Quantum stochastic calculus in Fock space: A review
International Nuclear Information System (INIS)
Hudson, R.L.
1986-01-01
This paper presents a survey of the recently developed theory of quantum stochastic calculus in Boson Fock space, together with its applications. The work focuses on a non-commutative generalization of the classical Ito stochastic calculus of Brownian motion, which exploits to the full the Wiener-Segal duality transformation identifying the L 2 space of Wiener measure with a Boson Fock space. This Fock space emerges as the natural home of not only Brownian motion but also classical Poisson processes, and even of Fermionic processes of the type developed by Barnett et al. The principle physical application of the theory to the construction and characterization of unitary dilations of quantum dynamical semigroups is also described
Ogawa, Shigeyoshi
2017-01-01
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...
Stochastic Pi-calculus Revisited
DEFF Research Database (Denmark)
Cardelli, Luca; Mardare, Radu Iulian
2013-01-01
We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...
Brownian motion and stochastic calculus
Karatzas, Ioannis
1998-01-01
This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...
Stochastic calculus in physics
International Nuclear Information System (INIS)
Fox, R.F.
1987-01-01
The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
2014-01-01
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...... with the outputs and at the same time the inputs impose constraints on the waiting times. Consequently, the expected inputs may not be available when needed and therefore the calculus allows to express the absence of data.The communication delays are expressed by general distributions and the resulting semantics...
Introduction to stochastic calculus
Karandikar, Rajeeva L
2018-01-01
This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...
Stochastic calculus and applications
Cohen, Samuel N
2015-01-01
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...
The fermion stochastic calculus I
International Nuclear Information System (INIS)
Streater, R.F.
1984-01-01
The author describes the stochastic calculus of quantum processes with fermions. After a description of the Clifford algebra as the csup(*)-algebra generated by spinor fields the damped harmonic oscillator with quantum noise is considered as example. Then the Clifford process is described. Finally the Ito-Clifford integral and the Ito-Clifford isometry are presented. (HSI)
Quantum stochastic calculus and representations of Lie superalgebras
Eyre, Timothy M W
1998-01-01
This book describes the representations of Lie superalgebras that are yielded by a graded version of Hudson-Parthasarathy quantum stochastic calculus. Quantum stochastic calculus and grading theory are given concise introductions, extending readership to mathematicians and physicists with a basic knowledge of algebra and infinite-dimensional Hilbert spaces. The develpment of an explicit formula for the chaotic expansion of a polynomial of quantum stochastic integrals is particularly interesting. The book aims to provide a self-contained exposition of what is known about Z_2-graded quantum stochastic calculus and to provide a framework for future research into this new and fertile area.
Malliavin Calculus With Applications to Stochastic Partial Differential Equations
Sanz-Solé, Marta
2005-01-01
Developed in the 1970s to study the existence and smoothness of density for the probability laws of random vectors, Malliavin calculus--a stochastic calculus of variation on the Wiener space--has proven fruitful in many problems in probability theory, particularly in probabilistic numerical methods in financial mathematics.This book presents applications of Malliavin calculus to the analysis of probability laws of solutions to stochastic partial differential equations driven by Gaussian noises that are white in time and coloured in space. The first five chapters introduce the calculus itself
Brownian motion, martingales, and stochastic calculus
Le Gall, Jean-François
2016-01-01
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...
Stochastic integration by parts and functional Itô calculus
Vives, Josep
2016-01-01
This volume contains lecture notes from the courses given by Vlad Bally and Rama Cont at the Barcelona Summer School on Stochastic Analysis (July 2012). The notes of the course by Vlad Bally, co-authored with Lucia Caramellino, develop integration by parts formulas in an abstract setting, extending Malliavin's work on abstract Wiener spaces. The results are applied to prove absolute continuity and regularity results of the density for a broad class of random processes. Rama Cont's notes provide an introduction to the Functional Itô Calculus, a non-anticipative functional calculus that extends the classical Itô calculus to path-dependent functionals of stochastic processes. This calculus leads to a new class of path-dependent partial differential equations, termed Functional Kolmogorov Equations, which arise in the study of martingales and forward-backward stochastic differential equations. This book will appeal to both young and senior researchers in probability and stochastic processes, as well as to pract...
Extending Stochastic Network Calculus to Loss Analysis
Directory of Open Access Journals (Sweden)
Chao Luo
2013-01-01
Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.
Introduction to stochastic analysis and Malliavin calculus
Prato, Giuseppe
2014-01-01
This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devo...
Stochastic Moyal product on the Wiener space
International Nuclear Information System (INIS)
Dito, Giuseppe; Leandre, Remi
2007-01-01
We propose a stochastic extension of deformation quantization on a Hilbert space. The Moyal product is defined in this context on the space of functionals belonging to all of the Sobolev spaces of the Malliavin calculus
Stochastic Model Checking of the Stochastic Quality Calculus
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Zeng, Kebin
2015-01-01
The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input....... This gives rise to Generalised Semi-Markov Decision Processes for which few analytical techniques are available. We restrict delays on output actions to be exponentially distributed while still admitting real-time constraints on the quality binders. This facilitates developing analytical techniques based...
Elements of stochastic calculus and analysis
Stroock, Daniel W
2018-01-01
This book gives a somewhat unconventional introduction to stochastic analysis. Although most of the material covered here has appeared in other places, this book attempts to explain the core ideas on which that material is based. As a consequence, the presentation is more an extended mathematical essay than a ``definition, lemma, theorem'' text. In addition, it includes several topics that are not usually treated elsewhere. For example, Wiener's theory of homogeneous chaos is discussed, Stratovich integration is given a novel development and applied to derive Wong and Zakai's approximation theorem, and examples are given of the application of Malliavin's calculus to partial differential equations. Each chapter concludes with several exercises, some of which are quite challenging. The book is intended for use by advanced graduate students and research mathematicians who may be familiar with many of the topics but want to broaden their understanding of them.
Stochastic calculus an introduction through theory and exercises
Baldi, Paolo
2017-01-01
This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. It is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will be particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical ...
Quantum stochastic calculus associated with quadratic quantum noises
International Nuclear Information System (INIS)
Ji, Un Cig; Sinha, Kalyan B.
2016-01-01
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus
Quantum stochastic calculus associated with quadratic quantum noises
Energy Technology Data Exchange (ETDEWEB)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)
2016-02-15
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.
Stochastic Calculus and Differential Equations for Physics and Finance
McCauley, Joseph L.
2013-02-01
1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.
Calculus and analysis in Euclidean space
Shurman, Jerry
2016-01-01
The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skil...
A phenomenological calculus of Wiener description space.
Richardson, I W; Louie, A H
2007-10-01
The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.
White noise calculus and Fock space
Obata, Nobuaki
1994-01-01
White Noise Calculus is a distribution theory on Gaussian space, proposed by T. Hida in 1975. This approach enables us to use pointwise defined creation and annihilation operators as well as the well-established theory of nuclear space.This self-contained monograph presents, for the first time, a systematic introduction to operator theory on fock space by means of white noise calculus. The goal is a comprehensive account of general expansion theory of Fock space operators and its applications. In particular,first order differential operators, Laplacians, rotation group, Fourier transform and their interrelations are discussed in detail w.r.t. harmonic analysis on Gaussian space. The mathematical formalism used here is based on distribution theory and functional analysis , prior knowledge of white noise calculus is not required.
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950
Differential calculus in normed linear spaces
Mukherjea, Kalyan
2007-01-01
This book presents Advanced Calculus from a geometric point of view: instead of dealing with partial derivatives of functions of several variables, the derivative of the function is treated as a linear transformation between normed linear spaces. Not only does this lead to a simplified and transparent exposition of "difficult" results like the Inverse and Implicit Function Theorems but also permits, without any extra effort, a discussion of the Differential Calculus of functions defined on infinite dimensional Hilbert or Banach spaces.The prerequisites demanded of the reader are modest: a sound understanding of convergence of sequences and series of real numbers, the continuity and differentiability properties of functions of a real variable and a little Linear Algebra should provide adequate background for understanding the book. The first two chapters cover much of the more advanced background material on Linear Algebra (like dual spaces, multilinear functions and tensor products.) Chapter 3 gives an ab ini...
Flows and stochastic Taylor series in Itô calculus
Ebrahimi-Fard, Kurusch; Malham, Simon J. A.; Patras, Frédéric; Wiese, Anke
2015-12-01
For general stochastic systems driven by continuous semimartingales an explicit formula for the logarithm of the Itô flow map is given. The computation relies on the lift to quasi-shuffle algebras of formulas involving products of Itô integrals of semimartingales. Whereas the Chen-Strichartz formula computing the logarithm of the Stratonovich flow map is classically expanded as a formal sum indexed by permutations, the analogous formula in Itô calculus is naturally indexed by surjections. This reflects the change of algebraic background involved in the transition between the two integration theories. Lastly, we extend our formula for the quasi-shuffle Chen-Strichartz series for the logarithm of the flow map to the non-commutative case. For linear matrix-valued SDEs driven by arbitrary semimartingales we obtain a similar formula.
Elements of queueing theory palm martingale calculus and stochastic recurrences
Baccelli, François
2003-01-01
The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial addition...
Stochastic calculus for uncoupled continuous-time random walks.
Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L
2009-06-01
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy alpha -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.
Jones, Patrick
2014-01-01
Practice makes perfect-and helps deepen your understanding of calculus 1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go. Gives you a chance to practice and reinforce the skills you learn in your calculus courseHelps you refine your understanding of calculusP
Larson, Ron
2014-01-01
The Larson CALCULUS program has a long history of innovation in the calculus market. It has been widely praised by a generation of students and professors for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.
Grossman, Stanley I
1981-01-01
Calculus, Second Edition discusses the techniques and theorems of calculus. This edition introduces the sine and cosine functions, distributes ?-? material over several chapters, and includes a detailed account of analytic geometry and vector analysis.This book also discusses the equation of a straight line, trigonometric limit, derivative of a power function, mean value theorem, and fundamental theorems of calculus. The exponential and logarithmic functions, inverse trigonometric functions, linear and quadratic denominators, and centroid of a plane region are likewise elaborated. Other topics
The malliavin calculus and related topics
Nualart, David
1995-01-01
The Malliavin calculus (or stochastic calculus of variations) is an infinite-dimensional differential calculus on the Wiener space Originally, it was developed to prove a probabilistic proof to Hörmander's "sum of squares" theorem, but more recently it has found application in a variety of stochastic differential equation problems This monograph presents the main features of the Malliavin calculus and discusses in detail its connection with the anticipating stochastic calculus The author begins by developing analysis on the Wiener space, and then uses this to analyze the regularity of probability laws and to prove Hörmander's theorem Subsequent chapters apply the Malliavin calculus to anticipating stochastic differential equations and to studying the Markov property of solutions to stochastic differential equations with boundary conditions
Absolute continuity under time shift of trajectories and related stochastic calculus
Löbus, Jörg-Uwe
2017-01-01
The text is concerned with a class of two-sided stochastic processes of the form X=W+A. Here W is a two-sided Brownian motion with random initial data at time zero and A\\equiv A(W) is a function of W. Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when A is a jump process. Absolute continuity of (X,P) under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, m, and on A with A_0=0 we verify \\frac{P(dX_{\\cdot -t})}{P(dX_\\cdot)}=\\frac{m(X_{-t})}{m(X_0)}\\cdot \\prod_i\\left|\
Continuous strong Markov processes in dimension one a stochastic calculus approach
Assing, Sigurd
1998-01-01
The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.
Broadcast Abstraction in a Stochastic Calculus for Mobile Networks
DEFF Research Database (Denmark)
Song, Lei; Godskesen, Jens Christian
2012-01-01
topology constraint. We allow continuous time stochastic behavior of processes running at network nodes, e.g. in order to be able to model randomized protocols. The introduction of group broadcast and an operator to help avoid flooding allows us to define a novel notion of broadcast abstraction. Finally......, we define a weak bisimulation congruence and apply our theory on an example of a leader election protocol....
Stochastic calculus of protein filament formation under spatial confinement
Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.
2018-05-01
The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.
Covariant differential calculus on the quantum exterior vector space
International Nuclear Information System (INIS)
Parashar, P.; Soni, S.K.
1992-01-01
We formulate a differential calculus on the quantum exterior vector space spanned by the generators of a non-anticommutative algebra satisfying r ij = θ i θ j +B kl ij θ k θ l =0 i, j=1, 2, ..., n. and (θ i ) 2 =(θ j ) 2 =...=(θ n ) 2 =0, where B kl ij is the most general matrix defined in terms of complex deformation parameters. Following considerations analogous to those of Wess and Zumino, we are able to exhibit covariance of our calculus under ( 2 n )+1 parameter deformation of GL(n) and explicitly check that the non-anticommutative differential calculus satisfies the general constraints given by them, such as the 'linear' conditions dr ij ≅0 and the 'quadratic' condition r ij x n ≅0 where x n =dθ n are the differentials of the variables. (orig.)
Directory of Open Access Journals (Sweden)
Mourad Kerboua
2014-12-01
Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.
Stochastic calculus for fractional Brownian motion and related processes
Mishura, Yuliya S
2008-01-01
The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0
Peccati, Giovanni
2016-01-01
Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolvi...
Spivak, Michael
2006-01-01
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Grossman, Stanley I
1984-01-01
Calculus, Third Edition emphasizes the techniques and theorems of calculus, including many applied examples and exercises in both drill and applied-type problems.This book discusses shifting the graphs of functions, derivative as a rate of change, derivative of a power function, and theory of maxima and minima. The area between two curves, differential equations of exponential growth and decay, inverse hyperbolic functions, and integration of rational functions are also elaborated. This text likewise covers the fluid pressure, ellipse and translation of axes, graphing in polar coordinates, pro
Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review
Falsone, G.
2018-03-01
In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.
Differential calculus on quantum spaces and quantum groups
International Nuclear Information System (INIS)
Zumino, B.
1992-01-01
A review of recent developments in the quantum differential calculus. The quantum group GL q (n) is treated by considering it as a particular quantum space. Functions on SL q (n) are defined as a subclass of functions on GL q (n). The case of SO q (n) is also briefly considered. These notes cover part of a lecture given at the XIX International Conference on Group Theoretic Methods in Physics, Salamanca, Spain 1992
On fractal space-time and fractional calculus
Directory of Open Access Journals (Sweden)
Hu Yue
2016-01-01
Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.
Streeter, Lee
2017-07-01
Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40) m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20) m/s with standard deviation ranging from 3.5 m/s to 10 m/s.
Differential Calculus on h-Deformed Spaces
Herlemont, Basile; Ogievetsky, Oleg
2017-10-01
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).
Zandy, Bernard V
2003-01-01
We take great notes-and make learning a snap When it comes to pinpointing the stuff you really need to know, nobody does it better than CliffsNotes. This fast, effective tutorial helps you master core Calculus concepts-from functions, limits, and derivatives to differentials, integration, and definite integrals- and get the best possible grade. At CliffsNotes, we're dedicated to helping you do your best, no matter how challenging the subject. Our authors are veteran teachers and talented writers who know how to cut to the chase- and zero in on the essential information you need to succeed.
Space-time-modulated stochastic processes
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
International Nuclear Information System (INIS)
Carow-Watamura, U.; Schlieker, M.; Watamura, S.
1991-01-01
We construct a differential calculus on the N-dimensional non-commutative Euclidean space, i.e., the space on which the quantum group SO q (N) is acting. The differential calculus is required to be manifestly covariant under SO q (N) transformations. Using this calculus, we consider the Schroedinger equation corresponding to the harmonic oscillator in the limit of q→1. The solution of it is given by q-deformed functions. (orig.)
Fock space representation of differential calculus on the noncommutative quantum space
International Nuclear Information System (INIS)
Mishra, A.K.; Rajasekaran, G.
1997-01-01
A complete Fock space representation of the covariant differential calculus on quantum space is constructed. The consistency criteria for the ensuing algebraic structure, mapping to the canonical fermions and bosons and the consequences of the new algebra for the statistics of quanta are analyzed and discussed. The concept of statistical transmutation between bosons and fermions is introduced. copyright 1997 American Institute of Physics
Stochastic space-time and quantum theory
International Nuclear Information System (INIS)
Frederick, C.
