-time computational requirements. Further improvements are also suggested, bound to the specifics of the high voltage electric transmission systems
Estimation of Unobserved Inflation Expectations in India using State-Space Model
Chattopadhyay, Siddhartha; Sahu, Sohini; Jha, Saakshi
2016-01-01
Inflation expectations is an important marker for monetary policy makers. India being a new entrant to the group of countries that pursue inflation targeting as its monetary policy objective, estimating the inflation expectation is of paramount importance. This paper estimates the unobserved inflation expectations in India between 1993:Q1 to 2016:Q1 from the Fisher equation relation using the state space approach (Kalman Filter). We find that our results match well with the inflation forecast...
Optimal quantum state estimation with use of the no-signaling principle
International Nuclear Information System (INIS)
Han, Yeong-Deok; Bae, Joonwoo; Wang Xiangbin; Hwang, Won-Young
2010-01-01
A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independent of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.
State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells
Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail
2013-01-01
In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Automating Trend Analysis for Spacecraft Constellations
Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)
2001-01-01
missions such as DRACO with the intent that mission operations costs be significantly reduced. The goal of the Constellation Spacecraft Trend Analysis Toolkit (CSTAT) project is to serve as the pathfinder for a fully automated trending system to support spacecraft constellations. The development approach to be taken is evolutionary. In the first year of the project, the intent is to significantly advance the state of the art in current trending systems through improved functionality and increased automation. In the second year, the intent is to add an expert system shell, likely through the adaptation of an existing commercial-off-the-shelf (COTS) or government-off-the-shelf (GOTS) tool to implement some level of the trending intelligence that humans currently provide in manual operations. In the third year, the intent is to infuse the resulting technology into a near-term constellation or formation-flying mission to test it and gain experience in automated trending. The lessons learned from the real missions operations experience will then be used to improve the system, and to ultimately incorporate it into a fully autonomous, closed-loop mission operations system that is truly capable of supporting large constellations. In this paper, the process of automating trend analysis for spacecraft constellations will be addressed. First, the results of a survey on automation in spacecraft mission operations in general, and in trending systems in particular will be presented to provide an overview of the current state of the art. Next, a rule-based model for implementing intelligent spacecraft subsystem trending will be then presented, followed by a survey of existing COTS/GOTS tools that could be adapted for implementing such a model. The baseline design and architecture of the CSTAT system will be presented. Finally, some results obtained from initial software tests and demonstrations will be presented.
State of charge estimation for lithium-ion pouch batteries based on stress measurement
International Nuclear Information System (INIS)
Dai, Haifeng; Yu, Chenchen; Wei, Xuezhe; Sun, Zechang
2017-01-01
State of charge (SOC) estimation is one of the important tasks of battery management system (BMS). Being different from other researches, a novel method of SOC estimation for pouch lithium-ion battery cells based on stress measurement is proposed. With a comprehensive experimental study, we find that, the stress of the battery during charge/discharge is composed of the static stress and the dynamic stress. The static stress, which is the measured stress in equilibrium state, corresponds to SOC, this phenomenon facilitates the design of our stress-based SOC estimation. The dynamic stress, on the other hand, is influenced by multiple factors including charge accumulation or depletion, current and historical operation, thus a multiple regression model of the dynamic stress is established. Based on the relationship between static stress and SOC, as well as the dynamic stress modeling, the SOC estimation method is founded. Experimental results show that the stress-based method performs well with a good accuracy, and this method offers a novel perspective for SOC estimation. - Highlights: • A State of Charge estimator based on stress measurement is proposed. • The stress during charge and discharge is investigated with comprehensive experiments. • Effects of SOC, current, and operation history on battery stress are well studied. • A multiple regression model of the dynamic stress is established.
Estimating inpatient hospital prices from state administrative data and hospital financial reports.
Levit, Katharine R; Friedman, Bernard; Wong, Herbert S
2013-10-01
To develop a tool for estimating hospital-specific inpatient prices for major payers. AHRQ Healthcare Cost and Utilization Project State Inpatient Databases and complete hospital financial reporting of revenues mandated in 10 states for 2006. Hospital discharge records and hospital financial information were merged to estimate revenue per stay by payer. Estimated prices were validated against other data sources. Hospital prices can be reasonably estimated for 10 geographically diverse states. All-payer price-to-charge ratios, an intermediate step in estimating prices, compare favorably to cost-to-charge ratios. Estimated prices also compare well with Medicare, MarketScan private insurance, and the Medical Expenditure Panel Survey prices for major payers, given limitations of each dataset. Public reporting of prices is a consumer resource in making decisions about health care treatment; for self-pay patients, they can provide leverage in negotiating discounts off of charges. Researchers can also use prices to increase understanding of the level and causes of price differentials among geographic areas. Prices by payer expand investigational tools available to study the interaction of inpatient hospital price setting among public and private payers--an important asset as the payer mix changes with the implementation of the Affordable Care Act. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2016-04-01
Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Uncertainty of feedback and state estimation determines the speed of motor adaptation
Directory of Open Access Journals (Sweden)
Kunlin Wei
2010-05-01
Full Text Available Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.
Estimating repetitive spatiotemporal patterns from resting-state brain activity data.
Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki
2016-06-01
Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-09-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.
State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model
Directory of Open Access Journals (Sweden)
Shichun Yang
2017-10-01
Full Text Available Accurate estimation of the state of charge (SOC of batteries is crucial in a battery management system. Many studies on battery SOC estimation have been investigated recently. Temperature is an important factor that affects the SOC estimation accuracy while it is still not adequately addressed at present. This paper proposes a SOC estimator based on a new temperature-compensated model with extended Kalman Filter (EKF. The open circuit voltage (OCV, capacity, and resistance and capacitance (RC parameters in the estimator are temperature dependent so that the estimator can maintain high accuracy at various temperatures. The estimation accuracy decreases when applied in high current continuous discharge, because the equivalent polarization resistance decreases as the discharge current increases. Therefore, a polarization resistance correction coefficient is proposed to tackle this problem. The estimator also demonstrates a good performance in dynamic operating conditions. However, the equivalent circuit model shows huge uncertainty in the low SOC region, so measurement noise variation is proposed to improve the estimation accuracy there.
A concise account of techniques available for shipboard sea state estimation
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2017-01-01
This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions. In the frequ......This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions...
Experimental study on the plant state estimation for the condition-based maintenance
International Nuclear Information System (INIS)
Harada, J. I.; Takahashi, M.; Kitamura, M.; Wakabayashi, T.
2006-01-01
A framework of maintenance support system based on the plant state estimation using diverse methods has been proposed and the validity of the plant state estimation methods has been experimentally evaluated. The focus has been set on the construction of the BN for the objective system with the scale and complexity as same as real world systems. Another focus has been set on the other functions for maintenance support system such as signal processing tool and similarity matching. The validity of the proposed inference method has been confirmed through numerical experiments. (authors)
Mixture estimation with state-space components and Markov model of switching
Czech Academy of Sciences Publication Activity Database
Nagy, Ivan; Suzdaleva, Evgenia
2013-01-01
Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf
Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations
Directory of Open Access Journals (Sweden)
Qing Sun
2014-01-01
Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.
Spacecraft rendezvous and docking
DEFF Research Database (Denmark)
Jørgensen, John Leif
1999-01-01
The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...
Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.
1982-01-01
Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.
Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Zhongyue Zou
2014-08-01
Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.
Distributed and decentralized state estimation in gas networks as distributed parameter systems.
Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry
2015-09-01
In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
State-Level Estimates of Obesity-Attributable Costs of Absenteeism
Andreyeva, Tatiana; Luedicke, Joerg; Wang, Y. Claire
2014-01-01
Objective To provide state-level estimates of obesity-attributable costs of absenteeism among working adults in the U.S. Methods Nationally-representative data from the National Health and Nutrition Examination Survey (NHANES) for 1998–2008 and from the Behavioral Risk Factor Surveillance System (BRFSS) for 2012 are examined. The outcome is obesity-attributable workdays missed in the previous year due to health, and their costs to states. Results Obesity, but not overweight, is associated with a significant increase in workdays absent, from 1.1 to 1.7 extra days missed annually compared to normal weight employees. Obesity-attributable absenteeism among American workers costs the nation an estimated $8.65 billion per year. Conclusion Obesity imposes a considerable financial burden on states, accounting for 6.5%–12.6% of total absenteeism costs in the workplace. State legislature and employers should seek effective ways to reduce these costs. PMID:25376405
Use estimates of in-feed antimicrobials in swine production in the United States.
Apley, Michael D; Bush, Eric J; Morrison, Robert B; Singer, Randall S; Snelson, Harry
2012-03-01
When considering the development of antimicrobial resistance in food animals, comparing gross use estimates of different antimicrobials is of little value due to differences in potencies, duration of activity, relative effect on target and commensal bacteria, and mechanisms of resistance. However, it may be valuable to understand quantities of different antimicrobials used in different ages of swine and for what applications. Therefore, the objective of this project was to construct an estimate of antimicrobial use through the feed in swine production in the United States. Estimates were based on data from the National Animal Health Monitoring System (NAHMS) Swine 2006 Study and from a 2009 survey of swine-exclusive practitioners. Inputs consisted of number of pigs in a production phase, feed intake per day, dose of the antimicrobial in the feed, and duration of administration. Calculations were performed for a total of 102 combinations of antimicrobials (n=17), production phases (n=2), and reasons for use (n=3). Calculations were first conducted on farm-level data, and then extrapolated to the U.S. swine population. Among the nursery phase estimates, chlortetracycline had the largest estimate of use, followed by oxytetracycline and tilmicosin. In the grower/finisher phase, chlortetracycline also had the largest use estimate, followed by tylosin and oxytetracycline. As an annual industry estimate for all phases, chlortetracycline had the highest estimated use at 533,973 kg. The second and third highest estimates were tylosin and oxytetracycline with estimated annual uses of 165,803 kg and 154,956 kg, respectively. The estimates presented here were constructed to accurately reflect available data related to production practices, and to provide an example of a scientific approach to estimating use of compounds in production animals.
Method for Estimating Water Withdrawals for Livestock in the United States, 2005
Lovelace, John K.
2009-01-01
Livestock water use includes ground water and surface water associated with livestock watering, feedlots, dairy operations, and other on-farm needs. The water may be used for drinking, cooling, sanitation, waste disposal, and other needs related to the animals. Estimates of water withdrawals for livestock are needed for water planning and management. This report documents a method used to estimate withdrawals of fresh ground water and surface water for livestock in 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Categories of livestock included dairy cattle, beef and other cattle, hogs and pigs, laying hens, broilers and other chickens, turkeys, sheep and lambs, all goats, and horses (including ponies, mules, burros, and donkeys). Use of the method described in this report could result in more consistent water-withdrawal estimates for livestock that can be used by water managers and planners to determine water needs and trends across the United States. Water withdrawals for livestock in 2005 were estimated by using water-use coefficients, in gallons per head per day for each animal type, and livestock-population data. Coefficients for various livestock for most States were obtained from U.S. Geological Survey water-use program personnel or U.S. Geological Survey water-use publications. When no coefficient was available for an animal type in a State, the median value of reported coefficients for that animal was used. Livestock-population data were provided by the National Agricultural Statistics Service. County estimates were further divided into ground-water and surface-water withdrawals for each county and county equivalent. County totals from 2005 were compared to county totals from 1995 and 2000. Large deviations from 1995 or 2000 livestock withdrawal estimates were investigated and generally were due to comparison with reported withdrawals, differences in estimation techniques, differences in livestock
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
PMU Placement Based on Heuristic Methods, when Solving the Problem of EPS State Estimation
I. N. Kolosok; E. S. Korkina; A. M. Glazunova
2014-01-01
Creation of satellite communication systems gave rise to a new generation of measurement equipment â€“ Phasor Measurement Unit (PMU). Integrated into the measurement system WAMS, the PMU sensors provide a real picture of state of energy power system (EPS). The issues of PMU placement when solving the problem of EPS state estimation (SE) are discussed in many papers. PMU placement is a complex combinatorial problem, and there is not any analytical function to optimize its variables. Therefore,...
On-line computer control of a nuclear reactor using optimal control and state estimation methods
International Nuclear Information System (INIS)
Tye, C.
1980-01-01
This paper describes the experimental implementation of a nuclear reactor control system using combined optimal state feedback based on the Quadratic Regulator and state estimation using Kalman filtering techniques. The results obtained from the experiments indicate that a reactor control loop designed using this approach has improved stability margins, greater speed of response and noise filtering properties compared with a conventional reactor control loop. 11 refs
Directory of Open Access Journals (Sweden)
Jingbin Liu
2015-06-01
Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.
Energy Technology Data Exchange (ETDEWEB)
Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.
2009-04-15
We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.
