WorldWideScience

Sample records for space-time coded ofdm

  1. Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2016-03-01

    Full Text Available In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the symbols sent by the source antennas. The destination node and the relay node obtain the decision variables employing time-space-frequency decoding process by the received signals. During the second stage, the relay node transmits decision variables to the destination node. Due to the increasing diversity in the proposed algorithm, decision variables in the destination node are increased to improve system performance. The bit error rate of the proposed algorithm at high SNR is estimated by considering the BPSK modulation. The simulation results show that cooperative orthogonal space-time-frequency block coding, improves system performance and reduces the BER in a frequency selective channel.

  2. Channel estimation for space-time trellis coded-OFDM systems based on nonoverlapping pilot structure

    CSIR Research Space (South Africa)

    Sokoya, O

    2008-09-01

    Full Text Available . Through the analysis, two extreme conditions that produce the largest minimum determinant for a STTC-OFDM over multiple-tap channels were pointed out. The analysis show that the performance of the STTC-OFDM under various channel condition is based on...: 1) the minimum determinant tap delay of the channel and 2) the memory order of the STTC. New STTC-OFDM schemes were later designed in [2] taking into account some of the designed criteria shown in [1]. The STTC-OFDM schemes are capable...

  3. Blind and semi-blind ML detection for space-time block-coded OFDM wireless systems

    KAUST Repository

    Zaib, Alam; Al-Naffouri, Tareq Y.

    2014-01-01

    This paper investigates the joint maximum likelihood (ML) data detection and channel estimation problem for Alamouti space-time block-coded (STBC) orthogonal frequency-division multiplexing (OFDM) wireless systems. The joint ML estimation and data detection is generally considered a hard combinatorial optimization problem. We propose an efficient low-complexity algorithm based on branch-estimate-bound strategy that renders exact joint ML solution. However, the computational complexity of blind algorithm becomes critical at low signal-to-noise ratio (SNR) as the number of OFDM carriers and constellation size are increased especially in multiple-antenna systems. To overcome this problem, a semi-blind algorithm based on a new framework for reducing the complexity is proposed by relying on subcarrier reordering and decoding the carriers with different levels of confidence using a suitable reliability criterion. In addition, it is shown that by utilizing the inherent structure of Alamouti coding, the estimation performance improvement or the complexity reduction can be achieved. The proposed algorithms can reliably track the wireless Rayleigh fading channel without requiring any channel statistics. Simulation results presented against the perfect coherent detection demonstrate the effectiveness of blind and semi-blind algorithms over frequency-selective channels with different fading characteristics.

  4. Quadrature amplitude modulation from basics to adaptive trellis-coded turbo-equalised and space-time coded OFDM CDMA and MC-CDMA systems

    CERN Document Server

    Hanzo, Lajos

    2004-01-01

    "Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.

  5. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    Science.gov (United States)

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  6. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  7. Efficient coding schemes with power allocation using space-time-frequency spreading

    Institute of Scientific and Technical Information of China (English)

    Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao

    2006-01-01

    An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.

  8. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  9. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  10. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  11. Sparsity-Based Space-Time Adaptive Processing Using OFDM Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2012-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.

  12. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Lei Ye

    2009-01-01

    Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  13. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Burr Alister

    2009-01-01

    Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  14. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  15. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  16. Wavelet-Coded OFDM for Next Generation Mobile Communications

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....

  17. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding

  18. LDPC coded OFDM over the atmospheric turbulence channel.

    Science.gov (United States)

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  19. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  20. On Coding of Scheduling Information in OFDM

    OpenAIRE

    Gunnarsson, Fredrik; Moosavi, Reza; Eriksson, Jonas; Larsson, Erik G.; Wiberg, Niklas; Frenger, Pål

    2009-01-01

    Control signaling strategies for scheduling information in cellular OFDM systems are studied. A single-cell multiuser system model is formulated that provides system capacity estimates accounting for the signaling overhead. Different scheduling granularities are considered, including the one used in the specifications for the 3G Long Term Evolution (LTE). A greedy scheduling method is assumed, where each resource is assigned to the user for which it can support the highest number of bits. The...

  1. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  2. Performance analysis of super-orthogonal space-frequency trellis coded OFDM system

    CSIR Research Space (South Africa)

    Sokoya, O

    2009-08-01

    Full Text Available that is used with OFDM. SOSFTC-OFDM utilizes the diversities in frequency and space domain by assuming that coding is done along adjacent subcarrier in an OFDM environment. This paper evaluates the exact pairwise error probability (PEP) of the SOSFTC...

  3. Performance of FSO-OFDM based on BCH code

    Directory of Open Access Journals (Sweden)

    Jiao Xiao-lu

    2016-01-01

    Full Text Available As contrasted with the traditional OOK (on-off key system, FSO-OFDM system can resist the atmospheric scattering and improve the spectrum utilization rate effectively. Due to the instability of the atmospheric channel, the system will be affected by various factors, and resulting in a high BER. BCH code has a good error correcting ability, particularly in the short-length and medium-length code, and its performance is close to the theoretical value. It not only can check the burst errors but also can correct the random errors. Therefore, the BCH code is applied to the system to reduce the system BER. At last, the semi-physical simulation has been conducted with MATLAB. The simulation results show that when the BER is 10-2, the performance of OFDM is superior 4dB compared with OOK. In different weather conditions (extension rain, advection fog, dust days, when the BER is 10-5, the performance of BCH (255,191 channel coding is superior 4~5dB compared with uncoded system. All in all, OFDM technology and BCH code can reduce the system BER.

  4. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  5. Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.

    Science.gov (United States)

    Tse, Kam-Hon; Chan, Chun-Kit

    2014-08-11

    A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.

  6. An Implementation of Error Minimization Data Transmission in OFDM using Modified Convolutional Code

    Directory of Open Access Journals (Sweden)

    Hendy Briantoro

    2016-04-01

    Full Text Available This paper presents about error minimization in OFDM system. In conventional system, usually using channel coding such as BCH Code or Convolutional Code. But, performance BCH Code or Convolutional Code is not good in implementation of OFDM System. Error bits of OFDM system without channel coding is 5.77%. Then, we used convolutional code with code rate 1/2, it can reduce error bitsonly up to 3.85%. So, we proposed OFDM system with Modified Convolutional Code. In this implementation, we used Software Define Radio (SDR, namely Universal Software Radio Peripheral (USRP NI 2920 as the transmitter and receiver. The result of OFDM system using Modified Convolutional Code with code rate is able recover all character received so can decrease until 0% error bit. Increasing performance of Modified Convolutional Code is about 1 dB in BER of 10-4 from BCH Code and Convolutional Code. So, performance of Modified Convolutional better than BCH Code or Convolutional Code. Keywords: OFDM, BCH Code, Convolutional Code, Modified Convolutional Code, SDR, USRP

  7. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    Directory of Open Access Journals (Sweden)

    Petré Frederik

    2004-01-01

    Full Text Available In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI. Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input multiple-output (MIMO communication techniques can result in a significant increase in capacity. This paper focuses on space-time block coding (STBC techniques, and aims at combining STBC techniques with the original single-antenna DS-CDMA downlink scheme. This results into the so-called space-time block coded DS-CDMA downlink schemes, many of which have been presented in the past. We focus on a new scheme that enables both the maximum multiantenna diversity and the maximum multipath diversity. Although this maximum diversity can only be collected by maximum likelihood (ML detection, we pursue suboptimal detection by means of space-time chip equalization, which lowers the computational complexity significantly. To design the space-time chip equalizers, we also propose efficient pilot-based methods. Simulation results show improved performance over the space-time RAKE receiver for the space-time block coded DS-CDMA downlink schemes that have been proposed for the UMTS and IS-2000 W-CDMA standards.

  8. Turbo coding, turbo equalisation and space-time coding for transmission over fading channels

    CERN Document Server

    Hanzo, L; Yeap, B

    2002-01-01

    Against the backdrop of the emerging 3G wireless personal communications standards and broadband access network standard proposals, this volume covers a range of coding and transmission aspects for transmission over fading wireless channels. It presents the most important classic channel coding issues and also the exciting advances of the last decade, such as turbo coding, turbo equalisation and space-time coding. It endeavours to be the first book with explicit emphasis on channel coding for transmission over wireless channels. Divided into 4 parts: Part 1 - explains the necessary background for novices. It aims to be both an easy reading text book and a deep research monograph. Part 2 - provides detailed coverage of turbo conventional and turbo block coding considering the known decoding algorithms and their performance over Gaussian as well as narrowband and wideband fading channels. Part 3 - comprehensively discusses both space-time block and space-time trellis coding for the first time in literature. Par...

  9. Coding for MIMO-OFDM in future wireless systems

    CERN Document Server

    Ahmed, Bannour

    2015-01-01

    This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.

  10. Space-Time Code Designs for Broadband Wireless Communications

    National Research Council Canada - National Science Library

    Xia, Xiang-Gen

    2005-01-01

    The goal of this research is to design new space AND time codes, such as complex orthogonal space AND time block codes with rate above 1/2 from complex orthogonal designs for QAM, PSK, and CPM signals...

  11. Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-07-07

    Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.

  12. Golay sequences coded coherent optical OFDM for long-haul transmission

    Science.gov (United States)

    Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2017-09-01

    We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.

  13. Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo

    Directory of Open Access Journals (Sweden)

    Guo Dong

    2005-01-01

    Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.

  14. Space Time – Track Circuits with Trellis Code Modulation

    Directory of Open Access Journals (Sweden)

    Marius Enulescu

    2017-07-01

    Full Text Available The track circuits are very important equipments used in the railway transportation system. Today these are used to send vital information, to the running train, in the same time with the integrity checking of the rail. The actual track circuits have a small problem due to the use of the same transmission medium by the signals containing vital information and the return traction current, the running track rails. But this small problem can produce big disturbances in the train circulation, especially in the rush hours. To improve the data transmission to the train on-board equipment, the implementation of new track circuits using new communication technology were studied. This technology is used by the mobile and satellite communications and applies the principle of diversity encoding both time and space through the use of multiple transmission points of the track circuit signal for telegram which is sent to the train. Since this implementation does not satisfy the intended purpose, other modern communication principles such as 8PSK signals modulation and encoding using Trellis Coded Modulation were developed. This new track circuit aims to solve the problems which appeared in the current operation of track circuits and theoretically manages to transmit vital information to the train on board equipment without being affected by disturbances in electric traction transport systems.

  15. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  16. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-01-01

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC

  17. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    Science.gov (United States)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  18. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  19. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  20. Differential Space-Time Block Code Modulation for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2002-01-01

    Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.

  1. CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

    Science.gov (United States)

    Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo

    2012-02-01

    CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

  2. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  3. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA system using Zero Cross Correlation (ZCC code and multiband Orthogonal Frequency Division Multiplexing (OFDM called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  4. The effect of structural design parameters on FPGA-based feed-forward space-time trellis coding-orthogonal frequency division multiplexing channel encoders

    Science.gov (United States)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-08-01

    Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.

  5. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  6. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    NARCIS (Netherlands)

    Leus, G.; Petré, F.; Moonen, M.

    2004-01-01

    In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input

  7. Performance of Turbo Interference Cancellation Receivers in Space-Time Block Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Emmanuel Oluremi Bejide

    2008-07-01

    Full Text Available We investigate the performance of turbo interference cancellation receivers in the space time block coded (STBC direct-sequence code division multiple access (DS-CDMA system. Depending on the concatenation scheme used, we divide these receivers into the partitioned approach (PA and the iterative approach (IA receivers. The performance of both the PA and IA receivers is evaluated in Rayleigh fading channels for the uplink scenario. Numerical results show that the MMSE front-end turbo space-time iterative approach receiver (IA effectively combats the mixture of MAI and intersymbol interference (ISI. To further investigate the possible achievable data rates in the turbo interference cancellation receivers, we introduce the puncturing of the turbo code through the use of rate compatible punctured turbo codes (RCPTCs. Simulation results suggest that combining interference cancellation, turbo decoding, STBC, and RCPTC can significantly improve the achievable data rates for a synchronous DS-CDMA system for the uplink in Rayleigh flat fading channels.

  8. Performance of super-orthogonal space-time trellis code in a multipath environment

    CSIR Research Space (South Africa)

    Sokoya, OA

    2007-09-01

    Full Text Available This paper investigates the performance of Super-Orthogonal Space-time Trellis Code (SOSTTC) designed primarily for non-frequency selective (i.e. flat) fading channel but now applied to a frequency selective fading channel. A new decoding trellis...

  9. Indoor Off-Body Wireless Communication: Static Beamforming versus Space-Time Coding

    Directory of Open Access Journals (Sweden)

    Patrick Van Torre

    2012-01-01

    Full Text Available The performance of beamforming versus space-time coding using a body-worn textile antenna array is experimentally evaluated for an indoor environment, where a walking rescue worker transmits data in the 2.45 GHz ISM band, relying on a vertical textile four-antenna array integrated into his garment. The two transmission scenarios considered are static beamforming at low-elevation angles and space-time code based transmit diversity. Signals are received by a base station equipped with a horizontal array of four dipole antennas providing spatial receive diversity through maximum-ratio combining. Signal-to-noise ratios, bit error rate characteristics, and signal correlation properties are assessed for both off-body transmission scenarios. Without receiver diversity, the performance of space-time coding is generally better. In case of fourth-order receiver diversity, beamforming is superior in line-of-sight conditions. For non-line-of-sight propagation, the space-time codes perform better as soon as bit error rates are low enough for a reliable data link.

  10. Development of Adiabatic Doppler Feedback Model in 3D space time analysis Code ARCH

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Gupta, Anurag

    2015-01-01

    Integrated 3D space-time neutron kinetics with thermal-hydraulic feedback code system is being developed for transient analysis of Compact High Temperature Reactor (CHTR) and Advanced Heavy Water Reactor (AHWR). ARCH (code for Analysis of Reactor transients in Cartesian and Hexagon geometries) has been developed with IQS module for efficient 3D space time analysis. Recently, an adiabatic Doppler (fuel temperature) feedback module has been incorporated in this ARCH-IQS version of tile code. In the adiabatic model of fuel temperature feedback, the transfer of the excess heat from the fuel to the coolant during transient is neglected. The viability of Doppler feedback in ARCH-IQS with adiabatic heating has been checked with AER benchmark (Dyn002). Analyses of anticipated transient without scram (ATWS) case in CHTR as well as in AHWR have been performed with adiabatic fuel temperature feedback. The methodology and results have been presented in this paper. (author)

  11. Space-Time Trellis Coded 8PSK Schemes for Rapid Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2002-05-01

    Full Text Available This paper presents the design of 8PSK space-time (ST trellis codes suitable for rapid fading channels. The proposed codes utilize the design criteria of ST codes over rapid fading channels. Two different approaches have been used. The first approach maximizes the symbol-wise Hamming distance (HD between signals leaving from or entering to the same encoder′s state. In the second approach, set partitioning based on maximizing the sum of squared Euclidean distances (SSED between the ST signals is performed; then, the branch-wise HD is maximized. The proposed codes were simulated over independent and correlated Rayleigh fading channels. Coding gains up to 4 dB have been observed over other ST trellis codes of the same complexity.

  12. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  13. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    Science.gov (United States)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  14. Power Allocation Strategies for Distributed Space-Time Codes in Amplify-and-Forward Mode

    Directory of Open Access Journals (Sweden)

    Are Hjørungnes

    2009-01-01

    Full Text Available We consider a wireless relay network with Rayleigh fading channels and apply distributed space-time coding (DSTC in amplify-and-forward (AF mode. It is assumed that the relays have statistical channel state information (CSI of the local source-relay channels, while the destination has full instantaneous CSI of the channels. It turns out that, combined with the minimum SNR based power allocation in the relays, AF DSTC results in a new opportunistic relaying scheme, in which the best relay is selected to retransmit the source's signal. Furthermore, we have derived the optimum power allocation between two cooperative transmission phases by maximizing the average received SNR at the destination. Next, assuming M-PSK and M-QAM modulations, we analyze the performance of cooperative diversity wireless networks using AF opportunistic relaying. We also derive an approximate formula for the symbol error rate (SER of AF DSTC. Assuming the use of full-diversity space-time codes, we derive two power allocation strategies minimizing the approximate SER expressions, for constrained transmit power. Our analytical results have been confirmed by simulation results, using full-rate, full-diversity distributed space-time codes.

  15. VLSI Architectures for Sliding-Window-Based Space-Time Turbo Trellis Code Decoders

    Directory of Open Access Journals (Sweden)

    Georgios Passas

    2012-01-01

    Full Text Available The VLSI implementation of SISO-MAP decoders used for traditional iterative turbo coding has been investigated in the literature. In this paper, a complete architectural model of a space-time turbo code receiver that includes elementary decoders is presented. These architectures are based on newly proposed building blocks such as a recursive add-compare-select-offset (ACSO unit, A-, B-, Γ-, and LLR output calculation modules. Measurements of complexity and decoding delay of several sliding-window-technique-based MAP decoder architectures and a proposed parameter set lead to defining equations and comparison between those architectures.

  16. Space-Time Convolutional Codes over Finite Fields and Rings for Systems with Large Diversity Order

    Directory of Open Access Journals (Sweden)

    B. F. Uchôa-Filho

    2008-06-01

    Full Text Available We propose a convolutional encoder over the finite ring of integers modulo pk,ℤpk, where p is a prime number and k is any positive integer, to generate a space-time convolutional code (STCC. Under this structure, we prove three properties related to the generator matrix of the convolutional code that can be used to simplify the code search procedure for STCCs over ℤpk. Some STCCs of large diversity order (≥4 designed under the trace criterion for n=2,3, and 4 transmit antennas are presented for various PSK signal constellations.

  17. Space-Time Turbo Trellis Coded Modulation for Wireless Data Communications

    Directory of Open Access Journals (Sweden)

    Welly Firmanto

    2002-05-01

    Full Text Available This paper presents the design of space-time turbo trellis coded modulation (ST turbo TCM for improving the bandwidth efficiency and the reliability of future wireless data networks. We present new recursive space-time trellis coded modulation (STTC which outperform feedforward STTC proposed in by Tarokh et al. (1998 and Baro et al. (2000 on slow and fast fading channels. A substantial improvement in performance can be obtained by constructing ST turbo TCM which consists of concatenated recursive STTC, decoded by iterative decoding algorithm. The proposed recursive STTC are used as constituent codes in this scheme. They have been designed to satisfy the design criteria for STTC on slow and fast fading channels, derived for systems with the product of transmit and receive antennas larger than 3. The proposed ST turbo TCM significantly outperforms the best known STTC on both slow and fast fading channels. The capacity of this scheme on fast fading channels is less than 3 dB away from the theoretical capacity bound for multi-input multi-output (MIMO channels.

  18. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  19. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-12-23

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC. In addition, we propose an adaptive MLSTBC schemes that are capable of accommodating the channel signal-to-noise ratio variation of wireless systems by near instantaneously adapting the uplink transmission configuration. The main results demonstrate that significant effective throughput improvements can be achieved while maintaining a certain target bit error rate.

  20. Cognitive radio networks with orthogonal space-time block coding and multiuser diversity

    KAUST Repository

    Yang, Liang

    2013-04-01

    This paper considers a multiuser spectrum sharing (SS) system operating in a Rayleigh fading environment and in which every node is equipped with multiple antennas. The system employs orthogonal space-time block coding at the secondary users. Under such a framework, the average capacity and error performance under a peak interference constraint are first analyzed. For a comparison purpose, an analysis of the transmit antenna selection scheme is also presented. Finally, some selected numerical results are presented to corroborate the proposed analysis. © 1997-2012 IEEE.

  1. Cognitive radio networks with orthogonal space-time block coding and multiuser diversity

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim; Liu, Weiping

    2013-01-01

    This paper considers a multiuser spectrum sharing (SS) system operating in a Rayleigh fading environment and in which every node is equipped with multiple antennas. The system employs orthogonal space-time block coding at the secondary users. Under such a framework, the average capacity and error performance under a peak interference constraint are first analyzed. For a comparison purpose, an analysis of the transmit antenna selection scheme is also presented. Finally, some selected numerical results are presented to corroborate the proposed analysis. © 1997-2012 IEEE.

  2. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  3. Distributed Space-Time Block Coded Transmission with Imperfect Channel Estimation: Achievable Rate and Power Allocation

    Directory of Open Access Journals (Sweden)

    Sonia Aïssa

    2008-05-01

    Full Text Available This paper investigates the effects of channel estimation error at the receiver on the achievable rate of distributed space-time block coded transmission. We consider that multiple transmitters cooperate to send the signal to the receiver and derive lower and upper bounds on the mutual information of distributed space-time block codes (D-STBCs when the channel gains and channel estimation error variances pertaining to different transmitter-receiver links are unequal. Then, assessing the gap between these two bounds, we provide a limiting value that upper bounds the latter at any input transmit powers, and also show that the gap is minimum if the receiver can estimate the channels of different transmitters with the same accuracy. We further investigate positioning the receiving node such that the mutual information bounds of D-STBCs and their robustness to the variations of the subchannel gains are maximum, as long as the summation of these gains is constant. Furthermore, we derive the optimum power transmission strategy to achieve the outage capacity lower bound of D-STBCs under arbitrary numbers of transmit and receive antennas, and provide closed-form expressions for this capacity metric. Numerical simulations are conducted to corroborate our analysis and quantify the effects of imperfect channel estimation.