1976-01-01
Much of quantum mechanics may be derived if one adopts a very strong form of Mach's principle such that in the absence of mass, space-time becomes not flat, but stochastic. This is manifested in the metric tensor which is considered to be a collection of stochastic variables. The stochastic-metric assumption is sufficient to generate the spread of the wave packet in empty space. If one further notes that all observations of dynamical variables in the laboratory frame are contravariant components of tensors, and if one assumes that a Lagrangian can be constructed, then one can obtain an explanation of conjugate variables and also a derivation of the uncertainty principle. Finally the superposition of stochastic metrics and the identification of root -g in the four-dimensional invariant volume element root -g dV as the indicator of relative probability yields the phenomenon of interference as will be described for the two-slit experiment
Continuous Slice Functional Calculus in Quaternionic Hilbert Spaces
Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro
2013-04-01
The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic C*-algebras and to define, on each of these C*-algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.
Restrictive metric regularity and generalized differential calculus in Banach spaces
Directory of Open Access Journals (Sweden)
Bingwu Wang
2004-10-01
Full Text Available We consider nonlinear mappings f:XÃ¢Â†Â’Y between Banach spaces and study the notion of restrictive metric regularity of f around some point xÃ‚Â¯, that is, metric regularity of f from X into the metric space E=f(X. Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves theorem in the case when f is strictly differentiable at xÃ‚Â¯ but its strict derivative Ã¢ÂˆÂ‡f(xÃ‚Â¯ is not surjective. We develop applications of the results obtained and some other techniques in variational analysis to generalized differential calculus involving normal cones to nonsmooth and nonconvex sets, coderivatives of set-valued mappings, as well as first-order and second-order subdifferentials of extended real-valued functions.
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.
2014-01-19
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.; Nurbekyan, Levon
2014-01-01
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
Stochastic inflation: Quantum phase-space approach
International Nuclear Information System (INIS)
Habib, S.
1992-01-01
In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence
Stochastic Differential Equations and Kondratiev Spaces
Energy Technology Data Exchange (ETDEWEB)
Vaage, G.
1995-05-01
The purpose of this mathematical thesis was to improve the understanding of physical processes such as fluid flow in porous media. An example is oil flowing in a reservoir. In the first of five included papers, Hilbert space methods for elliptic boundary value problems are used to prove the existence and uniqueness of a large family of elliptic differential equations with additive noise without using the Hermite transform. The ideas are then extended to the multidimensional case and used to prove existence and uniqueness of solution of the Stokes equations with additive noise. The second paper uses functional analytic methods for partial differential equations and presents a general framework for proving existence and uniqueness of solutions to stochastic partial differential equations with multiplicative noise, for a large family of noises. The methods are applied to equations of elliptic, parabolic as well as hyperbolic type. The framework presented can be extended to the multidimensional case. The third paper shows how the ideas from the second paper can be extended to study the moving boundary value problem associated with the stochastic pressure equation. The fourth paper discusses a set of stochastic differential equations. The fifth paper studies the relationship between the two families of Kondratiev spaces used in the thesis. 102 refs.
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
Quantum mechanics, stochasticity and space-time
International Nuclear Information System (INIS)
Ramanathan, R.
1986-04-01
An extended and more rigorous version of a recent proposal for an objective stochastic formulation of quantum mechanics along with its extension to the relativistic case without spin is presented. The relativistic Klein-Gordon equation is shown to be a particular form of the relativistic Kolmogorov-Fokker-Planck equation which is derived from a covariant formulation of the Chapman-Kolmogorov condition. Complexification of probability amplitudes is again achieved only through a conformal rotation of Minkowski space-time M 4 . (author)
Born's reciprocity principle in stochastic phase space
International Nuclear Information System (INIS)
Prugovecki, E.
1981-01-01
It is shown that the application of Born's reciprocity principle to relativistic quantum mechanics in stochastic phase space (by the requirement that the proper wave functions of extended particles satisfy the Born-Lande as well as the Klein-Gordon equation) leads to the unique determination of these functions for any given value of their rms radius. The resulting particle propagators display not only Lorentz but also reciprocal invariance. This feature remains true even in the case of mass-zero particles, such as photons, when their localization is achieved by means of extended test particles whose proper wave functions obey the reciprocity principle. (author)
Vector calculus in non-integer dimensional space and its applications to fractal media
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Muldowney, Patrick
2012-01-01
A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. I...
Explicit Minkowski invariance and differential calculus in the quantum space-time
International Nuclear Information System (INIS)
Xu Zhan.
1991-11-01
In terms of the R-circumflex matrix of the quantum group SL q (2), the explicit Minkowski coordinate commutation relations in the four-dimensional quantum space-time are given, and the invariance of the Minkowski metric is shown. The differential calculus in this quantum space-time is discussed and the corresponding commutation relations are proposed. (author). 17 refs
Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces
Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea
2017-07-01
This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.
A differential calculus for random matrices with applications to (max,+)-linear stochastic systems
Heidergott, B.F.
2001-01-01
We introducet he concept of weak differentiabilityf or randomm atricesa nd therebyo btain closedform analytical expressions for derivatives of functions of random matrices. More specifically, we develop a calculus of weak differentiationf or randomm atricest hat resembles the standardc alculus of
Boehme, Thomas K
1987-01-01
Operational Calculus, Volume II is a methodical presentation of operational calculus. An outline of the general theory of linear differential equations with constant coefficients is presented. Integral operational calculus and advanced topics in operational calculus, including locally integrable functions and convergence in the space of operators, are also discussed. Formulas and tables are included.Comprised of four sections, this volume begins with a discussion on the general theory of linear differential equations with constant coefficients, focusing on such topics as homogeneous and non-ho
Covariant differential calculus on quantum Minkowski space and the q-analogue of Dirac equation
International Nuclear Information System (INIS)
Song Xingchang; Academia Sinica, Beijing
1992-01-01
The covariant differential calculus on the quantum Minkowski space is presented with the help of the generalized Wess-Zumino method and the quantum Pauli matrices and quantum Dirac matrices are constructed parallel to those in the classical case. Combining these two aspects a q-analogue of Dirac equation follows directly. (orig.)
The bicovariant differential calculus on the κ-Poincare group and on the κ-Minkowski space
International Nuclear Information System (INIS)
Kosinski, P.; Maslanka, P.; Sobczyk, J.
1996-01-01
The bicovariant differential calculus on the four-dimensional κ-Poincare group and the corresponding Lie-algebra-like structure are described. The differential calculus on the n-dimensional κ-Minkowski space covariant under the action of the κ-Poincare group was constructed. 5 refs
On Some Fractional Stochastic Integrodifferential Equations in Hilbert Space
Directory of Open Access Journals (Sweden)
Hamdy M. Ahmed
2009-01-01
Full Text Available We study a class of fractional stochastic integrodifferential equations considered in a real Hilbert space. The existence and uniqueness of the Mild solutions of the considered problem is also studied. We also give an application for stochastic integropartial differential equations of fractional order.
Wick calculus on spaces of generalized functions of compound poisson white noise
Lytvynov, Eugene W.; Rebenko, Alexei L.; Shchepan'ur, Gennadi V.
1997-04-01
We derive white noise calculus for a compound Poisson process. Namely, we consider, on the Schwartz space of tempered distributions, S', a measure of compound Poisson white noise, μcp, and construct a whole scale of standard nuclear triples ( Scp) - x ⊃ L2cp) ≡ L2( S', dμcp) ⊃( Scpx, x≥ 0, which are obtained as images under some isomorphism of the corresponding triples centred at a Fock space. It turns out that the most interesting case is x = 1, when our triple coincides with the triple that is constructed by using a system of Appell polynomials in the framework of non-Gaussian biorthogonal analysis. Our special attention is paid to the Wick calculus of the Poisson field, or the quantum compound Poisson white noise process in other terms, which is the family of operators acting from ( Scp) 1 into ( Scp) 1 as multiplication by the compound Poisson white noise ω( t).
Anisotropic fractal media by vector calculus in non-integer dimensional space
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2014-01-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media
Anisotropic fractal media by vector calculus in non-integer dimensional space
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces
Alenda, Régis; Olivetti, Nicola
The logic CSL (first introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind "A is closer/more similar to B than to C" and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces and it generalizes the logic S4 u of topological spaces. In this paper we consider CSL defined over arbitrary distance spaces. The logic comprises a binary modality to represent comparative similarity and a unary modality to express the existence of the minimum of a set of distances. We first show that the semantics of CSL can be equivalently defined in terms of preferential models. As a consequence we obtain the finite model property of the logic with respect to its preferential semantic, a property that does not hold with respect to the original distance-space semantics. Next we present an analytic tableau calculus based on its preferential semantics. The calculus provides a decision procedure for the logic, its termination is obtained by imposing suitable blocking restrictions.
Stochastic integration in Banach spaces theory and applications
Mandrekar, Vidyadhar
2015-01-01
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...
Stochastic inflation in phase space: is slow roll a stochastic attractor?
Energy Technology Data Exchange (ETDEWEB)
Grain, Julien [Institut d' Astrophysique Spatiale, UMR8617, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bt. 121, Orsay, F-91405 (France); Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO13FX (United Kingdom)
2017-05-01
An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.
Continuous local martingales and stochastic integration in UMD Banach spaces
Veraar, M.C.
2007-01-01
Recently, van Neerven, Weis and the author, constructed a theory for stochastic integration of UMD Banach space valued processes. Here the authors use a (cylindrical) Brownian motion as an integrator. In this note we show how one can extend these results to the case where the integrator is an
Calculus Rules for V-Proximal Subdifferentials in Smooth Banach Spaces
Directory of Open Access Journals (Sweden)
Messaoud Bounkhel
2016-01-01
Full Text Available In 2010, Bounkhel et al. introduced new proximal concepts (analytic proximal subdifferential, geometric proximal subdifferential, and proximal normal cone in reflexive smooth Banach spaces. They proved, in p-uniformly convex and q-uniformly smooth Banach spaces, the density theorem for the new concepts of proximal subdifferential and various important properties for both proximal subdifferential concepts and the proximal normal cone concept. In this paper, we establish calculus rules (fuzzy sum rule and chain rule for both proximal subdifferentials and we prove the Bishop-Phelps theorem for the proximal normal cone. The limiting concept for both proximal subdifferentials and for the proximal normal cone is defined and studied. We prove that both limiting constructions coincide with the Mordukhovich constructions under some assumptions on the space. Applications to nonconvex minimisation problems and nonconvex variational inequalities are established.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
How the geometric calculus resolves the ordering ambiguity of quantum theory in curved space
International Nuclear Information System (INIS)
Pavsic, Matej
2003-01-01
The long standing problem of the ordering ambiguity in the definition of the Hamilton operator for a point particle in curved space is naturally resolved by using the powerful geometric calculus based on Clifford algebra. The momentum operator is defined to be the vector derivative (the gradient) multiplied by -i; it can be expanded in terms of basis vectors γ μ as p = -iγ μ ∂ μ . The product of two such operators is unambiguous, and such is the Hamiltonian which is just the d'Alembert operator in curved space; the curvature scalar term is not present in the Hamiltonian if we confine our consideration to scalar wavefunctions only. It is also shown that p is Hermitian and a self-adjoint operator: the presence of the basis vectors γ μ compensates the presence of √|g| in the matrix elements and in the scalar product. The expectation value of such an operator follows the classical geodetic line
Nickerson, HK; Steenrod, NE
2011-01-01
""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,
International Nuclear Information System (INIS)
Sharma, C.S.; Rebelo, I.
1975-01-01
It is proved that a semilinear function on a complex banach space is not differentiable according to the usual definition of differentiability in the calculus on banch spaces. It is shown that this result makes the calculus largely inapplicable to the solution od variational problems of quantum mechanics. A new concept of differentiability called semidifferentiability is defined. This generalizes the standard concept of differentiability in a banach space and the resulting calculus is particularly suitable for optimizing real-value functions on a complex banach space and is directly applicable to the solution of quantum mechanical variational problems. As an example of such application a rigorous proof of a generalized version of a result due to Sharma (J. Phys. A; 2:413 (1969)) is given. In the course of this work a new concept of prelinearity is defined and some standard results in the calculus in banach spaces are extended and generalized into more powerful ones applicable directly to prelinear functions and hence yielding the standard results for linear function as particular cases. (author)
Stochastic Analysis and Related Topics
Ustunel, Ali
1988-01-01
The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.
Quantum dynamical time evolutions as stochastic flows on phase space
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.
1984-01-01
We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)
Jiang, Yuming
2009-01-01
This book is devoted to a comprehensive treatment of this important field, a grand challenge for future networking research. It covers results from the authors as well as other researchers. Topics covered include Independent Case Analysis and its applications.
Analysis of the coupling efficiency of a tapered space receiver with a calculus mathematical model
Hu, Qinggui; Mu, Yining
2018-03-01
We establish a calculus mathematical model to study the coupling characteristics of tapered optical fibers in a space communications system, and obtained the coupling efficiency equation. Then, using MATLAB software, the solution was calculated. After this, the sample was produced by the mature flame-brush technique. The experiment was then performed, and the results were in accordance with the theoretical analysis. This shows that the theoretical analysis was correct and indicates that a tapered structure could improve its tolerance with misalignment. Project supported by The National Natural Science Foundation of China (grant no. 61275080); 2017 Jilin Province Science and Technology Development Plan-Science and Technology Innovation Fund for Small and Medium Enterprises (20170308029HJ); ‘thirteen five’ science and technology research project of the Department of Education of Jilin 2016 (16JK009).
Stochastic quantization of geometrodynamic curved space-time
International Nuclear Information System (INIS)
Prugovecki, E.
1981-01-01
It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)
International Nuclear Information System (INIS)
Carlen, E.A.; Loffredo, M.I.
1989-01-01
We show how to obtain a complete correspondence between stochastic and quantum mechanics on multiply connected spaces. We do this by introducing a stochastic mechanical analog of the hydrodynamical circulation, relating it to the topological properties of the configuration space, and using it to constrain the stochastic mechanical variational principles. (orig.)
Tensor Calculus: Unlearning Vector Calculus
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
International Nuclear Information System (INIS)
Schirrmacher, A.
1991-01-01
A n(n-1)/2+1 parameter solution of the Yang Baxter equation is presented giving rise to the quantum Group GL x;qij (n). Determinant and inverse are constructed. The group acts covariantly on a quantum vector space of non-commutative coordinates. The associated exterior space can be identified with the differentials exhibiting a multiparameter deformed differential calculus following the construction of Wess and Zumino. (orig.)
Stochastic quantization of gravity and string fields
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)
Phase-space formalism: Operational calculus and solution of evolution equations in phase-space
International Nuclear Information System (INIS)
Dattoli, G.; Torre, A.
1995-05-01
Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied
Ritow, Ira
2003-01-01
This brief introductory text presents the basic principles of calculus from the engineering viewpoint. Excellent either as a refresher or as an introductory course, it focuses on developing familiarity with the basic principles rather than presenting detailed proofs.Topics include differential calculus, in terms of differentiation and elementary differential equations; integral calculus, in simple and multiple integration forms; time calculus; equations of motion and their solution; complex variables; complex algebra; complex functions; complex and operational calculus; and simple and inverse
Stochastic Analysis : A Series of Lectures
Dozzi, Marco; Flandoli, Franco; Russo, Francesco
2015-01-01
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...
From stochastic phase space evolution to Brownian motion in collective space
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Hernandez, E.S.; Idier, D.; Remaud, B.; Sebille, F.
1993-01-01
Within the framework of stochastic transport equations in phase space, the dynamics of fluctuations on collective variables in homogeneous fermion systems is studied. The transport coefficients are formally deduced in the relaxation time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations. Independently, the general covariance matrix of phase space fluctuations and the dispersion on collective variables at equilibrium are derived. Detailed numerical applications show that dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy whatever is its degree of thermalization. (authors). 16 refs., 12 figs
Stochastic processes and filtering theory
Jazwinski, Andrew H
1970-01-01
This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab
International Nuclear Information System (INIS)
Weigert, S.