Warren, Robert; Warren, John Robert
2013-01-01
We describe a method for producing annual estimates of the unauthorized immigrant population in the United Sates and components of population change, for each state and D.C., for 1990 to 2010. We quantify a sharp drop in the number of unauthorized immigrants arriving since 2000, and we demonstrate the role of departures from the population (emigration, adjustment to legal status, removal by the Department of Homeland Security (DHS), and deaths) in reducing population growth from one million in 2000 to population losses in 2008 and 2009. The number arriving in the U.S. peaked at more than one million in 1999 to 2001, and then declined rapidly through 2009. We provide evidence that population growth stopped after 2007 primarily because entries declined and not because emigration increased during the economic crisis. Our estimates of the total unauthorized immigrant population in the U.S. and in the top ten states are comparable to those produced by DHS and the Pew Hispanic Center. For the remaining states and D.C., our data and methods produce estimates with smaller ranges of sampling error. PMID:23956482
Warren, Robert; Warren, John Robert
2013-06-01
We describe a method for producing annual estimates of the unauthorized immigrant population in the United Sates and components of population change, for each state and D.C., for 1990 to 2010. We quantify a sharp drop in the number of unauthorized immigrants arriving since 2000, and we demonstrate the role of departures from the population (emigration, adjustment to legal status, removal by the Department of Homeland Security (DHS), and deaths) in reducing population growth from one million in 2000 to population losses in 2008 and 2009. The number arriving in the U.S. peaked at more than one million in 1999 to 2001, and then declined rapidly through 2009. We provide evidence that population growth stopped after 2007 primarily because entries declined and not because emigration increased during the economic crisis. Our estimates of the total unauthorized immigrant population in the U.S. and in the top ten states are comparable to those produced by DHS and the Pew Hispanic Center. For the remaining states and D.C., our data and methods produce estimates with smaller ranges of sampling error.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
Zack, Matthew M; Kobau, Rosemarie
2017-08-11
Epilepsy, a brain disorder leading to recurring seizures, has garnered increased public health focus because persons with epilepsy experience pronounced and persistent health and socioeconomic disparities despite treatment advances, public awareness programs, and expanded rights for persons with disabilities (1,2). For almost all states, epilepsy prevalence estimates do not exist. CDC used national data sources including the 2015 National Health Interview Survey (NHIS) for adults (aged ≥18 years), the 2011-2012 National Survey of Children's Health (NSCH), and the 2015 Current Population Survey data, describing 2014 income levels, to estimate prevalent cases of active epilepsy, overall and by state, to provide information for state public health planning. In 2015, 1.2% of the U.S. population (3.4 million persons: 3 million adults and 470,000 children) reported active epilepsy (self-reported doctor-diagnosed epilepsy and under treatment or with recent seizures within 12 months of interview) or current epilepsy (parent-reported doctor-diagnosed epilepsy and current epilepsy). Estimated numbers of persons with active epilepsy, after accounting for income and age differences by state, ranged from 5,900 in Wyoming to 427,700 in California. NHIS data from 2010-2015 indicate increases in the number of persons with active epilepsy, probably because of population growth. This study provides updated national and modeled state-specific numbers of active epilepsy cases. Public health practitioners, health care providers, policy makers, epilepsy researchers, and other epilepsy stakeholders, including family members and people with epilepsy, can use these findings to ensure that evidence-based programs meet the complex needs of adults and children with epilepsy and reduce the disparities resulting from it.
Estimation of hand index for male industrial workers of Haryana State
African Journals Online (AJOL)
Hand index derived from measured hand dimensions can be used to estimate differences related to sex, age and race in forensic and legal sciences. It has been calculated as percentage of hand breadth over the hand length; which suggests that the male industrial workers population of state belong to mesocheir group of ...
Application of Joint Parameter Identification and State Estimation to a Fault-Tolerant Robot System
DEFF Research Database (Denmark)
Sun, Zhen; Yang, Zhenyu
2011-01-01
The joint parameter identification and state estimation technique is applied to develop a fault-tolerant space robot system. The potential faults in the considered system are abrupt parametric faults, which indicate that some system parameters will immediately deviate from their nominal values...
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.
1978-12-01
The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared
Wheeled vehicle deceleration as estimation parameter of adaptive brake control system state
Directory of Open Access Journals (Sweden)
Turenko A.
2012-06-01
Full Text Available The method of stability estimation of adaptive control system with signal adjustment based on Lyapunov’s direct method that allows to take into account the nonstationarity of the basic system and non-linearity in the form of limitation on control action restriction as well as error control is stated.
Energy Technology Data Exchange (ETDEWEB)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.
State and parameter estimation in a nuclear fuel pin using the extended Kalman filter
International Nuclear Information System (INIS)
Feeley, J.J.
1979-03-01
The Kalman filter is a powerful tool for the design and analysis of stochastic systems. The general nature of the method permits such diverse applications as on-line state estimation in optimal control systems, as well as state and parameter estimation applications in data analysis and system identification. However, while there have been a large number of Kalman filter applications in the aerospace industry, there have been relatively few in the nuclear industry. The report describes some initial efforts made at the Idaho National Engineering Laboratory to gain experience with the methods of Kalman filtering and to test their applicability to nuclear engineering problems. Two specific cases were considered: first, a real-time state estimation problem using a hybrid computer where the process was simulated on the analog portion of the computer, and the Kalman filter was programmed on the digital portion; second, a system identification problem where a digital extended Kalman filter program was used to estimate states and parameters in a nuclear fuel pin using data generated both by actual experiments and computer simulations. The report contains a derivation of the Kalman filter equations, a development of the mathematical model of the nuclear fuel pin, a description of the computer programs used in the analysis, and a discussion of the results obtained
Directory of Open Access Journals (Sweden)
R. Manam
2017-12-01
Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.
Comparisons of Means for Estimating Sea States from an Advancing Large Container Ship
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Andersen, Ingrid Marie Vincent; Koning, Jos
2013-01-01
to ship-wave interactions in a seaway. In the paper, sea state estimates are produced by three means: the wave buoy analogy, relying on shipboard response measurements, a wave radar system, and a system providing the instantaneous wave height. The presented results show that for the given data, recorded...
Estimates of Annual Soil Loss Rates in the State of São Paulo, Brazil
Directory of Open Access Journals (Sweden)
Grasiela de Oliveira Rodrigues Medeiros
Full Text Available ABSTRACT: Soil is a natural resource that has been affected by human pressures beyond its renewal capacity. For this reason, large agricultural areas that were productive have been abandoned due to soil degradation, mainly caused by the erosion process. The objective of this study was to apply the Universal Soil Loss Equation to generate more recent estimates of soil loss rates for the state of São Paulo using a database with information from medium resolution (30 m. The results showed that many areas of the state have high (critical levels of soil degradation due to the predominance of consolidated human activities, especially in growing sugarcane and pasture use. The average estimated rate of soil loss is 30 Mg ha-1 yr-1 and 59 % of the area of the state (except for water bodies and urban areas had estimated rates above 12 Mg ha-1 yr-1, considered as the average tolerance limit in the literature. The average rates of soil loss in areas with annual agricultural crops, semi-perennial agricultural crops (sugarcane, and permanent agricultural crops were 118, 78, and 38 Mg ha-1 yr-1 respectively. The state of São Paulo requires attention to conservation of soil resources, since most soils led to estimates beyond the tolerance limit.
Improved Stewart platform state estimation using inertial and actuator position measurements
MiletoviC, I.; Pool, D.M.; Stroosma, O.; van Paassen, M.M.; Chu, Q.
2017-01-01
Accurate and reliable estimation of the kinematic state of a six degrees-of-freedom Stewart platform is a problem of interest in various engineering disciplines. Particularly so in the area of flight simulation, where the Stewart platform is in widespread use for the generation of motion similar
The Wegner Estimate and the Integrated Density of States for some ...
Indian Academy of Sciences (India)
The integrated density of states (IDS) for random operators is an important function describing many physical characteristics of a random system. Properties of the IDS are derived from the Wegner estimate that describes the influence of finite-volume perturbations on a background system. In this paper, we present a simple ...
Joint Parametric Fault Diagnosis and State Estimation Using KF-ML Method
DEFF Research Database (Denmark)
Sun, Zhen; Yang, Zhenyu
2014-01-01
The paper proposes a new method for a kind of parametric fault online diagnosis with state estimation jointly. The considered fault affects not only the deterministic part of the system but also the random circumstance. The proposed method first applies Kalman Filter (KF) and Maximum Likelihood (...
Farooqui, Habib; Jit, Mark; Heymann, David L; Zodpey, Sanjay
2015-01-01
The burden of severe pneumonia in terms of morbidity and mortality is unknown in India especially at sub-national level. In this context, we aimed to estimate the number of severe pneumonia episodes, pneumococcal pneumonia episodes and pneumonia deaths in children younger than 5 years in 2010. We adapted and parameterized a mathematical model based on the epidemiological concept of potential impact fraction developed CHERG for this analysis. The key parameters that determine the distribution of severe pneumonia episode across Indian states were state-specific under-5 population, state-specific prevalence of selected definite pneumonia risk factors and meta-estimates of relative risks for each of these risk factors. We applied the incidence estimates and attributable fraction of risk factors to population estimates for 2010 of each Indian state. We then estimated the number of pneumococcal pneumonia cases by applying the vaccine probe methodology to an existing trial. We estimated mortality due to severe pneumonia and pneumococcal pneumonia by combining incidence estimates with case fatality ratios from multi-centric hospital-based studies. Our results suggest that in 2010, 3.6 million (3.3-3.9 million) episodes of severe pneumonia and 0.35 million (0.31-0.40 million) all cause pneumonia deaths occurred in children younger than 5 years in India. The states that merit special mention include Uttar Pradesh where 18.1% children reside but contribute 24% of pneumonia cases and 26% pneumonia deaths, Bihar (11.3% children, 16% cases, 22% deaths) Madhya Pradesh (6.6% children, 9% cases, 12% deaths), and Rajasthan (6.6% children, 8% cases, 11% deaths). Further, we estimated that 0.56 million (0.49-0.64 million) severe episodes of pneumococcal pneumonia and 105 thousand (92-119 thousand) pneumococcal deaths occurred in India. The top contributors to India's pneumococcal pneumonia burden were Uttar Pradesh, Bihar, Madhya Pradesh and Rajasthan in that order. Our results
Directory of Open Access Journals (Sweden)
Habib Farooqui
Full Text Available The burden of severe pneumonia in terms of morbidity and mortality is unknown in India especially at sub-national level. In this context, we aimed to estimate the number of severe pneumonia episodes, pneumococcal pneumonia episodes and pneumonia deaths in children younger than 5 years in 2010. We adapted and parameterized a mathematical model based on the epidemiological concept of potential impact fraction developed CHERG for this analysis. The key parameters that determine the distribution of severe pneumonia episode across Indian states were state-specific under-5 population, state-specific prevalence of selected definite pneumonia risk factors and meta-estimates of relative risks for each of these risk factors. We applied the incidence estimates and attributable fraction of risk factors to population estimates for 2010 of each Indian state. We then estimated the number of pneumococcal pneumonia cases by applying the vaccine probe methodology to an existing trial. We estimated mortality due to severe pneumonia and pneumococcal pneumonia by combining incidence estimates with case fatality ratios from multi-centric hospital-based studies. Our results suggest that in 2010, 3.6 million (3.3-3.9 million episodes of severe pneumonia and 0.35 million (0.31-0.40 million all cause pneumonia deaths occurred in children younger than 5 years in India. The states that merit special mention include Uttar Pradesh where 18.1% children reside but contribute 24% of pneumonia cases and 26% pneumonia deaths, Bihar (11.3% children, 16% cases, 22% deaths Madhya Pradesh (6.6% children, 9% cases, 12% deaths, and Rajasthan (6.6% children, 8% cases, 11% deaths. Further, we estimated that 0.56 million (0.49-0.64 million severe episodes of pneumococcal pneumonia and 105 thousand (92-119 thousand pneumococcal deaths occurred in India. The top contributors to India's pneumococcal pneumonia burden were Uttar Pradesh, Bihar, Madhya Pradesh and Rajasthan in that order. Our
Farooqui, Habib; Jit, Mark; Heymann, David L.; Zodpey, Sanjay
2015-01-01
The burden of severe pneumonia in terms of morbidity and mortality is unknown in India especially at sub-national level. In this context, we aimed to estimate the number of severe pneumonia episodes, pneumococcal pneumonia episodes and pneumonia deaths in children younger than 5 years in 2010. We adapted and parameterized a mathematical model based on the epidemiological concept of potential impact fraction developed CHERG for this analysis. The key parameters that determine the distribution of severe pneumonia episode across Indian states were state-specific under-5 population, state-specific prevalence of selected definite pneumonia risk factors and meta-estimates of relative risks for each of these risk factors. We applied the incidence estimates and attributable fraction of risk factors to population estimates for 2010 of each Indian state. We then estimated the number of pneumococcal pneumonia cases by applying the vaccine probe methodology to an existing trial. We estimated mortality due to severe pneumonia and pneumococcal pneumonia by combining incidence estimates with case fatality ratios from multi-centric hospital-based studies. Our results suggest that in 2010, 3.6 million (3.3–3.9 million) episodes of severe pneumonia and 0.35 million (0.31–0.40 million) all cause pneumonia deaths occurred in children younger than 5 years in India. The states that merit special mention include Uttar Pradesh where 18.1% children reside but contribute 24% of pneumonia cases and 26% pneumonia deaths, Bihar (11.3% children, 16% cases, 22% deaths) Madhya Pradesh (6.6% children, 9% cases, 12% deaths), and Rajasthan (6.6% children, 8% cases, 11% deaths). Further, we estimated that 0.56 million (0.49–0.64 million) severe episodes of pneumococcal pneumonia and 105 thousand (92–119 thousand) pneumococcal deaths occurred in India. The top contributors to India’s pneumococcal pneumonia burden were Uttar Pradesh, Bihar, Madhya Pradesh and Rajasthan in that order. Our
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
Directory of Open Access Journals (Sweden)
M. Nisvo Ramadan
2015-12-01
Full Text Available In order to avoid battery failure, a battery management system (BMS is necessary. Battery state of charge (SOC and state of health (SOH are part of information provided by a BMS. This research analyzes methods to estimate SOH based lithium polymer battery on change of its internal resistance and its capacity. Recursive least square (RLS algorithm was used to estimate internal ohmic resistance while coloumb counting was used to predict the change in the battery capacity. For the estimation algorithm, the battery terminal voltage and current are set as the input variables. Some tests including static capacity test, pulse test, pulse variation test and before charge-discharge test have been conducted to obtain the required data. After comparing the two methods, the obtained results show that SOH estimation based on coloumb counting provides better accuracy than SOH estimation based on internal ohmic resistance. However, the SOH estimation based on internal ohmic resistance is faster and more reliable for real application
Composing problem solvers for simulation experimentation: a case study on steady state estimation.
Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M
2014-01-01
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.
Optimal estimate of a pure qubit state from Uhlmann-Josza fidelity
Energy Technology Data Exchange (ETDEWEB)
Aoki, Manuel Avila, E-mail: manvlk@yahoo.com [Centro Universitario UAEM Valle de Chalco, UAEMex, Edo. de Mexico (Mexico)
2012-04-15
In the framework of collective measurements, efforts have been made to reconstruct one-qubit states. Such schemes find an obstacle in the no-cloning theorem, which prevents full reconstruction of a quantum state. Quantum Mechanics thus restricts to obtain estimates of the reconstruction of a pure qubit. We discuss the optimal estimate on the basis of the Uhlmann-Josza fidelity, respecting the limitations imposed by the no-cloning theorem. We derive a realistic optimal expression for the average fidelity. Our formalism also introduces an optimization parameter L. Values close to zero imply full reconstruction of the qubit (i. e., the classical limit), while larger L's represent good quantum optimization of the qubit estimate. The parameter L is interpreted as the degree of quantumness of the average fidelity associated with the reconstruction. (author)
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Rana, Md Masud
2017-01-01
This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.
Directory of Open Access Journals (Sweden)
Md Masud Rana
Full Text Available This paper proposes an innovative internet of things (IoT based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.
Pre-Trained Neural Networks used for Non-Linear State Estimation
DEFF Research Database (Denmark)
Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole
2011-01-01
of the paramters in the distribution. This transformation is approximated by a neural network using offline training, which is based on monte carlo sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linearities......The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the aposteriori distribution is described by a chosen family of paramtric distributions. The state transformation then results in a transformation...
Guidelines for preparation of State water-use estimates for 2015
Bradley, Michael W.
2017-05-01
The U.S. Geological Survey (USGS) has estimated the use of water in the United States at 5-year intervals since 1950. This report describes the water-use categories and data elements used for the national water-use compilation conducted as part of the USGS National Water-Use Science Project. The report identifies sources of water-use information, provides standard methods and techniques for estimating water use at the county level, and outlines steps for preparing documentation for the United States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands.As part of this USGS program to document water use on a national scale, estimates of water withdrawals for the categories of public supply, self-supplied domestic, industrial, irrigation, and thermoelectric power are prepared for each county in each State, District, or territory by using the guidelines in this report. County estimates of water withdrawals for aquaculture, livestock, and mining are prepared for each State by using a county-based national model, although water-use programs in each State or Water Science Center have the option of producing independent county estimates of water withdrawals for these categories. Estimates of water withdrawals and consumptive use for thermoelectric power will be aggregated to the county level for each State by the national project; additionally, irrigation consumptive use at the county level will also be provided, although study chiefs in each State have the option of producing independent county estimates of water withdrawals and consumptive use for these categories.Estimates of deliveries of water from public supplies for domestic use by county also will be prepared for each State. As a result, total domestic water use can be determined for each State by combining self-supplied domestic withdrawals and public-supplied domestic deliveries. Fresh groundwater and surface-water estimates will be prepared for all categories of use, and saline groundwater and
El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.
2016-02-01
Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate
Menegaldo, Luciano L
2017-12-01
State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.
Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.
2017-11-01
Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.
Improving Google Flu Trends estimates for the United States through transformation.
Directory of Open Access Journals (Sweden)
Leah J Martin
Full Text Available Google Flu Trends (GFT uses Internet search queries in an effort to provide early warning of increases in influenza-like illness (ILI. In the United States, GFT estimates the percentage of physician visits related to ILI (%ILINet reported by the Centers for Disease Control and Prevention (CDC. However, during the 2012-13 influenza season, GFT overestimated %ILINet by an appreciable amount and estimated the peak in incidence three weeks late. Using data from 2010-14, we investigated the relationship between GFT estimates (%GFT and %ILINet. Based on the relationship between the relative change in %GFT and the relative change in %ILINet, we transformed %GFT estimates to better correspond with %ILINet values. In 2010-13, our transformed %GFT estimates were within ± 10% of %ILINet values for 17 of the 29 weeks that %ILINet was above the seasonal baseline value determined by the CDC; in contrast, the original %GFT estimates were within ± 10% of %ILINet values for only two of these 29 weeks. Relative to the %ILINet peak in 2012-13, the peak in our transformed %GFT estimates was 2% lower and one week later, whereas the peak in the original %GFT estimates was 74% higher and three weeks later. The same transformation improved %GFT estimates using the recalibrated 2013 GFT model in early 2013-14. Our transformed %GFT estimates can be calculated approximately one week before %ILINet values are reported by the CDC and the transformation equation was stable over the time period investigated (2010-13. We anticipate our results will facilitate future use of GFT.
Estimate of the area occupied by reforestation programs in Rio de Janeiro state
Directory of Open Access Journals (Sweden)
Hugo Barbosa Amorim
2012-03-01
Full Text Available This study was based on a preliminary survey and inventory of existing reforestation programs in Rio de Janeiro state, through geoprocessing techniques and collection of field data. The reforested area was found to occupy 18,426.96 ha, which amounts to 0.42% of the territory of the state. Much of reforestation programs consists of eucalyptus (98%, followed by pine plantations (0.8%, and the remainder is distributed among 10 other species. The Médio Paraíba region was found to contribute the most to the reforested area of the state (46.6%. The estimated volume of eucalyptus timber was nearly two million cubic meters. This study helped crystallize the ongoing perception among those militating in the forestry sector of Rio de Janeiro state that the planted area and stock of reforestation timber is still incipient in the state.
Estimating tag loss of the Atlantic Horseshoe crab, Limulus polyphemus, using a multi-state model
Butler, Catherine Alyssa; McGowan, Conor P.; Grand, James B.; Smith, David
2012-01-01
The Atlantic Horseshoe crab, Limulus polyphemus, is a valuable resource along the Mid-Atlantic coast which has, in recent years, experienced new management paradigms due to increased concern about this species role in the environment. While current management actions are underway, many acknowledge the need for improved and updated parameter estimates to reduce the uncertainty within the management models. Specifically, updated and improved estimates of demographic parameters such as adult crab survival in the regional population of interest, Delaware Bay, could greatly enhance these models and improve management decisions. There is however, some concern that difficulties in tag resighting or complete loss of tags could be occurring. As apparent from the assumptions of a Jolly-Seber model, loss of tags can result in a biased estimate and underestimate a survival rate. Given that uncertainty, as a first step towards estimating an unbiased estimate of adult survival, we first took steps to estimate the rate of tag loss. Using data from a double tag mark-resight study conducted in Delaware Bay and Program MARK, we designed a multi-state model to allow for the estimation of mortality of each tag separately and simultaneously.
An adaptive state of charge estimation approach for lithium-ion series-connected battery system
Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael
2018-07-01
Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.
Economic productivity by age and sex: 2007 estimates for the United States.
Grosse, Scott D; Krueger, Kurt V; Mvundura, Mercy
2009-07-01
Human capital estimates of labor productivity are often used to estimate the economic impact of diseases and injuries that cause incapacitation or death. Estimates of average hourly, annual, and lifetime economic productivity, both market and household, were calculated in 2007 US dollars for 5-year age groups for men, women, and both sexes in the United States. Data from the American Time Use Survey were used to estimate hours of paid work and household services and hourly and annual earnings and household productivity. Present values of discounted lifetime earnings were calculated for each age group using the 2004 US life tables and a discount rate of 3% per year and assuming future productivity growth of 1% per year. The estimates of hours and productivity were calculated using the time diaries of 72,922 persons included in the American Time Use Survey for the years 2003 to 2007. The present value of lifetime productivity is approximately $1.2 million in 2007 dollars for children under 5 years of age. For adults in their 20s and 30s, it is approximately $1.6 million and then it declines with increasing age. Productivity estimates are higher for males than for females, more for market productivity than for total productivity. Changes in hours of paid employment and household services can affect economic productivity by age and sex. This is the first publication to include estimates of household services based on contemporary time use data for the US population.
Robinson, Angela; Spencer, Anne; Moffatt, Peter
2015-04-01
There has been recent interest in using the discrete choice experiment (DCE) method to derive health state utilities for use in quality-adjusted life year (QALY) calculations, but challenges remain. We set out to develop a risk-based DCE approach to derive utility values for health states that allowed 1) utility values to be anchored directly to normal health and death and 2) worse than dead health states to be assessed in the same manner as better than dead states. Furthermore, we set out to estimate alternative models of risky choice within a DCE model. A survey was designed that incorporated a risk-based DCE and a "modified" standard gamble (SG). Health state utility values were elicited for 3 EQ-5D health states assuming "standard" expected utility (EU) preferences. The DCE model was then generalized to allow for rank-dependent expected utility (RDU) preferences, thereby allowing for probability weighting. A convenience sample of 60 students was recruited and data collected in small groups. Under the assumption of "standard" EU preferences, the utility values derived within the DCE corresponded fairly closely to the mean results from the modified SG. Under the assumption of RDU preferences, the utility values estimated are somewhat lower than under the assumption of standard EU, suggesting that the latter may be biased upward. Applying the correct model of risky choice is important whether a modified SG or a risk-based DCE is deployed. It is, however, possible to estimate a probability weighting function within a DCE and estimate "unbiased" utility values directly, which is not possible within a modified SG. We conclude by setting out the relative strengths and weaknesses of the 2 approaches in this context. © The Author(s) 2014.
DEFF Research Database (Denmark)
Wang, Yanbo; Tian, Yanjun; Wang, Xiongfei
2014-01-01
State monitoring and analysis of distribution systems has become an urgent issue, and state estimation serves as an important tool to deal with it. In this paper, a Kalman-Filter-based state estimation method for a multi-bus islanded microgrid is presented. First, an overall small signal model wi...
Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai
2018-02-01
An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.
A state-space model for estimating detailed movements and home range from acoustic receiver data
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Weng, Kevin
2013-01-01
We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....
Estimating the State of Aerodynamic Flows in the Presence of Modeling Errors
da Silva, Andre F. C.; Colonius, Tim
2017-11-01
The ensemble Kalman filter (EnKF) has been proven to be successful in fields such as meteorology, in which high-dimensional nonlinear systems render classical estimation techniques impractical. When the model used to forecast state evolution misrepresents important aspects of the true dynamics, estimator performance may degrade. In this work, parametrization and state augmentation are used to track misspecified boundary conditions (e.g., free stream perturbations). The resolution error is modeled as a Gaussian-distributed random variable with the mean (bias) and variance to be determined. The dynamics of the flow past a NACA 0009 airfoil at high angles of attack and moderate Reynolds number is represented by a Navier-Stokes equations solver with immersed boundaries capabilities. The pressure distribution on the airfoil or the velocity field in the wake, both randomized by synthetic noise, are sampled as measurement data and incorporated into the estimated state and bias following Kalman's analysis scheme. Insights about how to specify the modeling error covariance matrix and its impact on the estimator performance are conveyed. This work has been supported in part by a Grant from AFOSR (FA9550-14-1-0328) with Dr. Douglas Smith as program manager, and by a Science without Borders scholarship from the Ministry of Education of Brazil (Capes Foundation - BEX 12966/13-4).
State and parameter estimation of the heat shock response system using Kalman and particle filters.