  4. Semi-Blind Error Resilient SLM for PAPR Reduction in OFDM Using Spread Spectrum Codes

    Science.gov (United States)

    Elhelw, Amr M.; Badran, Ehab F.

    2015-01-01

    High peak to average power ratio (PAPR) is one of the major problems of OFDM systems. Selected mapping (SLM) is a promising choice that can elegantly tackle this problem. Nevertheless, side information (SI) index is required to be transmitted which reduces the overall throughput. This paper proposes a semi-blind error resilient SLM system that utilizes spread spectrum codes for embedding the SI index in the transmitted symbols. The codes are embedded in an innovative manner which does not increase the average energy per symbol. The use of such codes allows the correction of probable errors in the SI index detection. A new receiver, which does not require perfect channel state information (CSI) for the detection of the SI index and has relatively low computational complexity, is proposed. Simulations results show that the proposed system performs well both in terms SI index detection error and bit error rate. PMID:26018504

  5. Experimental demonstration of polar coded IM/DD optical OFDM for short reach system

    Science.gov (United States)

    Fang, Jiafei; Xiao, Shilin; Liu, Ling; Bi, Meihua; Zhang, Lu; Zhang, Yunhao; Hu, Weisheng

    2017-11-01

    In this paper, we propose a novel polar coded intensity modulation direct detection (IM/DD) optical orthogonal frequency division multiplexing (OFDM) system for short reach system. A method of evaluating the channel signal noise ratio (SNR) is proposed for soft-demodulation. The experimental results demonstrate that, compared to the conventional case, ∼9.5 dB net coding gain (NCG) at the bit error rate (BER) of 1E-3 can be achieved after 40-km standard single mode fiber (SSMF) transmission. Based on the experimental result, (512,256) polar code with low complexity and satisfactory BER performance meets the requirement of low latency in short reach system, which is a promising candidate for latency-stringent short reach optical system.

  6. Semi-Blind Error Resilient SLM for PAPR Reduction in OFDM Using Spread Spectrum Codes.

    Directory of Open Access Journals (Sweden)

    Amr M Elhelw

    Full Text Available High peak to average power ratio (PAPR is one of the major problems of OFDM systems. Selected mapping (SLM is a promising choice that can elegantly tackle this problem. Nevertheless, side information (SI index is required to be transmitted which reduces the overall throughput. This paper proposes a semi-blind error resilient SLM system that utilizes spread spectrum codes for embedding the SI index in the transmitted symbols. The codes are embedded in an innovative manner which does not increase the average energy per symbol. The use of such codes allows the correction of probable errors in the SI index detection. A new receiver, which does not require perfect channel state information (CSI for the detection of the SI index and has relatively low computational complexity, is proposed. Simulations results show that the proposed system performs well both in terms SI index detection error and bit error rate.

  7. On the average complexity of sphere decoding in lattice space-time coded multiple-input multiple-output channel

    KAUST Repository

    Abediseid, Walid

    2012-01-01

    complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder's computational complexity. We show that when the computational complexity exceeds

  8. Real-time validation of receiver state information in optical space-time block code systems.

    Science.gov (United States)

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  9. Space-Time Coded MC-CDMA: Blind Channel Estimation, Identifiability, and Receiver Design

    Directory of Open Access Journals (Sweden)

    Li Hongbin

    2002-01-01

    Full Text Available Integrating the strengths of multicarrier (MC modulation and code division multiple access (CDMA, MC-CDMA systems are of great interest for future broadband transmissions. This paper considers the problem of channel identification and signal combining/detection schemes for MC-CDMA systems equipped with multiple transmit antennas and space-time (ST coding. In particular, a subspace based blind channel identification algorithm is presented. Identifiability conditions are examined and specified which guarantee unique and perfect (up to a scalar channel estimation when knowledge of the noise subspace is available. Several popular single-user based signal combining schemes, namely the maximum ratio combining (MRC and the equal gain combining (EGC, which are often utilized in conventional single-transmit-antenna based MC-CDMA systems, are extended to the current ST-coded MC-CDMA (STC-MC-CDMA system to perform joint combining and decoding. In addition, a linear multiuser minimum mean-squared error (MMSE detection scheme is also presented, which is shown to outperform the MRC and EGC at some increased computational complexity. Numerical examples are presented to evaluate and compare the proposed channel identification and signal detection/combining techniques.

  10. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  11. Space-Frequency Block Code with Matched Rotation for MIMO-OFDM System with Limited Feedback

    Directory of Open Access Journals (Sweden)

    Thushara D. Abhayapala

    2009-01-01

    Full Text Available This paper presents a novel matched rotation precoding (MRP scheme to design a rate one space-frequency block code (SFBC and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.

  12. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid

    2013-06-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.

  13. On low-complexity full-diversity detection of multi-user space-time coding

    KAUST Repository

    Ismail, Amr

    2013-06-01

    The incorporation of multiple input multiple output (MIMO) schemes in recent wireless communication standards paved the way to exploit the newly introduced dimension (i.e. space) to efficiently cancel the interference without requiring additional resources. In this paper, we focus on multiple input multiple ouitput (MIMO) multiple access channel (MAC) case and we answer the question about whether it is possible to suppress the interference in a MIMO MAC channel for completely blind users while achieving full-diversity with a simplified decoder in the affirmative. In fact, this goal can be attained by employing space-time block codes (STBC)s that achive full-diversity under partial interference cancellation (PIC). We derive sufficient conditions for a wide range of STBCs to achieve full-diversity under PIC group decoding with or without successive interference cancellation (SIC). Based on the provided design criteria we derive an upper-bound on the achievable rate for a class of codes. A two-user MIMO MAC interference cancellation scheme is presented and proved to achieve full-diversity under PIC group decoding. We compare our scheme to existing beamforming schemes with full or limit feedback. © 2013 IEEE.

  14. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding

  15. Fast Maximum-Likelihood Decoder for Quasi-Orthogonal Space-Time Block Code

    Directory of Open Access Journals (Sweden)

    Adel Ahmadi

    2015-01-01

    Full Text Available Motivated by the decompositions of sphere and QR-based methods, in this paper we present an extremely fast maximum-likelihood (ML detection approach for quasi-orthogonal space-time block code (QOSTBC. The proposed algorithm with a relatively simple design exploits structure of quadrature amplitude modulation (QAM constellations to achieve its goal and can be extended to any arbitrary constellation. Our decoder utilizes a new decomposition technique for ML metric which divides the metric into independent positive parts and a positive interference part. Search spaces of symbols are substantially reduced by employing the independent parts and statistics of noise. Symbols within the search spaces are successively evaluated until the metric is minimized. Simulation results confirm that the proposed decoder’s performance is superior to many of the recently published state-of-the-art solutions in terms of complexity level. More specifically, it was possible to verify that application of the new algorithms with 1024-QAM would decrease the computational complexity compared to state-of-the-art solution with 16-QAM.

  16. System Level Evaluation of Innovative Coded MIMO-OFDM Systems for Broadcasting Digital TV

    Directory of Open Access Journals (Sweden)

    Y. Nasser

    2008-01-01

    Full Text Available Single-frequency networks (SFNs for broadcasting digital TV is a topic of theoretical and practical interest for future broadcasting systems. Although progress has been made in the characterization of its description, there are still considerable gaps in its deployment with MIMO technique. The contribution of this paper is multifold. First, we investigate the possibility of applying a space-time (ST encoder between the antennas of two sites in SFN. Then, we introduce a 3D space-time-space block code for future terrestrial digital TV in SFN architecture. The proposed 3D code is based on a double-layer structure designed for intercell and intracell space time-coded transmissions. Eventually, we propose to adapt a technique called effective exponential signal-to-noise ratio (SNR mapping (EESM to predict the bit error rate (BER at the output of the channel decoder in the MIMO systems. The EESM technique as well as the simulations results will be used to doubly check the efficiency of our 3D code. This efficiency is obtained for equal and unequal received powers whatever is the location of the receiver by adequately combining ST codes. The 3D code is then a very promising candidate for SFN architecture with MIMO transmission.

  17. Blind cooperative diversity using distributed space-time coding in block fading channels

    KAUST Repository

    Tourki, Kamel; Alouini, Mohamed-Slim; Deneire, Luc

    2010-01-01

    Mobile users with single antennas can still take advantage of spatial diversity through cooperative space-time encoded transmission. In this paper, we consider a scheme in which a relay chooses to cooperate only if its source-relay channel

  18. On the average complexity of sphere decoding in lattice space-time coded multiple-input multiple-output channel

    KAUST Repository

    Abediseid, Walid

    2012-12-21

    The exact average complexity analysis of the basic sphere decoder for general space-time codes applied to multiple-input multiple-output (MIMO) wireless channel is known to be difficult. In this work, we shed the light on the computational complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder\\'s computational complexity. We show that when the computational complexity exceeds a certain limit, this upper bound becomes dominated by the outage probability achieved by LAST coding and sphere decoding schemes. We then calculate the minimum average computational complexity that is required by the decoder to achieve near optimal performance in terms of the system parameters. Our results indicate that there exists a cut-off rate (multiplexing gain) for which the average complexity remains bounded. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Area, speed and power measurements of FPGA-based complex orthogonal space-time block code channel encoders

    Science.gov (United States)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-01-01

    Space-time coding (STC) is an important milestone in modern wireless communications. In this technique, more copies of the same signal are transmitted through different antennas (space) and different symbol periods (time), to improve the robustness of a wireless system by increasing its diversity gain. STCs are channel coding algorithms that can be readily implemented on a field programmable gate array (FPGA) device. This work provides some figures for the amount of required FPGA hardware resources, the speed that the algorithms can operate and the power consumption requirements of a space-time block code (STBC) encoder. Seven encoder very high-speed integrated circuit hardware description language (VHDL) designs have been coded, synthesised and tested. Each design realises a complex orthogonal space-time block code with a different transmission matrix. All VHDL designs are parameterisable in terms of sample precision. Precisions ranging from 4 bits to 32 bits have been synthesised. Alamouti's STBC encoder design [Alamouti, S.M. (1998), 'A Simple Transmit Diversity Technique for Wireless Communications', IEEE Journal on Selected Areas in Communications, 16:55-108.] proved to be the best trade-off, since it is on average 3.2 times smaller, 1.5 times faster and requires slightly less power than the next best trade-off in the comparison, which is a 3/4-rate full-diversity 3Tx-antenna STBC.

  20. Performance Evaluation of Wavelet-Coded OFDM on a 4.9 Gbps W-Band Radio-over-Fiber Link

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Rommel, Simon; Dinis, Rui

    2017-01-01

    Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this work we evaluate the transmission performance of 4.9 Gbps Wavelet-Coded OFDM signals on a 10 km fiber plus 58 m wireless Radio-over-Fiber link using...... a mm-wave radio frequency carrier. The results show that a 2×128 Wavelet-Coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 sub-carriers on a carrier...

  1. A Simple Differential Modulation Scheme for Quasi-Orthogonal Space-Time Block Codes with Partial Transmit Diversity

    Directory of Open Access Journals (Sweden)

    Lingyang Song

    2007-04-01

    Full Text Available We report a simple differential modulation scheme for quasi-orthogonal space-time block codes. A new class of quasi-orthogonal coding structures that can provide partial transmit diversity is presented for various numbers of transmit antennas. Differential encoding and decoding can be simplified for differential Alamouti-like codes by grouping the signals in the transmitted matrix and decoupling the detection of data symbols, respectively. The new scheme can achieve constant amplitude of transmitted signals, and avoid signal constellation expansion; in addition it has a linear signal detector with very low complexity. Simulation results show that these partial-diversity codes can provide very useful results at low SNR for current communication systems. Extension to more than four transmit antennas is also considered.

  2. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    Science.gov (United States)

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  3. Power Optimization of Wireless Media Systems With Space-Time Block Codes

    OpenAIRE

    Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran

    2004-01-01

    We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes in to consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and...

  4. Blind cooperative diversity using distributed space-time coding in block fading channels

    KAUST Repository

    Tourki, Kamel

    2010-08-01

    Mobile users with single antennas can still take advantage of spatial diversity through cooperative space-time encoded transmission. In this paper, we consider a scheme in which a relay chooses to cooperate only if its source-relay channel is of an acceptable quality and we evaluate the usefulness of relaying when the source acts blindly and ignores the decision of the relays whether they may cooperate or not. In our study, we consider the regenerative relays in which the decisions to cooperate are based on a signal-to-noise ratio (SNR) threshold and consider the impact of the possible erroneously detected and transmitted data at the relays. We derive the end-to-end bit-error rate (BER) expression and its approximation for binary phase-shift keying modulation and look at two power allocation strategies between the source and the relays in order to minimize the end-to-end BER at the destination for high SNR. Some selected performance results show that computer simulations based results coincide well with our analytical results. © 2010 IEEE.

  5. On low-complexity full-diversity detection of multi-user space-time coding

    KAUST Repository

    Ismail, Amr; Alouini, Mohamed-Slim

    2013-01-01

    for a wide range of STBCs to achieve full-diversity under PIC group decoding with or without successive interference cancellation (SIC). Based on the provided design criteria we derive an upper-bound on the achievable rate for a class of codes. A two

  6. Improvements to the transient solution in the PANTHER space-time code

    International Nuclear Information System (INIS)

    Kutt, P.K.; Knight, M.P.

    1993-01-01

    The three dimensional, two-group, nodal diffusion code PANTHER has been developed for the analysis of almost all thermal reactor types [pressurized water reactor (PWR), boiling water reactor, VVER, RBMK, advanced gas-cooled reactor, MAGNOX]. It can perform a comprehensive range of calculations for fuel management, operational support including on-line application, and transient analysis. Transient results for a number of light water reactor (LWR) benchmark problems have been reported previously. This paper outlines some recent developments of the transient solution in PANTHER, showing results for two LWR benchmark problems. Recently, PANTHER results have been accepted as the reference solutions for a Nuclear Energy Agency Committee on Reactor Physics (NEACRP) rod ejection benchmark Unlike previous simplified rod ejection benchmarks, it represents a real PWR with a detailed thermal model and cross sections dependent on boron, fuel temperature, and water density and temperature. This reference solution was computed with fine time steps

  7. Turbo Decision Aided Receivers for Clipping Noise Mitigation in Coded OFDM

    Directory of Open Access Journals (Sweden)

    Declercq David

    2008-01-01

    Full Text Available Abstract Orthogonal frequency division multiplexing (OFDM is the modulation technique used in most of the high-rate communication standards. However, OFDM signals exhibit high peak average to power ratio (PAPR that makes them particularly sensitive to nonlinear distortions caused by high-power amplifiers. Hence, the amplifier needs to operate at large output backoff, thereby decreasing the average efficiency of the transmitter. One way to reduce PAPR consists in clipping the amplitude of the OFDM signal introducing an additional noise that degrades the overall system performance. In that case, the receiver needs to set up an algorithm that compensates this clipping noise. In this paper, we propose three new iterative receivers with growing complexity and performance that operate at severe clipping: the first and simplest receiver uses a Viterbi algorithm as channel decoder whereas the other two implement a soft-input soft-output (SISO decoder. Each soft receiver is analyzed through EXIT charts for different mappings. Finally, the performances of the receivers are simulated on both short time-varying channel and AWGN channel.

  8. Turbo Decision Aided Receivers for Clipping Noise Mitigation in Coded OFDM

    Directory of Open Access Journals (Sweden)

    Maxime Colas

    2008-02-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is the modulation technique used in most of the high-rate communication standards. However, OFDM signals exhibit high peak average to power ratio (PAPR that makes them particularly sensitive to nonlinear distortions caused by high-power amplifiers. Hence, the amplifier needs to operate at large output backoff, thereby decreasing the average efficiency of the transmitter. One way to reduce PAPR consists in clipping the amplitude of the OFDM signal introducing an additional noise that degrades the overall system performance. In that case, the receiver needs to set up an algorithm that compensates this clipping noise. In this paper, we propose three new iterative receivers with growing complexity and performance that operate at severe clipping: the first and simplest receiver uses a Viterbi algorithm as channel decoder whereas the other two implement a soft-input soft-output (SISO decoder. Each soft receiver is analyzed through EXIT charts for different mappings. Finally, the performances of the receivers are simulated on both short time-varying channel and AWGN channel.

  9. Efficient FPGA Implementation of a STBC-OFDM Combiner for an IEEE 802.16 Software Radio Receiver

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Le Moullec, Yannick; Sacchi, Claudio

    2014-01-01

    In this paper, an efficient FPGA implementation of a 4x4 Space-Time Block Coding (STBC) combiner for MIMO-OFDM software radio receivers is considered. The proposed combiner is based on a low-complexity algorithm which reduces the interference due to the Quasi-Orthogonality of the STBC decoding...

  10. A Golay complementary TS-based symbol synchronization scheme in variable rate LDPC-coded MB-OFDM UWBoF system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin

    2015-09-01

    In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.

  11. Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs

    Science.gov (United States)

    Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong

    2016-12-01

    In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.

  12. Non-Linear Detection for Joint Space-Frequency Block Coding and Spatial Multiplexing in OFDM-MIMO Systems

    DEFF Research Database (Denmark)

    Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank

    2005-01-01

    (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared......In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...

  13. A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2016-12-01

    Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.

  14. Link adaptation performance evaluation for a MIMO-OFDM physical layer in a realistic outdoor environment

    OpenAIRE

    Han, C; Armour, SMD; Doufexi, A; Ng, KH; McGeehan, JP

    2006-01-01

    This paper presents a downlink performance analysis of a link adaptation (LA) algorithm applied to a MIMO-OFDM Physical Layer (PHY) which is a popular candidate for future generation cellular communication systems. The new LA algorithm attempts to maximize throughput and adaptation between various modulation and coding schemes in combination with both space-time block codes (STBC) and spatial multiplexing (SM) is based on knowledge of SNR and H matrix determinant; the parameters which are fou...

  15. Hybrid PAPR reduction scheme with Huffman coding and DFT-spread technique for direct-detection optical OFDM systems

    Science.gov (United States)

    Peng, Miao; Chen, Ming; Zhou, Hui; Wan, Qiuzhen; Jiang, LeYong; Yang, Lin; Zheng, Zhiwei; Chen, Lin

    2018-01-01

    High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback in optical orthogonal frequency division multiplexing (OOFDM) system. In this paper, we propose and experimentally demonstrate a novel hybrid scheme, combined the Huffman coding and Discrete Fourier Transmission-Spread (DFT-spread), in order to reduce high PAPR in a 16-QAM short-reach intensity-modulated and direct-detection OOFDM (IMDD-OOFDM) system. The experimental results demonstrated that the hybrid scheme can reduce the PAPR by about 1.5, 2, 3 and 6 dB, and achieve 1.5, 1, 2.5 and 3 dB receiver sensitivity improvement compared to clipping, DFT-spread and Huffman coding and original OFDM signals, respectively, at an error vector magnitude (EVM) of -10 dB after transmission over 20 km standard single-mode fiber (SSMF). Furthermore, the throughput gain can be of the order of 30% by using the hybrid scheme compared with the cases of without applying the Huffman coding.

  16. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  17. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    OpenAIRE

    Bahubali K. Shiragapur; Uday Wali

    2016-01-01

    In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR) quantity. The Golay Code (24, 12), Reed-Muller code (16, 11), Hamming code (7, 4) and Hybrid technique (Combination of Signal Scrambling and Signal Distortion) proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conve...

  18. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    Directory of Open Access Journals (Sweden)

    Bahubali K. Shiragapur

    2016-03-01

    Full Text Available In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR quantity. The Golay Code (24, 12, Reed-Muller code (16, 11, Hamming code (7, 4 and Hybrid technique (Combination of Signal Scrambling and Signal Distortion proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conventional and Modified Selective mapping techniques. The simulation results are validated through statistical properties, for proposed technique’s autocorrelation value is maximum shows reduction in PAPR. The symbol preference is the key idea to reduce PAPR based on Hamming distance. The simulation results are discussed in detail, in this article.

  19. Experimental demonstration of MIMO-OFDM underwater wireless optical communication

    Science.gov (United States)

    Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing

    2017-11-01

    In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.

  20. Influence of Extrinsic Information Scaling Coefficient on Double-Iterative Decoding Algorithm for Space-Time Turbo Codes with Large Number of Antennas

    Directory of Open Access Journals (Sweden)

    TRIFINA, L.