1999-01-01
To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)
Geron, B.; Geuvers, J.H.; de'Liguoro, U.; Saurin, A.
2013-01-01
Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head
Differential form representation of stochastic electromagnetic fields
Directory of Open Access Journals (Sweden)
M. Haider
2017-09-01
Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Differential form representation of stochastic electromagnetic fields
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
A Calculus of Located Entities
Directory of Open Access Journals (Sweden)
Adriana Compagnoni
2014-03-01
Full Text Available We define BioScapeL, a stochastic pi-calculus in 3D-space. A novel aspect of BioScapeL is that entities have programmable locations. The programmer can specify a particular location where to place an entity, or a location relative to the current location of the entity. The motivation for the extension comes from the need to describe the evolution of populations of biochemical species in space, while keeping a sufficiently high level description, so that phenomena like diffusion, collision, and confinement can remain part of the semantics of the calculus. Combined with the random diffusion movement inherited from BioScape, programmable locations allow us to capture the assemblies of configurations of polymers, oligomers, and complexes such as microtubules or actin filaments. Further new aspects of BioScapeL include random translation and scaling. Random translation is instrumental in describing the location of new entities relative to the old ones. For example, when a cell secretes a hydronium ion, the ion should be placed at a given distance from the originating cell, but in a random direction. Additionally, scaling allows us to capture at a high level events such as division and growth; for example, daughter cells after mitosis have half the size of the mother cell.
Friedman, Menahem
2011-01-01
Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in ""light"" calculus -- mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management infor
From stochastic phase-space evolution to brownian motion in collective space
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Farine, M. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France) Ecole Navale, Lamveoc-Loulmic, 29 Brest-Naval (France)); Hernandez, E.S. (Dept. de Fisica - Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires (Argentina)); Idier, D. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France))
1994-01-24
Within the framework of stochastic transport equations in phase space, we study the dynamics of fluctuations on collective variables in homogeneous fermion systems. The transport coefficients are formally deduced in the relaxation-time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations: respectively, the BUU/Landau-Vlasov equation for the average phase-space trajectories and the equations for the averages and dispersions of the observables. Independently, we derive the general covariance matrix of phase-space fluctuations and then by projection, the dispersion on collective variables at equilibrium. Detailed numerical applications of the formalism are given; they show that the dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy, whatever is its degree of thermalization. (orig.)
From stochastic phase-space evolution to brownian motion in collective space
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Hernandez, E.S.; Idier, D.; Remaud, B.; Sebille, F.
1994-01-01
Within the framework of stochastic transport equations in phase space, we study the dynamics of fluctuations on collective variables in homogeneous fermion systems. The transport coefficients are formally deduced in the relaxation-time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations: respectively, the BUU/Landau-Vlasov equation for the average phase-space trajectories and the equations for the averages and dispersions of the observables. Independently, we derive the general covariance matrix of phase-space fluctuations and then by projection, the dispersion on collective variables at equilibrium. Detailed numerical applications of the formalism are given; they show that the dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy, whatever is its degree of thermalization. (orig.)
Bergstra, J. A.; Ponse, A.; van der Zwaag, M. B.
2007-01-01
We introduce a calculus for tuplices, which are expressions that generalize matrices and vectors. Tuplices have an underlying data type for quantities that are taken from a zero-totalized field. We start with the core tuplix calculus CTC for entries and tests, which are combined using conjunctive composition. We define a standard model and prove that CTC is relatively complete with respect to it. The core calculus is extended with operators for choice, information hiding, scalar multiplicatio...
Klaf, A A
1956-01-01
This book is unique in English as a refresher for engineers, technicians, and students who either wish to brush up their calculus or find parts of calculus unclear. It is not an ordinary textbook. It is, instead, an examination of the most important aspects of integral and differential calculus in terms of the 756 questions most likely to occur to the technical reader. It provides a very easily followed presentation and may also be used as either an introductory or supplementary textbook. The first part of this book covers simple differential calculus, with constants, variables, functions, inc
Bergstra, J.A.; Ponse, A.; van der Zwaag, M.B.
2008-01-01
We introduce a calculus for tuplices, which are expressions that generalize matrices and vectors. Tuplices have an underlying data type for quantities that are taken from a zero-totalized field. We start with the core tuplix calculus CTC for entries and tests, which are combined using conjunctive
Parzen, Emanuel
1962-01-01
Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine
Growth Adapted Tensegrity Structures - A New Calculus for the Space Economy
National Aeronautics and Space Administration — We describe a novel approach to create and engineer an economically viable space habitat development technology, for deployment of a lightweight tensegrity habitat...
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Directory of Open Access Journals (Sweden)
Bram Geron
2013-09-01
Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.
The Schrödinger–Robinson inequality from stochastic analysis on a complex Hilbert space
International Nuclear Information System (INIS)
Khrennikov, Andrei
2013-01-01
We explored the stochastic analysis on a complex Hilbert space to show that one of the cornerstones of quantum mechanics (QM), namely Heisenberg's uncertainty relation, can be derived in the classical probabilistic framework. We created a new mathematical representation of quantum averages: as averages with respect to classical random fields. The existence of a classical stochastic model matching with Heisenberg's uncertainty relation makes the connection between classical and quantum probabilistic models essentially closer. In real physical situations, random fields are valued in the L 2 -space. Hence, although we model QM and not QFT, the classical systems under consideration have an infinite number of degrees of freedom. And in our modeling, infinite-dimensional stochastic analysis is the basic mathematical tool. (comment)
Stochastic quantization of general relativity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)
On Functional Calculus Estimates
Schwenninger, F.L.
2015-01-01
This thesis presents various results within the field of operator theory that are formulated in estimates for functional calculi. Functional calculus is the general concept of defining operators of the form $f(A)$, where f is a function and $A$ is an operator, typically on a Banach space. Norm
Stochastic Coulomb interactions in space charge limited electron emission
Nijkerk, M.D.; Kruit, P.
2004-01-01
A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity
Differential calculus and its applications
Field, Michael J
2013-01-01
Based on undergraduate courses in advanced calculus, the treatment covers a wide range of topics, from soft functional analysis and finite-dimensional linear algebra to differential equations on submanifolds of Euclidean space. 1976 edition.
Entropic stochastic resonance without external force in oscillatory confined space
Energy Technology Data Exchange (ETDEWEB)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-05-21
We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed.
Homomorphisms and functional calculus on algebras on entire functions on Banach spaces
Directory of Open Access Journals (Sweden)
H. M. Pryimak
2015-07-01
Full Text Available The paper is devoted to study homomorphisms of algebras of entire functionson Banach spaces to a commutative Banach algebra. In particular, it is proposed amethod to construct homomorphisms vanishing on homogeneouspolynomials of degree less or equal that a fixed number $n.$
Stochastic Coulomb interactions in space charge limited electron emission
International Nuclear Information System (INIS)
Nijkerk, M.D.; Kruit, P.
2004-01-01
Emission models that form the basis of self-consistent field computations make use of the approximation that emitted electrons form a smooth space charge jelly. In reality, electrons are discrete particles that are subject to statistical Coulomb interactions. A Monte Carlo simulation tool is used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics. We find that interactions in the space charge cloud affect the electron trajectories such that the velocity distribution is Maxwellian, regardless of the current density. Interactions near the emitter effectively conserve the Maxwellian distribution. The surprising result is that the width of the distribution of transversal velocities does not change. The distribution of longitudinal velocities does broaden, as expected from existing theories
A stochastic space-time model for intermittent precipitation occurrences
Sun, Ying; Stein, Michael L.
2016-01-01
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.
A stochastic space-time model for intermittent precipitation occurrences
Sun, Ying
2016-01-28
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.
Stochastic sampling of the RNA structural alignment space.
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H
2009-07-01
A novel method is presented for predicting the common secondary structures and alignment of two homologous RNA sequences by sampling the 'structural alignment' space, i.e. the joint space of their alignments and common secondary structures. The structural alignment space is sampled according to a pseudo-Boltzmann distribution based on a pseudo-free energy change that combines base pairing probabilities from a thermodynamic model and alignment probabilities from a hidden Markov model. By virtue of the implicit comparative analysis between the two sequences, the method offers an improvement over single sequence sampling of the Boltzmann ensemble. A cluster analysis shows that the samples obtained from joint sampling of the structural alignment space cluster more closely than samples generated by the single sequence method. On average, the representative (centroid) structure and alignment of the most populated cluster in the sample of structures and alignments generated by joint sampling are more accurate than single sequence sampling and alignment based on sequence alone, respectively. The 'best' centroid structure that is closest to the known structure among all the centroids is, on average, more accurate than structure predictions of other methods. Additionally, cluster analysis identifies, on average, a few clusters, whose centroids can be presented as alternative candidates. The source code for the proposed method can be downloaded at http://rna.urmc.rochester.edu.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Hill, Gregory
2013-01-01
Earn College Credit with REA's Test Prep for CLEP* Calculus Everything you need to pass the exam and get the college credit you deserve.Our test prep for CLEP* Calculus and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.Here's how it works:Diagnostic exam at the REA Study Center focuses your studyOur online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you
Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
International Nuclear Information System (INIS)
Ivanov, A O; Tuzhilin, A A
2001-01-01
It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space
Directory of Open Access Journals (Sweden)
Nataliya Chukhrova
2017-05-01
Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)
Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna
International Nuclear Information System (INIS)
Cornish, Neil J.
2002-01-01
The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve
A stochastic fractional dynamics model of space-time variability of rain
Kundu, Prasun K.; Travis, James E.
2013-09-01
varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.
International Nuclear Information System (INIS)
Brown, Kristen A.; Harlim, John
2013-01-01
In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Ouellette,, Jennifer
2011-01-01
Jennifer Ouellette never took maths in the sixth form, mostly because she like most of us assumed she wouldn't need it much in real life. But then the English graduate, now an award-winning science-writer, had a change of heart and decided to revisit the equations and formulas that had haunted her youth. The Calculus Diaries is the fun and fascinating account of a year spent confronting her numbers-phobia head on. With wit and verve, Ouellette explains how she discovered that maths could apply to everything from petrol mileages to dieting, rollercoaster rides to winning in Las Vegas.
Friedman, Avner
2007-01-01
This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several
Fitzpatrick, Patrick M
2009-01-01
Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclide
The stochastic versus the Euclidean approach to quantum fields on a static space-time
International Nuclear Information System (INIS)
De Angelis, G.F.; de Falco, D.
1986-01-01
Equations are presented which modify the definition of the Gaussian field in the Rindler chart in order to make contact with the Wightman state, the Hartle-Hawking state, and the Euclidean field. By taking Ornstein-Uhlenbeck processes the authors have chosen, in the sense of stochastic mechanics, to place precisely the Fulling modes in their harmonic oscillator ground state. In this respect, together with the periodicity of Minkowski space-time, the authors observe that the covariance of the Ornstein-Uhlenbeck process can be obtained by analytical continuation of the Wightman function of the harmonic oscillator at zero temperature
Pyrah, Leslie N
1979-01-01
Stone in the urinary tract has fascinated the medical profession from the earliest times and has played an important part in the development of surgery. The earliest major planned operations were for the removal of vesical calculus; renal and ureteric calculi provided the first stimulus for the radiological investigation of the viscera, and the biochemical investigation of the causes of calculus formation has been the training ground for surgeons interested in metabolic disorders. It is therefore no surprise that stone has been the subject of a number of monographs by eminent urologists, but the rapid development of knowledge has made it possible for each one of these authors to produce something new. There is still a technical challenge to the surgeon in the removal of renal calculi, and on this topic we are always glad to have the advice of a master craftsman; but inevitably much of the interest centres on the elucidation of the causes of stone formation and its prevention. Professor Pyrah has had a long an...
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Quantum mechanics and umbral calculus
International Nuclear Information System (INIS)
Lopez-Sendino, J E; Negro, J; Olmo, M A del; Salgado, E
2008-01-01
In this paper we present the first steps for obtaining a discrete Quantum Mechanics making use of the Umbral Calculus. The idea is to discretize the continuous Schroedinger equation substituting the continuous derivatives by discrete ones and the space-time continuous variables by well determined operators that verify some Umbral Calculus conditions. In this way we assure that some properties of integrability and symmetries of the continuous equation are preserved and also the solutions of the continuous case can be recovered discretized in a simple way. The case of the Schroedinger equation with a potential depending only in the space variable is discussed.
van Doorn, Floris
2015-01-01
I formalize important theorems about classical propositional logic in the proof assistant Coq. The main theorems I prove are (1) the soundness and completeness of natural deduction calculus, (2) the equivalence between natural deduction calculus, Hilbert systems and sequent calculus and (3) cut elimination for sequent calculus.
Baronti, Marco; van der Putten, Robertus; Venturi, Irene
2016-01-01
This book, intended as a practical working guide for students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, includes 450 exercises. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-...
Stochastic Systems Uncertainty Quantification and Propagation
Grigoriu, Mircea
2012-01-01
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: · A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis · Probabilistic models for random variables an...
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Contribution to the stochastically studies of space-time dependable hydrological processes
International Nuclear Information System (INIS)
Kjaevski, Ivancho
2002-12-01
One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro
DEFF Research Database (Denmark)
De Fraine, Bruno; Ernst, Erik; Südholt, Mario
2012-01-01
Aspect-oriented programming (AOP) has produced interesting language designs, but also ad hoc semantics that needs clarification. We contribute to this clarification with a calculus that models essential AOP, both simpler and more general than existing formalizations. In AOP, advice may intercept......-oriented code. Two well-known pointcut categories, call and execution, are commonly considered similar.We formally expose their differences, and resolve the associated soundness problem. Our calculus includes type ranges, an intuitive and concise alternative to explicit type variables that allows advice...... to be polymorphic over intercepted methods. We use calculus parameters to cover type safety for a wide design space of other features. Type soundness is verified in Coq....
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
Energy Technology Data Exchange (ETDEWEB)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at [University of Innsbruck, Department of Mathematics (Austria); Tuffaha, Amjad, E-mail: atufaha@aus.edu [American University of Sharjah, Department of Mathematics (United Arab Emirates)
2017-06-15
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.
Redshift space correlations and scale-dependent stochastic biasing of density peaks
Desjacques, Vincent; Sheth, Ravi K.
2010-01-01
dependent, so the configuration-space bias is stochastic and scale dependent, both in real and redshift space. We provide expressions for this stochasticity and its evolution.
Probabilistic Analysis of the Quality Calculus
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
2013-01-01
We consider a fragment of the Quality Calculus, previously introduced for defensive programming of software components such that it becomes natural to plan for default behaviour in case the ideal behaviour fails due to unreliable communication. This paper develops a probabilistically based trust...... analysis supporting the Quality Calculus. It uses information about the probabilities that expected input will be absent in order to determine the trustworthiness of the data used for controlling the distributed system; the main challenge is to take accord of the stochastic dependency between some...
Grossman, Stanley I
1986-01-01
Calculus of One Variable, Second Edition presents the essential topics in the study of the techniques and theorems of calculus.The book provides a comprehensive introduction to calculus. It contains examples, exercises, the history and development of calculus, and various applications. Some of the topics discussed in the text include the concept of limits, one-variable theory, the derivatives of all six trigonometric functions, exponential and logarithmic functions, and infinite series.This textbook is intended for use by college students.
HITZER, Eckhard MS
2002-01-01
This paper treats the fundamentals of the vector differential calculus part of universal geometric calculus. Geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. In order to make the treatment self-contained, I first compile all important geometric algebra relationships,which are necesssary for vector differential calculus. Then differentiation by vectors is introduced and a host of major ve...
Vickers, Trevor
1992-01-01
On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.
Geometro-stochastic quantization of gauge fields in curved space-time
International Nuclear Information System (INIS)
Prugovecki, E.