Liu, Xin; Niranjan, Mahesan
2012-06-01
Traditional models of systems biology describe dynamic biological phenomena as solutions to ordinary differential equations, which, when parameters in them are set to correct values, faithfully mimic observations. Often parameter values are tweaked by hand until desired results are achieved, or computed from biochemical experiments carried out in vitro. Of interest in this article, is the use of probabilistic modelling tools with which parameters and unobserved variables, modelled as hidden states, can be estimated from limited noisy observations of parts of a dynamical system. Here we focus on sequential filtering methods and take a detailed look at the capabilities of three members of this family: (i) extended Kalman filter (EKF), (ii) unscented Kalman filter (UKF) and (iii) the particle filter, in estimating parameters and unobserved states of cellular response to sudden temperature elevation of the bacterium Escherichia coli. While previous literature has studied this system with the EKF, we show that parameter estimation is only possible with this method when the initial guesses are sufficiently close to the true values. The same turns out to be true for the UKF. In this thorough empirical exploration, we show that the non-parametric method of particle filtering is able to reliably estimate parameters and states, converging from initial distributions relatively far away from the underlying true values. Software implementation of the three filters on this problem can be freely downloaded from http://users.ecs.soton.ac.uk/mn/HeatShock
Operational Philosophy Concerning Manned Spacecraft Cabin Leaks
DeSimpelaere, Edward
2011-01-01
The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a
U.S. Department of Health & Human Services — 2010-2015. U.S. Census Annual Estimates of the Resident Population for Selected Age Groups by Sex for the United States. The estimates are based on the 2010 Census...
Department of Homeland Security — This report presents estimates of the size and characteristics of the resident nonimmigrant population in the United States. The estimates are daily averages for the...
Parameter and state estimation in a Neisseria meningitidis model: A study case of Niger
Bowong, S.; Mountaga, L.; Bah, A.; Tewa, J. J.; Kurths, J.
2016-12-01
Neisseria meningitidis (Nm) is a major cause of bacterial meningitidis outbreaks in Africa and the Middle East. The availability of yearly reported meningitis cases in the African meningitis belt offers the opportunity to analyze the transmission dynamics and the impact of control strategies. In this paper, we propose a method for the estimation of state variables that are not accessible to measurements and an unknown parameter in a Nm model. We suppose that the yearly number of Nm induced mortality and the total population are known inputs, which can be obtained from data, and the yearly number of new Nm cases is the model output. We also suppose that the Nm transmission rate is an unknown parameter. We first show how the recruitment rate into the population can be estimated using real data of the total population and Nm induced mortality. Then, we use an auxiliary system called observer whose solutions converge exponentially to those of the original model. This observer does not use the unknown infection transmission rate but only uses the known inputs and the model output. This allows us to estimate unmeasured state variables such as the number of carriers that play an important role in the transmission of the infection and the total number of infected individuals within a human community. Finally, we also provide a simple method to estimate the unknown Nm transmission rate. In order to validate the estimation results, numerical simulations are conducted using real data of Niger.
Novel methods for estimating lithium-ion battery state of energy and maximum available energy
International Nuclear Information System (INIS)
Zheng, Linfeng; Zhu, Jianguo; Wang, Guoxiu; He, Tingting; Wei, Yiying
2016-01-01
Highlights: • Study on temperature, current, aging dependencies of maximum available energy. • Study on the various factors dependencies of relationships between SOE and SOC. • A quantitative relationship between SOE and SOC is proposed for SOE estimation. • Estimate maximum available energy by means of moving-window energy-integral. • The robustness and feasibility of the proposed approaches are systematic evaluated. - Abstract: The battery state of energy (SOE) allows a direct determination of the ratio between the remaining and maximum available energy of a battery, which is critical for energy optimization and management in energy storage systems. In this paper, the ambient temperature, battery discharge/charge current rate and cell aging level dependencies of battery maximum available energy and SOE are comprehensively analyzed. An explicit quantitative relationship between SOE and state of charge (SOC) for LiMn_2O_4 battery cells is proposed for SOE estimation, and a moving-window energy-integral technique is incorporated to estimate battery maximum available energy. Experimental results show that the proposed approaches can estimate battery maximum available energy and SOE with high precision. The robustness of the proposed approaches against various operation conditions and cell aging levels is systematically evaluated.
Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs
Directory of Open Access Journals (Sweden)
José Luis Torres-Moreno
2016-03-01
Full Text Available This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs. Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF and the unscented Kalman filter (UKF, in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics.
Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs
Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel
2016-01-01
This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027
State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications
Phanomchoeng, Gridsada
A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is
Guidance and control of swarms of spacecraft
Morgan, Daniel James
control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.
Time maintenance system for the BMDO MSX spacecraft
Hermes, Martin J.
1994-01-01
The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.
State-of-charge estimation in lithium-ion batteries: A particle filter approach
Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.
2016-11-01
The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.
Ehrenfeld, Stephan; Butz, Martin V
2013-02-01
Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.
A Review of Sea State Estimation Procedures Based on Measured Vessel Responses
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2016-01-01
for shipboard SSE using measured vessel responses, resembling the concept of traditional wave rider buoys. Moreover, newly developed ideas for shipboard sea state estimation are introduced. The presented material is all based on the author’s personal experience, developed within extensive work on the subject......The operation of ships requires careful monitoring of therelated costs while, at the same time, ensuring a high level of safety. A ship’s performance with respect to safety and fuel efficiency may be compromised by the encountered waves. Consequently, it is important to estimate the surrounding...
Directory of Open Access Journals (Sweden)
Olga Lucia Quintero
2008-05-01
Full Text Available This work presents a state estimator for a continuous bioprocess. To this aim, the Non Linear Filtering theory based on the recursive application of Bayes rule and Monte Carlo techniques is used. Recursive Bayesian Filters Sampling Importance Resampling (SIR is employed, including different kinds of resampling. Generally, bio-processes have strong non-linear and non-Gaussian characteristics, and this tool becomes attractive. The estimator behavior and performance are illustrated with the continuous process of alcoholic fermentation of Zymomonas mobilis. Not too many applications with this tool have been reported in the biotechnological area.
Event-triggered sensor data transmission policy for receding horizon recursive state estimation
Directory of Open Access Journals (Sweden)
Yunji Li
2017-06-01
Full Text Available We consider a sensor data transmission policy for receding horizon recursive state estimation in a networked linear system. A good tradeoff between estimation error and communication rate could be achieved according to a transmission strategy, which decides the transfer time of the data packet. Here we give this transmission policy through proving the upper bound of system performance. Moreover, the lower bound of system performance is further analyzed in detail. A numerical example is given to verify the potential and effectiveness of the theoretical results.
H∞ state estimation of generalised neural networks with interval time-varying delays
Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He
2016-12-01
This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.
Estimation of the thermophysical and mechanical properties and the equation of state of Li2O
International Nuclear Information System (INIS)
Krikorian, O.H.
1985-01-01
Correlation methods based on Knoop microhardness and melting points are developed for estimating tensile strength. Young modulus, and Poisson ratio for Li 2 O as a function of grain size, porosity, and temperature. Generalized expressions for extrapolating the existing data on thermal conductivity and thermal expansivity are given. These derived thermophysical data are combined to predict thermal stress factors for Li 2 O. Based on the available vapor pressure data on Li 2 O and empirical correlations for the equation of state in the liquid and vapor phases, estimates of the properties of Li 2 O are made: an approximate critical temperature of 6800+-800 K is obtained. (author)
Estimating the impact of newly arrived foreign-born persons on tuberculosis in the United States.
Directory of Open Access Journals (Sweden)
Yecai Liu
Full Text Available Among approximately 163.5 million foreign-born persons admitted to the United States annually, only 500,000 immigrants and refugees are required to undergo overseas tuberculosis (TB screening. It is unclear what extent of the unscreened nonimmigrant visitors contributes to the burden of foreign-born TB in the United States.We defined foreign-born persons within 1 year after arrival in the United States as "newly arrived", and utilized data from U.S. Department of Homeland Security, U.S. Centers for Disease Control and Prevention, and World Health Organization to estimate the incidence of TB among newly arrived foreign-born persons in the United States. During 2001 through 2008, 11,500 TB incident cases, including 291 multidrug-resistant TB incident cases, were estimated to occur among 20,989,738 person-years for the 1,479,542,654 newly arrived foreign-born persons in the United States. Of the 11,500 estimated TB incident cases, 41.6% (4,783 occurred among immigrants and refugees, 36.6% (4,211 among students/exchange visitors and temporary workers, 13.8% (1,589 among tourists and business travelers, and 7.3% (834 among Canadian and Mexican nonimmigrant visitors without an I-94 form (e.g., arrival-departure record. The top 3 newly arrived foreign-born populations with the largest estimated TB incident cases per 100,000 admissions were immigrants and refugees from high-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of ≥100 cases/100,000 population/year; 235.8 cases/100,000 admissions, 95% confidence interval [CI], 228.3 to 243.3, students/exchange visitors and temporary workers from high-incidence countries (60.9 cases/100,000 admissions, 95% CI, 58.5 to 63.3, and immigrants and refugees from medium-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of 15-99 cases/100,000 population/year; 55.2 cases/100,000 admissions, 95% CI, 51.6 to 58.8.Newly arrived nonimmigrant visitors contribute substantially to the burden of
Estimating the impact of newly arrived foreign-born persons on tuberculosis in the United States.
Liu, Yecai; Painter, John A; Posey, Drew L; Cain, Kevin P; Weinberg, Michelle S; Maloney, Susan A; Ortega, Luis S; Cetron, Martin S
2012-01-01
Among approximately 163.5 million foreign-born persons admitted to the United States annually, only 500,000 immigrants and refugees are required to undergo overseas tuberculosis (TB) screening. It is unclear what extent of the unscreened nonimmigrant visitors contributes to the burden of foreign-born TB in the United States. We defined foreign-born persons within 1 year after arrival in the United States as "newly arrived", and utilized data from U.S. Department of Homeland Security, U.S. Centers for Disease Control and Prevention, and World Health Organization to estimate the incidence of TB among newly arrived foreign-born persons in the United States. During 2001 through 2008, 11,500 TB incident cases, including 291 multidrug-resistant TB incident cases, were estimated to occur among 20,989,738 person-years for the 1,479,542,654 newly arrived foreign-born persons in the United States. Of the 11,500 estimated TB incident cases, 41.6% (4,783) occurred among immigrants and refugees, 36.6% (4,211) among students/exchange visitors and temporary workers, 13.8% (1,589) among tourists and business travelers, and 7.3% (834) among Canadian and Mexican nonimmigrant visitors without an I-94 form (e.g., arrival-departure record). The top 3 newly arrived foreign-born populations with the largest estimated TB incident cases per 100,000 admissions were immigrants and refugees from high-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of ≥100 cases/100,000 population/year; 235.8 cases/100,000 admissions, 95% confidence interval [CI], 228.3 to 243.3), students/exchange visitors and temporary workers from high-incidence countries (60.9 cases/100,000 admissions, 95% CI, 58.5 to 63.3), and immigrants and refugees from medium-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of 15-99 cases/100,000 population/year; 55.2 cases/100,000 admissions, 95% CI, 51.6 to 58.8). Newly arrived nonimmigrant visitors contribute substantially to the burden of foreign
International Nuclear Information System (INIS)
Xia, Bizhong; Chen, Chaoren; Tian, Yong; Wang, Mingwang; Sun, Wei; Xu, Zhihui
2015-01-01
The SOC (state of charge) is the most important index of the battery management systems. However, it cannot be measured directly with sensors and must be estimated with mathematical techniques. An accurate battery model is crucial to exactly estimate the SOC. In order to improve the model accuracy, this paper presents an improved parameter identification method. Firstly, the concept of polarization depth is proposed based on the analysis of polarization characteristics of the lithium-ion batteries. Then, the nonlinear least square technique is applied to determine the model parameters according to data collected from pulsed discharge experiments. The results show that the proposed method can reduce the model error as compared with the conventional approach. Furthermore, a nonlinear observer presented in the previous work is utilized to verify the validity of the proposed parameter identification method in SOC estimation. Finally, experiments with different levels of discharge current are carried out to investigate the influence of polarization depth on SOC estimation. Experimental results show that the proposed method can improve the SOC estimation accuracy as compared with the conventional approach, especially under the conditions of large discharge current. - Highlights: • The polarization characteristics of lithium-ion batteries are analyzed. • The concept of polarization depth is proposed to improve model accuracy. • A nonlinear least square technique is applied to determine the model parameters. • A nonlinear observer is used as the SOC estimation algorithm. • The validity of the proposed method is verified by experimental results.
Energy Technology Data Exchange (ETDEWEB)
Park, H.J.; Lee, S.J. [Wonkwang University, Iksan (Korea)
2003-01-01
In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes (EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue). (author). 24 refs., 7 figs.
An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments
Directory of Open Access Journals (Sweden)
Michael A. Guthrie
2013-01-01
Full Text Available limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment. For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.
Overview of SDCM - The Spacecraft Design and Cost Model
Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.
1988-01-01
The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.
MIDN: A spacecraft Micro-dosimeter mission
International Nuclear Information System (INIS)
Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.