    2011-02-01

    Full Text Available This paper analyzes the extrinsic information scaling coefficient influence on double-iterative decoding algorithm for space-time turbo codes with large number of antennas. The max-log-APP algorithm is used, scaling both the extrinsic information in the turbo decoder and the one used at the input of the interference-canceling block. Scaling coefficients of 0.7 or 0.75 lead to a 0.5 dB coding gain compared to the no-scaling case, for one or more iterations to cancel the spatial interferences.

  1. Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Rida El Chall

    2016-01-01

    Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.

  2. PERFORMANCE EVALUATION OF TURBO CODED OFDM SYSTEMS AND APPLICATION OF TURBO DECODING FOR IMPULSIVE CHANNEL

    Directory of Open Access Journals (Sweden)

    Savitha H. M.

    2010-09-01

    Full Text Available A comparison of the performance of hard and soft-decision turbo coded Orthogonal Frequency Division Multiplexing systems with Quadrature Phase Shift Keying (QPSK and 16-Quadrature Amplitude Modulation (16-QAM is considered in the first section of this paper. The results show that the soft-decision method greatly outperforms the hard-decision method. The complexity of the demapper is reduced with the use of simplified algorithm for 16-QAM demapping. In the later part of the paper, we consider the transmission of data over additive white class A noise (AWAN channel, using turbo coded QPSK and 16-QAM systems. We propose a novel turbo decoding scheme for AWAN channel. Also we compare the performance of turbo coded systems with QPSK and 16-QAM on AWAN channel with two different channel values- one computed as per additive white Gaussian noise (AWGN channel conditions and the other as per AWAN channel conditions. The results show that the use of appropriate channel value in turbo decoding helps to combat the impulsive noise more effectively. The proposed model for AWAN channel exhibits comparable Bit error rate (BER performance as compared to AWGN channel.

  3. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  4. Exploiting Redundancy in an OFDM SDR Receiver

    Directory of Open Access Journals (Sweden)

    Tomas Palenik

    2009-01-01

    Full Text Available Common OFDM system contains redundancy necessary to mitigate interblock interference and allows computationally effective single-tap frequency domain equalization in receiver. Assuming the system implements an outer error correcting code and channel state information is available in the receiver, we show that it is possible to understand the cyclic prefix insertion as a weak inner ECC encoding and exploit the introduced redundancy to slightly improve error performance of such a system. In this paper, an easy way to implement modification to an existing SDR OFDM receiver is presented. This modification enables the utilization of prefix redundancy, while preserving full compatibility with existing OFDM-based communication standards.

  5. Algebraic Number Precoded OFDM Transmission for Asynchronous Cooperative Multirelay Networks

    Directory of Open Access Journals (Sweden)

    Hua Jiang

    2014-01-01

    Full Text Available This paper proposes a space-time block coding (STBC transmission scheme for asynchronous cooperative systems. By combination of rotated complex constellations and Hadamard transform, these constructed codes are capable of achieving full cooperative diversity with the analysis of the pairwise error probability (PEP. Due to the asynchronous characteristic of cooperative systems, orthogonal frequency division multiplexing (OFDM technique with cyclic prefix (CP is adopted for combating timing delays from relay nodes. The total transmit power across the entire network is fixed and appropriate power allocation can be implemented to optimize the network performance. The relay nodes do not require decoding and demodulation operation, resulting in a low complexity. Besides, there is no delay for forwarding the OFDM symbols to the destination node. At the destination node the received signals have the corresponding STBC structure on each subcarrier. In order to reduce the decoding complexity, the sphere decoder is implemented for fast data decoding. Bit error rate (BER performance demonstrates the effectiveness of the proposed scheme.

  6. Experimental demonstration of SCMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Shen, Xiaohuan; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-12-01

    We introduces a novel architecture for next generation passive optical network (PON) based on the employment of sparse code multiple access (SCMA) combined with orthogonal frequency division multiplexing (OFDM) modulation, in which the binary data is directly encoded to multi-dimensional codewords and then spread over OFDM subcarriers. The feasibility of SCMA-OFDM-PON is verified with experimental demonstration. We show that the SCMA-OFDM offers 150% overloading gain in the number of optical network units compared with the orthogonal frequency division multiplexing access.

  7. Performance analysis of visible light communication using the STBC-OFDM technique for intelligent transportation systems

    Science.gov (United States)

    Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan

    2014-08-01

    Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.

  8. Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels

    Directory of Open Access Journals (Sweden)

    Wang Xiaodong

    2002-01-01

    Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.

  9. Spectrally and Energy Efficient OFDM (SEE-OFDM) for Intensity Modulated Optical Wireless Systems

    OpenAIRE

    Lam, Emily; Wilson, Sarah Kate; Elgala, Hany; Little, Thomas D. C.

    2015-01-01

    Spectrally and energy efficient orthogonal frequency division multiplexing (SEE-OFDM) is an optical OFDM technique based on combining multiple asymmetrically clipped optical OFDM (ACO-OFDM) signals into one OFDM signal. By summing different components together, SEE-OFDM can achieve the same spectral efficiency as DC-biased optical OFDM (DCO-OFDM) without an energy-inefficient DC-bias. This paper introduces multiple methods for decoding a SEE-OFDM symbol and shows that an iterative decoder wit...

  10. Space-time structure

    CERN Document Server

    Schrödinger, Erwin

    1985-01-01

    In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.

  11. Opportunistic error correction for OFDM-based DVB systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2013-01-01

    DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,

  12. Linear dispersion codes in space-frequency domain for SCFDE

    DEFF Research Database (Denmark)

    Marchetti, Nicola; Cianca, Ernestina; Prasad, Ramjee

    2007-01-01

    This paper presents a general framework for applying the Linear Dispersion Codes (LDC) in the space and frequency domains to Single Carrier - Frequency Domain Equalization (SCFDE) systems. Space-Frequency (SF)LDC are more suitable than Space-Time (ST)-LDC in high mobility environment. However......, the application of LDC in space-frequency domain in SCFDE systems is not straightforward as in Orthogonal Frequency Division Multiplexing (OFDM), since there is no direct access to the subcarriers at the transmitter. This paper describes how to build the space-time dispersion matrices to be used...

  13. On the potential of zero-tail DFT-spread-OFDM in 5G networks

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Sørensen, Troels Bundgaard

    2014-01-01

    Zero-tail Discrete Fourier Transform -spread OFDM (ZT DFT-s-OFDM) modulation allows to dynamically cope with the delay spread of the multipath channel, thus avoiding the limitations of hard-coded Cyclic Prefix (CP). In this paper, we discuss the potential of ZT DFT-s-OFDM modulation for the envis......, possibility of adopting unified radio numerology among different cells, reduced latency and support of agile link direction switching. The robustness of ZT DFT-s-OFDM towards non-idealities such as phase noise and non-linear power amplifier is also discussed....

  14. Information Guided Precoding for OFDM

    KAUST Repository

    Li, Qiang

    2017-08-09

    In the conventional orthogonal frequency division multiplexing with index modulation (OFDM-IM), the M-ary modulated symbols are transmitted on a subset of subcarriers under the guidance of information bits. In this paper, a novel information guided precoding, called precoding aided (P-)OFDMIM, is proposed to improve the spectral efficiency (SE) of OFDMIM. In P-OFDM-IM, the information bits are jointly conveyed through the conventional M-ary modulated symbols and the indices of precoding matrices and vectors. Then, the principle of P-OFDM-IM is embodied in two different implementation types, including P-OFDM-IM-I and P-OFDM-IM-II. Specifically, P-OFDM-IM-I divides all subcarriers into L groups and modulates them by L distinguishable constellations. P-OFDM-IM-II partitions the total subcarriers into L overlapped layers and performs IM layer by layer, where distinguishable constellations are employed across layers. A practical precoding strategy is designed for P-OFDM-IM under the phase shift keying/quadrature amplitude modulation constraint. A low-complexity log-likelihood ratio detector is proposed to ease the computational burden on the receiver. To evaluate the performance of P-OFDM-IM theoretically, an upper bound on the bit error rate and the achievable rate are studied. Computer simulation results show that P-OFDM-IM-I outperforms the existing OFDM-IM related schemes at high SE, while P-OFDM-IM-II performs the best at low SE.

  15. Space, time and causality

    International Nuclear Information System (INIS)

    Lucas, J.R.

    1984-01-01

    Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)

  16. Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting

    2011-01-17

    We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.

  17. Extended reach OFDM-PON using super-Nyquist image induced aliasing.

    Science.gov (United States)

    Guo, Changjian; Liang, Jiawei; Liu, Jie; Liu, Liu

    2015-08-24

    We investigate a novel dispersion compensating technique in double sideband (DSB) modulated and directed-detected (DD) passive optical network (PON) systems using super-Nyquist image induced aliasing. We show that diversity is introduced to the higher frequency components by deliberate aliasing using the super-Nyquist images. We then propose to use fractional sampling and per-subcarrier maximum ratio combining (MRC) to harvest this diversity. We evaluate the performance of conventional orthogonal frequency division multiplexing (OFDM) signals along with discrete Fourier transform spread (DFT-S) OFDM and code-division multiplexing OFDM (CDM-OFDM) signals using the proposed scheme. The results show that the DFT-S OFDM signal has the best performance due to spectrum spreading and its superior peak-to-average power ratio (PAPR). By using the proposed scheme, the reach of a 10-GHz bandwidth QPSK modulated OFDM-PON can be extended to around 90 km. We also experimentally show that the achievable data rate of the OFDM signals can be effectively increased using the proposed scheme when adaptive bit loading is applied, depending on the transmission distance. A 10.5% and 5.2% increase in the achievable bit rate can be obtained for DSB modulated OFDM-PONs in 48.3-km and 83.2-km standard single mode fiber (SSMF) transmission cases, respectively, without any modification on the transmitter. A 40-Gb/s OFDM transmission over 83.2-km SSMF is successfully demonstrated.

  18. Multifrequency OFDM SAR in Presence of Deception Jamming

    Directory of Open Access Journals (Sweden)

    Schuerger Jonathan

    2010-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF estimator and digital-RF-memory- (DRFM- based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM, and frequency-hopped (FH. Presented results include simulated peak side lobe (PSL and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  19. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  20. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    Directory of Open Access Journals (Sweden)

    Omar Alani

    2009-10-01

    Full Text Available In this paper, a predistortion neural network (PDNN architecture has been imposed to the Sniffer Mobile Robot (SNFRbot that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR. Simulation results show that using PDNN resulted in better PAPR performance than the previously published work that is based on linear coding, such as Low Density Parity Check (LDPC codes and turbo encoding whether using flat fading channel or a Doppler spread channel.

  1. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  2. Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links.

    Science.gov (United States)

    Elgala, Hany; Little, Thomas D C

    2013-10-07

    Visible light communications (VLC) technology permits the exploitation of light-emitting diode (LED) luminaries for simultaneous illumination and broadband wireless communication. Optical orthogonal frequency-division multiplexing (O-OFDM) is a promising modulation technique for VLC systems, in which the real-valued O-OFDM baseband signal is used to modulate the instantaneous power of the optical carrier to achieve gigabit data rates. However, a major design challenge that limits the commercialization of VLC is how to incorporate the industry-preferred pulse-width modulation (PWM) light dimming technique while maintaining a broadband and reliable communication link. In this work, a novel signal format, reverse polarity O-OFDM (RPO-OFDM), is proposed to combine the fast O-OFDM communication signal with the relatively slow PWM dimming signal, where both signals contribute to the effective LED brightness. The advantages of using RPO-OFDM include, (1) the data rate is not limited by the frequency of the PWM signal, (2) the LED dynamic range is fully utilized to minimize the nonlinear distortion of the O-OFDM communication signal, and (3) the bit-error performance is sustained over a large fraction of the luminaire dimming range. In addition, RPO-OFDM offers a practical approach to utilize off-the-shelf LED drivers. We show results of numerical simulations to study the trade-offs between the PWM duty cycle, average electrical O-OFDM signal power, radiated optical flux as well as human perceived light.

  3. Quantization Effects in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2008-01-01

    The advantage of using orthogonal frequency division multiplexing (OFDM) over the single-carrier modulation is its ability to mitigate interference and fading without complex equalization filters in the receiver. OFDM systems have a high peak-to-average ratio (PAPR) which results in a high

  4. Space-Time Crystal and Space-Time Group.

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  5. Performance evaluation of an IMDD optical OFDM-CDMA system.

    Science.gov (United States)

    Mhatli, Sofien; Mrabet, Hichem; Giacoumidis, Elias; Dayoub, Iyad

    2018-03-01

    In this paper, we propose a modulation technique for passive optical networks that harnesses two-dimensional prime hop system optical code division multiplexing access (OCDMA) and optical orthogonal frequency-division multiplexing (OFDM) for intensity modulation with direct-detection (IMDD) to enhance users' signal capacity in a cost-effective manner. The theoretical analysis is built from an analytical formula that takes into account both multiple-access interference and photodetector noise. Results show that OFDM-OCDMA with multiple users has similar performance to single-user conventional OOFDM for low transmitted powers.

  6. Another Approach to Save Energy in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In this paper, we propose an energy-efficient error correction scheme to lower the power consumption of the ADCs in the OFDM system. The proposed opportunistic error correction scheme is based on resolution adaptive ADCs and fountain codes. The key idea is to reduce the dynamic range of the channel

  7. An Opportunistic Error Correction Layer for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2009-01-01

    In this paper, we propose a novel cross layer scheme to lower power consumption of ADCs in OFDM systems, which is based on resolution adaptive ADCs and Fountain codes. The key part in the new proposed system is that the dynamic range of ADCs can be reduced by discarding the packets which are

  8. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  9. PAPR analysis for OFDM visible light communication.

    Science.gov (United States)

    Wang, Jiaheng; Xu, Yang; Ling, Xintong; Zhang, Rong; Ding, Zhi; Zhao, Chunming

    2016-11-28

    Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

  10. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  11. Differential Space-Time Modulation for Wideband Wireless Networks

    National Research Council Canada - National Science Library

    Li, Hongbin

    2006-01-01

    .... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...

  12. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  13. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  14. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  15. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  16. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  17. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  18. Warped product space-times

    Science.gov (United States)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  19. Space-Time and Architecture

    Science.gov (United States)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  20. Space-Time Data Fusion

    Science.gov (United States)

    Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel

    2011-01-01

    Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.

  1. Impact of Nonlinear Power Amplifier on Link Adaptation Algorithm of OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Tariq, Faisal; Rahman, Muhammad Imadur

    2007-01-01

    The impact of non linear distortion due to High Power Amplifier (HPA) on the performance of Link Adaptation (LA) - Orthogonal Frequency Division Multiplexing (OFDM) based wireless system is analyzed. The performance of both Forward Error Control Coding (FEC) en-coded and uncoded system is evaluated....... LA maximizes the throughput while maintaining a required Block Error Rate (BLER). It is found that when OFDM signal, which has high PAPR, suffers non linear distortion due to non ideal HPA, the LA fails to meet the target BLER. Detailed analysis of the distortion and effects on LA are presented...

  2. Information Guided Precoding for OFDM

    KAUST Repository

    Li, Qiang; Wen, Miaowen; Poor, H. Vincent; Chen, Fangjiong

    2017-01-01

    precoding, called precoding aided (P-)OFDMIM, is proposed to improve the spectral efficiency (SE) of OFDMIM. In P-OFDM-IM, the information bits are jointly conveyed through the conventional M-ary modulated symbols and the indices of precoding matrices

  3. New hybrid technique for impulsive noise suppression in OFDM systems

    International Nuclear Information System (INIS)

    Mirza, A.; Zeb, A.; Sheikh, S.A.

    2017-01-01

    In this paper, a new hybrid technique employing RS (Reed Solomon) coding and adaptive filter for impulsive noise suppression in OFDM (Orthogonal Frequency Division Multiplexing) systems is presented. Adaptive filter creates a more accurate estimate of the original OFDM signal after impulsive noise cancellation. The residual impulsive noise is further mitigated by RS decoder in the second stage of proposed technique. Three members of adaptive filters family i.e. NLMS (Normalized Least Mean Square) algorithm, RLS (Recursive Least Square) algorithm and Bhagyashri algorithm are tested with RS decoder in the proposed hybrid technique. Furthermore, the results in terms of steady state MSE (Mean Square Error) reduction, BER (Bit Error Rate) improvement and SNR (Signal to Noise Ratio) enhancement confirm the effectiveness of the proposed dual faceted technique when compared with the recently reported techniques in literature. (author)

  4. BER ANALYSIS OF MIMO-OFDM SYSTEM

    OpenAIRE

    Devarsh Patel*

    2016-01-01

    MIMO is a system where a number of antennas are used at the transmitter and receiver side. A MIMO system takes advantage of the spatial diversity that is obtained by spatially separated antennas in a dense multipath scattering environment. The combination of OFDM systems with MIMO technology has provided us with increase in link reliability and an improvement in spectral efficiency. For 4G communication MIMO-OFDM is one of the most competitive technologies. The combination of OFDM and MIMO se...

  5. OFDM and MC-CDMA for broadband multi-user communications WLANs and broadcasting

    CERN Document Server

    2003-01-01

    "OFDM systems have experienced increased attention in recent years and have found applications in a number of diverse areas including telephone-line based ADSL links, digital audio and video broadcasting systems, and wireless local area networks. OFDM is being considered for the next-generation of wireless systems both with and without direct sequence spreading and the resultant spreading-based multi-carrier CDMA systems have numerous attractive properties. This volume provides the reader with a broad overview of the research on OFDM systems during their 40-year history. Part I commences with an easy to read conceptual, rather than mathematical, treatment of the basic design issues of OFDM systems. The discussions gradually deepen to include adaptive single and multi-user OFDM systems invoking adaptive turbo coding. Part II introduces the taxonomy of multi-carrier CDMA systems and deals with the design of their spreading codes and the objective of minimising their crest factors. This part also compares the be...

  6. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2017-11-01

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.

  7. Space, time and conservation laws

    International Nuclear Information System (INIS)

    Aronov, R.A.; Ugarov, V.A.

    1978-01-01

    The Neter theorem establishing correspondence between conservation laws and symmetry properties (space and time in particular) is considered. The theorem is based on one of the possible ways of finding equations of motion for a physical system. From a certain expression (action functional) equations of motion for a system can be obtained which do not contain new physical assertions in principal in comparison with the Newtonian laws. Neter suggested a way of deriving conservation laws by transforming space and time coordinates. Neter theorem consequences raise a number of problems: 1). Are conservation laws (energy, momentum) consequences of space and time symmetry properties. 2). Is it possible to obtain conservation laws in theory neglecting equations of motion. 3). What is of the primary importance: equations of motion, conservation laws or properties of space and time symmetry. It is shown that direct Neter theorem does not testify to stipulation of conservation laws by properties of space and time symmetry and symmetry properties of other non-space -time properties of material systems in objective reality. It says nothing of whether there is any subordination between symmetry properties and conservation laws

  8. Multiple-Input Multiple-Output OFDM with Index Modulation

    OpenAIRE

    Basar, Ertugrul

    2015-01-01

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel multicarrier transmission technique which has been proposed as an alternative to classical OFDM. The main idea of OFDM-IM is the use of the indices of the active subcarriers in an OFDM system as an additional source of information. In this work, we propose multiple-input multiple-output OFDM-IM (MIMO-OFDM-IM) scheme by combining OFDM-IM and MIMO transmission techniques. The low complexity transceiver structu...

  9. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  10. Matter fields in curved space-time

    International Nuclear Information System (INIS)

    Viet, Nguyen Ai; Wali, Kameshwar C.

    2000-01-01

    We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions

  11. On the differentiability of space-time

    International Nuclear Information System (INIS)

    Clarke, C.J.S.

    1977-01-01

    It is shown that the differentiability of a space-time is implied by that of its Riemann tensor, assuming a priori only boundedness of the first derivations of the metric. Consequently all the results on space-time singularities proved in earlier papers by the author hold true in C 2- space-times. (author)

  12. Photonic layer security in fiber-optic networks and optical OFDM transmission

    Science.gov (United States)

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  13. Analysis of Paper reduction schemes to develop selection criteria for ofdm signals

    International Nuclear Information System (INIS)

    Abro, F.R.

    2015-01-01

    This paper presents a review of different PAPR (Peak to Average Power Ratio) reduction schemes of OFDM (Orthogonal Frequency Division Multiplexing) signals. The schemes that have been considered include Clipping and Filtering, Coding, ACE (Active Contstellation Extension), SLM (Selected Mapping), PTS (Partial Transmit Sequence), TI (Tone Injection) and TR (Tone Reservation). A comparative analysis has been carried out qualitatively. It has been demonstrated how these schemes can be combined with MIMO (Multiple Input Multiple Output) technologies. Finally, criteria for selection of PAPR reduction schemes of OFDM systems are discussed. (author)

  14. MAI-free performance of PMU-OFDM transceiver in time-variant environment

    Science.gov (United States)

    Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.