1988-01-01
It is shown that the geometro-stochastic method of quantization of massive fields in curved space-time can be extended to the massless cases of electromagnetic fields and general Yang-Mills fields. The Fock fibres of the massive case are replaced in the present context by fibres with indefinite inner products, such as Gupta-Bleuler fibres in the electromagnetic case. The quantum space-time form factor used in the massive case gives rise in the present case to quantum gauge frames whose elements are generalized coherent states corresponding to pseudounitary spin-one representations of direct products of the Poincare group with the U(1), SU(N) or other internal gauge groups. Quantum connections are introduced on bundles of second-quantized frames, and the corresponding parallel transport is expressed in terms of path integrals for quantum frame propagators. In the Yang-Mills case, these path integral make use of Faddeev-Popov quantum frames. It is shown, however, that in the present framework the ghost fields that give rise to these frames possess a geometric interpretation related to the presence of a super-gauge group that, in addition to the external Poincare and Yang-Mills gauge degrees of freedom, involves also the internal ones related to choices of gauge bases within the quantum fibres
Directory of Open Access Journals (Sweden)
Yanning Wang
2016-01-01
Full Text Available Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for a p-Laplacian conformable fractional differential equation boundary value problem on time scale T: Tα(Tαup-2Tα(u(t=∇F(σ(t,u(σ(t, Δ-a.e. t∈a,bTκ2, u(a-u(b=0, Tα(u(a-Tα(u(b=0, where Tα(u(t denotes the conformable fractional derivative of u of order α at t, σ is the forward jump operator, a,b∈T, 01, and F:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.
International Nuclear Information System (INIS)
Guatteri, Giuseppina; Tessitore, Gianmario
2008-01-01
We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random.In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed
Morris, Carla C
2015-01-01
Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills. In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets. Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay. Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions
Zegarelli, Mark
2012-01-01
An easy-to-understand primer on advanced calculus topics Calculus II is a prerequisite for many popular college majors, including pre-med, engineering, and physics. Calculus II For Dummies offers expert instruction, advice, and tips to help second semester calculus students get a handle on the subject and ace their exams. It covers intermediate calculus topics in plain English, featuring in-depth coverage of integration, including substitution, integration techniques and when to use them, approximate integration, and improper integrals. This hands-on guide also covers sequences and series, wit
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.
Discrete stochastic processes and applications
Collet, Jean-François
2018-01-01
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
Quantum Stratonovich calculus and the quantum Wong-Zakai theorem
International Nuclear Information System (INIS)
Gough, John
2006-01-01
We extend the Ito(bar sign)-to-Stratonovich analysis or quantum stochastic differential equations, introduced by Gardiner and Collett for emission (creation), absorption (annihilation) processes, to include scattering (conservation) processes. Working within the framework of quantum stochastic calculus, we define Stratonovich calculus as an algebraic modification of the Ito(bar sign) one and give conditions for the existence of Stratonovich time-ordered exponentials. We show that conversion formula for the coefficients has a striking resemblance to Green's function formulas from standard perturbation theory. We show that the calculus conveniently describes the Markov limit of regular open quantum dynamical systems in much the same way as in the Wong-Zakai approximation theorems of classical stochastic analysis. We extend previous limit results to multiple-dimensions with a proof that makes use of diagrammatic conventions
Equations involving Malliavin calculus operators applications and numerical approximation
Levajković, Tijana
2017-01-01
This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introdu...
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
International Nuclear Information System (INIS)
Pham, Nhu Viet Ha
2011-02-01
To predict the space-time dependent behavior of a nuclear reactor, the conventional space-dependent kinetics equations are widely used for treating the spatial variables. However, the solutions of such deterministic space-dependent kinetics equations, which give only the mean values of the neutron population and the delayed neutron precursor concentrations, do not offer sufficient insight into the actual dynamic processes within a reactor, where the interacting populations vary randomly with space and time. It is also noted that at high power levels, the random behavior of a reactor is negligible but at low power levels, such as at start-up, random fluctuations in population dynamics can be significant. To mathematically describe the evolution of the state of a nuclear reactor using a set of stochastic kinetics equations, the forward stochastic model (FSM) in stochastic kinetics theory is devised through the concept of reactor transition probability and its probability generating function as the spatial domain of a reactor is partitioned into a number of space cells. Nevertheless, the FSM equations for the mean value of neutron and precursor distribution are deterministic-like. Furthermore, the numerical treatment of the FSM equations for the means, variances, and covariances is quite complicated and time-consuming. In the present study, a generalized stochastic model (called the stochastic space-dependent kinetics model or SSKM) based on the FSM and the Its stochastic differential equations was newly developed for the analysis of monoenergetic spacetime nuclear reactor kinetics in one dimension. First, the FSM equations for determining the mean values of neutron and delayed-neutron precursor populations were considered as the deterministic ones without taking into account their variances and covariances. Second, the system of interest was randomized again in the light of the Its stochastic differential equations in order to derive the SSKM. The proposed model
The quantum probability calculus
International Nuclear Information System (INIS)
Jauch, J.M.
1976-01-01
The Wigner anomaly (1932) for the joint distribution of noncompatible observables is an indication that the classical probability calculus is not applicable for quantum probabilities. It should, therefore, be replaced by another, more general calculus, which is specifically adapted to quantal systems. In this article this calculus is exhibited and its mathematical axioms and the definitions of the basic concepts such as probability field, random variable, and expectation values are given. (B.R.H)
Non-exponential extinction of radiation by fractional calculus modelling
International Nuclear Information System (INIS)
Casasanta, G.; Ciani, D.; Garra, R.
2012-01-01
Possible deviations from exponential attenuation of radiation in a random medium have been recently studied in several works. These deviations from the classical Beer-Lambert law were justified from a stochastic point of view by Kostinski (2001) . In his model he introduced the spatial correlation among the random variables, i.e. a space memory. In this note we introduce a different approach, including a memory formalism in the classical Beer-Lambert law through fractional calculus modelling. We find a generalized Beer-Lambert law in which the exponential memoryless extinction is only a special case of non-exponential extinction solutions described by Mittag-Leffler functions. We also justify this result from a stochastic point of view, using the space fractional Poisson process. Moreover, we discuss some concrete advantages of this approach from an experimental point of view, giving an estimate of the deviation from exponential extinction law, varying the optical depth. This is also an interesting model to understand the meaning of fractional derivative as an instrument to transmit randomness of microscopic dynamics to the macroscopic scale.
Stochastic processes in cell biology
Bressloff, Paul C
2014-01-01
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods. This text is primarily...
Directory of Open Access Journals (Sweden)
Shnoll S. E.
2006-04-01
Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature --- from biochemical reactions to the noise in a gravitational antenna, or alpha-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force --- we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by alpha-decay detectors armed with collimators. Observations at 54 North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82 North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the
Directory of Open Access Journals (Sweden)
Shnoll S. E.
2006-04-01
Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature — from biochemical reactions to the noise in a gravitational antenna, or α-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force — we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by α-decay detectors armed with collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82◦ North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the
The fundamental theorem of linearised Regge calculus
International Nuclear Information System (INIS)
Barrett, J.W.
1987-01-01
In linearised Regge calculus in a topologically trivial region, the space of linearised deviations of the edge lengths from a flat configuration, divided by the subspace of deformations due to translations of the vertices, is equivalent to the space of the linearised curvatures which satisfy the Bianchi identities. (orig.)
Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.
2018-05-01
This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.
Cui, Helen; Thomas, Johanna; Kumar, Sunil
2013-04-10
We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging.
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Paragrassmann differential calculus
International Nuclear Information System (INIS)
Filippov, A.T.; Isaev, A.P.; Kurdikov, A.V.
1993-01-01
This paper significantly extends and generalizes the paragrassmann calculus previous paper. Explicit general constructions for paragrassmann calculus with one and many vaiables are discussed. A general construction of many-variable differentiation algebras is given. Some particular examples are related to multi-parametric quantum deformation of the harmonic oscillators
Sutherland, Melissa
2006-01-01
In this paper we discuss manipulatives and hands-on investigations for Calculus involving volume, arc length, and surface area to motivate and develop formulae which can then be verified using techniques of integration. Pre-service teachers in calculus courses using these activities experience a classroom in which active learning is encouraged and…
On exterior variational calculus
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
Exterior variational calculus is introduced through examples in field theory. It provides a very simple technique to decide on the existence of Lagrangians for given equations of motions and, in the case, to find them. Only local aspects are discussed but the analogy to exterior calculus on finite dimensional manifolds is complete, strongly suggesting its suitability to the study of topological aspects. (Author) [pt
Sauerheber, Richard D.
2012-01-01
Methods of teaching the Calculus are presented in honour of Sir Isaac Newton, by discussing an extension of his original proofs and discoveries. The methods, requested by Newton to be used that reflect the historical sequence of the discovered Fundamental Theorems, allow first-time students to grasp quickly the basics of the Calculus from its…
Essential calculus with applications
Silverman, Richard A
1989-01-01
Rigorous but accessible text introduces undergraduate-level students to necessary background math, then clear coverage of differential calculus, differentiation as a tool, integral calculus, integration as a tool, and functions of several variables. Numerous problems and a supplementary section of ""Hints and Answers."" 1977 edition.
Energy Technology Data Exchange (ETDEWEB)
Analytis, G.T. [Paul Scherrer Institute (PSI), Villigen (Switzerland)
1995-09-01
A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance of the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.
Borden, Robert S
1997-01-01
This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as lim
Multivariable calculus with applications
Lax, Peter D
2017-01-01
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathemat...
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Lax, Peter D
2014-01-01
This new edition of Lax, Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduc...
Stochastic dynamics and control
Sun, Jian-Qiao; Zaslavsky, George
2006-01-01
This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress proc
Impact of Calculus Reform in a Liberal Arts Calculus Course.
Brosnan, Patricia A.; Ralley, Thomas G.
This report describes the changes in a freshman-level calculus course that occurred as a consequence of adopting the Harvard Consortium Calculus text. The perspective is that of the lecturer. The course is intended as an introduction to calculus for liberal arts students, that is, students who will not be expected to use calculus as a mathematical…
Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition
Bessaih, Hakima
2015-11-02
The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.
Regge calculus from discontinuous metrics
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2003-01-01
Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Philipsen, Kirsten Riber; Christiansen, Lasse Engbo
2012-01-01
In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states...
Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space
International Nuclear Information System (INIS)
Du Kai; Qiu, Jinniao; Tang Shanjian
2012-01-01
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.
On Lipschitzian quantum stochastic differential inclusions
International Nuclear Information System (INIS)
Ekhaguere, G.O.S.
1990-12-01
Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs
Elsgolc, L E; Stark, M
1961-01-01
Calculus of Variations aims to provide an understanding of the basic notions and standard methods of the calculus of variations, including the direct methods of solution of the variational problems. The wide variety of applications of variational methods to different fields of mechanics and technology has made it essential for engineers to learn the fundamentals of the calculus of variations. The book begins with a discussion of the method of variation in problems with fixed boundaries. Subsequent chapters cover variational problems with movable boundaries and some other problems; sufficiency
Ryan, Mark
2014-01-01
Slay the calculus monster with this user-friendly guide Calculus For Dummies, 2nd Edition makes calculus manageable-even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the ""how"" and ""why"" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll s
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
On the interpretation of Stratonovich calculus
International Nuclear Information System (INIS)
Moon, W; Wettlaufer, J S
2014-01-01
The Itô–Stratonovich dilemma is revisited from the perspective of the interpretation of Stratonovich calculus using shot noise. Over the long time scales of the displacement of an observable, the principal issue is how to deal with finite/zero autocorrelation of the stochastic noise. The former (non-zero) noise autocorrelation structure preserves the normal chain rule using a mid-point selection scheme, which is the basis Stratonovich calculus, whereas the instantaneous autocorrelation structure of Itô's approach does not. By considering the finite decay of the noise correlations on time scales very short relative to the overall displacement times of the observable, we suggest a generalization of the integral Taylor expansion criterion of Wong and Zakai (1965 Ann. Math. Stat. 36 1560–4) for the validity of the Stratonovich approach. (paper)
Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
General quantum variational calculus
Directory of Open Access Journals (Sweden)
Artur M. C. Brito da Cruz
2018-02-01
Full Text Available We develop a new variational calculus based in the general quantum difference operator recently introduced by Hamza et al. In particular, we obtain optimality conditions for generalized variational problems where the Lagrangian may depend on the endpoints conditions and a real parameter, for the basic and isoperimetric problems, with and without fixed boundary conditions. Our results provide a generalization to previous results obtained for the $q$- and Hahn-calculus.
Directory of Open Access Journals (Sweden)
Alberto Carraro
2013-03-01
Full Text Available We introduce a functional calculus with simple syntax and operational semantics in which the calculi introduced so far in the Curry-Howard correspondence for Classical Logic can be faithfully encoded. Our calculus enjoys confluence without any restriction. Its type system enforces strong normalization of expressions and it is a sound and complete system for full implicational Classical Logic. We give a very simple denotational semantics which allows easy calculations of the interpretation of expressions.
DEFF Research Database (Denmark)
Ody, Heinrich; Fränzle, Martin; Hansen, Michael Reichhardt
2016-01-01
To formally reason about the temporal quality of systems discounting was introduced to CTL and LTL. However, these logic are discrete and they cannot express duration properties. In this work we introduce discounting for a variant of Duration Calculus. We prove decidability of model checking...... for a useful fragment of discounted Duration Calculus formulas on timed automata under mild assumptions. Further, we provide an extensive example to show the usefulness of the fragment....
Calculus of bivariant function
PTÁČNÍK, Jan
2011-01-01
This thesis deals with the introduction of function of two variables and differential calculus of this function. This work should serve as a textbook for students of elementary school's teacher. Each chapter contains a summary of basic concepts and explanations of relationships, then solved model exercises of the topic and finally the exercises, which should solve the student himself. Thesis have transmit to students basic knowledges of differential calculus of functions of two variables, inc...
Malinowska , Agnieszka B.; Torres , Delfim
2014-01-01
International audience; Introduces readers to the treatment of the calculus of variations with q-differences and Hahn difference operators Provides the reader with the first extended treatment of quantum variational calculus Shows how the techniques described can be applied to economic models as well as other mathematical systems This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of it...
Christensen, Mark J
1981-01-01
Computing for Calculus focuses on BASIC as the computer language used for solving calculus problems.This book discusses the input statement for numeric variables, advanced intrinsic functions, numerical estimation of limits, and linear approximations and tangents. The elementary estimation of areas, numerical and string arrays, line drawing algorithms, and bisection and secant method are also elaborated. This text likewise covers the implicit functions and differentiation, upper and lower rectangular estimates, Simpson's rule and parabolic approximation, and interpolating polynomials. Other to
Cartan calculus on quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''
A new approach to the Regge calculus
International Nuclear Information System (INIS)
Porter, J.
1987-01-01
In paper 1 an original '3 + 1' form of Regge calculus was developed. In the current paper the method is tested by application to spherically symmetric vacuum space-times. Three different time slicing conditions are used and, where appropriate, the results are compared with the analytic solution with encouraging results. (author)
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
The absolute differential calculus calculus of tensors
Levi-Cività, Tullio
1926-01-01
Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro
Quantum geometry in dynamical Regge calculus
International Nuclear Information System (INIS)
Hagura, Hiroyuki
2002-01-01
We study geometric properties of dynamical Regge calculus which is a hybridization of dynamical triangulation and quantum Regge calculus. Lattice diffeomorphisms are generated by certain elementary moves on a simplicial lattice in the hybrid model. At the semiclassical level, we discuss a possibility that the lattice diffeomorphisms give a simple explanation for the Bekenstein-Hawking entropy of a black hole. At the quantum level, numerical calculations of 3D pure gravity show that a fractal structure of the hybrid model is the same as that of dynamical triangulation in the strong-coupling phase. In the weak-coupling phase, on the other hand, space-time becomes a spiky configuration, which often occurs in quantum Regge calculus
Energy Technology Data Exchange (ETDEWEB)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
International Nuclear Information System (INIS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series
Dodov, B.
2017-12-01
Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon
Three-plus-one formulation of Regge calculus
International Nuclear Information System (INIS)
Piran, T.; Williams, R.M.