2006-01-01
MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)
International Nuclear Information System (INIS)
Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying
2015-01-01
Modern health management approaches for gas turbine engines (GTEs) aim to precisely estimate the health state of the GTE components to optimize maintenance decisions with respect to both economy and safety. In this research, we propose an advanced framework to identify the most likely degradation state of the turbine section in a GTE for prognostics and health management (PHM) applications. A novel nonlinear thermodynamic model is used to predict the performance parameters of the GTE given the measurements. The ratio between real efficiency of the GTE and simulated efficiency in the newly installed condition is defined as the health indicator and provided at each sequence. The symptom of nonrecoverable degradations in the turbine section, i.e. loss of turbine efficiency, is assumed to be the internal degradation state. A regularized auxiliary particle filter (RAPF) is developed to sequentially estimate the internal degradation state in nonuniform time sequences upon receiving sets of new measurements. The effectiveness of the technique is examined using the operating data over an entire time-between-overhaul cycle of a simple-cycle industrial GTE. The results clearly show the trend of degradation in the turbine section and the occasional fluctuations, which are well supported by the service history of the GTE. The research also suggests the efficacy of the proposed technique to monitor the health state of the turbine section of a GTE by implementing model-based PHM without the need for additional instrumentation. (paper)
Small Spacecraft for Planetary Science
Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew
2016-07-01
As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.
Recursive prediction error methods for online estimation in nonlinear state-space models
Directory of Open Access Journals (Sweden)
Dag Ljungquist
1994-04-01
Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.
Directory of Open Access Journals (Sweden)
Fábio A. Miessi Sanches
2009-03-01
Full Text Available In this paper we set up a model of regional banking competition based on Bresnahan (1982, Lau (1982 and Nakane (2002. The structural model is estimated using data from eight Brazilian states and a dynamic panel. The results show that on average the level of competition in the Brazilian banking system is high, even tough the null of perfect competition can be rejected at the usual significance levels. This result also prevails at the state level: Rio Grande do Sul, São Paulo, Rio de Janeiro, Pernambuco and Minas Gerais have high degree of competition.
Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ning; Meng, Da; Lu, Shuai
2013-11-11
In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.
Optimal allocation of sensors for state estimation of distributed parameter systems
International Nuclear Information System (INIS)
Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.
1978-01-01
The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)
Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro
2013-08-01
Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ning [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meng, Da [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elbert, Stephen T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shaobu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-03-31
With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu
2015-12-31
Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.
The use of externality estimates in the calculation of adders by state PUC regulators
International Nuclear Information System (INIS)
Burtraw, D.; Palmer, K.; Krupnick, A.
1994-01-01
The primary focus of the U. S.-EC study is the development and illustration of methodologies for the estimation of marginal damages and associated externalities that result from the addition of electricity generating capacity in a specific reference environment. This paper describes how this information can be used to guide resource planning by electric utilities and State public utility commissions (PUCs). First, we discuss the 'second-best' policy environment in which PUCs must operate. We then discuss the use of 'adders' which are a policy tool that many PUCs are currently considering. Then, we introduce and estimate a formal model to calibrate these adders, based on estimates of externalities in order to promote economic efficiency in resource planning and investment decisions
Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Xiao Wang
2018-05-01
Full Text Available In practical electric vehicle applications, the noise of original discharging/charging voltage (DCV signals are inevitable, which comes from electromagnetic interference and the measurement noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT based state of charge (SOC estimation method is proposed in this paper. Through a multi-resolution analysis, the original DCV signals with noise are decomposed into different frequency sub-bands. The desired de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform, based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive least square method. Simulation and experimental results show that the SOC estimation error is less than 1%, which indicates an effective improvement in SOC estimation accuracy.
Projection-based circular constrained state estimation and fusion over long-haul links
Energy Technology Data Exchange (ETDEWEB)
Liu, Qiang [ORNL; Rao, Nageswara S. [ORNL
2017-07-01
In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance of these methods in the long-haul tracking environment using a simple example.
The use of externality estimates in the calculation of adders by state PUC regulators
Energy Technology Data Exchange (ETDEWEB)
Burtraw, D; Palmer, K; Krupnick, A
1994-07-01
The primary focus of the U. S.-EC study is the development and illustration of methodologies for the estimation of marginal damages and associated externalities that result from the addition of electricity generating capacity in a specific reference environment. This paper describes how this information can be used to guide resource planning by electric utilities and State public utility commissions (PUCs). First, we discuss the 'second-best' policy environment in which PUCs must operate. We then discuss the use of 'adders' which are a policy tool that many PUCs are currently considering. Then, we introduce and estimate a formal model to calibrate these adders, based on estimates of externalities in order to promote economic efficiency in resource planning and investment decisions.
Nonlinear neural network for hemodynamic model state and input estimation using fMRI data
Karam, Ayman M.
2014-11-01
Originally inspired by biological neural networks, artificial neural networks (ANNs) are powerful mathematical tools that can solve complex nonlinear problems such as filtering, classification, prediction and more. This paper demonstrates the first successful implementation of ANN, specifically nonlinear autoregressive with exogenous input (NARX) networks, to estimate the hemodynamic states and neural activity from simulated and measured real blood oxygenation level dependent (BOLD) signals. Blocked and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks is optimized to yield the best estimate with minimal network architecture. The results of the estimated neural activity are also discussed in terms of their potential use.
Probing interferometric parallax with interplanetary spacecraft
Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.
2017-07-01
We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.
El Gharamti, Mohamad; Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim
2015-01-01
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model’s state and parameters. These are generally estimated following a state-parameters joint augmentation
Action-reaction based parameters identification and states estimation of flexible systems
Khalil, Islam; Kunt, Emrah Deniz; Şabanoviç, Asif; Sabanovic, Asif
2012-01-01
This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...
Action-reaction based parameters identification and states estimation of flexible systems
Khalil, Islam Shoukry Mohammed; Şabanoviç, Asif; Sabanovic, Asif
2010-01-01
This work attempts to identify and estimate flexible system’s parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system’s reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...
Impact of smart metering data aggregation on distribution system state estimation
Chen, Qipeng; Kaleshi, Dritan; Fan, Zhong; Armour, Simon
2016-01-01
Pseudo medium/low voltage (MV/LV) transformer loads are usually used as partial inputs to the distribution system state estimation (DSSE) in MV systems. Such pseudo load can be represented by the aggregation of smart metering (SM) data. This follows the government restriction that distribution network operators (DNOs) can only use aggregated SM data. Therefore, we assess the subsequent performance of the DSSE, which shows the impact of this restriction - it affects the voltage angle estimatio...
State-Space Dynamic Model for Estimation of Radon Entry Rate, based on Kalman Filtering
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Jílek, K.
2007-01-01
Roč. 98, - (2007), s. 285-297 ISSN 0265-931X Grant - others:GA SÚJB JC_11/2006 Institutional research plan: CEZ:AV0Z10300504 Keywords : air ventilation rate * radon entry rate * state-space modeling * extended Kalman filter * maximum likelihood estimation * prediction error decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.963, year: 2007
Reconsidering the smart metering data collection frequency for distribution state estimation
Chen, Qipeng; Kaleshi, Dritan; Armour, Simon; Fan, Zhong
2015-01-01
The current UK Smart Metering Technical Specification requires smart meter readings to be collected once a day, primarily to support accurate billing without violating users' privacy. In this paper we consider the use of Smart Metering data for Distribution State Estimation (DSE), and compare the effectiveness of daily data collection strategy with a more frequent, half-hourly SM data collection strategy. We first assess the suitability of using the data for load forecasting at Low Voltage (L...
Practical feasibility of Kalman filters for the state estimation of lithium-ion batteries
Campestrini, Christian
2018-01-01
This work investigates the feasibility of the Kalman filter for the state estimation of lithium-ion cells and modules under real conditions. Therefore, the dependencies of the cells during ageing are shown and various Kalman filter types are compared. The strongly varying model parameters, as well as the temperature and ageing dependent open circuit voltage, require an empirical adaptation of the inconstant and non-linear filter tuning parameters. The performance of the Kalman filter in a rea...
Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results
Energy Technology Data Exchange (ETDEWEB)
Brown, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mulcahy, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-08-01
The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.
Estimating mercury emissions resulting from wildfire in forests of the Western United States
Webster, Jackson; Kane, Tyler J.; Obrist, Daniel; Ryan, Joseph N.; Aiken, George R.
2016-01-01
Understanding the emissions of mercury (Hg) from wildfires is important for quantifying the global atmospheric Hg sources. Emissions of Hg from soils resulting from wildfires in the Western United States was estimated for the 2000 to 2013 period, and the potential emission of Hg from forest soils was assessed as a function of forest type and soil-heating. Wildfire released an annual average of 3100 ± 1900 kg-Hg y− 1 for the years spanning 2000–2013 in the 11 states within the study area. This estimate is nearly 5-fold lower than previous estimates for the study region. Lower emission estimates are attributed to an inclusion of fire severity within burn perimeters. Within reported wildfire perimeters, the average distribution of low, moderate, and high severity burns was 52, 29, and 19% of the total area, respectively. Review of literature data suggests that that low severity burning does not result in soil heating, moderate severity fire results in shallow soil heating, and high severity fire results in relatively deep soil heating ( wood > foliage > litter > branches.
Directory of Open Access Journals (Sweden)
Linhui Zhao
2017-12-01
Full Text Available State of charge (SOC is an important evaluation index for lithium-ion batteries (LIBs in electric vehicles (EVs. This paper proposes a nonlinear observer with a new adaptive gain structure for SOC estimation based on a second-order RC model. It is able to dynamically adjust the gains and obtain a better balance between convergence speed and estimation accuracy with less computational time. A sufficient condition is derived to guarantee the uniform asymptotic stability of the observer, and its robustness with respect to disturbances and uncertainties is analyzed with the help of input-to-state stability (ISS theory. A selection guide of the observer gains in practical application is presented. The estimation accuracy and convergence rate of the observer are evaluated and compared with those of extended Kalman filter (EKF based on multi-temperature datasets from two different types of LIB cells. The robustness against different disturbances and uncertainties that may appear in a real vehicle is validated and discussed in detail. The experimental results show that the proposed observer is capable of achieving better performance with less computational time in comparison to EKF for different types of LIB cells under various working conditions. The observer is also capable of estimating SOC accurately for real life conditions according to the validation results of datasets from a battery management system (BMS in an EV battery pack. Furthermore, the observer is simple enough, and is suitable for implementation on embedded hardware for LIB cells of EVs.
Sugarcane yield estimation for climatic conditions in the state of Goiás
Directory of Open Access Journals (Sweden)
Jordana Moura Caetano
Full Text Available ABSTRACT Models that estimate potential and depleted crop yield according to climatic variable enable the crop planning and production quantification for a specific region. Therefore, the objective of this study was to compare methods to sugarcane yield estimates grown in the climatic condition in the central part of Goiás, Brazil. So, Agroecological Zone Method (ZAE and the model proposed by Scarpari (S were correlated with real data of sugarcane yield from an experimental area, located in Santo Antônio de Goiás, state of Goiás, Brazil. Data yield refer to the crops of 2008/2009 (sugarcane plant, 2009/2010, 2010/2011 and 2011/2012 (ratoon sugarcane. Yield rates were calculated as a function of atmospheric water demand and water deficit in the area under study. Real and estimated yields were adjusted in function of productivity loss due to cutting stage of sugarcane, using an average reduction in productivity observed in the experimental area and the average reduction in the state of Goiás. The results indicated that the ZAE method, considering the water deficit, displayed good yield estimates for cane-plant (d > 0.90. Water deficit decreased the yield rates (r = -0.8636; α = 0.05 while the thermal sum increased that rate for all evaluated harvests (r > 0.68; α = 0.05.
Directory of Open Access Journals (Sweden)
Tao Jin
2018-02-01
Full Text Available To address the issue that the phasor measurement units (PMUs of wide area measurement system (WAMS are not sufficient for static state estimation in most existing power systems, this paper proposes a mixed power system weighted least squares (WLS state estimation method integrating a wide-area measurement system and supervisory control and data acquisition (SCADA technology. The hybrid calculation model is established by incorporating phasor measurements (including the node voltage phasors and branch current phasors and the results of the traditional state estimator in a post-processing estimator. The performance assessment is discussed through setting up mathematical models of the distribution network. Based on PMU placement optimization and bias analysis, the effectiveness of the proposed method was proved to be accurate and reliable by simulations of different cases. Furthermore, emulating calculation shows this method greatly improves the accuracy and stability of the state estimation solution, compared with the traditional WLS state estimation.
Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.
Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris
2018-03-01
Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Printed Spacecraft Separation System
Energy Technology Data Exchange (ETDEWEB)
Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation
2016-10-01
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.
Estimates of state-level health-care expenditures associated with disability.
Anderson, Wayne L; Armour, Brian S; Finkelstein, Eric A; Wiener, Joshua M
2010-01-01
We estimated state-level disability-associated health-care expenditures (DAHE) for the U.S. adult population. We used a two-part model to estimate DAHE for the noninstitutionalized U.S. civilian adult population using data from the 2002-2003 Medical Expenditure Panel Survey and state-level data from the Behavioral Risk Factor Surveillance System. Administrative data for people in institutions were added to generate estimates for the total adult noninstitutionalized population. Individual-level data on total health-care expenditures along with demographic, socioeconomic, geographic, and payer characteristics were used in the models. The DAHE for all U.S. adults totaled $397.8 billion in 2006, with state expenditures ranging from $598 million in Wyoming to $40.1 billion in New York. Of the national total, the DAHE were $118.9 billion for the Medicare population, $161.1 billion for Medicaid recipients, and $117.8 billion for the privately insured and uninsured populations. For the total U.S. adult population, 26.7% of health-care expenditures were associated with disability, with proportions by state ranging from 16.9% in Hawaii to 32.8% in New York. This proportion varied greatly by payer, with 38.1% for Medicare expenditures, 68.7% for Medicaid expenditures, and 12.5% for nonpublic health-care expenditures associated with disability. DAHE vary greatly by state and are borne largely by the public sector, and particularly by Medicaid. Policy makers need to consider initiatives that will help reduce the prevalence of disabilities and disability-related health disparities, as well as improve the lives of people with disabilities.
IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES
Directory of Open Access Journals (Sweden)
Wojnar Sławomir
2014-06-01
Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.
Integration of sampling based battery state of health estimation method in electric vehicles
International Nuclear Information System (INIS)
Ozkurt, Celil; Camci, Fatih; Atamuradov, Vepa; Odorry, Christopher
2016-01-01
Highlights: • Presentation of a prototype system with full charge discharge cycling capability. • Presentation of SoH estimation results for systems degraded in the lab. • Discussion of integration alternatives of the presented method in EVs. • Simulation model based on presented SoH estimation for a real EV battery system. • Optimization of number of battery cells to be selected for SoH test. - Abstract: Battery cost is one of the crucial parameters affecting high deployment of Electric Vehicles (EVs) negatively. Accurate State of Health (SoH) estimation plays an important role in reducing the total ownership cost, availability, and safety of the battery avoiding early disposal of the batteries and decreasing unexpected failures. A circuit design for SoH estimation in a battery system that bases on selected battery cells and its integration to EVs are presented in this paper. A prototype microcontroller has been developed and used for accelerated aging tests for a battery system. The data collected in the lab tests have been utilized to simulate a real EV battery system. Results of accelerated aging tests and simulation have been presented in the paper. The paper also discusses identification of the best number of battery cells to be selected for SoH estimation test. In addition, different application options of the presented approach for EV batteries have been discussed in the paper.
Inconsistencies Exist in National Estimates of Eye Care Services Utilization in the United States
Directory of Open Access Journals (Sweden)
Fernando A. Wilson
2015-01-01
Full Text Available Background. There are limited research and substantial uncertainty about the level of eye care utilization in the United States. Objectives. Our study estimated eye care utilization using, to our knowledge, every known nationally representative, publicly available database with information on office-based optometry or ophthalmology services. Research Design. We analyzed the following national databases to estimate eye care utilization: the Medical Expenditure Panel Survey (MEPS, National Health Interview Survey (NHIS, Joint Canada/US Survey of Health (JCUSH, Behavioral Risk Factor Surveillance System (BRFSS, and the National Ambulatory Medical Care Survey (NAMCS. Subjects. US adults aged 18 and older. Measures. Self-reported utilization of eye care services. Results. The weighted number of adults seeing or talking with any eye doctor ranges from 87.9 million to 99.5 million, and the number of visits annually ranges from 72.9 million to 142.6 million. There were an estimated 17.2 million optometry visits and 55.8 million ophthalmology visits. Conclusions. The definitions and estimates of eye care services vary widely across national databases, leading to substantial differences in national estimates of eye care utilization.
Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.
2017-12-01
Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.
State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
Directory of Open Access Journals (Sweden)
Bizhong Xia
2015-06-01
Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.
Chan, Tiffany; Friedman, David S; Bradley, Chris; Massof, Robert
2018-01-01
Updated estimates of the prevalence and incidence rates of low vision and blindness are needed to inform policy makers and develop plans to meet the future demands for low vision rehabilitation services. To provide updated estimates of the incidence and prevalence of low vision and blindness in the United States. Visual acuity measurements as a function of age from the 2007-2008 National Health and Nutrition Examination Survey, with representation of racial and ethnic groups, were used to estimate the prevalence and incidence of visual impairments. Data from 6016 survey participants, ranging in age from younger than 18 years to older than 45 years, were obtained to estimate prevalence rates for different age groups. Incidence and prevalence rates of low vision (best-corrected visual acuity [BCVA] in the better-seeing eye of United States were estimated, using the 2010 US census data by age, from the rate models applied to the census projections for 2017, 2030, and 2050. Data were collected from November 1, 2007, to October 31, 2008. Data analysis took place from March 31, 2016, to March 19, 2017. Prevalence and incidence rates of low vision and blindness in the United States. Of the 6016 people in the study, 1714 (28.4%) were younger than 18 years of age, 2358 (39.1%) were 18 to 44 years of age, and 1944 (32.3%) were 45 years of age or older. There were 2888 male (48%) and 3128 female (52%) participants. The prevalence of low vision and blindness for older adults (≥45 years) in the United States in 2017 is estimated to be 3 894 406 persons (95% CI, 3 034 442-4 862 549 persons) with a BCVA less than 20/40, 1 483 703 persons (95% CI, 968 656-2 370 513 persons) with a BCVA less than 20/60, and 1 082 790 persons (95% CI, 637 771-1 741 864 persons) with a BCVA of 20/200 or less. The estimated 2017 annual incidence (projected from 2010 census data) of low vision and blindness among older adults (≥45 years) in the United States is 481
Advanced topics in control and estimation of state-multiplicative noisy systems
Gershon, Eli
2013-01-01
Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak optimal control and filtering. Advanced Topics in Contr...
Directory of Open Access Journals (Sweden)
Christopher J Paciorek
Full Text Available We present a gridded 8 km-resolution data product of the estimated composition of tree taxa at the time of Euro-American settlement of the northeastern United States and the statistical methodology used to produce the product from trees recorded by land surveyors. Composition is defined as the proportion of stems larger than approximately 20 cm diameter at breast height for 22 tree taxa, generally at the genus level. The data come from settlement-era public survey records that are transcribed and then aggregated spatially, giving count data. The domain is divided into two regions, eastern (Maine to Ohio and midwestern (Indiana to Minnesota. Public Land Survey point data in the midwestern region (ca. 0.8-km resolution are aggregated to a regular 8 km grid, while data in the eastern region, from Town Proprietor Surveys, are aggregated at the township level in irregularly-shaped local administrative units. The product is based on a Bayesian statistical model fit to the count data that estimates composition on the 8 km grid across the entire domain. The statistical model is designed to handle data from both the regular grid and the irregularly-shaped townships and allows us to estimate composition at locations with no data and to smooth over noise caused by limited counts in locations with data. Critically, the model also allows us to quantify uncertainty in our composition estimates, making the product suitable for applications employing data assimilation. We expect this data product to be useful for understanding the state of vegetation in the northeastern United States prior to large-scale Euro-American settlement. In addition to specific regional questions, the data product can also serve as a baseline against which to investigate how forests and ecosystems change after intensive settlement. The data product is being made available at the NIS data portal as version 1.0.
Stokes, Andrew; Preston, Samuel H
2017-01-01
The goal of this research was to identify the fraction of deaths attributable to diabetes in the United States. We estimated population attributable fractions (PAF) for cohorts aged 30-84 who were surveyed in the National Health Interview Survey (NHIS) between 1997 and 2009 (N = 282,322) and in the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2010 (N = 21,814). Cohort members were followed prospectively for mortality through 2011. We identified diabetes status using self-reported diagnoses in both NHIS and NHANES and using HbA1c in NHANES. Hazard ratios associated with diabetes were estimated using Cox model adjusted for age, sex, race/ethnicity, educational attainment, and smoking status. We found a high degree of consistency between data sets and definitions of diabetes in the hazard ratios, estimates of diabetes prevalence, and estimates of the proportion of deaths attributable to diabetes. The proportion of deaths attributable to diabetes was estimated to be 11.5% using self-reports in NHIS, 11.7% using self-reports in NHANES, and 11.8% using HbA1c in NHANES. Among the sub-groups that we examined, the PAF was highest among obese persons at 19.4%. The proportion of deaths in which diabetes was assigned as the underlying cause of death (3.3-3.7%) severely understated the contribution of diabetes to mortality in the United States. Diabetes may represent a more prominent factor in American mortality than is commonly appreciated, reinforcing the need for robust population-level interventions aimed at diabetes prevention and care.
Directory of Open Access Journals (Sweden)
Andrew Stokes
Full Text Available The goal of this research was to identify the fraction of deaths attributable to diabetes in the United States.We estimated population attributable fractions (PAF for cohorts aged 30-84 who were surveyed in the National Health Interview Survey (NHIS between 1997 and 2009 (N = 282,322 and in the National Health and Nutrition Examination Survey (NHANES between 1999 and 2010 (N = 21,814. Cohort members were followed prospectively for mortality through 2011. We identified diabetes status using self-reported diagnoses in both NHIS and NHANES and using HbA1c in NHANES. Hazard ratios associated with diabetes were estimated using Cox model adjusted for age, sex, race/ethnicity, educational attainment, and smoking status.We found a high degree of consistency between data sets and definitions of diabetes in the hazard ratios, estimates of diabetes prevalence, and estimates of the proportion of deaths attributable to diabetes. The proportion of deaths attributable to diabetes was estimated to be 11.5% using self-reports in NHIS, 11.7% using self-reports in NHANES, and 11.8% using HbA1c in NHANES. Among the sub-groups that we examined, the PAF was highest among obese persons at 19.4%. The proportion of deaths in which diabetes was assigned as the underlying cause of death (3.3-3.7% severely understated the contribution of diabetes to mortality in the United States.Diabetes may represent a more prominent factor in American mortality than is commonly appreciated, reinforcing the need for robust population-level interventions aimed at diabetes prevention and care.
A method for state of energy estimation of lithium-ion batteries based on neural network model
International Nuclear Information System (INIS)
Dong, Guangzhong; Zhang, Xu; Zhang, Chenbin; Chen, Zonghai
2015-01-01
The state-of-energy is an important evaluation index for energy optimization and management of power battery systems in electric vehicles. Unlike the state-of-charge which represents the residual energy of the battery in traditional applications, state-of-energy is integral result of battery power, which is the product of current and terminal voltage. On the other hand, like state-of-charge, the state-of-energy has an effect on terminal voltage. Therefore, it is hard to solve the nonlinear problems between state-of-energy and terminal voltage, which will complicate the estimation of a battery's state-of-energy. To address this issue, a method based on wavelet-neural-network-based battery model and particle filter estimator is presented for the state-of-energy estimation. The wavelet-neural-network based battery model is used to simulate the entire dynamic electrical characteristics of batteries. The temperature and discharge rate are also taken into account to improve model accuracy. Besides, in order to suppress the measurement noises of current and voltage, a particle filter estimator is applied to estimate cell state-of-energy. Experimental results on LiFePO_4 batteries indicate that the wavelet-neural-network based battery model simulates battery dynamics robustly with high accuracy and the estimation value based on the particle filter estimator converges to the real state-of-energy within an error of ±4%. - Highlights: • State-of-charge is replaced by state-of-energy to determine cells residual energy. • The battery state-space model is established based on a neural network. • Temperature and current influence are considered to improve the model accuracy. • The particle filter is used for state-of-energy estimation to improve accuracy. • The robustness of new method is validated under dynamic experimental conditions.
Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications
Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.
2009-01-01
A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.
International Nuclear Information System (INIS)
Wei, Zhongbao; Lim, Tuti Mariana; Skyllas-Kazacos, Maria; Wai, Nyunt; Tseng, King Jet
2016-01-01
Highlights: • Battery model parameters and SOC co-estimation is investigated. • The model parameters and OCV are decoupled and estimated independently. • Multiple timescales are adopted to improve precision and stability. • SOC is online estimated without using the open-circuit cell. • The method is robust to aging levels, flow rates, and battery chemistries. - Abstract: A key function of battery management system (BMS) is to provide accurate information of the state of charge (SOC) in real time, and this depends directly on the precise model parameterization. In this paper, a novel multi-timescale estimator is proposed to estimate the model parameters and SOC for vanadium redox flow battery (VRB) in real time. The model parameters and OCV are decoupled and estimated independently, effectively avoiding the possibility of cross interference between them. The analysis of model sensitivity, stability, and precision suggests the necessity of adopting different timescales for each estimator independently. Experiments are conducted to assess the performance of the proposed method. Results reveal that the model parameters are online adapted accurately thus the periodical calibration on them can be avoided. The online estimated terminal voltage and SOC are both benchmarked with the reference values. The proposed multi-timescale estimator has the merits of fast convergence, high precision, and good robustness against the initialization uncertainty, aging states, flow rates, and also battery chemistries.
International Nuclear Information System (INIS)
Liu Yurong; Wang Zidong; Liu Xiaohui
2008-01-01
In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions
Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco
2016-03-01
This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Directory of Open Access Journals (Sweden)
Xiaoxue Feng
2014-11-01
Full Text Available Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS, which gets better filtering performance than NILS without constraint.
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
Directory of Open Access Journals (Sweden)
Hongjian Wang
2014-01-01
Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.
Constrained state estimation for individual localization in wireless body sensor networks.
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-11-10
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint.
Perry, C. H.; Domke, G. M.; Walters, B. F.; Smith, J. E.; Woodall, C. W.