    2005-06-01

    An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.

  15. The science of space-time

    International Nuclear Information System (INIS)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  16. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  17. Possibility of extending space-time coordinates

    International Nuclear Information System (INIS)

    Wang Yongcheng.

    1993-11-01

    It has been shown that one coordinate system can describe a whole space-time region except some supersurfaces on which there are coordinate singularities. The conditions of extending a coordinate from real field to complex field are studied. It has been shown that many-valued coordinate transformations may help us to extend space-time regions and many-valued metric functions may make one coordinate region to describe more than one space-time regions. (author). 11 refs

  18. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  19. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  20. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  1. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  2. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  3. Weighted OFDM for wireless multipath channels

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Nikookar, H.

    2000-01-01

    In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...

  4. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  5. Space-time and matter in 'prephysics'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1985-05-01

    Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)

  6. Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in OFDM Based Broadband Wireless Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Rahman, Muhammad Imadur; Wang, Yuanye

    2007-01-01

    In orthogonal frequency division multiplexing (OFDM) systems, there are several degrees of freedom in time and frequency domain, such as, sub-band size, forward error control coding (FEC) rate, modulation order, power level, modulation adaptation interval, coding rate adaptation interval and powe...... of the link parameters based on the channel conditions would lead to highly complex systems with high overhead. Hybrid strategies to vary the adaptation rates to tradeoff achievable efficiency and complexity are presented in this work....

  7. OFDM concepts for future communication systems

    CERN Document Server

    Rohling, Hermann

    2011-01-01

    The Orthogonal Frequency Division Multiplexing (OFDM) digital transmission technique has advantages in broadcast and mobile communications applications. This book gives a good insight into these, and provides an overview of the scientific progress.

  8. The order axiom and the biological space time

    International Nuclear Information System (INIS)

    Vu Huu Nhu

    2014-01-01

    This work focuses on the field of Biological Space - Time. In fact the conception of Biological Space - Time is connected with order character of sets. Because the illustration of order axioms is very important for searching order systems. In this work, the new form of order axioms has been illustrated in the form of (a,b) ≠ (b.a). It is a common form of Descartes product. Based on this we suggest the following formation of order lemma (a.b) ≠(b.a)↔ a Φ b. In this case Φ is an order relation. From the new form of order axiom, we determine the order system as follows: If S = (a,b) the set of two elements and the order axiom (a.b) ≠ (b.a) is satisfied. So that, in this case, S is called an order system. The life system are the most important order systems. We could illustrate the biological system as: S = (A, T, G, C). In this set, A, T, G, C are the elements of the genetic code and the order axiom is satisfied. As we know, for example, in genetic code: (AUG) ≠ (UGA) ≠ (UAG). The order biological system induces an order relation and it is the origin of the conception of Biological Space Time. The students of Physics and Biology could use this book as basic course for studies of Biological Space Time. (author)

  9. Hyperbolic statics in space-time

    OpenAIRE

    Pavlov, Dmitry; Kokarev, Sergey

    2014-01-01

    Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...

  10. Semiclassical expanding discrete space-times

    International Nuclear Information System (INIS)

    Cobb, W.K.; Smalley, L.L.

    1981-01-01

    Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)

  11. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  12. An approach enabling adaptive FEC for OFDM in fiber-VLLC system

    Science.gov (United States)

    Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin

    2017-12-01

    In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.

  13. Synchronization of OFDM at low SNR over an AWGN channel

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Dimitrova, D.C.; Blom, K.C.H.; Meratnia, Nirvana

    2011-01-01

    This paper is based on Extended Symbol OFDM (ES-OFDM) where symbols are extended in time. This way ES-OFDM can operate at low SNR. Each doubling of the symbol length improves the SNR performance by 3 dB in case of a coherent receiver. One of the basic questions is how to synchronize to signals far

  14. A Processing Technique for OFDM-Modulated Wideband Radar Signals

    NARCIS (Netherlands)

    Tigrek, R.F.

    2010-01-01

    The orthogonal frequency division multiplexing (OFDM) is a multicarrier spread-spectrum technique which finds wide-spread use in communications. The OFDM pulse compression method that utilizes an OFDM communication signal for radar tasks has been developed and reported in this dissertation. Using

  15. MEST- avoid next extinction by a space-time effect

    Science.gov (United States)

    Cao, Dayong

    2013-03-01

    Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA

  16. Twistor Cosmology and Quantum Space-Time

    International Nuclear Information System (INIS)

    Brody, D.C.; Hughston, L.P.

    2005-01-01

    The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a

  17. Space-time neutronic analysis of postulated LOCA's in CANDU reactors

    International Nuclear Information System (INIS)

    Luxat, J.C.; Frescura, G.M.

    1978-01-01

    Space-time neutronic behaviour of CANDU reactors is of importance in the analysis and design of reactor safety systems. A methodology has been developed for simulating CANDU space-time neutronics with application to the analysis of postulated LOCA'S. The approach involves the efficient use of a set of computer codes which provide a capability to perform simulations ranging from detailed, accurate 3-dimensional space-time to low-cost survey calculations using point kinetics with some ''effective'' spatial content. A new, space-time kinetics code based upon a modal expansion approach is described. This code provides an inexpensive and relatively accurate scoping tool for detailed 3-dimensional space-time simulations. (author)

  18. Minkowski space-time is locally extendible

    International Nuclear Information System (INIS)

    Beem, J.K.

    1980-01-01

    An example of a real analytic local extension of Minkowski space-time is given in this note. This local extension is not across points of the b-boundary since Minkowski space-time has an empty b-boundary. Furthermore, this local extension is not across points of the causal boundary. The example indicates that the concept of local inextendibility may be less useful than originally envisioned. (orig.)

  19. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  20. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  1. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  2. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  3. Coding space-time stimulus dynamics in auditory brain maps

    Directory of Open Access Journals (Sweden)

    Yunyan eWang

    2014-04-01

    Full Text Available Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl’s midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.

  4. Transmission of Voice Signal: BER Performance Analysis of Different FEC Schemes Based OFDM System over Various Channels

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Reza, Md. Selim; Islam, Md. Matiqul; Shams, Rifat Ara; Masum, Saleh; Ullah, Sheikh Enayet

    2012-01-01

    In this paper, we investigate the impact of Forward Error Correction (FEC) codes namely Cyclic Redundancy Code and Convolution Code on the performance of OFDM wireless communication system for speech signal transmission over both AWGN and fading (Rayleigh and Rician) channels in term of Bit Error Probability. The simulation has been done in conjunction with QPSK digital modulation and compared with uncoded resultstal modulation. In the fading channels, it is found via computer simulation that...

  5. DFT-based offset-QAM OFDM for optical communications.

    Science.gov (United States)

    Zhao, Jian

    2014-01-13

    We experimentally demonstrate and numerically investigate a discrete-Fourier-transform (DFT) based offset quadrature-amplitude-modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) system. We investigate the scheme using a set of square-root-raised-cosine functions and a set of super-Gaussian functions as signal spectra. It is shown that offset-QAM OFDM exhibits negligible penalty for all investigated spectra, in contrast to rectangular-function based Nyquist FDM (N-FDM) and sinc-function based conventional OFDM (C-OFDM). The required guard interval (GI) length for dispersion compensation in offset-QAM OFDM is analyzed and shown to scale with twice the subcarrier spacing rather than the full OFDM bandwidth. Experimental results show that 38-Gb/s offset-16QAM OFDM supports 600-km fiber transmission with negligible penalty in the absence of GI while a GI length of eight is required in C-OFDM. Further numerical simulations show that by avoiding the GI, 112-Gb/s polarization multiplexed offset-4QAM OFDM can achieve 23% increase in net data rate over C-OFDM under the same transmission reach. We also discuss the design of the pulse-shaping filter in the DFT-based implementation and show that when compared to N-FDM, the required memory length of the filter for pulse shaping can be reduced from 60 to 2 in offset-QAM OFDM regardless of the fiber length.

  6. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  7. HRR Profiling on Integrated Radar-Communication Systems Using OFDM-PCSF Signals

    Directory of Open Access Journals (Sweden)

    Xuanxuan Tian

    2017-01-01

    Full Text Available In order to improve both the transmission data rate and the range resolution simultaneously in integrated radar-communication (RadCom systems, orthogonal frequency-division multiplexing with phase-coded and stepped-frequency (OFDM-PCSF waveform is proposed. A corresponding high resolution range (HRR profile generation method is also presented. We first perform OFDM-PCSF waveform design by combining the intrapulse phase coding with the interpulse stepped-frequency modulation. We then give the ambiguity function (AF based on the presented waveforms. Then, the synthetic range profile (SRP processing to achieve HRR performance is analyzed. Theoretical analysis and simulation results show that the proposed methods can achieve HRR profiles of the targets and high data rate transmissions, while a relative low computational complexity can be achieved.

  8. Interference Cancellation Using Space-Time Processing and Precoding Design

    CERN Document Server

    Li, Feng

    2013-01-01

    Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available.   This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method.   Dr. Feng Li is a scientific researcher at Cornell University.

  9. Statistical geometry and space-time

    International Nuclear Information System (INIS)

    Grauert, H.

    1976-01-01

    In this paper I try to construct a mathematical tool by which the full structure of Lorentz geometry to space time can be given, but beyond that the background - to speak pictorially - the subsoil for electromagnetic and matter waves, too. The tool could be useful to describe the connections between various particles, electromagnetism and gravity and to compute observables which were not theoretically related, up to now. Moreover, the tool is simpler than the Riemann tensor: it consists just of a set S of line segments in space time, briefly speaking. (orig.) [de

  10. Axiomatics of uniform space-time models

    International Nuclear Information System (INIS)

    Levichev, A.V.

    1983-01-01

    The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities

  11. Phase-Shift Cyclic-Delay Diversity for MIMO OFDM Systems

    Directory of Open Access Journals (Sweden)

    Young-Han Nam

    2010-01-01

    Full Text Available Phase-shift cyclic-delay diversity (PS CDD scheme and space-frequency-block-code (SFBC PS CDD are developed for multiple-input-multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems. The proposed PS CDD scheme preserves the diversity advantage of traditional CDD in uncorrelated multiantenna channels, and furthermore removes frequency-selective nulling problem of the traditional CDD in correlated multiantenna channels.

  12. Modulación por multiportadoras tipo OFDM, las bases de la nueva generación de transmisión de información

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ramírez Behaine

    2006-07-01

    Full Text Available Las proyecciones de demanda del servicio de banda ancha muestran un crecimiento vertiginoso en las próximas décadas. El esquema de modulación que soporta el nivel físico de tales servicios es el de multiplexión por división de frecuencias ortogonales (OFDM que, gracias a sus características ortogonales, logran sobrepasar las barreras de transmisión impuestas por los canales de comunicaciones. Después de ilustrar los fundamentos del porqué OFDM logra su cometido, detallando el mapeamiento y modelo de comunicaciones en banda base, las aplicaciones potenciales actuales y futuras de OFDM son indicadas. Se prevé que surja un modelo para las nuevas generaciones, propuestas en espacios concurrentes en tiempo, frecuencia y código.The projections of the demand of broadband services show a vertiginous growth in the next decades. The modulation scheme that supports the physical level of such services is the Orthogonal Frequency-Division Multiplexing (OFDM that thanks to their orthogonal characteristics, overcome the transmission barriers imposed by the communication channels. After illustrating the fundamentals of why OFDM achieves its objective and detailing the mapping and model of communications in base band, the present and future of potential applications of OFDM are indicated. It is likely that a model for the new generations, in which time, frequency and code concur in space, will arise

  13. BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel

    OpenAIRE

    Gebeyehu, Zelalem Hailu; Langat, Philip Kibet; Maina, Ciira Wa

    2018-01-01

    In intensity modulation/direct detection- (IM/DD-) based optical OFDM systems, the requirement of the input signal to be real and positive unipolar imposes a reduction of system performances. Among previously proposed unipolar optical OFDM schemes for optical wireless communications (OWC), asymmetrically clipped optical OFDM (ACO-OFDM) and direct current biased optical OFDM (DCO-OFDM) are the most accepted ones. But those proposed schemes experience either spectral efficiency loss or energy e...

  14. Analog fourier transform channelizer and OFDM receiver

    OpenAIRE

    2007-01-01

    An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...

  15. Derivation of GFDM Based on OFDM Principles

    Energy Technology Data Exchange (ETDEWEB)

    Hussein Moradi; Behrouz Farhang-Boroujeny

    2015-06-01

    This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.

  16. Space-time modeling of timber prices

    Science.gov (United States)

    Mo Zhou; Joseph Buongriorno

    2006-01-01

    A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...

  17. Strings in arbitrary space-time dimensions

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.; Leviant, V.M.

    1988-01-01

    A modified approach to the theory of a quantum string is proposed. A discussion of the gauge fixing of conformal symmetry by means of Kac-Moody algebrae is presented. Virasoro-like operators are introduced to cancel the conformal anomaly in any number of space-time dimensions. The possibility of massless states in the spectrum is pointed out. 18 refs

  18. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  19. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  20. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  2. Quantum space-time and gravitational consequences

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    Relativistic particle dynamics and basic physical quantities for the general theory of gravity are reconstructed from a quantum space-time point of view. An additional force caused by quantum space-time appears in the equation of particle motion, giving rise to a reformulation of the equivalence principle up to values of O(L 2 ), where L is the fundamental length. It turns out that quantum space-time leads to quantization of gravity, i.e. the metric tensor g/sub uv/ (/ZETA/) becomes operator-valued and is not commutative at different points x/sup micro/ and y/sup micro/ in usual space-time on a large scale, and its commutator depending on the ''vielbein'' field (gaugelike graviton field) is proportional to L 2 multiplied by a translationinvariant wave function propagated between points x/sup micro/ and y/sup micro/. In the given scheme, there appears to be an antigravitational effect in the motion of a particle in the gravitational force. This effect depends on the value of particle mass; when a particle is heavy its free-fall time is long compared to that for a light-weight particle. The problem of the change of time scale and the anisotropy of inertia are discussed. From experimental data from testing of the latter effect it follows that L ≤ 10 -22 cm

  3. Special relativity and space-time geometry.

    Science.gov (United States)

    Molski, M.

    An attempt has been made to formulate the special theory of relativity in a space-time that is explicitly absolute and strictly determines the kinematical characteristics of a particle in uniform translational motion. The approach developed is consistent with Einstein's relativity and permits explanation of the inertia phenomenon.

  4. Increase in Multicast OFDM Data Rate in PLC Network using Adaptive LP-OFDM

    OpenAIRE

    Maiga , Ali; Baudais , Jean-Yves; Hélard , Jean-François

    2009-01-01

    ISBN: 978-1-4244-3523-4; International audience; Linear precoding (LP) technique applied to OFDM systems has already proved its ability to significantly increase the system throughput in a powerline communication (PLC) context. In this paper, we propose resource allocation algorithms based on the LP technique to increase the multicast OFDM systems bit rate. The conventional multicast capacity is limited by the user which experiences the worst channel conditions. To increase the multicast bit ...

  5. Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique.

    Science.gov (United States)

    Hu, Xiaofeng; Cao, Pan; Zhang, Liang; Jiang, Lipeng; Su, Yikai

    2014-06-02

    We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

  6. Mach's principle and space-time structure

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)

  7. Topology of classical vacuum space-time

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2007-04-01

    We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)

  8. Adaptive OFDM System Design For Cognitive Radio

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2006-01-01

    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed

  9. Vector mass in curved space-times

    International Nuclear Information System (INIS)

    Maia, M.D.

    The use of the Poincare-symmetry appears to be incompatible with the presence of the gravitational field. The consequent problem of the definition of the mass operator is analysed and an alternative definition based on constant curvature tangent spaces is proposed. In the case where the space-time has no killing vector fields, four independent mass operators can be defined at each point. (Author) [pt

  10. The manifold model for space-time

    International Nuclear Information System (INIS)

    Heller, M.

    1981-01-01

    Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)

  11. Quantum space-time: a review

    International Nuclear Information System (INIS)

    Namsrai, K.

    1988-01-01

    The review presents systematically the results of studies which develop an idea of quantum properties of space-time in the microworld or near exotic objects (black holes, magnetic monopoles and others). On the basis of this idea motion equations of nonrelativistic and relativistic particles are studied. It is shown that introducing concept of quantum space-time at small distances (or near superdense matter) leads to an additional force giving rise to appearance of spiral-like behaviour of a particle along its classical trajectory. Given method is generalized to nonrelativistic quantum mechanics and to motion of a particle in gravitational force. In the latter case, there appears to be an antigravitational effect in the motion of a particle leading to different value of free-fall time (at least for gravitational force of exotic objects) for particles with different masses. Gravitational consequences of quantum space-time and tensor structures of physical quantities are investigated in detail. From experimental data on testing relativity and anisotropy of inertia estimation L ≤ 10 -22 cm on the value of the fundamental length is obtained. (author)

  12. Vacuum polarization on black hole space times

    International Nuclear Information System (INIS)

    Jensen, B.P.

    1985-01-01

    The effects of vacuum polarization in black hole space times are examined. Particular attention is given to the vacuum physics inside the event horizon. The analytic properties of the solutions to the radial wave equation in Schwarzs child space time as functions of argument, frequency, and angular momentum are given. These functions are employed to define the Feynmann Green function (G/sub F/(x,x') for a scalar field subject to the Hartle-Hawking boundary conditions. An examination of the Schwarzschild mode functions near r = 0 is provided. This work is necessary background for a future calculation of 2 > and the quantum stress-energy tensor for small r. Some opinions are given on how this calculation might be performed. A solution of the one-loop Einstein equations for Schwarzs child Anti-deSitter (SAdS) space time is presented, using Page's approximation to the quantum stress tensor. The resulting perturbed metric is shown to be unphysical, as it leads to a system of fields with infinite total energy. This problem is believed to be due to a failure of Page's method in SAdS. Suggestions are given on how one might correct the method

  13. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  14. Implementace OFDM demodulátoru v obvodu FPGA

    OpenAIRE

    Solar, Pavel

    2010-01-01

    Diplomová práce stručně rozebírá princip OFDM modulace, možnosti synchronizace a odhadu frekvenční charakteristiky kanálu v OFDM. Je vytvořen jednoduchý model OFDM systému v programu MATLAB. Kombinací schématického popisu a popisu v jazyce VHDL je vytvořen ve vývojovém prostředí ISE behaviorální popis OFDM demodulátoru pro implementaci do FPGA. The master's thesis briefly analyses the principle of OFDM modulation, possibilities of the synchronization and channel estimation in OFDM. The sim...

  15. Potential of OFDM for next generation optical access

    Science.gov (United States)

    Fritzsche, Daniel; Weis, Erik; Breuer, Dirk

    2011-01-01

    This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.

  16. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  17. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  18. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Science.gov (United States)

    Baudais, Jean-Yves; Crussière, Matthieu

    2007-12-01

    Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.

  19. EFFECTS OF RICIAN FADING ON THE OPERATION OF AERONAUTICAL SATELLITE OFDM CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-06-01

    Full Text Available The aim of this study is to investigate the influence of Rician fading on messages transmission via the aeronautical satellite OFDM channel with adaptive modulation and the development of a method for estimating the parameters of such a channel. Methods: To study the effect of Rician fading on messages transmission via aeronautical satellite OFDM channel with adaptive modulation the original model of the communication channel “Aircraft-Satellite-Ground Station” was built using software package MATLAB Sіmulіnk. The model includes “Aircraft Transmitter”, “Uplink/Downlink Path”, “Satellite Transponder”, and “Ground Station Receiver”. Each modulator block in the modulation bank performs convolutional coding and puncturing using code rates of ½, ²/3, and ¾, data interleaving, BPSK, QPSK, 16-QAM, and 64-QAM modulation. Results: Dependences of Estimated channel SNR on the ratio between the power of the LOS component and the diffuse component, on the downlink gain and delay in the diffuse component for different Doppler spectrum types and Doppler frequency offsets were obtained. A method for estimating the parameters of the satellite channels with fading was proposed. Discussion: The realistic model of aeronautical satellite OFDM link with Rician fading is developed for the first time on a basis of IEEE 802.11a standard and used for channel parameters evaluation. Proposed in this article approach can be considered as a method for estimating parameters of the channel with fading.

  20. Simulasi Teknik Modulasi Ofdm Qpsk Dengan Menggunakan Matlab

    OpenAIRE

    Subrata, Rosalia H; Gozali, Ferrianto

    2015-01-01

    This paper provides a brief explanation of the processing steps involved in Orthogonal Frequency Division Multiplexing (OFDM) with Quadrature Phase Shift Keying (QPSK) modulation technique implemented as a simulation program in MatLab. Input data of the simulation program in the form of random bit stream or text can be selected by users. The process conducted in the simulation is divided into three consecutive steps, processes in the OFDM transmitter, in transmission channel and in the OFDM r...