1986-01-01
Following the work of Lund and Regge for homogeneous spaces, we construct the action for Regge calculus in its three-plus-one form for general space-times. This is achieved in two ways: a first-order formalism and a second-order formalism. We describe the Regge-calculus analogue of solving the initial-value equations using conformal transformations. The second-order formalism is used to study the time development of two simple model universes
Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses
Directory of Open Access Journals (Sweden)
Bingbing Zhang
2017-03-01
Full Text Available Swarm is a European Space Agency (ESA project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD of 10−2 mm/s in radial (R, along-track (T and cross-track (N directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD. During high ionospheric activity, the mean Root Mean Square (RMS of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.
Independent variables in 3 + 1 Regge calculus
International Nuclear Information System (INIS)
Tuckey, P.A.
1989-01-01
The space of metrics in 3+1 Regge calculus is discussed, and the problems of counting its dimensions, and of finding independent variables to parametrise the space, are addressed. The most general natural class of metrics is considered first, and bounds on its dimension are obtained, although no good parametrisations are found. The relationship between these metrics and those used in canonical Regge calculus is shown, and this leads to an interesting result via the Bianchi identities. A restricted class of metrics is then considered and independent variables, which parametrise these metrics and which may be computationally convenient, are given. The dimension of this space of metrics gives an improved lower bound for the dimension of the general space. (author)
Putting Differentials Back into Calculus
Dray, Tevian; Manogue, Corrine A.
2010-01-01
We argue that the use of differentials in introductory calculus courses is useful and provides a unifying theme, leading to a coherent view of the calculus. Along the way, we meet several interpretations of differentials, some better than others.
Geometrical foundations of tensor calculus and relativity
Schuller , Frédéric; Lorent , Vincent
2006-01-01
Manifolds, particularly space curves: basic notions 1 The first groundform, the covariant metric tensor 11 The second groundform, Meusnier's theorem 19 Transformation groups in the plane 28 Co- and contravariant components for a special affine transformation in the plane 29 Surface vectors 32 Elements of tensor calculus 36 Generalization of the first groundform to the space 46 The covariant (absolute) derivation 57 Examples from elasticity theory 61 Geodesic lines 63 Main curvatur...
Malinowska, Agnieszka B
2014-01-01
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations fo...
Noncommutative operational calculus
Directory of Open Access Journals (Sweden)
Henry E. Heatherly
1999-12-01
Full Text Available Oliver Heaviside's operational calculus was placed on a rigorous mathematical basis by Jan Mikusinski, who constructed an algebraic setting for the operational methods. In this paper, we generalize Mikusi'{n}ski's methods to solve linear ordinary differential equations in which the unknown is a matrix- or linear operator-valued function. Because these functions can be zero-divisors and do not necessarily commute, Mikusi'{n}ski's one-dimensional calculus cannot be used. The noncommuative operational calculus developed here,however, is used to solve a wide class of such equations. In addition, we provide new proofs of existence and uniqueness theorems for certain matrix- and operator valued Volterra integral and integro-differential equations. Several examples are given which demonstrate these new methods.
Xie, Bin
2018-01-01
In this paper, the main topic is to investigate the intermittent property of the one-dimensional stochastic heat equation driven by an inhomogeneous Brownian sheet, which is a noise deduced from the study of the catalytic super-Brownian motion. Under some proper conditions on the catalytic measure of the inhomogeneous Brownian sheet, we show that the solution is weakly full intermittent based on the estimates of moments of the solution. In particular, it is proved that the second moment of the solution grows at the exponential rate. The novelty is that the catalytic measure relative to the inhomogeneous noise is not required to be absolutely continuous with respect to the Lebesgue measure on R.
Maxima and Minima Without Calculus.
Birnbaum, Ian
1982-01-01
Approaches to extrema that do not require calculus are presented to help free maxima/minima problems from the confines of calculus. Many students falsely suppose that these types of problems can only be dealt with through calculus, since few, if any, noncalculus examples are usually presented. (MP)
Schaaf, William L
2011-01-01
Comprehensive but concise, this introduction to differential and integral calculus covers all the topics usually included in a first course. The straightforward development places less emphasis on mathematical rigor, and the informal manner of presentation sets students at ease. Many carefully worked-out examples illuminate the text, in addition to numerous diagrams, problems, and answers.Bearing the needs of beginners constantly in mind, the treatment covers all the basic concepts of calculus: functions, derivatives, differentiation of algebraic and transcendental functions, partial different
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming; Vigo, Roberto
2013-01-01
for default behaviour in case the ideal behaviour fails due to unreliable communication and thereby to increase the quality of service offered by the systems. The development is facilitated by a SAT-based robustness analysis to determine whether or not the code is vulnerable to unreliable communication......A main challenge of programming component-based software is to ensure that the components continue to behave in a reasonable manner even when communication becomes unreliable. We propose a process calculus, the Quality Calculus, for programming software components where it becomes natural to plan...
Functional Fractional Calculus
Das, Shantanu
2011-01-01
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with 'ordinary' differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematic
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Sigdel, G; Agarwal, A; Keshaw, B W
2014-01-01
Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.
Ayres, Frank
1999-01-01
Students can gain a thorough understanding of differential and integral calculus with this powerful study tool. They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators.
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Directory of Open Access Journals (Sweden)
Philip Atzemoglou
2014-12-01
Full Text Available We present a novel lambda calculus that casts the categorical approach to the study of quantum protocols into the rich and well established tradition of type theory. Our construction extends the linear typed lambda calculus with a linear negation of "trivialised" De Morgan duality. Reduction is realised through explicit substitution, based on a symmetric notion of binding of global scope, with rules acting on the entire typing judgement instead of on a specific subterm. Proofs of subject reduction, confluence, strong normalisation and consistency are provided, and the language is shown to be an internal language for dagger compact categories.
International Nuclear Information System (INIS)
Bisognano, J.; Leemann, C.
1982-03-01
Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron
On the Lipschitz condition in the fractal calculus
International Nuclear Information System (INIS)
Golmankhaneh, Alireza K.; Tunc, Cemil
2017-01-01
In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the F"α-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the F"α-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples.
Discrete quantum gravitation in formalism of Regge calculus
International Nuclear Information System (INIS)
Khatsimovskij, V.M.
2005-01-01
One deals with approach to the discrete quantum gravitation in terms of the Regge calculus formalism. The Regge calculus represents the general relativity theory for the Riemann varieties - the piecewise planar varieties. The Regge calculus makes use of the discrete set of variables, triangulation lengths, and contains the continuous general relativity theory serving as a limiting special case when lengths tend to zero. In terms of our approach the quantum mean values of the mentioned lengths differ from zero and 10 -33 cm Planck length and it implies the discrete structure of space-time at the mentioned scales [ru
Indian Academy of Sciences (India)
IAS Admin
Sphere–Cylinder Theorem, vol- ume and surface area of the torus, volume and surface area of a slice of a solid sphere. The author earned his PhD degree in mathematics. (topology), in 2000, from. Panjab University,. Chandigarh and since then he has been teaching analysis, algebra, calculus and discrete mathematics at.
Provability Calculus of Constructions
DEFF Research Database (Denmark)
Nyblad, Kasten
This thesis presents a type system, Provability Calculus of Constructions (PCoC) that can be used for the formalization of logic. In a theorem prover based on the system, the user can extend the prover with new inference rules in a logically consistent manner. This is done by representing PCo...
Calculus Courses' Assessment Data
Pauna, Matti
2017-01-01
In this paper we describe computer-aided assessment methods used in online Calculus courses and the data they produce. The online learning environment collects a lot of time-stamped data about every action a student makes. Assessment data can be harnessed into use as a feedback, predictor, and recommendation facility for students and instructors.…
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...
African Journals Online (AJOL)
Giant vesical calculus. A case report. H. H. LAUBSCHER. Summary. An exceptional case of bladder stone is presented. The case is unusual as regards the size of the stone and the fact that the patient did··not seek medical assistance much earlier, as this was readily avail- able. Furthermore, recovery after removal of the.
Domingues, João Caramalho
2008-01-01
Silvestre François Lacroix (Paris, 1765 - ibid., 1843) was a most influential mathematical book author. His most famous work is the three-volume Traité du calcul différentiel et du calcul intégral (1797-1800; 2nd ed. 1810-1819) – an encyclopedic appraisal of 18th-century calculus which remained the standard reference on the subject through much of the 19th century, in spite of Cauchy's reform of the subject in the 1820's. Lacroix and the Calculus is the first major study of Lacroix’s large Traité. It uses the unique and massive bibliography given by Lacroix to explore late 18th-century calculus, and the way it is reflected in Lacroix’s account. Several particular aspects are addressed in detail, including: the foundations of differential calculus, analytic and differential geometry, conceptions of the integral, and types of solutions of differential equations (singular/complete/general integrals, geometrical interpretations, and generality of arbitrary functions). Lacroix’s large Traité... was a...
Stochastic space interval as a link between quantum randomness and macroscopic randomness?
Haug, Espen Gaarder; Hoff, Harald
2018-03-01
For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).
Length expectation values in quantum Regge calculus
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2004-01-01
Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework
DEFF Research Database (Denmark)
Høilund, Carsten; Moeslund, Thomas B.; Madsen, Claus B.
2010-01-01
This paper presents a method for determining the free space in a scene as viewed by a vehicle-mounted camera. Using disparity maps from a stereo camera and known camera motion, the disparity maps are first filtered by an iconic Kalman filter, operating on each pixel individually, thereby reducing...
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2011-01-01
A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Dynamics of stochastic systems
Klyatskin, Valery I
2005-01-01
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...
Differential calculus on quantized simple Lie groups
International Nuclear Information System (INIS)
Jurco, B.
1991-01-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)
Time-evolution problem in Regge calculus
International Nuclear Information System (INIS)
Sorkin, R.
1975-01-01
The simplectic approximation to Einstein's equations (''Regge calculus'') is derived by considering the net to be actually a (singular) Riemannian manifold. Specific nets for open and closed spaces are introduced in terms of which one can formulate the general time-evolution problem, which thereby reduces to the repeated solution of finite sets of coupled nonlinear (algebraic) equations. The initial-value problem is also formulated in simplectic terms
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
On paragrassmann differential calculus
International Nuclear Information System (INIS)
Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.
1992-01-01
The paper significantly extends and generalizes our previous paper. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of (p+1)x(p+1) complex matrices. For many variables we give a general construction of the differentiation algebras. Some particular examples are related to the multiparametric quantum deformations of the harmonic oscillators. 18 refs
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
Woodward, Ernest
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Pre-Calculus reviews sets, numbers, operations and properties, coordinate geometry, fundamental algebraic topics, solving equations and inequalities, functions, trigonometry, exponents
Tall, David
1985-01-01
A number of significant changes have have occurred recently that give us a golden opportunity to review the teaching of calculus. The most obvious is the arrival of the microcomputer in the mathematics classroom, allowing graphic demonstrations and individual investigations into the mathematical ideas. But equally potent are new\\ud insights into mathematics and mathematics education that suggest new ways of approaching the subject.\\ud In this article I shall consider some of the difficulties ...
Roman, Steven
2005-01-01
Geared toward upper-level undergraduates and graduate students, this elementary introduction to classical umbral calculus requires only an acquaintance with the basic notions of algebra and a bit of applied mathematics (such as differential equations) to help put the theory in mathematical perspective. Subjects include Sheffer sequences and operators and their adjoints, with numerous examples of associated and other sequences. Related topics encompass the connection constants problem and duplication formulas, the Lagrange inversion formula, operational formulas, inverse relations, and binomial
Treiman, Jay S
2014-01-01
Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM. fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. All three-dimensional graphs have rotatable versions included as extra source materials and may be freely downloaded and manipulated with Maple Player; a free Maple Player App is available for the iPad on iTunes. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits, and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additio...
Using stochastic space-time models to map extreme precipitation in southern Portugal
Directory of Open Access Journals (Sweden)
A. C. Costa
2008-07-01
Full Text Available The topographic characteristics and spatial climatic diversity are significant in the South of continental Portugal where the rainfall regime is typically Mediterranean. Direct sequential cosimulation is proposed for mapping an extreme precipitation index in southern Portugal using elevation as auxiliary information. The analysed index (R5D can be considered a flood indicator because it provides a measure of medium-term precipitation total. The methodology accounts for local data variability and incorporates space-time models that allow capturing long-term trends of extreme precipitation, and local changes in the relationship between elevation and extreme precipitation through time. Annual gridded datasets of the flood indicator are produced from 1940 to 1999 on 800 m×800 m grids by using the space-time relationship between elevation and the index. Uncertainty evaluations of the proposed scenarios are also produced for each year. The results indicate that the relationship between elevation and extreme precipitation varies locally and has decreased through time over the study region. In wetter years the flood indicator exhibits the highest values in mountainous regions of the South, while in drier years the spatial pattern of extreme precipitation has much less variability over the study region. The uncertainty of extreme precipitation estimates also varies in time and space, and in earlier decades is strongly dependent on the density of the monitoring stations network. The produced maps will be useful in regional and local studies related to climate change, desertification, land and water resources management, hydrological modelling, and flood mitigation planning.
Differential Calculus on Quantum Spheres
Welk, Martin
1998-01-01
We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.
Introduction to the operational calculus
Berg, Lothar
2013-01-01
Introduction to the Operational Calculus is a translation of ""Einfuhrung in die Operatorenrechnung, Second Edition."" This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work ""Operational Calculus."" Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant
Directory of Open Access Journals (Sweden)
Elisa Alòs
2008-01-01
Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.
Stochastic quantisation: theme and variation
International Nuclear Information System (INIS)
Klauder, J.R.; Kyoto Univ.
1987-01-01
The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)
Polynomial Calculus: Rethinking the Role of Calculus in High Schools
Grant, Melva R.; Crombie, William; Enderson, Mary; Cobb, Nell
2016-01-01
Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in…
Early Vector Calculus: A Path through Multivariable Calculus
Robertson, Robert L.
2013-01-01
The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)
Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
International Nuclear Information System (INIS)
Willow, Soohaeng Yoo; Hirata, So
2014-01-01
A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE h after 10 6 Monte Carlo steps
Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
Energy Technology Data Exchange (ETDEWEB)
Willow, Soohaeng Yoo [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784 (Korea, Republic of); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan)
2014-01-14
A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE{sub h} after 10{sup 6} Monte Carlo steps.
Stochastic differential equations and diffusion processes
Ikeda, N
1989-01-01
Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio
International Nuclear Information System (INIS)
Arnold, R.C.
1976-01-01
A stochastic-field calculus, previously discussed in connection with Regge intercepts and instability questions, is applied to inclusive cross sections, and is shown to predict a growth with energy of large-P/perpendicular/ to inclusives
Proof Nets for Lambek Calculus
Roorda, Dirk
1992-01-01
The proof nets of linear logic are adapted to the non-commutative Lambek calculus. A different criterion for soundness of proof nets is given, which gives rise to new algorithms for proof search. The order sensitiveness of the Lambek calculus is reflected by the planarity condition on proof nets;
Fluorescence spectroscopy of dental calculus
International Nuclear Information System (INIS)
Bakhmutov, D; Gonchukov, S; Sukhinina, A
2010-01-01
The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined
Fluorescence spectroscopy of dental calculus
Bakhmutov, D.; Gonchukov, S.; Sukhinina, A.
2010-05-01
The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined.
Scherger, Nicole
2012-01-01
Of the most universal applications in integral calculus are those involved with finding volumes of solids of revolution. These profound problems are typically taught with traditional approaches of the disk and shell methods, after which most calculus curriculums will additionally cover arc length and surfaces of revolution. Even in these visibly…
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Mardare, Radu Iulian; Xue, Bingtian
2016-01-01
We introduce a version of the probabilistic µ-calculus (PMC) built on top of a probabilistic modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of good...... metaproperties. Firstly, we prove the decidability of satisﬁability checking by establishing the small model property. An algorithm for deciding the satisﬁability problem is developed. As a second major result, we provide a complete axiomatization for the alternation-free fragment of PMC. The completeness proof...
Advanced calculus problem solver
REA, Editors of
2012-01-01
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of advanced calculus currently av
DEFF Research Database (Denmark)
Ernst, Erik; Ostermann, Klaus; Cook, William Randall
2006-01-01
Virtual classes are class-valued attributes of objects. Like virtual methods, virtual classes are defined in an object's class and may be redefined within subclasses. They resemble inner classes, which are also defined within a class, but virtual classes are accessed through object instances...... model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static semantics of vc...