2014-12-01
The Forest Inventory and Analysis (FIA) program of the United States Forest Service reports official estimates of national forest floor carbon (FFC) stocks and stock change to national and international parties, the US Environmental Protection Agency (USEPA) and the United Nations Framework Convention on Climate Change (UNFCCC), respectively. These estimates of national FFC stocks are derived from plot-level predictions of FFC density. We suspect the models used to predict plot-level FFC density are less than ideal for several reasons: (a) they are based upon local studies that may not reflect FFC dynamics at the national scale, (b) they are relatively insensitive to climate change, and (c) they reduce the natural variability of the data leading to misplaced confidence in the estimates. However, FIA has measured forest floor attributes since 2001 on a systematic 1/16th subset of a nation-wide array of inventory plots (7 800 of 125 000 plots). Here we address the efficacy of replacing plot-level model predictions with empirical observations of FFC density while assessing the impact of imputing FFC density values to the full plot network on national stock estimates. First, using an equivalence testing framework, we found model predictions of FFC density to differ significantly from the observations in all regions and forest types; the mean difference across all plots was 21 percent (1.81 Mg·ha-1). Furthermore, the model predictions were biased towards the lower end of extant FFC density observations, underestimating it while greatly truncating the range relative to the observations. Second, the optimal imputation approach (k-Nearest Neighbor, k-NN) resulted in values that were equivalent to observations of FFC density across a range of simulated missingness and maintained the high variability seen in the observations. We used the k-NN approach to impute FFC density values to the 94 percent of FIA inventory plots without soil measurements. Third, using the imputed
Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion
Directory of Open Access Journals (Sweden)
Jun Sun
2014-01-01
Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.
Estimating the value of life and injury for pedestrians using a stated preference framework.
Niroomand, Naghmeh; Jenkins, Glenn P
2017-09-01
The incidence of pedestrian death over the period 2010 to 2014 per 1000,000 in North Cyprus is about 2.5 times that of the EU, with 10.5 times more pedestrian road injuries than deaths. With the prospect of North Cyprus entering the EU, many investments need to be undertaken to improve road safety in order to reach EU benchmarks. We conducted a stated choice experiment to identify the preferences and tradeoffs of pedestrians in North Cyprus for improved walking times, pedestrian costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers chose. These were used to estimate the individuals' willingness to pay (WTP) to save walking time and to avoid pedestrian fatalities and injuries. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of an injury (VI) prevented, and the value per hour of walking time saved. The estimate of the VSL was €699,434 and the estimate of VI was €20,077. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. The estimated value of time to pedestrians is €7.20 per person hour. The ratio of deaths to injuries is much higher for pedestrians than for road accidents, and this is completely consistent with the higher estimated WTP to avoid a pedestrian accident than to avoid a car accident. The value of time of €7.20 is quite high relative to the wages earned. Findings provide a set of information on the VRR for fatalities and injuries and the value of pedestrian time that is critical for conducing ex ante appraisals of investments to improve pedestrian safety. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
Directory of Open Access Journals (Sweden)
Bin Ran
Full Text Available Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
DEFF Research Database (Denmark)
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2016-01-01
Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...
FORTE spacecraft vibration mitigation. Final report
International Nuclear Information System (INIS)
Maly, J.R.
1996-02-01
This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure
Report on some methods of determining the state of convergence of Monte Carlo risk estimates
International Nuclear Information System (INIS)
Orford, J.L.; Hufton, D.; Johnson, K.
1991-05-01
The Department of the Environment is developing a methodology for assessing potential sites for the disposal of low and intermediate level radioactive wastes. Computer models are used to simulate the groundwater transport of radioactive materials from a disposal facility back to man. Monte Carlo methods are being employed to conduct a probabilistic risk assessment (pra) of potential sites. The models calculate time histories of annual radiation dose to the critical group population. The annual radiation dose to the critical group in turn specifies the annual individual risk. The distribution of dose is generally highly skewed and many simulation runs are required to predict the level of confidence in the risk estimate i.e. to determine whether the risk estimate is converged. This report describes some statistical methods for determining the state of convergence of the risk estimate. The methods described include the Shapiro-Wilk test, calculation of skewness and kurtosis and normal probability plots. A method for forecasting the number of samples needed before the risk estimate is converged is presented. Three case studies were conducted to examine the performance of some of these techniques. (author)
State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery
Directory of Open Access Journals (Sweden)
Enjian Yao
2013-01-01
Full Text Available Recently, battery-powered electric vehicle (EV has received wide attention due to less pollution during use, low noise, and high energy efficiency and is highly expected to improve urban air quality and then mitigate energy and environmental pressure. However, the widespread use of EV is still hindered by limited battery capacity and relatively short cruising range. This paper aims to propose a state of charge (SOC estimation method for EV’s battery necessary for route planning and dynamic route guidance, which can help EV drivers to search for the optimal energy-efficient routes and to reduce the risk of running out of electricity before arriving at the destination or charging station. Firstly, by analyzing the variation characteristics of power consumption rate with initial SOC and microscopic driving parameters (instantaneous speed and acceleration, a set of energy consumption rate models are established according to different operation modes. Then, the SOC estimation model is proposed based on the presented EV power consumption model. Finally, by comparing the estimated SOC with the measured SOC, the proposed SOC estimation method is proved to be highly accurate and effective, which can be well used in EV route planning and navigation systems.
The estimated lifetime probability of acquiring human papillomavirus in the United States.
Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E
2014-11-01
Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.
A subagging regression method for estimating the qualitative and quantitative state of groundwater
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young
2017-08-01
A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Directory of Open Access Journals (Sweden)
Kori Blankenship
2015-04-01
Full Text Available Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess departure from a mean reference value for ecosystems in the United States. While the mean provides a useful benchmark, land managers and researchers are often interested in the range of variability around the mean. This range, frequently referred to as the historical range of variability (HRV, offers model users improved understanding of ecosystem function, more information with which to evaluate ecosystem change and potentially greater flexibility in management options. We developed a method for using LANDFIRE STSMs to estimate the HRV around the mean reference condition for each model state in ecosystems by varying the fire probabilities. The approach is flexible and can be adapted for use in a variety of ecosystems. HRV analysis can be combined with other information to help guide complex land management decisions.
Directory of Open Access Journals (Sweden)
Kolosok Irina
2017-01-01
Full Text Available Reliable information on the current state parameters obtained as a result of processing the measurements from systems of the SCADA and WAMS data acquisition and processing through methods of state estimation (SE is a condition that enables to successfully manage an energy power system (EPS. SCADA and WAMS systems themselves, as any technical systems, are subject to failures and faults that lead to distortion and loss of information. The SE procedure enables to find erroneous measurements, therefore, it is a barrier for the distorted information to penetrate into control problems. At the same time, the programming and computing suite (PCS implementing the SE functions may itself provide a wrong decision due to imperfection of the software algorithms and errors. In this study, we propose to use a fault tree to analyze consequences of failures and faults in SCADA and WAMS and in the very SE procedure. Based on the analysis of the obtained measurement information and on the SE results, we determine the state estimation PCS fault tolerance level featuring its reliability.
Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.
Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M
2017-04-15
Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.
Estimating the number of competing terminals without a state variation detector in wireless LAN
Lim, Jaechan; Kim, Taejin; Hong, Daehyoung
2013-12-01
Estimating the number of competing terminals n (who wish to transmit a packet at the same time) in the IEEE 802.11 system is important for system throughput performance because optimal back-off window size needs to be selected based on n. Therefore, as a new approach for estimating n, we propose H infinity filter that does not need a state variation detector as opposed to the cases of previously proposed approaches. The state variation detector's flaw is incurring tracking latency in addition to the side effect of increased computational cost. All previously proposed approaches demand the employment of the state variation detector to detect the variation of n in the IEEE 802.11 system. By employing H infinity filter, we show improved throughput performance of the system compared to that of previously proposed approaches (e.g., the Kalman filter and particle filter) based on the improved performance in tracking n. In this paper, we justify the superiority of the proposed approach in the terms of tracking performance, throughput performance, and computational complexity.
Gravity Probe B spacecraft description
International Nuclear Information System (INIS)
Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky
2015-01-01
The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)
Power Control and Coding Formulation for State Estimation with Wireless Sensors
DEFF Research Database (Denmark)
Quevedo, Daniel; Østergaard, Jan; Ahlen, Anders
2014-01-01
efficient communication. In this paper, we examine the role of power control and coding for Kalman filtering over wireless correlated channels. Two estimation architectures are considered; initially, the sensors send their measurements directly to a single gateway (GW). Next, wireless relay nodes provide...... additional links. The GW decides on the coding scheme and the transmitter power levels of the wireless nodes. The decision process is carried out online and adapts to varying channel conditions to improve the tradeoff between state estimation accuracy and energy expenditure. In combination with predictive......Technological advances made wireless sensors cheap and reliable enough to be brought into industrial use. A major challenge arises from the fact that wireless channels introduce random packet dropouts. Power control and coding are key enabling technologies in wireless communications to ensure...
Cohabitation and children's living arrangements: New estimates from the United States
Directory of Open Access Journals (Sweden)
Larry Bumpass
2008-09-01
Full Text Available This paper uses the 1995 and 2002 waves of the National Survey of Family Growth to examine recent trends in cohabitation in the United States. We find increases in both the prevalence and duration of unmarried cohabitation. Cohabitation continues to transform children's family lives, as children are increasingly likely to be born to a cohabiting mother (18Ã…Â during 1997-2001 or to experience their mother's entry into a cohabiting union. Consequently, we estimate that two-fifths of all children spend some time in a cohabiting family by age 12. Because of substantial missing data in the 2002 NSFG, we are unable to produce new estimates of divorce and children's time in single-parent families. Nonetheless, our results point to the steady growth of cohabitation and to the evolving role of cohabitation in U.S. family life.
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.
2015-01-01
In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP......) algorithm and the adjoint method for computation of gradients. We evaluate the economic performance when unmeasured disturbances are present. By simulation, we demonstrate that the E-NMPC improves the profit of spray drying by 17% compared to conventional PI control....
Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana
2014-12-01
The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is
An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.
2017-01-01
The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.
On the evaluation of uncertainties for state estimation with the Kalman filter
International Nuclear Information System (INIS)
Eichstädt, S; Makarava, N; Elster, C
2016-01-01
The Kalman filter is an established tool for the analysis of dynamic systems with normally distributed noise, and it has been successfully applied in numerous areas. It provides sequentially calculated estimates of the system states along with a corresponding covariance matrix. For nonlinear systems, the extended Kalman filter is often used. This is derived from the Kalman filter by linearization around the current estimate. A key issue in metrology is the evaluation of the uncertainty associated with the Kalman filter state estimates. The ‘Guide to the Expression of Uncertainty in Measurement’ (GUM) and its supplements serve as the de facto standard for uncertainty evaluation in metrology. We explore the relationship between the covariance matrix produced by the Kalman filter and a GUM-compliant uncertainty analysis. In addition, the results of a Bayesian analysis are considered. For the case of linear systems with known system matrices, we show that all three approaches are compatible. When the system matrices are not precisely known, however, or when the system is nonlinear, this equivalence breaks down and different results can then be reached. For precisely known nonlinear systems, though, the result of the extended Kalman filter still corresponds to the linearized uncertainty propagation of the GUM. The extended Kalman filter can suffer from linearization and convergence errors. These disadvantages can be avoided to some extent by applying Monte Carlo procedures, and we propose such a method which is GUM-compliant and can also be applied online during the estimation. We illustrate all procedures in terms of a 2D dynamic system and compare the results with those obtained by particle filtering, which has been proposed for the approximate calculation of a Bayesian solution. Finally, we give some recommendations based on our findings. (paper)
Estimating health state utility values for comorbid health conditions using SF-6D data.