  1. Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times

    Energy Technology Data Exchange (ETDEWEB)

    Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)

    2017-06-01

    Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.

  2. Experimental demonstration of IDMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Li, Yiwei; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-11-01

    We present interleave division multiple access (IDMA) scheme combined with orthogonal frequency division multiplexing (OFDM) for passive optical network, which offers improved transmission performance and good chromatic dispersion tolerance. The interleavers are employed to separate different users and the generated chips are modulated on OFDM subcarriers. The feasibility of IDMA-OFDM-PON is experimentally verified with a bitrate of 3.3 Gb/s per user. Compared with OFDMA, IDMA-OFDM offers 8 and 6 dB gains in term of receiver sensitivity in the cases of 2 and 4 users, respectively.

  3. Aspects of space-time dualities

    CERN Document Server

    Giveon, Amit

    1996-01-01

    Duality groups of Abelian gauge theories on four manifolds and their reduction to two dimensions are considered. The duality groups include elements that relate different space-times in addition to relating different gauge-coupling matrices. We interpret (some of) such dualities as the geometrical symmetries of compactified theories in higher dimensions. In particular, we consider compactifications of a (self-dual) 2-form in 6-D, and compactifications of a self-dual 4-form in 10-D. Relations with a self-dual superstring in 6-D and with the type IIB superstring are discussed.

  4. Quantum mechanics, stochasticity and space-time

    International Nuclear Information System (INIS)

    Ramanathan, R.

    1986-04-01

    An extended and more rigorous version of a recent proposal for an objective stochastic formulation of quantum mechanics along with its extension to the relativistic case without spin is presented. The relativistic Klein-Gordon equation is shown to be a particular form of the relativistic Kolmogorov-Fokker-Planck equation which is derived from a covariant formulation of the Chapman-Kolmogorov condition. Complexification of probability amplitudes is again achieved only through a conformal rotation of Minkowski space-time M 4 . (author)

  5. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  6. Space-time as a causal set

    International Nuclear Information System (INIS)

    Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.

    1987-01-01

    We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit

  7. Space-Time Discrete KPZ Equation

    Science.gov (United States)

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  8. Space-time of class one

    International Nuclear Information System (INIS)

    Villasenor, R.F.; Bonilla, J.L.L.; Zuniga, G.O.; Matos, T.

    1989-01-01

    The authors study space-times embedded in E 5 (that means, pseudo-euclidean five-dimensional spaces) in the intrinsic rigidity case, i.e., when the second fundamental form b if can be determined by the internal geometry of the four-dimensional Riemannian space R 4 . They write down the Gauss and Codazzi equations determining the local isometric embedding of R 4 in E 5 and give some consequences of it. They prove that when there exists intrinsic rigidity, then b if is a linear combination of the metric and Ricci tensor; it is given some applications for the de Sitter and Einstein models

  9. Finiteness principle and the concept of space-time

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt

  10. Interference Robust Transmission for the Downlink of an OFDM-Based Mobile Communications System

    Directory of Open Access Journals (Sweden)

    Markus Konrad

    2008-01-01

    Full Text Available Radio networks for future mobile communications systems, for example, 3GPP Long-Term Evolution (LTE, are likely to use an orthogonal frequency division multiplexing- (OFDM- based air interface in the downlink with a frequency reuse factor of one to avoid frequency planning. Therefore, system capacity is limited by interference, which is particularly crucial for mobile terminals with a single receive antenna. Nevertheless, next generation mobile communications systems aim at increasing downlink throughput. In this paper, a single antenna interference cancellation (SAIC algorithm is introduced for amplitude-shift keying (ASK modulation schemes in combination with bit-interleaved coded OFDM. By using such a transmission strategy, high gains in comparison to a conventional OFDM transmission with quadrature amplitude modulation (QAM can be achieved. The superior performance of the novel scheme is confirmed by an analytical bit-error probability (BEP analysis of the SAIC receiver for a single interferer, Rayleigh fading, and uncoded transmission. For the practically more relevant multiple interferer case we present an adaptive least-mean-square (LMS and an adaptive recursive least-squares (RLS SAIC algorithm. We show that in particular the RLS approach enables a good tradeoff between performance and complexity and is robust even to multiple interferers.

  11. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  12. On static and radiative space-times

    International Nuclear Information System (INIS)

    Friedrich, H.

    1988-01-01

    The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)

  13. Dirac equation in Kerr space-time

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, B R; Kumar, Arvind [Bombay Univ. (India). Dept. of Physics

    1976-06-01

    The weak-field low-velocity approximation of Dirac equation in Kerr space-time is investigated. The interaction terms admit of an interpretation in terms of a 'dipole-dipole' interaction in addition to coupling of spin with the angular momentum of the rotating source. The gravitational gyro-factor for spin is identified. The charged case (Kerr-Newman) is studied using minimal prescription for electromagnetic coupling in the locally intertial frame and to the leading order the standard electromagnetic gyro-factor is retrieved. A first order perturbation calculation of the shift of the Schwarzchild energy level yields the main interesting result of this work: the anomalous Zeeman splitting of the energy level of a Dirac particle in Kerr metric.

  14. Stochastic space-time and quantum theory

    International Nuclear Information System (INIS)

    Frederick, C.

    1976-01-01

    Much of quantum mechanics may be derived if one adopts a very strong form of Mach's principle such that in the absence of mass, space-time becomes not flat, but stochastic. This is manifested in the metric tensor which is considered to be a collection of stochastic variables. The stochastic-metric assumption is sufficient to generate the spread of the wave packet in empty space. If one further notes that all observations of dynamical variables in the laboratory frame are contravariant components of tensors, and if one assumes that a Lagrangian can be constructed, then one can obtain an explanation of conjugate variables and also a derivation of the uncertainty principle. Finally the superposition of stochastic metrics and the identification of root -g in the four-dimensional invariant volume element root -g dV as the indicator of relative probability yields the phenomenon of interference as will be described for the two-slit experiment

  15. Quantum electrodynamics in curved space-time

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.

    1981-01-01

    The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem

  16. Transceiver Design for Multiband OFDM UWB

    Directory of Open Access Journals (Sweden)

    Leenaerts DMW

    2006-01-01

    Full Text Available Ultra-wideband (UWB is an emerging broadband wireless technology enabling data rates up to Mbps. This paper provides an overview of recent design approaches for several circuit functions that are required for the implementation of multiband OFDM UWB transceivers. A number of transceiver and synthesizer architectures that have been proposed in literature will be reviewed. Although the technology focus will be on CMOS, also some design techniques implemented in BiCMOS technologies will be presented.

  17. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  18. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    Science.gov (United States)

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  19. Applications of Space-Time Duality

    Science.gov (United States)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms

  20. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2006-01-01

    Full Text Available The single-input single-output (SISO orthogonal frequency-division multiplexing (OFDM systems for wireless local area networks (WLAN defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO transceiver designs, that is, the geometric mean decomposition (GMD and the uniform channel decomposition (UCD schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  1. Path integration on space times with symmetry

    International Nuclear Information System (INIS)

    Low, S.G.

    1985-01-01

    Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform

  2. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Vincent Le Nir

    2009-01-01

    Full Text Available A cognitive radio system needs accurate knowledge of the radio spectrum it operates in. Blind modulation recognition techniques have been proposed to discriminate between single-carrier and multicarrier modulations and to estimate their parameters. Some powerful techniques use autocorrelation- and cyclic autocorrelation-based features of the transmitted signal applying to OFDM signals using a Cyclic Prefix time guard interval (CP-OFDM. In this paper, we propose a blind parameter estimation technique based on a power autocorrelation feature applying to OFDM signals using a Zero Padding time guard interval (ZP-OFDM which in particular excludes the use of the autocorrelation- and cyclic autocorrelation-based techniques. The proposed technique leads to an efficient estimation of the symbol duration and zero padding duration in frequency selective channels, and is insensitive to receiver phase and frequency offsets. Simulation results are given for WiMAX and WiMedia signals using realistic Stanford University Interim (SUI and Ultra-Wideband (UWB IEEE 802.15.4a channel models, respectively.

  3. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  4. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  5. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  6. Investigation of PMD in direct-detection optical OFDM with zero padding.

    Science.gov (United States)

    Li, Xiang; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan

    2013-09-09

    We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

  7. New catenated OFDM modulation scheme in zero cross correlation OCDMA at various number of user and effective power

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available This paper proposes an integration of optical Code Division Multiple Access (OCDMA with new catenated Orthogonal Frequency Division Multiplexing (OFDM modulation scheme. This effective combination based on Zero Cross Correlation (ZCC code can enhanced the system capacity and increased spectral efficiency by fully utilizing the available electrical bandwidth. We investigate the performance of the proposed system for various number of user, number of weight and effective power. The performance assessment is carried out by means of the signal to noise ratio (SNR and bit error rate (BER for up to five catenated OFDM bands transmitted simultaneously through optical link at 622 Mbps. More specifically, mathematical expressions for SNR and BER performance are derived. The corresponding numerical results are presented and compared with traditional OCDMA-ZCC system to verified the feasibility of the proposed system. The results show that with OCDMA/catenated-OFDM based on ZCC code provides 86% more number of permissible user for SNR of 15 dB. In addition, this integration provides higher receiver sensitivity; an approximately –22.5 dBm for 20 number of user with 8 number of weight. It is also found that, to accommodate more user, the system requires higher effective power at the receiver.

  8. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions.

    Science.gov (United States)

    Yen, Chih-Ta; Chen, Wen-Bin

    2016-09-07

    Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  9. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2016-09-01

    Full Text Available Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC equalizer element of OFDM integrated with the dispersion compensation fiber (DCF is used in the proposed radio-over-fiber (RoF system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  10. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization.

    Science.gov (United States)

    Chen, Chen; Zhuge, Qunbi; Plant, David V

    2011-04-11

    This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link. © 2011 Optical Society of America

  11. OFDM with Index Modulation for Asynchronous mMTC Networks.

    Science.gov (United States)

    Doğan, Seda; Tusha, Armed; Arslan, Hüseyin

    2018-04-21

    One of the critical missions for next-generation wireless communication systems is to fulfill the high demand for massive Machine-Type Communications (mMTC). In mMTC systems, a sporadic transmission is performed between machine users and base station (BS). Lack of coordination between the users and BS in time destroys orthogonality between the subcarriers, and causes inter-carrier interference (ICI). Therefore, providing services to asynchronous massive machine users is a major challenge for Orthogonal Frequency Division Multiplexing (OFDM). In this study, OFDM with index modulation (OFDM-IM) is proposed as an eligible solution to alleviate ICI caused by asynchronous transmission in uncoordinated mMTC networks. In OFDM-IM, data transmission is performed not only by modulated subcarriers but also by the indices of active subcarriers. Unlike classical OFDM, fractional subcarrier activation leads to less ICI in OFDM-IM technology. A novel subcarrier mapping scheme (SMS) named as Inner Subcarrier Activation is proposed to further alleviate adjacent user interference in asynchronous OFDM-IM-based systems. ISA reduces inter-user interference since it gives more activation priority to inner subcarriers compared with the existing SMS-s. The superiority of the proposed SMS is shown through both theoretical analysis and computer-based simulations in comparison to existing mapping schemes for asynchronous systems.

  12. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  13. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  14. Localization with OFDM signals in 5G systems

    OpenAIRE

    Shahmansoori, Arash

    2017-01-01

    Bibliografia Un aspecto fundamental para el diseño de un sistema OFDM con capacidad para proporcionar posicionamiento y comunicaciones a alta velocidad es encontrar una estrategia óptima para asignar la potencia de las señales de datos y las señales pilotos utilizadas en un sistema OFDM. Previamente, diseños para maximizar la capacidad de transmisión de datos del sistema OFDM se han investigado para el caso de canales de comunicación estáticos. Sin embargo, es lógico considerar variaciones...

  15. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  16. The topology of geodesically complete space-times

    International Nuclear Information System (INIS)

    Lee, C.W.

    1983-01-01

    Two theorems are given on the topology of geodesically complete space-times which satisfy the energy condition. Firstly, the condition that a compact embedded 3-manifold in space-time be dentless is defined in terms of causal structure. Then it is shown that a dentless 3-manifold must separate space-time, and that it must enclose a compact portion of space-time. Further, it is shown that if the dentless 3-manifold is homeomorphic to S 3 then the part of space-time that it encloses must be simply connected. (author)

  17. Frequency offset estimation in OFDM systems using Bayesian filtering

    Science.gov (United States)

    Yu, Yihua

    2011-10-01

    Orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset (CFO) that causes inter-carrier interference (ICI). In this paper, we present two schemes for the CFO estimation, which are based on rejection sampling (RS) and a form of particle filtering (PF) called kernel smoothing technique, respectively. The first scheme is offline estimation, where the observations contained in the OFDM training symbol are treated in the batch mode. The second scheme is online estimation, where the observations in the OFDM training symbol are treated in the sequential manner. Simulations are provided to illustrate the performances of the schemes. Performance comparisons of the two schemes and with other Bayesian methods are provided. Simulation results show that the two schemes are effective when estimating the CFO and can effectively combat the effect of ICI in OFDM systems.

  18. Analytic discrete cosine harmonic wavelet transform based OFDM ...

    Indian Academy of Sciences (India)

    in improving Bit Error Rate (BER) and Peak to Average Power Ratio (PAPR) per- ... as an alternative to Fourier basis has been suggested for multicarrier transmission ..... Ramjee Prasad 2004 OFDM for Wireless Communications Systems.

  19. Impact of Cyclic Prefix length on OFDM system Capacity

    DEFF Research Database (Denmark)

    Rom, Christian; Sørensen, Troels Bundgaard; Mogensen, Preben Elgaard

    2005-01-01

    This paper is a study on the impact of the Cyclic Prefix (CP) length on the downlink Capacity in a base-band synchronized SISO-OFDM context. To measure this impact, the capacity, measured in bits per second per hertz, is chosen as quality parameter. The study shows how the lengthening of the CP......) the useful OFDM symbol duration, 2) the Signal to Noise Ratio (SNR) at the receiver and 3) the channel Power Delay Profile (PDP). Depending on the values of these parameters different optimum CP lengths are obtained. For a system using only one value of CP length we suggest an optimum value to be 4us...... for an OFDM symbol length of 40us and 6us for an OFDM symbol length of 80us....

  20. A Correlating Receiver for OFDM at Low SNR

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    By extending OFDM symbols, acceptable BER performance can be achieved at low SNRs. Two alternative differential receiver architectures are presented, a receiver based on a FX correlator (Fourier transformation before correlation) and based on an XF correlator (correlation before Fourier

  1. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  2. Performance Evaluation of CE-OFDM in PLC Channel

    OpenAIRE

    El ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali

    2011-01-01

    One major drawback associated with an OFDM system is that the transmitter’soutput signal may have a high peak-to-average ratio (PAPR). High levels of PARmay be a limiting factor for power line communication (PLC) where regulatorybodies have fixed the maximum amount of transmit power. To overcome thisproblem, many approaches have been presented in the literature. One potentialsolution for reducing the peak-to-average power ratio (PAPR) in an OFDMsystem is to utilize a constant envelope OFDM (C...

  3. NOMA for Multinumerology OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ayman T. Abusabah

    2018-01-01

    Full Text Available Nonorthogonal multiple access (NOMA is a promising technique which outperforms the traditional multiple access schemes in many aspects. It uses superposition coding (SC to share the available resources among the users and adopts successive interference cancelation (SIC for multiuser detection (MUD. Detection is performed in power domain where fairness can be supported through appropriate power allocation. Since power domain NOMA utilizes SC at the transmitter and SIC at the receiver, users cannot achieve equal rates and experience higher interference. In this paper, a novel NOMA scheme is proposed for multinumerology orthogonal frequency division multiplexing system, that is, different subcarrier spacings. The scheme uses the nature of mixed numerology systems to reduce the constraints associated with the MUD operation. This scheme not only enhances the fairness among the users but improves the bit error rate performance as well. Although the proposed scheme is less spectrally efficient than conventional NOMA schemes, it is still more spectrally efficient than orthogonal multiple access schemes.

  4. Empty space-times with separable Hamilton-Jacobi equation

    International Nuclear Information System (INIS)

    Collinson, C.D.; Fugere, J.

    1977-01-01

    All empty space-times admitting a one-parameter group of motions and in which the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases of such empty space-times exist and the Riemann tensor is found to be either type D or N. The results presented here complete the search for empty space-times with separable Hamilton-Jacobi equation. (author)

  5. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  6. Characterization of spectral compression of OFDM symbols using optical time lenses

    DEFF Research Database (Denmark)

    Røge, Kasper Meldgaard; Guan, Pengyu; Kjøller, Niels-Kristian

    2015-01-01

    We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large.......We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large....

  7. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  8. The impact of FFT size on the performance of a combined OFDM-equalization radio modem

    OpenAIRE

    Armour, SMD; Nix, AR; Bull, DR

    1999-01-01

    Conventional OFDM systems employ a guard interval to combat delay spread distortion of transmitted data. This reduces the efficiency of the OFDM transmission. A combined OFDM-equalization transmission strategy is presented in this paper. This strategy employs an adaptive equalizer to combat delay spread distortion instead of a guard interval. This facilitates the use of very short guard intervals and thus the efficiency of the OFDM transmission is improved. This paper presents the combined OF...

  9. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  10. Black Hole Space-time In Dark Matter Halo

    OpenAIRE

    Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng

    2018-01-01

    For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...

  11. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference...

  12. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.

    Science.gov (United States)

    Morgado, José A P; Fonseca, Daniel; Cartaxo, Adolfo V T

    2011-11-07

    Transmission of coexisting Orthogonal Frequency Division Multiplexing (OFDM)-baseband (BB) and multi-band OFDM-ultra-wideband (UWB) signals along long-reach passive optical networks using directly modulated lasers (DML) is experimentally demonstrated.When optimized modulation indexes are used, bit error ratios not exceeding 5 × 10⁻⁴ can be achieved by all (OFDM-BB and three OFDM-UWB sub-bands) signals for a reach of 100 km of standard single-mode fiber (SSMF) and optical signal-to-noise ratios not lower than 25dB@0.1 nm. It is experimentally shown that, for the SSMF reach of 100km, the optimized performance of coexisting OFDM-BB and OFDM-UWB signals is mainly imposed by the combination of two effects: the SSMF dispersion-induced nonlinear distortion of the OFDM-UWB signals caused by the OFDM-BB and OFDM-UWB signals, and the further degradation of the OFDM-UWB signals with higher frequency, due to the reduced DML bandwidth.

  13. Conserved quantities for stationary Einstein-Maxwell space-times

    International Nuclear Information System (INIS)

    Esposito, F.P.; Witten, L.

    1978-01-01

    It is shown that every stationary Einstein-Maxwell space-time has eight divergence-free vector fields and these are isolated in general form. The vector fields and associated conserved quantities are calculated for several families of space-times. (Auth.)

  14. Quantum space-times in the year 2002

    Indian Academy of Sciences (India)

    These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We find models of quantum space-time like fuzzy 4 on which states cannot be localized, but which fluctuate into other manifolds like CP3.

  15. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  16. Space-time algebra for the generalization of gravitational field

    Indian Academy of Sciences (India)

    The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...

  17. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  18. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  19. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  20. Robust OFDM Timing Synchronisation in Multipath Channels

    Directory of Open Access Journals (Sweden)

    McLaughlin S

    2008-01-01

    Full Text Available Abstract This paper addresses pre-FFT synchronisation for orthogonal frequency division multiplex (OFDM under varying multipath conditions. To ensure the most efficient data transmission possible, there should be no constraints on how much of the cyclic prefix (CP is occupied by intersymbol interference (ISI. Here a solution for timing synchronisation is proposed, that is, robust even when the strongest multipath components are delayed relative to the first arriving paths. In this situation, existing methods perform poorly, whereas the solution proposed uses the derivative of the correlation function and is less sensitive to the channel impulse response. In this paper, synchronisation of a DVB single-frequency network is investigated. A refinement is proposed that uses heuristic rules based on the maxima of the correlation and derivative functions to further reduce the estimate variance. The technique has relevance to broadcast, OFDMA, and WLAN applications, and simulations are presented which compare the method with existing approaches.

  1. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  2. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  3. Stochastic quantization of geometrodynamic curved space-time

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)

  4. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  5. Investigation of spectrally shaped DFTS-OFDM for long haul transmission.

    Science.gov (United States)

    Adhikari, Susmita; Jansen, Sander; Kuschnerov, Maxim; Inan, Beril; Bohn, Marc; Rosenkranz, Werner

    2012-12-10

    DFTS-OFDM has been proposed recently as an alternative to coherent optical OFDM due to its improved transmission performance. This paper proposes spectral shaping for DFTS-OFDM which reduces the PAPR leading to further improvement in nonlinear tolerance. It is shown that for both SSMF and LEAF, the optimized spectrally shaped DFTS-OFDM outperforms DFTS-OFDM for dispersion managed and unmanaged links by ~10.8% and ~6.8%, respectively. The number of bands and the excess bandwidth parameters are also investigated to optimize the transmission performance.