Calculus problems and solutions
Ginzburg, Abraham
2011-01-01
Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for
Elsgolc, Lev D
2007-01-01
This concise text offers both professionals and students an introduction to the fundamentals and standard methods of the calculus of variations. In addition to surveys of problems with fixed and movable boundaries, it explores highly practical direct methods for the solution of variational problems.Topics include the method of variation in problems with fixed boundaries; variational problems with movable boundaries and other problems; sufficiency conditions for an extremum; variational problems of constrained extrema; and direct methods of solving variational problems. Each chapter features nu
Regge calculus and observations. II. Further applications
International Nuclear Information System (INIS)
Williams, R.M.; Ellis, G.F.R.
1983-03-01
The method, developed in an earlier paper, for tracing geodesics of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarschild geometry. It is possible to obtain accurate predictions of light-bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly. (author)
Regge calculus and observations. II. Further applications.
Williams, Ruth M.; Ellis, G. F. R.
1984-11-01
The method, developed in an earlier paper, for tracing geodesies of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarzschild geometry. It is possible to obtain accurate predictions of light bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession, and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly.
Bessaih, Hakima
2015-04-01
The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.
Functional calculus for C0-semigroups using infinite-dimensional systems theory
Schwenninger, F.L.; Zwart, Hans; Arendt, Wolfgang; Chill, Ralph; Tomilov, Yuri
2015-01-01
In this short note we use ideas from systems theory to define a functional calculus for infinitesimal generators of strongly continuous semigroups on a Hilbert space. Among others, we show how this leads to new proofs of (known) results in functional calculus.
Stochastic volatility and stochastic leverage
DEFF Research Database (Denmark)
Veraart, Almut; Veraart, Luitgard A. M.
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...
A measure theoretical approach to quantum stochastic processes
Energy Technology Data Exchange (ETDEWEB)
Waldenfels, Wilhelm von
2014-04-01
Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.
A measure theoretical approach to quantum stochastic processes
Von Waldenfels, Wilhelm
2014-01-01
This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.
Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
DEFF Research Database (Denmark)
Aguirre, Alejandro; Barthe, Gilles; Birkedal, Lars
2018-01-01
We extend the simply-typed guarded $\\lambda$-calculus with discrete probabilities and endow it with a program logic for reasoning about relational properties of guarded probabilistic computations. This provides a framework for programming and reasoning about infinite stochastic processes like...
Leveraging Prior Calculus Study with Embedded Review
Nikolov, Margaret C.; Withers, Wm. Douglas
2016-01-01
We propose a new course structure to address the needs of college students with previous calculus study but no course validations as an alternative to repeating the first year of calculus. Students are introduced directly to topics from Calculus III unpreceded by a formal review of topics from Calculus I or II, but with additional syllabus time…
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
A generalized nonlocal vector calculus
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
The calculus a genetic approach
Toeplitz, Otto
2007-01-01
When first published posthumously in 1963, this book presented a radically different approach to the teaching of calculus. In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique a
Fluorescence detection of dental calculus
Gonchukov, S.; Biryukova, T.; Sukhinina, A.; Vdovin, Yu
2010-11-01
This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 - 645 nm and 340 - 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy.
The Vectorial $\\lambda$-Calculus
Arrighi, Pablo; Díaz-Caro, Alejandro; Valiron, Benoît
2013-01-01
We describe a type system for the linear-algebraic $\\lambda$-calculus. The type system accounts for the linear-algebraic aspects of this extension of $\\lambda$-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed $\\lambda$-calculus is strongly normalising and fea...
Kuang, Yang
2012-01-01
The fun and easy way to learn pre-calculus Getting ready for calculus but still feel a bit confused? Have no fear. Pre-Calculus For Dummies is an un-intimidating, hands-on guide that walks you through all the essential topics, from absolute value and quadratic equations to logarithms and exponential functions to trig identities and matrix operations. With this guide's help you'll quickly and painlessly get a handle on all of the concepts - not just the number crunching - and understand how to perform all pre-calc tasks, from graphing to tackling proofs. You'll also get a new appreciation for
Mathematics for physics with calculus
Das, Biman
2005-01-01
Designed for students who plan to take or who are presently taking calculus-based physics courses. This book will develop necessary mathematical skills and help students gain the competence to use precalculus, calculus, vector algebra, vector calculus, and the statistical analysis of experimental data. Students taking intermediate physics, engineering, and other science courses will also find the book useful-and will be able to use the book as a mathematical resource for these intermediate level courses. The book emphasizes primarily the use of mathematical techniques and mathematical concepts in Physics and does not go into their rigorous developments.
Advanced calculus a transition to analysis
Dence, Thomas P
2010-01-01
Designed for a one-semester advanced calculus course, Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http://www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructor
Waste pipe calculus extensions
International Nuclear Information System (INIS)
O'Connell, W.J.
1979-01-01
The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems
Lei, Qian
2017-01-01
This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.
Smirnov, Vladimir A
2006-01-01
The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory. The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. `Feynman Integral Calculus' characterizes the most powerful methods in a systematic way. It concentrates on the methods that have been employed recently for most sophisticated calculations and illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples. It also shows how to choose adequate methods and combine them in a non-trivial way. This is a textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. Problems and solutions have been included, Appendix G has been added, more details have been presented, recent publications on evaluating Feynman integrals have been taken into account and the bibliography has been updated.
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
Energy Technology Data Exchange (ETDEWEB)
David A. Benson; Mark M. Meerschaert; Jordan Revielle
2012-01-01
Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.
Stochastic massless fields I: Integer spin
International Nuclear Information System (INIS)
Lim, S.C.
1981-04-01
Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)
A Formal Calculus for Categories
DEFF Research Database (Denmark)
Cáccamo, Mario José
This dissertation studies the logic underlying category theory. In particular we present a formal calculus for reasoning about universal properties. The aim is to systematise judgements about functoriality and naturality central to categorical reasoning. The calculus is based on a language which...... extends the typed lambda calculus with new binders to represent universal constructions. The types of the languages are interpreted as locally small categories and the expressions represent functors. The logic supports a syntactic treatment of universality and duality. Contravariance requires a definition...... of universality generous enough to deal with functors of mixed variance. Ends generalise limits to cover these kinds of functors and moreover provide the basis for a very convenient algebraic manipulation of expressions. The equational theory of the lambda calculus is extended with new rules for the definitions...
Synthesizing controllers from duration calculus
DEFF Research Database (Denmark)
Fränzle, Martin
1996-01-01
Duration Calculus is a logic for reasoning about requirements for real-time systems at a high level of abstraction from operational detail, which qualifies it as an interesting starting point for embedded controller design. Such a design activity is generally thought to aim at a control device...... the physical behaviours of which satisfy the requirements formula, i.e. the refinement relation between requirements and implementations is taken to be trajectory inclusion. Due to the abstractness of the vocabulary of Duration Calculus, trajectory inclusion between control requirements and controller designs...... for embedded controller design and exploit this fact for developing an automatic procedure for controller synthesis from specifications formalized in Duration Calculus. As far as we know, this is the first positive result concerning feasibility of automatic synthesis from dense-time Duration Calculus....
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
Testicular calculus: A rare case.
Sen, Volkan; Bozkurt, Ozan; Demır, Omer; Tuna, Burcin; Yorukoglu, Kutsal; Esen, Adil
2015-01-01
Testicular calculus is an extremely rare case with unknown etiology and pathogenesis. To our knowledge, here we report the third case of testicular calculus. A 31-year-old man was admitted to our clinic with painful solid mass in left testis. After diagnostic work-up for a possible testicular tumour, he underwent inguinal orchiectomy and histopathologic examination showed a testicular calculus. Case hypothesis: Solid testicular lesions in young adults generally correspond to testicular cancer. Differential diagnosis should be done carefully. Future implications: In young adults with painful and solid testicular mass with hyperechogenic appearance on scrotal ultrasonography, testicular calculus must be kept in mind in differential diagnosis. Further reports on this topic may let us do more clear recommendations about the etiology and treatment of this rare disease.
Catwalk: First-Semester Calculus.
Speiser, Bob; Walter, Chuck
1994-01-01
Describes the use of time-lapse photographs of a running cat as a model to investigate the concepts of function and derivative in a college calculus course. Discusses student difficulties and implications for teachers. (MKR)
Making an Interactive Calculus Textbook.
Larson, Timothy R.
1995-01-01
Presents a case study of the design and production of "Interactive Calculus," an interactive multimedia textbook. Discusses reasons for using multimedia textbooks; what an interactive textbook is; content, organization, graphic design, authoring and composition; and work flow. (AEF)
Means and Variances without Calculus
Kinney, John J.
2005-01-01
This article gives a method of finding discrete approximations to continuous probability density functions and shows examples of its use, allowing students without calculus access to the calculation of means and variances.
Differential calculus on quantized simple Lie groups
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).
On d=2 Regge calculus without triangulation
International Nuclear Information System (INIS)
Foerster, D.
1987-01-01
The supersymmetric version of a previously developed Regge calculus for d=2 euclidean gravity is given. In the context of string theory, a continuum theory is likely to exist for D<2 external space-time dimensions, just like in the bosonic case and essentially in agreement with the weak coupling regime D≤1 found by Gervais and Neveu for Liouville theory and its supersymmetric extension. The techniques developed here are intended to be of use, eventually, in lowering the critical dimensions of string theories. (orig.)
Covariant super reggeon calculus for superstrings
International Nuclear Information System (INIS)
Petersen, J.L.; Sidenius, J.R.; Tollsten, A.K.
1988-07-01
A previously developed formalism for the bosonic string is extended to the Neveu-Schwarz-Ramond string using 2-d superspace techniques throughout. 3-string vertices for NS- and R-strings are constructed, sewing rules developed, and the technique of quasi-superconformal modes is set up for constructing the measure on super moduli space. Symmetries, such as superconformal invariance and BRST-invariance, are guaranteed ab initio. Picture changing and bosonization are avoided. Examples are given. The formalism should allow a superstring loop calculus based on supermoduli. Results concerning the ensuing super-Schottky description are given. (orig.)
An introduction to the calculus of variations
Pars, LA
2009-01-01
This clear, rigorous introduction to the calculus of variations covers applications to geometry, dynamics, and physics. Focusing upon problems with one independent variable, the text connects the abstract theory to its use in concrete problems. It offers a working knowledge of relevant techniques, plus an impetus for further study.Starting with an overview of fundamental problems and theories, the text advances to illustrative examples and examinations of variable end-points and the fundamental sufficiency theorem. Subsequent chapters explore the isoperimetrical problem, curves in space, the p
Neutrosophic Precalculus and Neutrosophic Calculus
Florentin Smarandache
2015-01-01
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples o...
A metric model of lambda calculus with guarded recursion
DEFF Research Database (Denmark)
Birkedal, Lars; Schwinghammer, Jan; Støvring, Kristian
2010-01-01
We give a model for Nakano’s typed lambda calculus with guarded recursive definitions in a category of metric spaces. By proving a computational adequacy result that relates the interpretation with the operational semantics, we show that the model can be used to reason about contextual equivalence....
Integration on supermanifolds and a generalized Cartan calculus
International Nuclear Information System (INIS)
Picken, R.F.; Sundermeyer, K.
1986-01-01
A suggestion by Berezin for a method of integration on supermanifolds is given a precise differential geometric meaning by assuming that a supermanifold is the total space of a fibre bundle with connection. The relevant objects for integration are identified as suitable horizontal/vertical projections of hyperforms. The latter are generalizations of differential forms having both covariant and contravariant indices. The exterior calculus of these projected hyperforms is developed, analogously to the Cartan calculus, by introducing appropriate derivations and determining their commutators, respectively anticommutators. (orig.)
Answers to selected problems in multivariable calculus with linear algebra and series
Trench, William F
1972-01-01
Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig
Some stochastic techniques in quantization, new developments in Markov fields and quantum fields
International Nuclear Information System (INIS)
Albeverio, S.; Zegarlinski, B.
1990-01-01
In these lectures we intend to discuss a few recent developments in the area of interactions between quantum fields and Markow fields in which we have been involved. We stress particularly developments involving techniques of stochastic analysis and where mathematical results have been obtained. In sections 1 and 2 we discuss recent developments in the study and applications of the theory of Dirichlet forms in its relations with quantum mechanics and quantum field theory. In our opinion, this theory provides a natural setting for the study of the singular stochastic processes associated with quantum theory. In section 3 we discuss a recent rigorous construction of a convergent simplicial approximation to quantum fields. We look upon these developments as a first step towards a mathematical realization, at least in 2 space-time dimensions, of a convergent 'Regge-calculus', and as first steps to the mathematical control of more general models (like e.g. models involving actions of Chern-Simons type) in the continuum. In Sect. 4 we discuss applications of some stochastic techniques to the study of gauge fields and Higgs fields, mainly in 2 space time dimensions and certain non linear electromagnetic-type fields in 4-space-time dimensions. (orig./HSI)
Stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''
Classical Solutions of Path-Dependent PDEs and Functional Forward-Backward Stochastic Systems
Directory of Open Access Journals (Sweden)
Shaolin Ji
2013-01-01
Full Text Available In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the framework of functional Itô calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a functional forward-backward stochastic system.
On the use of functional calculus for phase-type and related distributions
DEFF Research Database (Denmark)
Bladt, Mogens; Campillo Navarro, Azucena; Nielsen, Bo Friis
of matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this paper we provide a number of examples on how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions...
On the use of functional calculus for phase-type and related distributions
DEFF Research Database (Denmark)
Bladt, Mogens; Navarro, Azucena Campillo; Nielsen, Bo Friis
2016-01-01
of matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this article we provide a number of examples of how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions...
Almost Periodic Solutions for Impulsive Fractional Stochastic Evolution Equations
Directory of Open Access Journals (Sweden)
Toufik Guendouzi
2014-08-01
Full Text Available In this paper, we consider the existence of square-mean piecewise almost periodic solutions for impulsive fractional stochastic evolution equations involving Caputo fractional derivative. The main results are obtained by means of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic analysis theory and methods adopted directly from deterministic fractional equations. Some known results are improved and generalized.
Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations
Fredericks, E.; Mahomed, F. M.
2012-01-01
Symmetries of $n$ th-order approximate stochastic ordinary differential equations (SODEs) are studied. The determining equations of these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model nature (e.g., earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations.
Differential calculus on deformed E(2) group
International Nuclear Information System (INIS)
Giller, S.; Gonera, C.; Kosinski, P.; Maslanka, P.
1997-01-01
Four dimensional bi-covariant differential *-calculus on quantum E(2) group is constructed. The relevant Lie algebra is obtained and covariant differential calculus on quantum plane is found. (author)
Verification of Stochastic Process Calculi
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya
algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...
The dynamics of stochastic processes
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...
The untyped stack calculus and Bohm's theorem
Directory of Open Access Journals (Sweden)
Alberto Carraro
2013-03-01
Full Text Available The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.
An infinite-dimensional calculus for gauge theories
Mendes, Rui Vilela
2010-01-01
A space for gauge theories is defined, using projective limits as subsets of Cartesian products of homomorphisms from a lattice on the structure group. In this space, non-interacting and interacting measures are defined as well as functions and operators. From projective limits of test functions and distributions on products of compact groups, a projective gauge triplet is obtained, which provides a framework for the infinite-dimensional calculus in gauge theories. The gauge measure behavior ...
Fluorescence detection of dental calculus
International Nuclear Information System (INIS)
Gonchukov, S; Sukhinina, A; Vdovin, Yu; Biryukova, T
2010-01-01
This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 – 645 nm and 340 – 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy
Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model
Florinski, V.
2009-04-01
We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.
On the fractional calculus of Besicovitch function
International Nuclear Information System (INIS)
Liang Yongshun
2009-01-01
Relationship between fractional calculus and fractal functions has been explored. Based on prior investigations dealing with certain fractal functions, fractal dimensions including Hausdorff dimension, Box dimension, K-dimension and Packing dimension is shown to be a linear function of order of fractional calculus. Both Riemann-Liouville fractional calculus and Weyl-Marchaud fractional derivative of Besicovitch function have been discussed.