Ara, Roberta; Brazier, John
2011-01-01
When health state utility values for comorbid health conditions are not available, data from cohorts with single conditions are used to estimate scores. The methods used can produce very different results and there is currently no consensus on which is the most appropriate approach. The objective of the current study was to compare the accuracy of five different methods within the same dataset. Data collected during five Welsh Health Surveys were subgrouped by health status. Mean short-form 6 dimension (SF-6D) scores for cohorts with a specific health condition were used to estimate mean SF-6D scores for cohorts with comorbid conditions using the additive, multiplicative, and minimum methods, the adjusted decrement estimator (ADE), and a linear regression model. The mean SF-6D for subgroups with comorbid health conditions ranged from 0.4648 to 0.6068. The linear model produced the most accurate scores for the comorbid health conditions with 88% of values accurate to within the minimum important difference for the SF-6D. The additive and minimum methods underestimated or overestimated the actual SF-6D scores respectively. The multiplicative and ADE methods both underestimated the majority of scores. However, both methods performed better when estimating scores smaller than 0.50. Although the range in actual health state utility values (HSUVs) was relatively small, our data covered the lower end of the index and the majority of previous research has involved actual HSUVs at the upper end of possible ranges. Although the linear model gave the most accurate results in our data, additional research is required to validate our findings. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Mejova, Yelena; Weber, Ingmar; Fernandez-Luque, Luis
2018-03-28
Facebook, the most popular social network with over one billion daily users, provides rich opportunities for its use in the health domain. Though much of Facebook's data are not available to outsiders, the company provides a tool for estimating the audience of Facebook advertisements, which includes aggregated information on the demographics and interests, such as weight loss or dieting, of Facebook users. This paper explores the potential uses of Facebook ad audience estimates for eHealth by studying the following: (1) for what type of health conditions prevalence estimates can be obtained via social media and (2) what type of marker interests are useful in obtaining such estimates, which can then be used for recruitment within online health interventions. The objective of this study was to understand the limitations and capabilities of using Facebook ad audience estimates for public health monitoring and as a recruitment tool for eHealth interventions. We use the Facebook Marketing application programming interface to correlate estimated sizes of audiences having health-related interests with public health data. Using several study cases, we identify both potential benefits and challenges in using this tool. We find several limitations in using Facebook ad audience estimates, for example, using placebo interest estimates to control for background level of user activity on the platform. Some Facebook interests such as plus-size clothing show encouraging levels of correlation (r=.74) across the 50 US states; however, we also sometimes find substantial correlations with the placebo interests such as r=.68 between interest in Technology and Obesity prevalence. Furthermore, we find demographic-specific peculiarities in the interests on health-related topics. Facebook's advertising platform provides aggregate data for more than 190 million US adults. We show how disease-specific marker interests can be used to model prevalence rates in a simple and intuitive manner
Weber, Ingmar; Fernandez-Luque, Luis
2018-01-01
Background Facebook, the most popular social network with over one billion daily users, provides rich opportunities for its use in the health domain. Though much of Facebook’s data are not available to outsiders, the company provides a tool for estimating the audience of Facebook advertisements, which includes aggregated information on the demographics and interests, such as weight loss or dieting, of Facebook users. This paper explores the potential uses of Facebook ad audience estimates for eHealth by studying the following: (1) for what type of health conditions prevalence estimates can be obtained via social media and (2) what type of marker interests are useful in obtaining such estimates, which can then be used for recruitment within online health interventions. Objective The objective of this study was to understand the limitations and capabilities of using Facebook ad audience estimates for public health monitoring and as a recruitment tool for eHealth interventions. Methods We use the Facebook Marketing application programming interface to correlate estimated sizes of audiences having health-related interests with public health data. Using several study cases, we identify both potential benefits and challenges in using this tool. Results We find several limitations in using Facebook ad audience estimates, for example, using placebo interest estimates to control for background level of user activity on the platform. Some Facebook interests such as plus-size clothing show encouraging levels of correlation (r=.74) across the 50 US states; however, we also sometimes find substantial correlations with the placebo interests such as r=.68 between interest in Technology and Obesity prevalence. Furthermore, we find demographic-specific peculiarities in the interests on health-related topics. Conclusions Facebook’s advertising platform provides aggregate data for more than 190 million US adults. We show how disease-specific marker interests can be used to model
Directory of Open Access Journals (Sweden)
Adom Giffin
2014-09-01
Full Text Available In this paper, we continue our efforts to show how maximum relative entropy (MrE can be used as a universal updating algorithm. Here, our purpose is to tackle a joint state and parameter estimation problem where our system is nonlinear and in a non-equilibrium state, i.e., perturbed by varying external forces. Traditional parameter estimation can be performed by using filters, such as the extended Kalman filter (EKF. However, as shown with a toy example of a system with first order non-homogeneous ordinary differential equations, assumptions made by the EKF algorithm (such as the Markov assumption may not be valid. The problem can be solved with exponential smoothing, e.g., exponentially weighted moving average (EWMA. Although this has been shown to produce acceptable filtering results in real exponential systems, it still cannot simultaneously estimate both the state and its parameters and has its own assumptions that are not always valid, for example when jump discontinuities exist. We show that by applying MrE as a filter, we can not only develop the closed form solutions, but we can also infer the parameters of the differential equation simultaneously with the means. This is useful in real, physical systems, where we want to not only filter the noise from our measurements, but we also want to simultaneously infer the parameters of the dynamics of a nonlinear and non-equilibrium system. Although there were many assumptions made throughout the paper to illustrate that EKF and exponential smoothing are special cases ofMrE, we are not “constrained”, by these assumptions. In other words, MrE is completely general and can be used in broader ways.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
Chandra, Hukum; Aditya, Kaustav; Sud, U C
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011-12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable.
Aditya, Kaustav; Sud, U. C.
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011–12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable. PMID:29879202
International Nuclear Information System (INIS)
Fields, D.E.; Travis, C.C.; Watson, A.P.; McDowell-Boyer, L.M.
1979-12-01
The report represents a compilation of computer codes used to estimate potential human exposures and inhalation doses due to unit releases of 222 Rn from uranium milling sites in western United States. The populations considered for potential exposure to risk from 222 Rn and associated daughters are the inhabitants of North America between 20 0 and 60 0 North latitude. The primary function of these codes is to integrate spatially atmospheric radionuclide concentrations with current population data for the geographic area under consideration. It is expected that these codes will be of assistance to anyone interested in assessing nuclear or nonnuclear population exposures over large geographic areas
DEFF Research Database (Denmark)
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard
2016-01-01
problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...
Group-SMA Algorithm Based Joint Estimation of Train Parameter and State
Directory of Open Access Journals (Sweden)
Wei Zheng
2015-03-01
Full Text Available The braking rate and train arresting operation is important in the train braking performance. It is difficult to obtain the states of the train on time because of the measurement noise and a long calculation time. A type of Group Stochastic M-algorithm (GSMA based on Rao-Blackwellization Particle Filter (RBPF algorithm and Stochastic M-algorithm (SMA is proposed in this paper. Compared with RBPF, GSMA based estimation precisions for the train braking rate and the control accelerations were improved by 78% and 62%, respectively. The calculation time of the GSMA was decreased by 70% compared with SMA.
State of the art in the estimation of energy prices in the spot market
International Nuclear Information System (INIS)
Botero B, Sergio; Cano C, Jovan A
2007-01-01
Since the start energy markets deregulation in the world, several spot market (short term) price prediction methods have been developed? this article identifies and compares the main methods of prediction used in Colombia and other international markets. With this review it is possible to determine the state of the knowledge in the specific subject and then to look for the development of new forecasting techniques that can contribute to the solution of this problem. The prediction horizon is something that must be taken into account in the review of the several techniques, given that both the magnitude of the final model of estimation, and the time series treatment type, depend on this horizon.
State Estimation of Induction Motor Drives Using the Unscented Kalman Filter
DEFF Research Database (Denmark)
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami
2012-01-01
This paper investigates the application, design, and implementation of unscented Kalman filters (KFs) (UKFs) for induction motor (IM) sensorless drives. UKFs use nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics of a nonlinear system....... The advantage of using UTs is their ability to capture the nonlinear behavior of the system, unlike extended KFs (EKFs) that use linearized models. Four original variants of the UKF for IM state estimation, based on different UTs, are described, analyzed, and compared. The four transforms are basic, general...
Estimating the Availability of Potential Homes for Unwanted Horses in the United States
Weiss, Emily; Dolan, Emily D.; Mohan-Gibbons, Heather; Gramann, Shannon; Slater, Margaret R.
2017-01-01
Simple Summary There are approximately 200,000 unwanted horses annually in the United States. Many are shipped to slaughter, enter rescue facilities, or are held on federal lands. This study aimed to estimate a potential number of available homes for unwanted horses in order to examine broadly the viability of pursuing re-homing policies as an option for the thousands of unwanted horses in the U.S. The results of this survey suggest there could be an estimated 1.2 million homes who have both the perceived resources and desire to house an unwanted horse. This number exceeds the approximately 200,000 unwanted horses living each year in the United States. These data suggest that efforts to reduce unwanted horses could involve matching such horses with adoptive homes and enhancing opportunities to keep horses in the homes they already have. Abstract There are approximately 200,000 unwanted horses annually in the United States. This study aimed to better understand the potential homes for horses that need to be re-homed. Using an independent survey company through an Omnibus telephone (land and cell) survey, we interviewed a nationally projectable sample of 3036 adults (using both landline and cellular phone numbers) to learn of their interest and capacity to adopt a horse. Potential adopters with interest in horses with medical and/or behavioral problems and self-assessed perceived capacity to adopt, constituted 0.92% of the total sample. Extrapolating the results of this survey using U.S. Census data, suggests there could be an estimated 1.25 million households who have both the self-reported and perceived resources and desire to house an unwanted horse. This number exceeds the estimated number of unwanted horses living each year in the United States. This study points to opportunities and need to increase communication and support between individuals and organizations that have unwanted horses to facilitate re-homing with people in their community willing to adopt
Infinite-Dimensional Boundary Observer for Lithium-Ion Battery State Estimation
DEFF Research Database (Denmark)
Hasan, Agus; Jouffroy, Jerome
2017-01-01
This paper presents boundary observer design for state-of-charge (SOC) estimation of lithium-ion batteries. The lithium-ion battery dynamics are governed by thermal-electrochemical principles, which mathematically modeled by partial differential equations (PDEs). In general, the model is a reaction......-diffusion equation with time-dependent coefficients. A Luenberger observer is developed using infinite-dimensional backstepping method and uses only a single measurement at the boundary of the battery. The observer gains are computed by solving the observer kernel equation. A numerical example is performed to show...
An Orbit Propagation Software for Mars Orbiting Spacecraft
Directory of Open Access Journals (Sweden)
Young-Joo Song
2004-12-01
Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.
Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Michael [Nexant Inc., Burlington, MA (United States); Schellenberg, Josh [Nexant Inc., Burlington, MA (United States); Blundell, Marshall [Nexant Inc., Burlington, MA (United States)
2015-01-01
This report updates the 2009 meta-analysis that provides estimates of the value of service reliability for electricity customers in the United States (U.S.). The meta-dataset now includes 34 different datasets from surveys fielded by 10 different utility companies between 1989 and 2012. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods, it was possible to integrate their results into a single meta-dataset describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the U.S. for industrial, commercial, and residential customers. This report focuses on the backwards stepwise selection process that was used to develop the final revised model for all customer classes. Across customer classes, the revised customer interruption cost model has improved significantly because it incorporates more data and does not include the many extraneous variables that were in the original specification from the 2009 meta-analysis. The backwards stepwise selection process led to a more parsimonious model that only included key variables, while still achieving comparable out-of-sample predictive performance. In turn, users of interruption cost estimation tools such as the Interruption Cost Estimate (ICE) Calculator will have less customer characteristics information to provide and the associated inputs page will be far less cumbersome. The upcoming new version of the ICE Calculator is anticipated to be released in 2015.
Estimating the Value of Life, Injury, and Travel Time Saved Using a Stated Preference Framework.
Niroomand, Naghmeh; Jenkins, Glenn P
2016-06-01
The incidence of fatality over the period 2010-2014 from automobile accidents in North Cyprus is 2.75 times greater than the average for the EU. With the prospect of North Cyprus entering the EU, many investments will need to be undertaken to improve road safety in order to reach EU benchmarks. The objective of this study is to provide local estimates of the value of a statistical life and injury along with the value of time savings. These are among the parameter values needed for the evaluation of the change in the expected incidence of automotive accidents and time savings brought about by such projects. In this study we conducted a stated choice experiment to identify the preferences and tradeoffs of automobile drivers in North Cyprus for improved travel times, travel costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers choose. These estimates were used to assess the individuals' willingness to pay (WTP) to avoid fatalities and injuries and to save travel time. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of injury (VI) prevented, and the value per hour of travel time saved. The estimates for the VSL range from €315,293 to €1,117,856 and the estimates of VI from € 5,603 to € 28,186. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving precipitation estimates over the western United States using GOES-R precipitation data
Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.
2017-12-01
Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.
DEFF Research Database (Denmark)
Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don
2003-01-01
and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...
DEFF Research Database (Denmark)
Chen, Xiaoshuang; Lin, Jin; Wan, Can
2016-01-01
State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...
International Nuclear Information System (INIS)
Sun, Fengchun; Hu, Xiaosong; Zou, Yuan; Li, Siguang
2011-01-01
An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
International Nuclear Information System (INIS)
Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David
2013-01-01
Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model
Estimating Human Physical States from Chronological Gait Features Acquired with RFID Technology
Directory of Open Access Journals (Sweden)
Yoshihiro UEMURA
2015-11-01
Full Text Available This paper proposes a method to estimate the state of the user to provide proactive hospitality from features of their gait pattern acquired with a Radio Frequency Identifier (RFID system. This method uses RFID readers on each shoe, as well as RFID tags installed on the floor. The ID of each tag is organized as a map, to show the precise position of the user. The reader and tags communicate while the user is walking. We extract feature components which represents gait patterns. Two-way ANOVA test and correlation analysis are conducted to find significant features. We classify the state of the user from these components with the Naȉve Bayes, the Support Vector Machine, and the Random Forest. Compared with each combination of the analysis and the machine learning method, the most efficient way is found to identify the state of the user. The experimental results show that different state of users can be classified appropriately. Finally, variable importance and the feasibility of proposed method are discussed to show potential implications of the proposed approach.