  6. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  7. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  8. Design and analysis of UW-OFDM signals.

    Science.gov (United States)

    Huemer, Mario; Hofbauer, Christian; Onic, Alexander; Huber, Johannes B

    2014-10-01

    Unique word-orthogonal frequency division multiplexing (UW-OFDM) is a novel signaling concept where the guard interval is implemented as a deterministic sequence, the so-called unique word. The UW is generated by introducing a certain level of redundancy in the frequency domain. Different data estimation strategies and the favourable bit error ratio (BER) performance of UW-OFDM, as well as comparisons to competing concepts have already extensively been discussed in previous papers. This work focuses on the different possibilities on how to generate UW-OFDM signals. The optimality of the two-step over the direct approach in systematic UW-OFDM is proved analytically, we present a heuristic algorithm that allows a fast numerical optimization of the redundant subcarrier positions, and we show that our original intuitive approach of spreading the redundant subcarriers in systematically encoded UW-OFDM by minimizing the mean redundant energy is practically also optimum w.r.t. transceiver based cost functions. Finally, we derive closed form approximations of the statistical symbol distributions on individual subcarriers as well as the redundant energy distribution and compare them with numerically found results.

  9. Discrete Multiwavelet Critical-Sampling Transform-Based OFDM System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Sameer A. Dawood

    2015-01-01

    Full Text Available Discrete multiwavelet critical-sampling transform (DMWCST has been proposed instead of fast Fourier transform (FFT in the realization of the orthogonal frequency division multiplexing (OFDM system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM and the traditional FFT-based OFDM (FFT-OFDM over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.

  10. Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems.

    Science.gov (United States)

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2009-09-14

    In this paper, as an attractive alternative to the conventional discrete Fourier transform (DFT) based orthogonal frequency division multiplexing (OFDM), discrete cosine transform (DCT) based OFDM which has certain advantages over its counterpart is studied for optical fiber communications. As is known, laser phase noise is a major impairment to the performance of coherent optical OFDM (CO-OFDM) systems. However, to our knowledge, detailed analysis of phase noise and the corresponding mitigation methods for DCT-based CO-OFDM systems have not been reported yet. To address these issues, we analyze the laser phase noise in the DCT-based CO-OFDM systems, and propose phase noise estimation and mitigation schemes. Numerical results show that the proposal is very effective in suppressing phase noise and could significantly improve the performance of DCT-based CO-OFDM systems.

  11. MIMO-OFDM Chirp Waveform Diversity Design and Implementation Based on Sparse Matrix and Correlation Optimization

    Directory of Open Access Journals (Sweden)

    Wang Wen-qin

    2015-02-01

    Full Text Available The waveforms used in Multiple-Input Multiple-Output (MIMO Synthetic Aperture Radar (SAR should have a large time-bandwidth product and good ambiguity function performance. A scheme to design multiple orthogonal MIMO SAR Orthogonal Frequency Division Multiplexing (OFDM chirp waveforms by combinational sparse matrix and correlation optimization is proposed. First, the problem of MIMO SAR waveform design amounts to the associated design of hopping frequency and amplitudes. Then a iterative exhaustive search algorithm is adopted to optimally design the code matrix with the constraints minimizing the block correlation coefficient of sparse matrix and the sum of cross-correlation peaks. And the amplitudes matrix are adaptively designed by minimizing the cross-correlation peaks with the genetic algorithm. Additionally, the impacts of waveform number, hopping frequency interval and selectable frequency index are also analyzed. The simulation results verify the proposed scheme can design multiple orthogonal large time-bandwidth product OFDM chirp waveforms with low cross-correlation peak and sidelobes and it improves ambiguity performance.

  12. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  13. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  14. A composite model of the space-time and 'colors'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-03-01

    A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)

  15. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  16. Ghost neutrinos as test fields in curved space-time

    International Nuclear Information System (INIS)

    Audretsch, J.

    1976-01-01

    Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)

  17. Quaternion wave equations in curved space-time

    Science.gov (United States)

    Edmonds, J. D., Jr.

    1974-01-01

    The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.

  18. Low Complexity Submatrix Divided MMSE Sparse-SQRD Detection for MIMO-OFDM with ESPAR Antenna Receiver

    Directory of Open Access Journals (Sweden)

    Diego Javier Reinoso Chisaguano

    2013-01-01

    Full Text Available Multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM with an electronically steerable passive array radiator (ESPAR antenna receiver can improve the bit error rate performance and obtains additional diversity gain without increasing the number of Radio Frequency (RF front-end circuits. However, due to the large size of the channel matrix, the computational cost required for the detection process using Vertical-Bell Laboratories Layered Space-Time (V-BLAST detection is too high to be implemented. Using the minimum mean square error sparse-sorted QR decomposition (MMSE sparse-SQRD algorithm for the detection process the average computational cost can be considerably reduced but is still higher compared with a conventional MIMOOFDM system without ESPAR antenna receiver. In this paper, we propose to use a low complexity submatrix divided MMSE sparse-SQRD algorithm for the detection process of MIMOOFDM with ESPAR antenna receiver. The computational cost analysis and simulation results show that on average the proposed scheme can further reduce the computational cost and achieve a complexity comparable to the conventional MIMO-OFDM detection schemes.

  19. Performance Analysis of Long-Reach Coherent Detection OFDM-PON Downstream Transmission Using m-QAM-Mapped OFDM Signal

    Science.gov (United States)

    Pandey, Gaurav; Goel, Aditya

    2017-12-01

    In this paper, orthogonal frequency division multiplexing (OFDM)-passive optical network (PON) downstream transmission is demonstrated over different lengths of fiber at remote node (RN) for different m-QAM (quadrature amplitude modulation)-mapped OFDM signal (m=4, 16, 32 and 64) transmission from the central office (CO) for different data rates (10, 20 30 and 40 Gbps) using coherent detection at the user end or optical network unit (ONU). Investigation is performed with different number of subcarriers (32, 64, 128, 512 and 1,024), back-to-back optical signal-to-noise ratio (OSNR) along with transmitted and received constellation diagrams for m-QAM-mapped coherent OFDM downstream transmission at different speeds over different transmission distances. Received optical power is calculated for different bit error rates (BERs) at different speeds using m-QAM-mapped coherent detection OFDM downstream transmission. No dispersion compensation is utilized in between the fiber span. Simulation results suggest the different lengths and data rates that can be used for different m-QAM-mapped coherent detection OFDM downstream transmission, and the proposed system may be implemented in next-generation high-speed PONs (NG-PONs).

  20. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  1. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  2. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  3. Analysis of Intercarrier Interference Cancellation Scheme in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Nasir Salh Almisbah

    2012-06-01

    Full Text Available Abstract: Orthogonal Frequency Division Multiplexing (OFDM is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. In OFDM systems, the performance is very sensitive to subcarrier frequency errors (offset. This paper shows the analysis and derivations of intercarrier interference (ICI complex gain that used in self-cancellation scheme and its dependence on subcarrier frequency offset. Simulation shows that better improvement in performance is achieved for systems that use this cancellation scheme. Moreover, analysis and simulation show that theoretical carrier-to-interference ratio (CIR for OFDM with cancellation scheme is greater than conventional one by more than 14dB.

  4. Mixing chaos modulations for secure communications in OFDM systems

    Science.gov (United States)

    Seneviratne, Chatura; Leung, Henry

    2017-12-01

    In this paper, we consider a novel chaotic OFDM communication scheme is to improve the physical layer security. By secure communication we refer to physical layer security that provides low probability of detection (LPD)/low probability of intercept (LPI) transmission. A mixture of chaotic modulation schemes is used to generate chaotically modulated symbols for each subcarrier of the OFDM transmitter. At the receiver, different demodulators are combined together for the different modulation schemes for enhanced security. Time domain, frequency domain and statistical randomness tests show that transmit signals are indistinguishable from background noise. BER performance comparison shows that the physical layer security of the proposed scheme comes with a slight performance degradation compared to conventional OFDM communication systems.

  5. Point-like Particles in Fuzzy Space-time

    OpenAIRE

    Francis, Charles

    1999-01-01

    This paper is withdrawn as I am no longer using the term "fuzzy space- time" to describe the uncertainty in co-ordinate systems implicit in quantum logic. Nor am I using the interpretation that quantum logic can be regarded as a special case of fuzzy logic. This is because there are sufficient differences between quantum logic and fuzzy logic that the explanation is confusing. I give an interpretation of quantum logic in "A Theory of Quantum Space-time"

  6. Renormalization of the δ expansion in curved space-time

    International Nuclear Information System (INIS)

    Cho, H.T.

    1991-01-01

    Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered

  7. On the minimum uncertainty of space-time geodesics

    International Nuclear Information System (INIS)

    Diosi, L.; Lukacs, B.

    1989-10-01

    Although various attempts for systematic quantization of the space-time geometry ('gravitation') have appeared, none of them is considered fully consistent or final. Inspired by a construction of Wigner, the quantum relativistic limitations of measuring the metric tensor of a certain space-time were calculated. The result is suggested to be estimate for fluctuations of g ab whose rigorous determination will be a subject of a future relativistic quantum gravity. (author) 11 refs

  8. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  9. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  10. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  11. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  12. Performance Evaluation of CE-OFDM in PLC Channel

    OpenAIRE

    El Ghzaoui Mohammed; Belkadid Jamal; Benbassou Ali

    2011-01-01

    One major drawback associated with an OFDM system is that the transmitter’s output signal may have a high peak-to-average ratio (PAPR). High levels of PAR may be a limiting factor for power line communication (PLC) where regulatory bodies have fixed the maximum amount of transmit power. To overcome this problem, many approaches have been presented in the literature. One potential solution for reducing the peak-to-average power ratio (PAPR) in an OFDM system is to utilize a constant envelope O...

  13. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    The ideal radio waveform for an upcoming 5th Generation (5G) radio access technology should cope with a set of requirements such as limited complexity, good time/frequency localization and simple extension to multi-antenna technologies. This paper discusses the suitability of Orthogonal Frequency...... Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  14. Efficient Load Forecasting Optimized by Fuzzy Programming and OFDM Transmission

    Directory of Open Access Journals (Sweden)

    Sandeep Sachdeva

    2011-01-01

    reduce the error of load forecasting, fuzzy method has been used with Artificial Neural Network (ANN and OFDM transmission is used to get data from outer world and send outputs to outer world accurately and quickly. The error has been reduced to a considerable level in the range of 2-3%. For further reducing the error, Orthogonal Frequency Division Multiplexing (OFDM can be used with Reed-Solomon (RS encoding. Further studies are going on with Fuzzy Regression methods to reduce the error more.

  15. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  16. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    Science.gov (United States)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  17. Evaluation of optical ZP-OFDM transmission performance in multimode fiber links.

    Science.gov (United States)

    Medina, Pau; Almenar, Vicenç; Corral, Juan L

    2014-01-13

    In this paper, the performance of Zero Padding Orthogonal Frequency Division Multiplexing (ZP-OFDM) on intensity modulation-direct detection (IM-DD) multimode fiber (MMF) links is assessed by means of numerical simulations. The performance of ZP-OFDM is compared to classical Cyclic Prefixed form of OFDM (CP-OFDM) which is known to offer a limited performance in terms of symbol recovery in subcarriers suffering severe fading. Simulations results show that ZP-OFDM is able to reach 29 Gbps in 99.5% of all installed MMF links up to 600 meters compared to 14 Gbps for CP-OFDM when a 64 points fast Fourier transform (FFT) size is used. The use of ZP-OFDM makes it possible to increase the link length up to 1200 and 2400 m with a 25 Gbps data rate if the FFT sizes are increased to 128 and 256 points, respectively; whereas the CP-OFDM scheme will offer a maximum data rate of 10 Gbps in both cases. ZP-OFDM can be an alternative to adaptive loading OFDM schemes without the need of a negotiation between transmitter and receiver, reducing the system deployment complexity and increasing the flexibility in scenarios with multiple receivers.

  18. Power Efficiency Improvement in CE-OFDM System With 0 dB IBO for Transmission over PLC Network

    OpenAIRE

    El Ghzaoui Mohammed, Belkadid Jamal, Benbassou Ali & EL Bekkali Moulhim

    2011-01-01

    Orthogonal frequency division multiplexing (OFDM) OFDM has been adopted for high speeddata transmission of multimedia traffic such as HomePlug A/V and Mobile WiMax. However,OFDM also has a drawback of a high PAPR (peak-to-average-power-ratio). Due to this highPAPR amplifier usually does not act in dynamic range. One potential solution for reducing thepeak-to-average power ratio (PAPR) in an OFDM system is to utilize a constant envelopeOFDM (CE-OFDM) system. Furthermore, by utilizing continuou...

  19. Spontaneous symmetry breaking in curved space-time

    International Nuclear Information System (INIS)

    Toms, D.J.

    1982-01-01

    An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)

  20. Beyond peaceful coexistence the emergence of space, time and quantum

    CERN Document Server

    2016-01-01

    Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among establis...

  1. FLRW cosmology in Weyl-integrable space-time

    Energy Technology Data Exchange (ETDEWEB)

    Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  2. A geometric renormalization group in discrete quantum space-time

    International Nuclear Information System (INIS)

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  3. Multidimensional space-time kinetics of a heavy water moderated nuclear reactor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.; Jewell, C.E.

    1980-01-01

    Diffusion theory analysis of a series of multidimensional space-time experiments is appraised in terms of the final experiment of the series. In particular, TRIMHX diffusion calculations were examined for an experiment involving free-fall insertion of a 235 U-bearing rod into a heavy water moderated reactor with a large reflector. The experimental transient flux-tilts were accurately reproduced after cross section adjustments forced agreement between static diffusion calculations and static reactor measurements. The time-dependent features were particularly well modeled, and the bulk of the small discrepancies in space-dependent features should be removable by more refined cross-section adjustments. This experiment concludes a series of space-time experiments that span a wide range of delayed neutron holdback effects. TRIMHX calculations of these experiments demonstrate the accuracy of the modeling employed in the code

  4. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2014-03-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  5. Equation-Method for correcting clipping errors in OFDM signals.

    Science.gov (United States)

    Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry

    2016-01-01

    Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.

  6. Analytic discrete cosine harmonic wavelet transform based OFDM ...

    Indian Academy of Sciences (India)

    ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert transform. ADCHWT has been found to be computationally efficient and very effective in improving ...

  7. A combined spectrum sensing and OFDM demodulation scheme

    NARCIS (Netherlands)

    Heskamp, M.; Slump, Cornelis H.

    2009-01-01

    In this paper we propose a combined signaling and spectrum sensing scheme for cognitive radio that can detect in-band primary users while the networks own signal is active. The signaling scheme uses OFDM with phase shift keying modulated sub-carriers, and the detection scheme measures the deviation

  8. CHANNEL ESTIMATION FOR ZT DFT-s-OFDM

    DEFF Research Database (Denmark)

    2018-01-01

    A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence comprising N samples, N corresponding to the number of used subcarriers. The first Nh...

  9. Extension of the ITU Channel Models for Wideband (OFDM) Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Frederiksen, Frank

    2005-01-01

    for the evaluation of wideband system concepts with frequency dependent characteristics, e.g. frequency domain link adaptation and packet scheduling, both of which are likely to be part of future wideband systems such as based on OFDM. With the suggested procedure the frequency correlation can be kept approximately...

  10. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.; Quadeer, Ahmed Abdul; Caire, Giuseppe

    2014-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  11. OFDM versus Single Carrier: A Realistic Multi-Antenna Comparison

    Directory of Open Access Journals (Sweden)

    Moonen Marc

    2004-01-01

    Full Text Available There is an ongoing discussion in the broadband wireless world about the respective benefits of orthogonal frequency division multiplexing (OFDM and single carrier with frequency domain equalization (SC-FD. SC-FD allows for more relaxed front-end requirements, of which the power amplifier efficiency is very important for battery-driven terminals. OFDM, on the other hand, can yield improved BER performance at low complexity. Both schemes have extensions to multiple antennas to enhance the spectral efficiency and/or the link reliability. Moreover, both schemes have nonlinear versions using decision feedback equalization (DFE to further improve performance of the linear equalizers. In this paper, we compare these high-performance OFDM and SC-FD schemes using multiple antennas and DFE, while also accounting for the power amplifier efficiency. To make a realistic comparison, we also consider most important digital imperfections, such as channel and noise estimation, transmit and receive filtering, clipping and quantization, as well as link layer impact. Our analysis shows that for frequency-selective channels the relative performance impact of the power amplifier is negligible compared to the frequency diversity impact. The higher frequency diversity exploitation of SC-FD allows it to outperform OFDM in most cases. Therefore, SC-FD is a suitable candidate for broadband wireless communication.

  12. Throughput of a MIMO OFDM based WLAN system

    NARCIS (Netherlands)

    Schenk, T.C.W.; Dolmans, G.; Modonesi, I.

    2004-01-01

    In this paper, the system throughput of a wireless local-area-network (WLAN) based on multiple-input multipleoutput orthogonal frequency division multiplexing (MIMO OFDM) is studied. A broadband channel model is derived from indoor channel measurements. This model is used in simulations to evaluate

  13. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  14. Topology and isometries of the de Sitter space-time

    International Nuclear Information System (INIS)

    Mitskevich, N.V.; Senin, Yu.E.

    1982-01-01

    Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology

  15. Holographic analysis of dispersive pupils in space--time optics

    International Nuclear Information System (INIS)

    Calatroni, J.; Vienot, J.C.

    1981-01-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented

  16. The scalar wave equation in a Schwarzschild space-time

    International Nuclear Information System (INIS)

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  17. On signature change in p-adic space-times

    International Nuclear Information System (INIS)

    Dragovic, B.G.

    1991-01-01

    Change of signature by linear coordinate transformations in p-adic space-times is considered. In this paper it is shown that there exists arbitrary change of trivial signature in Q p n for all n ≥ 1 if p ≡ 1 (mod 4). In other cases it is possible to change only even number of the signs of the signature. The authors suggest new concept of signature with respect to distinct quadratic extensions, of Q p . If space-time dimension is restricted to four there is no signature change

  18. On quantization of free fields in stationary space-times

    International Nuclear Information System (INIS)

    Moreno, C.

    1977-01-01

    In Section 1 the structure of the infinite-dimensional Hamiltonian system described by the Klein-Gordon equation (free real scalar field) in stationary space-times with closed space sections, is analysed, an existence and uniqueness theorem is given for the Lichnerowicz distribution kernel G 1 together with its proper Fourier expansion, and the Hilbert spaces of frequency-part solutions defined by means of G 1 are constructed. In Section 2 an analysis, a theorem and a construction similar to the above are formulated for the free real field spin 1, mass m>0, in one kind of static space-times. (Auth.)

  19. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  20. Holographic analysis of dispersive pupils in space--time optics

    Energy Technology Data Exchange (ETDEWEB)

    Calatroni, J.; Vienot, J.C.

    1981-06-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented.

  1. Gauge fields in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1985-01-01

    It is shown that in an algebraically special space-time which admits a congruence of null strings, a source-free gauge field aligned with the congruence is determined by a matrix potential which has to satisfy a second-order differential equation with quadratic nonlinearities. The Einstein--Yang--Mills equations are then reduced to a scalar and two matrix equations. In the case of self-dual gauge fields in a self-dual space-time, the existence of an infinite set of conservation laws, of an associated linear system, and of infinitesimal Baecklund transformations is demonstrated. All the results apply for an arbitrary gauge group

  2. Two theorems on flat space-time gravitational theories

    International Nuclear Information System (INIS)

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  3. Null geodesic deviation II. Conformally flat space--times

    International Nuclear Information System (INIS)

    Peters, P.C.

    1975-01-01

    The equation of geodesic deviation is solved in conformally flat space--time in a covariant manner. The solution is given as an integral equation for general geodesics. The solution is then used to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need to be known in order to find the Green's function for wave equations in curved space--time. A method of null geodesic limits of two-point functions is discussed, and used to find the scalar Green's function as an iterative series

  4. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  5. Performance Analysis of OFDM 60GHz System and SC-FDE 60GHz System

    Directory of Open Access Journals (Sweden)

    Han Xueyan

    2016-01-01

    Full Text Available In this paper, the performance of 60GHz wireless communication system with SC and OFDM is studied, the models of OFDM 60GHz system and SC 60GHz frequency domain equalization (SC-FDE system are established, and the bit error rate (BER performance of OFDM 60GHz system and SC-FDE 60GHz system in 802.15.3c channels is compared. The simulation results show that SC-FDE 60GHz system has a slight advantage over OFDM system in line-of-sight (LOS channels, while OFDM 60GHz system has a slight advantage over SC-FDE system in non-line-of-sight (NLOS channels. For 60GHz system, OFDM 60GHz system has a slight advantage over SC-FDE system in overcoming multipath fading, but the performance of both is close whether in the LOS or NLOS case.

  6. ON THE PAPR REDUCTION IN OFDM SYSTEMS: A NOVEL ZCT PRECODING BASED SLM TECHNIQUE

    Directory of Open Access Journals (Sweden)

    VARUN JEOTI

    2011-06-01

    Full Text Available High Peak to Average Power Ratio (PAPR reduction is still an important challenge in Orthogonal Frequency Division Multiplexing (OFDM systems. In this paper, we propose a novel Zadoff-Chu matrix Transform (ZCT precoding based Selected Mapping (SLM technique for PAPR reduction in OFDM systems. This technique is based on precoding the constellation symbols with ZCT precoder after the multiplication of phase rotation factor and before the Inverse Fast Fourier Transform (IFFT in the SLM based OFDM (SLM-OFDM Systems. Computer simulation results show that, the proposed technique can reduce PAPR up to 5.2 dB for N=64 (System subcarriers and V=16 (Dissimilar phase sequences, at clip rate of 10-3. Additionally, ZCT based SLM-OFDM (ZCT-SLM-OFDM systems also take advantage of frequency variations of the communication channel and can also offer substantial performance gain in fading multipath channels.

  7. Outage Performance of Flexible OFDM Schemes in Packet-Switched Transmissions

    Directory of Open Access Journals (Sweden)

    Romain Couillet

    2009-01-01

    Full Text Available α-OFDM, a generalization of the OFDM modulation, is proposed. This new modulation enhances the outage capacity performance of bursty communications. The α-OFDM scheme is easily implementable as it only requires an additional time symbol rotation after the IDFT stage and a subsequent phase rotation of the cyclic prefix. The physical effect of the induced rotation is to slide the DFT window over the frequency spectrum. When successively used with different angles α at the symbol rate, α-OFDM provides frequency diversity in block fading channels. Interestingly, simulation results show a substantial gain in terms of outage capacity and outage BER in comparison with classical OFDM modulation schemes. The framework is extended to multiantenna and multicellular OFDM-based standards. Practical simulations, in the context of 3GPP-LTE, called hereafter α-LTE, sustain our theoretical claims.

  8. Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems.

    Science.gov (United States)

    Chen, Xi; Li, An; Gao, Guanjun; Shieh, William

    2011-12-19

    In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.

  9. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time

  10. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  11. Spectrally-Precoded OFDM for 5G Wideband Operation in Fragmented sub-6GHz Spectrum

    OpenAIRE

    Pitaval, Renaud-Alexandre; Popović, Branislav M.; Mohamad, Medhat; Nilsson, Rickard; van de Beek, Jaap

    2016-01-01

    We consider spectrally-precoded OFDM waveforms for 5G wideband transmission in sub-6GHz band. In this densely packed spectrum, a low out-of-band (OOB) waveform is a critical 5G component to achieve the promised high spectral efficiency. By precoding data symbols before OFDM modulation, it is possible to achieve extremely low out-of-band emission with very sharp spectrum transition enabling an efficient and flexible usage of frequency resources. Spectrally-precoded OFDM shows promising results...

  12. Strings reinterpreted as topological elements of space time

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1986-01-01

    In 1974, Scherk and Schwarz suggested a reinterpretation of string dynamics as a theory of quantum gravity with unification. We suggest completing the transition through the reinterpretation of the strings themselves as Feynman-paths, spanning the topology of space time in the Hawking-King-McCarthy model. This explains the emergency of gravity

  13. Projected space-time and varying speed of light

    International Nuclear Information System (INIS)

    Iovane, G.; Bellucci, S.; Benedetto, E.

    2008-01-01

    In this paper starting from El Naschie's Cantorian space-time and our model of projected Universe, we consider its properties in connection with varying speed of light. A possible way-out of the related problem is provided by the Fantappie group approach

  14. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  15. Space-time structure and the origin of physical law

    International Nuclear Information System (INIS)

    Green, M.A.

    1980-01-01

    In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory

  16. Space-time design of the public city

    CERN Document Server

    Thomaier, Susanne; Könecke, Benjamin; Zedda, Roberto; Stabilini, Stefano

    2013-01-01

    Time has become an increasingly important topic in urban studies and urban planning. The spatial-temporal interplay is not only of relevance for the theory of urban development and urban politics, but also for urban planning and governance. The space-time approach focuses on the human being with its various habits and routines in the city. Understanding and taking those habits into account in urban planning and public policies offers a new way to improve the quality of life in our cities. Adapting the supply and accessibility of public spaces and services to the inhabitants’ space-time needs calls for an integrated approach to the physical design of urban space and to the organization of cities. In the last two decades the body of practical and theoretical work on urban space-time topics has grown substantially. The book offers a state of the art overview of the theoretical reasoning, the development of new analytical tools, and practical experience of the space-time design of public cities in major Europea...

  17. Poisson's equation in de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-11-01

    Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.

  18. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  19. Scalar metric fluctuations in space-time matter inflation

    International Nuclear Information System (INIS)

    Anabitarte, Mariano; Bellini, Mauricio

    2006-01-01

    Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: G-bar AB =0, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space-time matter inflation

  20. Zen and the Art of Space-Time Manufacturing

    Directory of Open Access Journals (Sweden)

    Bertolami Orfeu

    2013-09-01

    Full Text Available We present a general discussion about the so-called emergent properties and discuss whether space-time and gravity can be regarded as emergent features of underlying more fundamental structures. Finally, we discuss some ideas about the multiverse, and speculate on how our universe might arise from the multiverse.

  1. The wave equation on a curved space-time

    International Nuclear Information System (INIS)

    Friedlander, F.G.

    1975-01-01

    It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)

  2. Notes on a class of homogeneous space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Reboucas, M.J.; Teixeira, A.F.F.; Silva Junior, W.M.

    1987-01-01

    The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas-Tiomno (RT) study is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained extending previous works on the RT geometry. (Author) [pt

  3. The space-time of dark-matter

    International Nuclear Information System (INIS)

    Dey, Dipanjan

    2015-01-01

    Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)

  4. Space-times carrying a quasirecurrent pairing of vector fields

    International Nuclear Information System (INIS)

    Rosca, R.; Ianus, S.

    1977-01-01

    A quasirecurrent pairing of vector fields(X 1 ,X 2 ,) defined previously by Rosca (C.R. Acad. Sci. 282 (1976)) is investigated on a space-time in two cases: (1) X 1 is spacelike and X 2 is timelike; (2) X 1 is null and X 2 is spacelike. The physical interpretation of these vector fields is given. (author)

  5. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  6. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  7. Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels

    National Research Council Canada - National Science Library

    Count, Patrick

    2001-01-01

    In an effort to offer faster, more reliable wireless communications services to the public, many wireless standardization committees have, in recent years, adopted Orthogonal Frequency Division Multiplexing (OFDM...

  8. Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Wang, Wei; Zhuge, Qunbi; Gao, Yuliang; Qiu, Meng; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Plant, David V

    2014-07-28

    We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

  9. The robustness of subcarrier-index modulation in 16-QAM CO-OFDM system with 1024-point FFT.

    Science.gov (United States)

    Jan, Omar H A; Sandel, David; Puntsri, Kidsanapong; Al-Bermani, Ali; El-Darawy, Mohamed; Noé, Reinhold

    2012-12-17

    We present in numerical simulations the robustness of subcarrier index modulation (SIM) OFDM to combat laser phase noise. The ability of using DFB lasers with SIM-OFDM in 16-QAM CO-OFDM system with 1024-point FFT has been verified. Although SIM-OFDM has lower spectral efficiency compared to the conventional CO-OFDM system, it is a good candidate for 16-QAM CO-OFDM system with 1024-point FFT which uses a DFB laser of 1 MHz linewidth. In addition, we show the tolerance of SIM-OFDM for mitigation of fiber nonlinearities in long-haul CO-OFDM system. The simulation results show a significant penalty reduction, essentially that due to SPM.

  10. OFDM techniques for narrow-band power line communications; OFDM-Verfahren fuer die schmalbandige Datenuebertragung im elektrischen Energieversorgungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Martin

    2012-07-01

    In Power Line Communications (PLC) the power distribution grid is modelled by a frequency-selective time-variant channel. Therefore, OFDM techniques are suited very well for this application since they equalize the frequency-selective behaviour in a simple fashion. For narrow-band PLC, where only little amounts of data are to be transmitted, it is advantageous to employ a non-coherent system that does not need a training sequence for channel estimation. Such type of system can be brought up with CyclicPrefix OFDM in combination with Differential Phase-Shift Keying (DPSK). In an alternative, Unique-Word OFDM, the guard interval is not filled by a cyclic prefix, but a ''unique word'', which can be deployed for channel estimation. However, there is a loss in signal-to-noise power ratio due to the special type of signal generation. This loss can be more than regained in principle, but only by applying expensive detection. Another interesting technique is Wavelet-OFDM as its transmit spectrum can be formed outstandingly because of extended transmit pulses. This implies a large overhead when short packets of data are transmitted - additionally to a training sequence, for non-coherent detection is not possible. Cyclic-Prefix OFDM and DPSK are the basis of the Physical Layers of the PLC systems ''PLC G3'' and ''PRIME''. Comparing their specifications and analyzing simulation results ''PLC G3'' turns out to be the more reliable system. In order to equalize the time-variant behaviour of the power line channel, linear equalization and Multiple Symbol Differential Detection is studied as well as algorithms to estimate the time-variant envelope. (orig.)

  11. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  12. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    Science.gov (United States)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  13. Trajectory data analyses for pedestrian space-time activity study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-25

    It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an

  14. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    of land, the 4 digit postal code area or neighbourhood of a persons' home, circular areas around the home, and spatial probability distributions of space-time paths during commuting. Personal exposure was estimated by averaging concentrations over these space-time paths, for each individual in a cohort. Preliminary results show considerable differences of a persons' exposure using these various approaches of space-time path aggregation, presumably because air pollution shows large variation over short distances.

  15. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  16. Space-time modeling of electricity spot prices

    DEFF Research Database (Denmark)

    Abate, Girum Dagnachew; Haldrup, Niels

    In this paper we derive a space-time model for electricity spot prices. A general spatial Durbin model that incorporates the temporal as well as spatial lags of spot prices is presented. Joint modeling of space-time effects is necessarily important when prices and loads are determined in a network...... in the spot price dynamics. Estimation of the spatial Durbin model show that the spatial lag variable is as important as the temporal lag variable in describing the spot price dynamics. We use the partial derivatives impact approach to decompose the price impacts into direct and indirect effects and we show...... that price effects transmit to neighboring markets and decline with distance. In order to examine the evolution of the spatial correlation over time, a time varying parameters spot price spatial Durbin model is estimated using recursive estimation. It is found that the spatial correlation within the Nord...

  17. The Verriest Lecture: Color lessons from space, time, and motion

    Science.gov (United States)

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  18. Convexity and the Euclidean Metric of Space-Time

    Directory of Open Access Journals (Sweden)

    Nikolaos Kalogeropoulos

    2017-02-01

    Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.

  19. Spinors, superalgebras and the signature of space-time

    CERN Document Server

    Ferrara, S.

    2001-01-01

    Superconformal algebras embedding space-time in any dimension and signature are considered. Different real forms of the $R$-symmetries arise both for usual space-time signature (one time) and for Euclidean or exotic signatures (more than one times). Application of these superalgebras are found in the context of supergravities with 32 supersymmetries, in any dimension $D \\leq 11$. These theories are related to $D = 11, M, M^*$ and $M^\\prime$ theories or $D = 10$, IIB, IIB$^*$ theories when compactified on Lorentzian tori. All dimensionally reduced theories fall in three distinct phases specified by the number of (128 bosonic) positive and negative norm states: $(n^+,n^-) = (128,0), (64,64), (72,56)$.

  20. Pre-Big Bang, space-time structure, asymptotic Universe

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of

  1. Optical Properties of Quantum Vacuum. Space-Time Engineering

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  2. A comparison between space-time video descriptors

    Science.gov (United States)

    Costantini, Luca; Capodiferro, Licia; Neri, Alessandro

    2013-02-01

    The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.

  3. Quantum gravity effects in Myers-Perry space-times

    International Nuclear Information System (INIS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-01-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions

  4. Individuation in Quantum Mechanics and Space-Time

    Science.gov (United States)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  5. Nuclear disassembly time scales using space time correlations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others

    1996-09-01

    The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.

  6. Scalable space-time adaptive simulation tools for computational electrocardiology

    OpenAIRE

    Krause, Dorian; Krause, Rolf

    2013-01-01

    This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...

  7. String dynamics in curved space-time revisited

    International Nuclear Information System (INIS)

    Marrakchi, A.L.; Singh, L.P.

    1989-09-01

    The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs

  8. On fractal space-time and fractional calculus

    Directory of Open Access Journals (Sweden)

    Hu Yue

    2016-01-01

    Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.

  9. Semianalytic Solution of Space-Time Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.

  10. Detecting space-time cancer clusters using residential histories

    Science.gov (United States)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  11. The Dirac equation in the Lobachevsky space-time

    International Nuclear Information System (INIS)

    Paramonov, D.V.; Paramonova, N.N.; Shavokhina, N.S.

    2000-01-01

    The product of the Lobachevsky space and the time axis is termed the Lobachevsky space-time. The Lobachevsky space is considered as a hyperboloid's sheet in the four-dimensional pseudo-Euclidean space. The Dirac-Fock-Ivanenko equation is reduced to the Dirac equation in two special forms by passing from Lame basis in the Lobachevsky space to the Cartesian basis in the enveloping pseudo-Euclidean space

  12. Nuclear disassembly time scales using space time correlations

    International Nuclear Information System (INIS)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.

    1996-01-01

    The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)

  13. Mass Formulae for Broken Supersymmetry in Curved Space-Time

    CERN Document Server

    Ferrara, Sergio

    2016-01-01

    We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.

  14. The energy-momentum operator in curved space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1983-01-01

    It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)

  15. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  16. Quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Najmi, A.-H.

    1982-09-01

    The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)

  17. Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times

    International Nuclear Information System (INIS)

    Moradi, Shahpoor; Amiri, Firouz

    2016-01-01

    We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)

  18. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  19. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2016-01-01

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  20. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying

    2016-01-28

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  1. Geodesics in Goedel-type space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Soares, I.D.; Tiomno, J.

    1988-01-01

    The geodesic curves of the homogeneous Goedel-type space-times, which constitute a two-parameter ({ l and Ω}) class of solutions presented to several theories of gravitation (general relativity, Einstein-Cartan and higher derivative) are investigated. The qualitative properties of those curves by means of the introduction of an effective potential and then accomplish the analytical integration of the equations of motion are examined. It is shown that some of the qualitative features of the free motion in Godel's universe (l 2 =2Ω 2 ) are preserved in all space-times, namely the projections of the geodesics onto the 2-surface (r,ψ) are simple closed curves, and the geodesics for which the ratio of azymuthal angular momentum to total energy, υ is equal to zero always cross the origin r = o. However, two new cases appear: (i) radially unbounded geodesics with υ assuming any (real) value, which may occur only for the causal space-times (l 2 ≥ 4 Ω 2 ), and (ii) geodesics with υ bounded both below and above, which always occur for the circular family (l 2 [pt

  2. Experimental Constraints of the Exotic Shearing of Space-Time

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Jonathan William [Univ. of Chicago, IL (United States)

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.

  3. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  4. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Makoto Yoshida

    2009-01-01

    Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  5. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Robust Preamble-Based Timing Synchronization for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2017-01-01

    Full Text Available This study presents a novel preamble-based timing offset estimation method for orthogonal frequency division multiplexing (OFDM systems. The proposed method is robust, immune to the carrier frequency offset (CFO, and independent of the structure of the preamble. The performance of the new method is demonstrated in terms of mean square error (MSE obtained by simulation in multipath fading channels. The results indicate that the new method significantly improves timing performance in comparison with existing methods.

  7. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  8. A low complexity VBLAST OFDM detection algorithm for wireless LAN systems

    NARCIS (Netherlands)

    Wu, Y.; Lei, Zhongding; Sun, Sumei

    2004-01-01

    A low complexity detection algorithm for VBLAST OFDM system is presented. Using the fact that the correlation among neighboring subcarriers is high for wireless LAN channels, this algorithm significantly reduces the complexity of VBLAST OFDM detection. The performance degradation of the proposed

  9. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Deng, Lei; Pang, Xiaodan

    2011-01-01

    We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64...

  10. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spe...

  11. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  12. Crest Factor Reduction for OFDM Using Selective Subcarrier Degradation

    Institute of Scientific and Technical Information of China (English)

    R. Neil Braithwaite

    2011-01-01

    This paper describes a crest factor reduction (CFR) method that reduces peaks in the time domain by modifying selected data subcarriers within an OFDM signal. The data subcarriers selected for modification vary with each symbol interval and are limited to those subcarriers whose aata elements are mapped onto the outer boundary of the constellation. In the proposed method, a set of peaks are identified within an OFDM symbol interval. Data subcarriers whose data element has a positive or negative correlation with the set peak are selected. For a subcarrier with an outer element and a significant positive correlation, a bit error (reversal) is intentionally introduced. This moves the data element to the opposite side of the constellation. Outer elements on negatively-correlatea subcarriers are increased in magnitude along the real or imaginary axis. Experimental results show that selecting the correct subcarriers for bit reversals and outward enhancements reduces the peak-to-average power ratio (PAPR) of the OFDM signal to a target value and limits in-band degradation measured by bit error rate (BER) and error vector magnitude (EVM).

  13. Super-Orthogonal Space-Time Turbo Transmit Diversity for CDMA

    Directory of Open Access Journals (Sweden)

    Pieter G. W. van Rooyen

    2005-05-01

    Full Text Available Studies have shown that transmit and receive diversity employing a combination of multiple transmit-receive antennas (given ideal channel state information (CSI and independent fading between antenna pairs will potentially yield maximum achievable system capacity. In this paper, the concept of a layered super-orthogonal turbo transmit diversity (SOTTD for downlink direct-sequence code-division multiple-access (CDMA systems is explored. This open-loop transmit diversity technique improves the downlink performance by using a small number of antenna elements at the base station and a single antenna at the handset. In the proposed technique, low-rate super-orthogonal code-spread CDMA is married with code-division transmit diversity (CDTD. At the mobile receiver, space-time (ST RAKE CDTD processing is combined with iterative turbo code-spread decoding to yield large ST gains. The performance of the SOTTD system is compared with single- and multiantenna turbo-coded (TC CDTD systems evaluated over a frequency-selective Rayleigh fading channel. The evaluation is done both by means of analysis and computer simulations. The performance results illustrate the superior performance of SOTTD compared to TC CDTD systems over practically the complete useful capacity range of CDMA. It is shown that the performance degradation characteristic of TC CDTD at low system loads (due to the inherent TC error floor is alleviated by the SOTTD system.

  14. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  15. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  16. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    Directory of Open Access Journals (Sweden)

    Xiaoming Chen

    2017-01-01

    Full Text Available The effects of oscillator phase noises (PNs on multiple-input multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver can be alleviated by having more transmit (receive antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM.

  17. Re-examination of globally flat space-time.

    Directory of Open Access Journals (Sweden)

    Michael R Feldman

    Full Text Available In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

  18. QCD-instantons and conformal space-time inversion symmetry

    International Nuclear Information System (INIS)

    Klammer, D.

    2008-04-01

    In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)

  19. ADM Mass for Asymptotically de Sitter Space-Time

    International Nuclear Information System (INIS)

    Huang Shiming; Yue Ruihong; Jia Dongyan

    2010-01-01

    In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)

  20. P-adic space-time and string theory

    International Nuclear Information System (INIS)

    Volovich, I.V.

    1987-01-01

    Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given

  1. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  2. Massless fields in curved space-time: The conformal formalism

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1986-01-01

    A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome

  3. Annotated trajectories and the Space-Time-Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2012-01-01

    too, because these have not been adopted to the purpose. A suitable solution to display and study movements is the Space-Time-Cube (STC), the graphic representation of Hägerstrand’s Time Geography. This paper answers the question of how suitable the STC is to display the above describe combination...... of trajectories and annotations to avoid the visual clutter. Although the STC will be described here as a stand-alone solution it is part of a wider geovisual analytics environment and is used next to maps and other graphics to be able to answer user questions. As a case study data set the travel log data...

  4. Evolution in Many-Sheeted Space-time

    OpenAIRE

    Pitkänen, Matti

    2010-01-01

    The topics of the article has been restricted to those, which seem to represent the most well-established ideas about evolution in many-sheeted space-time. a) Basic facts about and TGD based model for pre-biotic evolution are discussed. b) A model for the ATP-ADP process based on DNA as topological quantum computer vision, the identification of universal metabolic energy quanta in terms of zero point kinetic energies, and the notion of remote metabolism is discussed. c) A model f...

  5. Mass formulae for broken supersymmetry in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2016-11-15

    We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  7. A heterotic N=2 string with space-time supersymmetry

    International Nuclear Information System (INIS)

    Bellucci, S.; Galajinsky, A.; Lechtenfeld, O.

    2001-02-01

    It is reconsidered the issue of embedding space-time fermions into the four dimensional N=2 world-sheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N =4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry

  8. The algebraic approach to space-time geometry

    International Nuclear Information System (INIS)

    Heller, M.; Multarzynski, P.; Sasin, W.

    1989-01-01

    A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

  9. Quantum stress tensor in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Howard, K.W.; Candelas, P.

    1984-01-01

    The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking state in Schwartzschild space-time has been calculated for the conformal scalar field. separates naturally into the sum of two terms. The first coincides with an approximate expression suggested by Page. The second term is a ''remainder'' that may be evaluated numerically. The total expression is in good qualitative agreement with Page's approximation. These results are at variance with earlier results given by Fawcett whose error is explained

  10. Space-Time, Phenomenology, and the Picture Theory of Language

    Science.gov (United States)

    Grelland, Hans Herlof

    To estimate Minkowski's introduction of space-time in relativity, the case is made for the view that abstract language and mathematics carries meaning not only by its connections with observation but as pictures of facts. This view is contrasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein's attempt at a conceptual reconstruction of space and time as well as Husserl's analysis of the loss of meaning in science through increasing abstraction is analysed. Wittgenstein's picture theory of language is used to explain how meaning is conveyed by abstract expressions, with the Minkowski space as a case.

  11. A Reparametrization Approach for Dynamic Space-Time Models

    OpenAIRE

    Lee, Hyeyoung; Ghosh, Sujit K.

    2008-01-01

    Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...

  12. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  13. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  14. On quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Hajicek, P.

    1976-01-01

    It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. It is considered a class of such experiments performable at any regular point of any space-time, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas

  15. Mathematical aspects of the discrete space-time hypothesis

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.

    1979-01-01

    A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities

  16. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  17. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Hajicek, P [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1976-06-11

    It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. A class of such experiments performable at any regular point of any space-time is considered, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas.

  18. Founding Gravitation in 4D Euclidean Space-Time Geometry

    International Nuclear Information System (INIS)

    Winkler, Franz-Guenter

    2010-01-01

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  19. Space-time reference with an optical link

    International Nuclear Information System (INIS)

    Berceau, P; Hollberg, L; Taylor, M; Kahn, J

    2016-01-01

    We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ‘frequency-flywheel’ over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed. (paper)

  20. Space, time, and the third dimension (model error)

    Science.gov (United States)

    Moss, Marshall E.

    1979-01-01

    The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.

  1. Brain system for mental orientation in space, time, and person.

    Science.gov (United States)

    Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar

    2015-09-01

    Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.

  2. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  3. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  4. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  5. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2015-01-01

    This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...

  6. Representations of G+++ and the role of space-time

    International Nuclear Information System (INIS)

    Kleinschmidt, A.; West, P.

    2004-01-01

    We consider the decomposition of the adjoint and fundamental representations of very extended Kac-Moody algebras G+++ with respect to their regular A type subalgebra which, in the corresponding non-linear realisation, is associated with gravity. We find that for many very extended algebras almost all the A type representations that occur in the decomposition of the fundamental representations also occur in the adjoint representation of G+++ . In particular, for E 8 +++ , this applies to all its fundamental representations. However, there are some important examples, such as A N-3 +++ , where this is not true and indeed the adjoint representation contains no generator that can be identified with a space-time translation. We comment on the significance of these results for how space-time can occur in the non-linear realisation based on G+++ . Finally we show that there is a correspondence between the A representations that occur in the fundamental representation associated with the very extended node and the adjoint representation of G+++ which is consistent with the interpretation of the former as charges associated with brane solutions. (author)

  7. Relativistic space-time positioning: principles and strategies

    Science.gov (United States)

    Tartaglia, Angelo

    2013-11-01

    Starting from the description of space- time as a curved four-dimensional manifold, null Gaussian coordinates systems as appropriate for relativistic positioning will be discussed. Different approaches and strategies will be reviewed, implementing the null coordinates with both continuous and pulsating electromagnetic signals. In particular, methods based on purely local measurements of proper time intervals between pulses will be expounded and the various possible sources of uncertainty will be analyzed. As sources of pulses both artificial and natural emitters will be considered. The latter will concentrate on either radio- or X ray-emitting pulsars, discussing advantages and drawbacks. As for artificial emitters, various solutions will be presented, from satellites orbiting the Earth to broadcasting devices carried both by spacecrafts and celestial bodies of the solar system. In general the accuracy of the positioning is expected to be limited, besides the instabilities and drift of the sources, by the precision of the local clock, but in any case in long journeys systematic cumulated errors will tend to become dominant. The problem can be kept under control properly using a high level of redundancy in the procedure for the calculation of the coordinates of the receiver and by mixing a number of different and complementary strategies. Finally various possibilities for doing fundamental physics experiments by means of space-time topography techniques will shortly be presented and discussed.

  8. Introducing the Dimensional Continuous Space-Time Theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2013-01-01

    This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.

  9. On the structure of space-time caustics

    International Nuclear Information System (INIS)

    Rosquist, K.

    1983-01-01

    Caustics formed by timelike and null geodesics in a space-time M are investigated. Care is taken to distinguish the conjugate points in the tangent space (T-conjugate points) from conjugate points in the manifold (M-conjugate points). It is shown that most nonspacelike conjugate points are regular, i.e. with all neighbouring conjugate points having the same degree of degeneracy. The regular timelike T-conjugate locus is shown to be a smooth 3-dimensional submanifold of the tangent space. Analogously, the regular null T-conjugate locus is shown to be a smooth 2-dimensional submanifold of the light cone in the tangent space. The smoothness properties of the null caustic are used to show that if an observer sees focusing in all directions, then there will necessarily be a cusp in the caustic. If, in addition, all the null conjugate points have maximal degree of degeneracy (as in the closed Friedmann-Robertson-Walker universes), then the space-time is closed. (orig.)

  10. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  11. The Space-Time Asymmetry Research (STAR) program

    Science.gov (United States)

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment

  12. Recursive evaluation of space-time lattice Green's functions

    International Nuclear Information System (INIS)

    De Hon, Bastiaan P; Arnold, John M

    2012-01-01

    Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly

  13. Military Application of Space-Time Adaptive Processing (Les applications militaires du traitement adaptatif espace-temps)

    Science.gov (United States)

    2003-04-01

    SAR system”, Proc. EUSAR’98, 25-27 May 1998, Friedrichshafen , Ger- many [15] Farina, A., Timmoneri, L., ”Space-time processing for AEW radar”, Proc...98, Friedrichshafen , Germany, 25-27 May 1998. [PSF00] V. Pascazio, G. Schirinzi, A. Farina, “ Along track interferometry by one bit coded SAR signals...airborne multi-channel SAR systems AER II.The air- borne experimental multi-channel SAR system”, Proc. EUSAR’98, 25-27 May 1998, Friedrichshafen , Ger

  14. Study on coupling of three-dimension space time neutron kinetics model and RELAP5 and improvement of RELAP5

    International Nuclear Information System (INIS)

    Gui Xuewen; Cai Qi; Luo Bangqi

    2007-01-01

    A two-group three-dimension space-time neutron kinetics model is applied to the RELAP5 code, which replaces the point reactor kinetics model. A visual operation interface is designed to convenience interactive operation between operator and computer. The calculation results and practical applications indicate that the functions and precision of improved RELAP5 are enhanced and can be easily used. The improved RELAP5 has a good application perspective in nuclear power plant simulation. (authors)

  15. Algebraic Approaches to Space-Time Code Construction for Multiple-Antenna Communication

    OpenAIRE

    Raviteja, U; Sharanappa, I; Vanamali, B; Kumar, Vijay P

    2011-01-01

    A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart fro...

  16. Super-Orthogonal space-time trellis codes for virtual antenna arrays

    CSIR Research Space (South Africa)

    Sokoya, OA

    2006-09-01

    Full Text Available noise samples, each sample with 2 2σ per dimension. It is assume that the channel elements undergo Rayleigh Fading. A EMULATION OF ( tN =2, rN =2) SOSTTC WITH VAA In [15], Hamid et al. presented various example of the SOSTTC scheme...

  17. Some new classes of division algebras and potential applications to space-time block coding

    OpenAIRE

    Steele, Andrew

    2014-01-01

    In this thesis we study some new classes of nonassociative division algebras. First we introduce a generalisation of both associative cyclic algebras and of Waterhouse's nonassociative quaternions. An important aspect of these algebras is the simplicity of their construction, which is a modification of the classical definition of associative cyclic algebras. By taking the parameter used in the classical definition from a larger field, we lose the property of associativity but gain many new ex...

  18. On the Application of Time-Reversed Space-Time Block Code to Aeronautical Telemetry

    Science.gov (United States)

    2014-06-01

    longest channel impulse response must be inserted between the two intervals. Here, such an interval is assumed, although we won’t complicate the notation...linear or non-linear, with or without noise whitening ) with the usual performance- complexity tradeoffs. Here, we apply the approximate MMSE

  19. Space time frequency (STF) code tensor for the characterization of the epileptic preictal stage.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Dourado, António

    2012-01-01

    We evaluate the ability of multiway models to characterize the epileptic preictal period. The understanding of the characteristics of the period prior to the seizure onset is a decisive step towards the development of seizure prediction frameworks. Multiway models of EEG segments already demonstrated that hidden structures may be unveiled using tensor decomposition techniques. We propose a novel approach using a multiway model, Parallel Factor Analysis (PARAFAC), to identify spatial, temporal and spectral signatures of the preictal period. The results obtained, from a dataset of 4 patients, with a total of 30 seizures, suggest that a common structure may be involved in seizure generation. Furthermore, the spatial signature may be related to the ictal onset region and that determined frequency sub-bands may be more relevant in preictal stages.

  20. Low-Complexity Iterative Receiver for Space-Time Coded Signals over Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Mohamed Siala

    2002-05-01

    Full Text Available We propose a low-complexity turbo-detector scheme for frequency selective multiple-input multiple-output channels. The detection part of the receiver is based on a List-type MAP equalizer which is a state-reduction algorithm of the MAP algorithm using per-survivor technique. This alternative achieves a good tradeoff between performance and complexity provided a small amount of the channel is neglected. In order to induce the good performance of this equalizer, we propose to use a whitened matched filter (WMF which leads to a white-noise “minimum phase” channel model. Simulation results show that the use of the WMF yields significant improvement, particularly over severe channels. Thanks to the iterative turbo processing (detection and decoding are iterated several times, the performance loss due to the use of the suboptimum List-type equalizer is recovered.

  1. High-speed real-time OFDM transmission based on FPGA

    Science.gov (United States)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  2. Implementasi dan Analisis Teknik Reduksi PAPR OFDM Menggunakan Metode PTS pada WARP

    Directory of Open Access Journals (Sweden)

    Rizkha Ajeng Rochmatika

    2017-01-01

    Full Text Available Sistem OFDM cocok digunakan sebagai solusi yang dapat memenuhi layanan komunikasi data kecepatan tinggi karena memiliki efisiensi bandwidth dengan performansi terbaik. Namun dalam implementasinya, sistem OFDM memiliki kelemahan yang disebabkan oleh tingginya nilai Peak to Average Power Ratio (PAPR sehingga sinyal OFDM rentan terkena distorsi nonlinear yang disebabkan oleh adanya komponen RF power amplifier yang menyebabkan kompleksitas komponen Analog to Digital Converter (ADC yang terdapat pada Wireless Open Access Research Platform (WARP. Nilai PAPR yang besar pada OFDM membutuhkan power amplifier dengan dynamic range yang lebar untuk mengakomodasi sinyal, apabila hal tersebut tidak terpenuhi maka menyebabkan distorsi nonlinear dan pada akhirnya menurunkan performansi OFDM. Oleh karena itu, untuk mengatasinya dibutuhkan suatu metode yang dapat mereduksi nilai PAPR salah satunya menggunakan metode PTS. Guna melihat unjuk kerja teknik PTS, maka pada penelitian ini dibandingkan dua skema antara sistem OFDM tanpa dan dengan teknik PTS menggunakan analisa pada bit error rate dan nilai CCDF. Dari hasil pengukuran menunjukkan bahwa implementasi kinerja teknik PTS mampu meningkatkan kinerja sistem OFDM saat terkena distorsi nonlinear, terlihat pada pengukuran dengan modulasi 16-QAM untuk gain 56 didapatkan peningkatan BER sebesar 95.98%. Sedangkan pada grafik CCDF terjadi penurunan nilai PAPR sebesar 34.17% untuk M=4.

  3. WiMAX OFDM system simulation and sub-system FPGA implementation

    International Nuclear Information System (INIS)

    Elaskary, A.M.F.

    2009-01-01

    Orthogonal frequency division multiplexing (OFDM) has been used in many wireless communication systems also it is gaining a lot of attention for the next generations of mobile communication systems. OFDM is considered a good candidate for wireless systems because it has high bandwidth efficiency and can transmit at very high data rate in multi path, interference , and fading environment. in general OFDM has widely been studied and implemented to combat transmission channel impairments, but some challenges still facing OFDM in transmission system implementation especially for recent and future applications. One of these important applications is the worldwide interoperability for microwave access (WiMAX) system. According to the IEEE 802.16 standards, WiMAX is considered as a good solution for last mile connection at crowded areas and a high-speed internet connection to mobile vehicles with speed of up to 300 km/h. This thesis studies OFDM system in details and proposes simulink models for simulating OFDM impairments and its effects on system performance. This study has been used for building up system level and end to end WiMAX OFDM transmitter/receiver which follows published specifications in IEEE 802.16 standards using mat lab/simulink.

  4. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  5. Channel estimation in DFT-based offset-QAM OFDM systems.

    Science.gov (United States)

    Zhao, Jian

    2014-10-20

    Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.

  6. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  7. Entanglement, space-time and the Mayer-Vietoris theorem

    Science.gov (United States)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  8. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  9. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  10. Momentum-subtraction renormalization techniques in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-10-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.

  11. Momentum-subtraction renormalization techniques in curved space-time

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should

  12. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2013-01-01

    This book explains the theory of special and general relativity in detail, without digressions such as information on Einstein's life or the historical background. However, complicated calculations are replaced with figures and thought experiments, the text being formulated in such a way that the reader will be able to understand the gist intuitively. The first part of the book focuses on the essentials of special relativity. Explanations are provided of the famous equivalence between mass and energy and of why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies", simply because besides the speed of light, the electric charge itself is also absolute, leading to the relativity of other physical quantities. General relativity is then introduced, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending und...

  13. Space, time and the limits of human understanding

    CERN Document Server

    Ghirardi, Giancarlo

    2017-01-01

    In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of spac...

  14. Einstein's dream : the space-time unification of fundamental forces

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A [International Centre for Theoretical Physics, Trieste (Italy)

    1981-06-01

    The historical developments in physics which started with Galileo in the 11th century, Newton in the 17 century, culminated in the unification of space-time by Einstein in this century are traced. The theories put forward by Einstein himself and by subsequent workers in the field after him, regarding the unification of all basic forces of nature (i.e.) the electromagnetic and the gravitational ones and the weak and strong nuclear forces are discussed. The experiments being conducted in Kolar and other places to detect a heavier photon which would be a positive proof of the validity of the unification theory, are touched upon. The possible application of this concept even in industry has been pointed out.

  15. Space-time foam as the universal regulator

    International Nuclear Information System (INIS)

    Crane, L.; Smolin, L.

    1985-01-01

    A distribution of virtual black holes in the vacuum will induce modifications in the density of states for small perturbations of gravitational and matter fields. If the virtual black holes fill the volume of a typical spacelike surface then perturbation theory becomes more convergent and may even be finite, depending on how fast the number of virtual black holes increases as their size decreases. For distributions of virtual black holes which are scale invariant the effective dimension of space-time is lowered to a noninteger value less than 4, leading to an interpretation in terms of fractal geometry. In this case general relativity is renormalizable in the 1/N expansion without higher derivative terms. As the Hamiltonian is not modified the theory is stable. (author)

  16. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1979-01-01

    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  17. Topological properties and global structure of space-time

    International Nuclear Information System (INIS)

    Bergmann, P.G.; De Sabbata, V.

    1986-01-01

    This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole

  18. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  19. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  20. Virtual Black Holes and Space-Time Structure

    Science.gov (United States)

    't Hooft, Gerard

    2018-01-01

    In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

  1. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  2. Entropic force, holography and thermodynamics for static space-times

    International Nuclear Information System (INIS)

    Konoplya, R.A.

    2010-01-01

    Recently Verlinde has suggested a new approach to gravity which interprets gravitational interaction as a kind of entropic force. The new approach uses the holographic principle by stating that the information is kept on the holographic screens which coincide with equipotential surfaces. Motivated by this new interpretation of gravity (but not being limited by it) we study equipotential surfaces, the Unruh-Verlinde temperature, energy and acceleration for various static space-times: generic spherically symmetric solutions, axially symmetric black holes immersed in a magnetic field, traversable spherically symmetric wormholes of an arbitrary shape function, system of two and more extremely charged black holes in equilibrium. In particular, we have shown that the Unruh-Verlinde temperature of the holographic screen reaches absolute zero on the wormhole throat independently of the particular form of the wormhole solution. (orig.)

  3. Space/time non-commutative field theories and causality

    International Nuclear Information System (INIS)

    Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.

    2003-01-01

    As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)

  4. Fermions in odd space-time dimensions: back to basics

    International Nuclear Information System (INIS)

    Anguiano Jesus de, Ma.; Bashir, A.

    2005-01-01

    It is a well-known feature of odd space-time dimensions d that there exist two inequivalent fundamental representations A and B of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in A and B. As a consequence, a parity-invariant Lagrangian can only be constructed by incorporating both the representation. Based upon these ideas and contrary to long-held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge-conjugation operations. We work explicitly in 2 + 1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions. (author)

  5. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  6. The method of covariant symbols in curved space-time

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2007-01-01

    Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)

  7. Quantum field theory on discrete space-time. II

    International Nuclear Information System (INIS)

    Yamamoto, H.

    1985-01-01

    A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)

  8. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  9. Extending OFDM Symbols to Reduce Power Consumption

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2012-01-01

    Existing communication standards have limited capabilities to adapt to low SNR environments or to exploit low data rate requirements in a power efficient way. Existing techniques like e.g. control coding do not reduce the computational load when reducing data rates. In this paper, we introduce

  10. A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers

    Science.gov (United States)

    Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair

    We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.

  11. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.

  12. A novel optical transmission link with DHT-based constant envelope optical OFDM signal

    Science.gov (United States)

    Ma, Jianxin; Liang, Hao

    2013-07-01

    In this paper, we have proposed a novel optical OFDM transmission link that takes advantages of discrete Hartley Transform (DHT) and constant envelope (CE) modulation, obtaining DHT-based constant envelope optical OFDM. The numerical results show that this design achieves better performance when compared with conventional O-OFDM in terms of bit error rate (BER) and peak-to-average power ratio (PAPR). The impact of phase modulation index (PMI) on both PAPR and noise tolerance is investigated. Since the scheme has simplified design, it is believed to be a cost-effective in the practical implement.

  13. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Energy Technology Data Exchange (ETDEWEB)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu [Wuhan National Lab for Optoelectronics, Department of Optoelectronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao Zhiyong [State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074 (China); Deng Zhuanhua, E-mail: hezhou@wri.com.cn, E-mail: weilee@mail.hust.edu.cn [School of Computer Science and Technology, Hubei University of Economics, Wuhan 430205 (China)

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  14. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    International Nuclear Information System (INIS)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu; Tao Zhiyong; Deng Zhuanhua

    2011-01-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  15. Power-efficient method for IM-DD optical transmission of multiple OFDM signals.

    Science.gov (United States)

    Effenberger, Frank; Liu, Xiang

    2015-05-18

    We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.

  16. A Robust Threshold for Iterative Channel Estimation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    A. Kalaycioglu

    2010-04-01

    Full Text Available A novel threshold computation method for pilot symbol assisted iterative channel estimation in OFDM systems is considered. As the bits are transmitted in packets, the proposed technique is based on calculating a particular threshold for each data packet in order to select the reliable decoder output symbols to improve the channel estimation performance. Iteratively, additional pilot symbols are established according to the threshold and the channel is re-estimated with the new pilots inserted to the known channel estimation pilot set. The proposed threshold calculation method for selecting additional pilots performs better than non-iterative channel estimation, no threshold and fixed threshold techniques in poor HF channel simulations.

  17. Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time

    International Nuclear Information System (INIS)

    Tagirov, E.A.

    1997-01-01

    Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered

  18. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  19. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  20. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    International Nuclear Information System (INIS)

    Lovejoy, S.; Lima, M. I. P. de

    2015-01-01

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time