An AP Calculus Classroom Amusement Park
Ferguson, Sarah
2016-01-01
Throughout the school year, AP Calculus teachers strive to teach course content comprehensively and swiftly in an effort to finish all required material before the AP Calculus exam. As early May approaches and the AP Calculus test looms, students and teachers nervously complete lessons, assignments, and assessments to ensure student preparation.…
Elementary calculus an infinitesimal approach
Keisler, H Jerome
2012-01-01
This first-year calculus book is centered around the use of infinitesimals, an approach largely neglected until recently for reasons of mathematical rigor. It exposes students to the intuition that originally led to the calculus, simplifying their grasp of the central concepts of derivatives and integrals. The author also teaches the traditional approach, giving students the benefits of both methods.Chapters 1 through 4 employ infinitesimals to quickly develop the basic concepts of derivatives, continuity, and integrals. Chapter 5 introduces the traditional limit concept, using approximation p
Sequent Calculus and Equational Programming
Directory of Open Access Journals (Sweden)
Nicolas Guenot
2015-07-01
Full Text Available Proof assistants and programming languages based on type theories usually come in two flavours: one is based on the standard natural deduction presentation of type theory and involves eliminators, while the other provides a syntax in equational style. We show here that the equational approach corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A typed functional language is presented, based on a sequent calculus, that we relate to the syntax and internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as rules implementing inductive reasoning and dependent products and sums.
Stochastic dynamics and irreversibility
Tomé, Tânia
2015-01-01
This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...
Stochastic Calculus: Application to Dynamic Bifurcations and Threshold Crossings
Jansons, Kalvis M.; Lythe, G. D.
1998-01-01
For the dynamic pitchfork bifurcation in the presence of white noise, the statistics of the last time at zero are calculated as a function of the noise level ∈ and the rate of change of the parameter μ. The threshold crossing problem used, for example, to model the firing of a single cortical neuron is considered, concentrating on quantities that may be experimentally measurable but have so far received little attention. Expressions for the statistics of pre-threshold excursions, occupation density, and last crossing time of zero are compared with results from numerical generation of paths.
Sequent Calculus Representations for Quantum Circuits
Directory of Open Access Journals (Sweden)
Cameron Beebe
2016-06-01
Full Text Available When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from 'scratch' in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus.
Applying π-Calculus to Practice
DEFF Research Database (Denmark)
Abendroth, Jorg
2003-01-01
The π-Calculus has been developed to reason about behavioural equivalence. Different notations of equivalence are defined in terms of process interactions, as well as the context of processes. There are various extensions of the π-Calculus, such as the SPI calculus, which has primitives...... modles are instantiated correctly. In this paper we will utilize the to π-Calculus reason about access control policies and mechanism. An equivalence of different policy implementations, as well as access control mechanism will be shown. Finally some experiences regarding the use of π-Calculus...
A Calculus for Trust Management
DEFF Research Database (Denmark)
Carbone, Marco; Nielsen, Mogens; Sassone, Vladimiro
2004-01-01
principals to policies. We elect to formalise policies using a Datalog-like logic, and to express protocols in the process algebra style. This yields an expressive calculus very suitable for the global computing scenarios, and provides a formalisation of notions such as trust evolution. For ctm we define...
Advanced calculus of several variables
Edwards, C H
1995-01-01
Modern conceptual treatment of multivariable calculus, emphasizing the interplay of geometry and analysis via linear algebra and the approximation of nonlinear mappings by linear ones. At the same time, ample attention is paid to the classical applications and computational methods. Hundreds of examples, problems and figures. 1973 edition.
POGIL in the Calculus Classroom
Bénéteau, Catherine; Guadarrama, Zdenka; Guerra, Jill E.; Lenz, Laurie; Lewis, Jennifer E.; Straumanis, Andrei
2017-01-01
In this paper, we will describe the experience of the authors in using process-oriented guided inquiry learning (POGIL) in calculus at four institutions across the USA. We will briefly examine how POGIL compares to and fits in with other kinds of inquiry-based learning approaches. In particular, we will first discuss the unique structure of a…
Portfolio Analysis for Vector Calculus
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
Reading the World with Calculus
Verzosa, Debbie
2015-01-01
It is now increasingly recognized that mathematics is not a neutral value-free subject. Rather, mathematics can challenge students' taken-for-granted realities and promote action. This article describes two issues, namely deforestation and income inequality. These were specifically chosen because they can be related to a range of calculus concepts…
Constructivized Calculus in College Mathematics
Lawrence, Barbara Ann
2012-01-01
The purpose of this study is to present some of the classical concepts, definitions, and theorems of calculus from the constructivists' point of view in the spirit of the philosophies of L.E.J. Brouwer and Errett Bishop. This presentation will compare the classical statements to the constructivized statements. The method focuses on giving…
A "Model" Multivariable Calculus Course.
Beckmann, Charlene E.; Schlicker, Steven J.
1999-01-01
Describes a rich, investigative approach to multivariable calculus. Introduces a project in which students construct physical models of surfaces that represent real-life applications of their choice. The models, along with student-selected datasets, serve as vehicles to study most of the concepts of the course from both continuous and discrete…
Calculus Student Descending a Staircase.
Mueller, William
1999-01-01
Common student attitudes toward reform methods are conveyed through the thoughts of a student leaving a multivariable calculus exam and musings range over textbooks, homework, workload, group work, writing, noncomputational problems, instructional problems, instructional styles, and classroom activities. (Author/ASK)
The Pendulum and the Calculus.
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
Reasoning about objects using process calculus techniques
DEFF Research Database (Denmark)
Kleist, Josva
This thesis investigates the applicability of techniques known from the world of process calculi to reason about properties of object-oriented programs. The investigation is performed upon a small object-oriented language - The Sigma-calculus of Abadi and Cardelli. The investigation is twofold: We......-calculus turns out to be insufficient. Based on our experiences, we present a translation of a typed imperative Sigma-calculus, which looks promising. We are able to provide simple proofs of the equivalence of different Sigma-calculus objects using this translation. We use a labelled transition system adapted...... to the Sigma-calculus to investigate the use of process calculi techniques directly on the Sigma-calculus. The results obtained are of a fairly theoretical nature. We investigate the connection between the operational and denotaional semantics for a typed functional Sigma-calculus. The result is that Abadi...
The impact of taking a college pre-calculus course on students' college calculus performance
Sonnert, Gerhard; Sadler, Philip M.
2014-11-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and four-year colleges continues to grow, and these courses are well-populated with students who already took pre-calculus in high school. We examine student performance in college calculus, using regression discontinuity to estimate the effects of taking college pre-calculus or not, in a national US sample of 5507 students at 132 institutions. We find that students who take college pre-calculus do not earn higher calculus grades.
On a modification of the spinor calculus of Infeeld and van der Waerden
International Nuclear Information System (INIS)
Buchdahl, H.A.
1990-01-01
A modification of the spinor calculus of Infeeld and van der Waerden is presented in which σ kμν is no longer covariant constant. The structure of spin space is enriched by a spinor f μνρσ defined on it. Flatness of the Riemannian world space no longer necessarily entails the vanishing of the curvature of the spin space. After a brief look at Dirac's equation, the revised calculus is re-interpreted in terms of a Riemann-Cartan space, with σ kμν again covariant constant. (author)
Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
DEFF Research Database (Denmark)
Aguirre, Alejandro; Barthe, Gilles; Birkedal, Lars
2018-01-01
We extend the simply-typed guarded $\\lambda$-calculus with discrete probabilities and endow it with a program logic for reasoning about relational properties of guarded probabilistic computations. This provides a framework for programming and reasoning about infinite stochastic processes like Mar...... literature to justify better proof rules for relational reasoning about probabilistic expressions. We illustrate these benefits with a broad range of examples that were beyond the scope of previous systems, including shift couplings and lump couplings between random walks....
Tensor calculus for engineers and physicists
de Souza Sánchez Filho, Emil
2016-01-01
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...
International Nuclear Information System (INIS)
Klauder, J.R.
1983-01-01
The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Stochastic cooling at Fermilab
International Nuclear Information System (INIS)
Marriner, J.
1986-08-01
The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system
Factors Associated with Success in College Calculus II
Rosasco, Margaret E.
2013-01-01
Students are entering college having earned credit for college Calculus 1 based on their scores on the College Board's Advanced Placement (AP) Calculus AB exam. Despite being granted credit for college Calculus 1, it is unclear whether these students are adequately prepared for college Calculus 2. College calculus classes are often taught from a…
Migliorati, G.; Nobile, F.; von Schwerin, E.; Tempone, Raul
2013-01-01
In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input
A formalism for the calculus of variations with spinors
Energy Technology Data Exchange (ETDEWEB)
Bäckdahl, Thomas, E-mail: thobac@chalmers.se [The School of Mathematics, University of Edinburgh, JCMB 6228, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom and Mathematical Sciences - Chalmers University of Technology and University of Gothenburg - SE-412 96 Gothenburg (Sweden); Valiente Kroon, Juan A., E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2016-02-15
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.
A formalism for the calculus of variations with spinors
International Nuclear Information System (INIS)
Bäckdahl, Thomas; Valiente Kroon, Juan A.
2016-01-01
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors
On the combinatorial foundations of Regge-calculus
International Nuclear Information System (INIS)
Budach, L.
1989-01-01
Lipschitz-Killing curvatures of piecewise flat spaces are combinatorial analogues of Lipschitz-Killing curvatures of Riemannian manifolds. In the following paper rigorous combinatorial representations and proofs of all basic results for Lipschitz-Killing curvatures not using analytic arguments are given. The principal tools for an elementary representation of Regge calculus can be developed by means of basic properties of dihedral angles. (author)
Stochastic analysis for finance with simulations
Choe, Geon Ho
2016-01-01
This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoret...
Reggeon calculus at collider energies
International Nuclear Information System (INIS)
Pajares, C.; Varias, A.; Yepes, P.
1983-01-01
The phenomenology of the perturbative reggeon calculus at collider energies is studied. It is found that the graphs which were neglected at ISR energies are still negligeable at √s=540 GeV. The perturbative series for the total cross section still converges reasonably fast. The values of the different parameters which describe rightly the data up to ISR energies give rise to a total cross section of around 60 mb at √s=540 GeV. For these values, the corresponding low mass and high mass eikonal series converges much more slowly. The non perturbative reggeon calculus gives rise to a total cross section less than 60 mb. (orig.)
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Discrete calculus methods for counting
Mariconda, Carlo
2016-01-01
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...
STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...
African Journals Online (AJOL)
eobe
STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.
[Fluorescence control of dental calculus removal].
Bakhmutov, D N; Gonchukov, S A; Lonkina, T V; Sukhinina, A V
2012-01-01
The main condition of periodontitis prevention is the full calculus removal from the teeth surface. This procedure should be fulfilled without harming adjacent unaffected tooth tissues. Nevertheless the problem of sensitive and precise estimating of tooth-calculus interface exists and potential risk of hard tissue damage remains. In the frames of this work it was shown that fluorescence diagnostics during calculus removal can be successfully used for precise detection of tooth-calculus interface. In so doing the simple implementation of this method free from the necessity of spectrometer using can be employed. Such a simple implementation of calculus detection set-up can be aggregated with the devices of calculus removing (as ultrasonic or laser devices).
Dental Calculus Arrest of Dental Caries
Keyes, Paul H.; Rams, Thomas E.
2016-01-01
Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human t...
Jet-calculus approach including coherence effects
International Nuclear Information System (INIS)
Jones, L.M.; Migneron, R.; Narayanan, K.S.S.
1987-01-01
We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics
A few insights into the nature of classical and quantum gravity via null-strut calculus
International Nuclear Information System (INIS)
Kheyfets, Arkady
1989-01-01
Null-strut calculus is a 3 + 1 formulation of standard Regge calculus, wherein the dynamics of 3-geometry is propagated in time along light rays, or 'null struts'. However, just as Regge calculus is a discrete and geometric tool for the description of Einstein's theory of gravitation, so too NSC offers itself as a discrete and geometric tool for the description of Einstein's spacetime as the dynamics of discrete spacelike 3-geometries in time, or discrete geometrodynamics. It has for its objectives to provide a discrete model of a 3 + 1 split of spacetime into space plus time, while in so doing to preserve and illuminate the geometric content of Einstein's theory of gravity. The feature of 'light-cone-produced duality' is central to null-strut calculus. This paper will capitalise on this feature, and will attempt to provide some insights into the nature of classical and quantum gravity. (Author)
Time scales: from Nabla calculus to Delta calculus and vice versa via duality
Caputo, M. Cristina
2009-01-01
In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.
Liao, F.; Rasouli, S.; Timmermans, H.J.P.
2014-01-01
Multistate supernetwork approach has been advanced recently to study multimodal, multi-activity travel behavior. The approach allows simultaneously modeling multiple choice facets pertaining to activity-travel scheduling behavior, subject to space-time constraints, in the context of full daily
A Calculus for Context-Awareness
DEFF Research Database (Denmark)
Zimmer, Pascal
2005-01-01
In order to answer the challenge of pervasive computing, we propose a new process calculus, whose aim is to describe dynamic systems composed of agents able to move and react differently depending on their location. This Context-Aware Calculus features a hierarchical structure similar to mobile...... ambients, and a generic multi-agent synchronization mechanism, inspired from the join-calculus. After general ideas and introduction, we review the full calculus' syntax and semantics, as well as some motivating examples, study its expressiveness, and show how the notion of computation itself can be made...
A Higher-Order Calculus for Categories
DEFF Research Database (Denmark)
Cáccamo, Mario José; Winskel, Glynn
2001-01-01
A calculus for a fragment of category theory is presented. The types in the language denote categories and the expressions functors. The judgements of the calculus systematise categorical arguments such as: an expression is functorial in its free variables; two expressions are naturally isomorphic...... in their free variables. There are special binders for limits and more general ends. The rules for limits and ends support an algebraic manipulation of universal constructions as opposed to a more traditional diagrammatic approach. Duality within the calculus and applications in proving continuity are discussed...... with examples. The calculus gives a basis for mechanising a theory of categories in a generic theorem prover like Isabelle....
A κ-symmetry calculus for superparticles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1991-01-01
We develop a κ-symmetry calculus for the d=2 and d=3, N=2 massive superparticles, which enables us to construct higher order κ-invariant actions. The method relies on a reformulation of these models as supersymmetric sigma models that are invariant under local worldline superconformal transformations. We show that the κ-symmetry is embedded in the superconformal symmetry so that a calculus for the κ-symmetry is equivalent to a tensor calculus for the latter. We develop such a calculus without the introduction of a wordline supergravity multiplet. (orig.)
Generalized vector calculus on convex domain
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Pre-calculus workbook for dummies
Kuang, Yang
2011-01-01
Get the confidence and math skills you need to get started with calculus Are you preparing for calculus? This hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in the course. You'll get hundreds of valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. Pre-Calculus Workbook For Dummies is the perfect tool for anyone who wa
Stochastic analysis of biochemical systems
Anderson, David F
2015-01-01
This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology. The book should serve well as a supplement for courses in probability and stochastic processes. While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest. David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...
Migliorati, G.
2013-05-30
In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input parameters. In the RDP technique the QOI is first computed for independent samples of the random input parameters, as in a standard Monte Carlo approach, and then the QOI is approximated by a multivariate polynomial function of the input parameters using a discrete least squares approach. We consider several examples including the Darcy equations with random permeability, the linear elasticity equations with random elastic coefficient, and the Navier--Stokes equations in random geometries and with random fluid viscosity. We show that the RDP technique is well suited to QOIs that depend smoothly on a moderate number of random parameters. Our numerical tests confirm the theoretical findings in [G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of the Discrete $L^2$ Projection on Polynomial Spaces with Random Evaluations, MOX report 46-2011, Politecnico di Milano, Milano, Italy, submitted], which have shown that, in the case of a single uniformly distributed random parameter, the RDP technique is stable and optimally convergent if the number of sampling points is proportional to the square of the dimension of the polynomial space. Here optimality means that the weighted $L^2$ norm of the RDP error is bounded from above by the best $L^\\\\infty$ error achievable in the given polynomial space, up to logarithmic factors. In the case of several random input parameters, the numerical evidence indicates that the condition on quadratic growth of the number of sampling points could be relaxed to a linear growth and still achieve stable and optimal convergence. This makes the RDP technique very promising for moderately high dimensional uncertainty quantification.
Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu
2015-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.
Algebraic differential calculus for gauge theories
International Nuclear Information System (INIS)
Landi, G.; Marmo, G.
1990-01-01
The guiding idea in this paper is that, from the point of view of physics, functions and fields are more important than the (space time) manifold over which they are defined. The line pursued in these notes belongs to the general framework of ideas that replaces the space M by the ring of functions on it. Our essential observation, underlying this work, is that much of mathematical physics requires only a few differential operators (Lie derivative, d, δ) operating on modules of sections of suitable bundles. A connection (=gauge potential) can be described by a lift of vector fields from the base to the total space of a principal bundle. Much of the information can be encoded in the lift without reference to the bundle structures. In this manner, one arrives at an 'algebraic differential calculus' and its graded generalization that we are going to discuss. We are going to give an exposition of 'algebraic gauge theory' in both ungraded and graded versions. We show how to deal with the essential features of electromagnetism, Dirac, Kaluza-Klein and 't Hooft-Polyakov monopoles. We also show how to break the symmetry from SU(2) to U(1) without Higgs field. We briefly show how to deal with tests particles in external fields and with the Lagrangian formulation of field theories. (orig./HSI)
Stochasticity in the Josephson map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.
1996-04-01
The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)
Anomalies in instanton calculus
International Nuclear Information System (INIS)
Anselmi, D.
1995-01-01
I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the k=1 instanton of Belavin et al. and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with G=SU(2) is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. Moreover, from topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space M , boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with G=SU(2) on R 4 and topological gravity with the full set of asymptotically locally Euclidean manifolds. ((orig.))
Dental Calculus Arrest of Dental Caries.
Keyes, Paul H; Rams, Thomas E
An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.
Dental Calculus Arrest of Dental Caries
Keyes, Paul H.; Rams, Thomas E.
2016-01-01
Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993
Stochasticity induced by coherent wavepackets
International Nuclear Information System (INIS)
Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.
1983-02-01
We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/
Stochastic runaway of dynamical systems
International Nuclear Information System (INIS)
Pfirsch, D.; Graeff, P.
1984-10-01
One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)
Stochastic optimization: beyond mathematical programming
CERN. Geneva
2015-01-01
Stochastic optimization, among which bio-inspired algorithms, is gaining momentum in areas where more classical optimization algorithms fail to deliver satisfactory results, or simply cannot be directly applied. This presentation will introduce baseline stochastic optimization algorithms, and illustrate their efficiency in different domains, from continuous non-convex problems to combinatorial optimization problem, to problems for which a non-parametric formulation can help exploring unforeseen possible solution spaces.
Geometric calculus according to the Ausdehnungslehre of H. Grassmann
Peano, Giuseppe
2000-01-01
Calcolo Geometrico, G. Peano's first publication in mathematical logic, is a model of expository writing, with a significant impact on 20th century mathematics. Kannenberg's lucid and crisp translation, Geometric Calculus, will appeal to historians of mathematics, researchers, graduate students, and general readers interested in the foundations of mathematics and the development of a formal logical language. In Chapter IX, with the innocent-sounding title "Transformations of a linear system," one finds the crown jewel of the book: Peano's axiom system for a vector space, the first-ever presentation of a set of such axioms. The very wording of the axioms (which Peano calls "definitions") has a remarkably modern ring, almost like a modern introduction to linear algebra. Peano also presents the basic calculus of set operation, introducing the notation for 'intersection,' 'union,' and 'element of,' many years before it was accepted. Despite its uniqueness, Calcolo Geometrico has been strangely neglected by histor...
DEFF Research Database (Denmark)
Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael Robdrup
2013-01-01
Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...... improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time...
Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.
Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi
2009-12-01
The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.
An introduction to quantum groups and non-commutative differential calculus
International Nuclear Information System (INIS)
Azcarraga, J.A. de; Rodenas, F.
1995-01-01
An introduction to quantum groups and quantum spaces is presented, and the non-commutative calculus on them is discussed. The case of q-Minkowski space is presented as an illustrative example. A set of useful expressions and formulae are collected in an appendix. 45 refs
Thematization of the Calculus Graphing Schema
Cooley, Laurel; Baker, Bernadette; Trigueros, Maria
2003-01-01
This article is the result of an investigation of students' conceptualizations of calculus graphing techniques after they had completed at least two semesters of calculus. The work and responses of 27 students to a series of questions that solicit information about the graphical implications of the first derivative, second derivative, continuity,…
RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS
TSUDA, H; ARENDS, J
1993-01-01
Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot
Educating about Sustainability while Enhancing Calculus
Pfaff, Thomas J.
2011-01-01
We give an overview of why it is important to include sustainability in mathematics classes and provide specific examples of how to do this for a calculus class. We illustrate that when students use "Excel" to fit curves to real data, fundamentally important questions about sustainability become calculus questions about those curves. (Contains 5…
Calculus and Success in a Business School
Kim, Dong-gook; Garcia, Fernando; Dey, Ishita
2012-01-01
Many business schools or colleges require calculus as a prerequisite for certain classes or for continuing to upper division courses. While there are many studies investigating the relationship between performance in calculus and performance in a single course, such as economics, statistics, and finance, there are very few studies investigating…
Covariant differential calculus on the quantum hyperplane
International Nuclear Information System (INIS)
Wess, J.
1991-01-01
We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, Rene Rydhof
2010-01-01
In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...
A Cross-National Study of Calculus
Chai, Jun; Friedler, Louis M.; Wolff, Edward F.; Li, Jun; Rhea, Karen
2015-01-01
The results from a cross-national study comparing calculus performance of students at East China Normal University (ECNU) in Shanghai and students at the University of Michigan before and after their first university calculus course are presented. Overall, ECNU significantly outperformed Michigan on both the pre- and post-tests, but the Michigan…
An Introductory Calculus-Based Mechanics Investigation
Allen, Bradley
2017-01-01
One challenge for the introductory physics teacher is incorporating calculus techniques into the laboratory setting. It can be difficult to strike a balance between presenting an experimental task for which calculus is essential and making the mathematics accessible to learners who may be apprehensive about applying it. One-dimensional kinematics…
Multiplicative calculus in biomedical image analysis
Florack, L.M.J.; Assen, van H.C.
2011-01-01
We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed,
Areas and Volumes in Pre-Calculus
Jarrett, Joscelyn A.
2008-01-01
This article suggests the introduction of the concepts of areas bounded by plane curves and the volumes of solids of revolution in Pre-calculus. It builds on the basic knowledge that students bring to a pre-calculus class, derives a few more formulas, and gives examples of some problems on plane areas and the volumes of solids of revolution that…
Improving student learning in calculus through applications
Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.
2011-07-01
Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.
A direct extension of Meller's calculus
Directory of Open Access Journals (Sweden)
E. L. Koh
1982-01-01
Full Text Available This paper extends the operational calculus of Meller for the operator Bα=t−αddttα+1ddt to the case where α∈(0,∞. The development is àla Mikusinski calculus and uses Meller's convolution process with a fractional derivative operator.
A Snapshot of the Calculus Classroom
Weathers, Tony D.; Latterell, Carmen M.
2003-01-01
Essentially a focus group to discuss textbook related issues, a meeting of calculus instructors from a wide variety of environments was convened and sponsored by McGraw Hill to provide feedback on the current state of the calculus classroom. This paper provides a description of the group's discussions.
Programming Language Concepts - The Lambda Calculus Approach
Fokkinga, M.M.; Asveld, P.R.J.; Nijholt, Antinus
1987-01-01
The Lambda Calculus is a formal system, originally intended as a tool in the foundation of mathematics, but mainly used to study the concepts of algorithm and effective computability. Recently, the Lambda Calculus and related systems acquire attention from Computer Science for another reason too:
Imagine Yourself in This Calculus Classroom
Bryan, Luajean
2007-01-01
The efforts to attract students to precalculus, trigonometry, and calculus classes became more successful at the author's school when projects-based classes were offered. Data collection from an untethered hot air balloon flight for calculus students was planned to maximize enrollment. The data were analyzed numerically, graphically, and…
Laparoscopic Cholecystectomy in Chronic Calculus Cholecystitis
Directory of Open Access Journals (Sweden)
Prakash Sapkota
2013-12-01
Full Text Available Introduction: Laparoscopic cholecystectomy has clearly become the choice over open cholecystectomy in the treatment of hepatobiliary disease since its introduction by Mouret in 1987. This study evaluates a series of patients with chronic calculus cholecystitis who were treated with laparoscopic and open cholecystectomy and assesses the outcomes of both techniques. Objective: To evaluate the efficacy of laparoscopic vs open cholecystectomy in chronic calculus cholecystitis and establish the out-comes of this treatment modality at Lumbini Medical College and Teaching Hospital. Methods: This was a retrospective analysis over a one-year period (January 1, 2012 to December 31, 2012, per-formed by single surgeon at Lumbini Medical College and Teaching Hospital located midwest of Nepal. 166 patients underwent surgical treatment for chronic calculus cholecystitis. Patients included were only chronic calculus cholecystitis proven histopathologocally and the rest were excluded. Data was collected which included patients demographics, medical history, presentation, complications, conversion rates from laparoscopic. cholecystectomy to open cholecystectomy, operative and postoperative time. Results: Patients treated with laparoscopic cholecystectomy for chronic calculus cholecystitis had shorter operating times and length of stay compared to patients treated with open cholecystectomy for chronic calculus cholecystitis. Conversion rates were 3.54% in chronic calculus cholecystitis during the study period. Complications were also lower in patients who underwent laparoscopic cholecystectomy versus open cholecystectomy for cholelithiasis. Conclusions: Laparoscopic cholecystectomy appears to be a reliable, safe, and cost-effective treatment modality for chronic calculus cholecystitis.
A type system for continuation calculus
Geuvers, J.H.; Geraedts, W.; Geron, B.; Stegeren, van J.; Oliva, P.
2014-01-01
Continuation Calculus (CC), introduced by Geron and Geuvers, is a simple foundational model for functional computation. It is closely related to lambda calculus and term rewriting, but it has no variable binding and no pattern matching. It is Turing complete and evaluation is deterministic. Notions
Matlab differential and integral calculus
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Differential and Integral Calculus introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to givi
Technical calculus with analytic geometry
Gersting, Judith L
2010-01-01
This well-thought-out text, filled with many special features, is designed for a two-semester course in calculus for technology students with a background in college algebra and trigonometry. The author has taken special care to make the book appealing to students by providing motivating examples, facilitating an intuitive understanding of the underlying concepts involved, and by providing much opportunity to gain proficiency in techniques and skills.Initial chapters cover functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, using the derivative, in
Bridging the Vector Calculus Gap
Dray, Tevian; Manogue, Corinne
2003-05-01
As with Britain and America, mathematicians and physicists are separated from each other by a common language. In a nutshell, mathematics is about functions, but physics is about things. For the last several years, we have led an NSF-supported effort to "bridge the vector calculus gap" between mathematics and physics. The unifying theme we have discovered is to emphasize geometric reasoning, not (just) algebraic computation. In this talk, we will illustrate the language differences between mathematicians and physicists, and how we are trying reconcile them in the classroom. For further information about the project go to: http://www.physics.orst.edu/bridge
Quantum chemistry and scientific calculus
International Nuclear Information System (INIS)
Gervais, H.P.
1988-01-01
The 1988 progress report of the Polytechnic School research team, concerning the quantum chemistry and the scientific calculus. The research program involves the following topics: the transition metals - carbon monoxide systems, which are a suitable model for the chemisorption phenomena; the introduction of the vibronic perturbations in the magnetic screen constants; the gauge invariance method (used in the calculation of the magnetic perturbations), extended to the case of the static or dynamic electrical polarizabilities. The published papers, the congress communications and the thesis are listed [fr
Modern calculus and analytic geometry
Silverman, Richard A
2012-01-01
A self-contained text for an introductory course, this volume places strong emphasis on physical applications. Key elements of differential equations and linear algebra are introduced early and are consistently referenced, all theorems are proved using elementary methods, and numerous worked-out examples appear throughout. The highly readable text approaches calculus from the student's viewpoint and points out potential stumbling blocks before they develop. A collection of more than 1,600 problems ranges from exercise material to exploration of new points of theory - many of the answers are fo
Schwartz, Stu
2013-01-01
All Access for the AP® Calculus AB & BC Exams Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the free online tools that come with it, will help you personalize your AP® Cal
On estimation of stochastic forcing with application to El Niño
Penland, C.
2014-12-01
Although Linear Inverse Modeling (LIM) provides skillful forecasts of tropical ocean sea surface temperatures, LIM's diagnostic properties are at least as useful as its prognostic properties. In this presentation, we discuss an updated method for using LIM to obtain time series representing stochastic forcing of El Niño and to quantify particular unpredictable contributions to LIM forecast error. Attention is paid to the proper stochastic calculus and to the time scale separation between the stochastic forcing and El Niño's signal. The method yields seldom-considered sources of El Niño's stochastic forcing.
Bicovariant differential calculus on quantum groups and wave mechanics
International Nuclear Information System (INIS)
Carow-Watamura, U.; Watamura, S.; Hebecker, A.; Schlieker, M.; Weich, W.
1992-01-01
The bicovariant differential calculus on quantum groups defined by Woronowicz and later worked out explicitly by Carow-Watamura et al. and Jurco for the real quantum groups SU q (N) and SO q (N) through a systematic construction of the bicovariant bimodules of these quantum groups, is reviewed for SU q (2) and SO q (N). The resulting vector fields build representations of the quantized universal enveloping algebras acting as covariant differential operators on the quantum groups and their associated quantum spaces. As an application, a free particle stationary wave equation on quantum space is formulated and solved in terms of a complete set of energy eigenfunctions. (author) 15 refs
Enriching an effect calculus with linear types
DEFF Research Database (Denmark)
Egger, Jeff; Møgelberg, Rasmus Ejlers; Simpson, Alex
2009-01-01
We define an ``enriched effect calculus'' by conservatively extending a type theory for computational effects with primitives from linear logic. By doing so, we obtain a generalisation of linear type theory, intended as a formalism for expressing linear aspects of effects. As a worked example, we...... formulate linearly-used continuations in the enriched effect calculus. These are captured by a fundamental translation of the enriched effect calculus into itself, which extends existing call-by-value and call-by-name linearly-used CPS translations. We show that our translation is involutive. Full...... completeness results for the various linearly-used CPS translations follow. Our main results, the conservativity of enriching the effect calculus with linear primitives, and the involution property of the fundamental translation, are proved using a category-theoretic semantics for the enriched effect calculus...
Momentum Maps and Stochastic Clebsch Action Principles
Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.
2018-01-01
We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Conference on Stochastic Analysis and Related Topics
Peterson, Jonathon
2017-01-01
The articles in this collection are a sampling of some of the research presented during the conference “Stochastic Analysis and Related Topics”, held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Bañuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Lévy processes, Brownian motion on manifolds, and spin glasses, among other topics.
Directory of Open Access Journals (Sweden)
Guido Gigante
2015-11-01
Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.
Crisan, Dan
2011-01-01
"Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa
Stochastic temperature and the Nicolai map
International Nuclear Information System (INIS)
Hueffel, H.
1989-01-01
Just as standard temperature can be related to the time coordinate of Euclidean space, a new concept of 'stochastic temperature' may be introduced by associating it to the Parisi-Wu time of stochastic quantization. The perturbative equilibrium limit for a self-interacting scalar field is studied, and a 'thermal' mass shift to one loop is shown. In addition one may interpret the underlying stochastic process as a Nicolai map at nonzero 'temperature'. 22 refs. (Author)
Sequential neural models with stochastic layers
DEFF Research Database (Denmark)
Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich
2016-01-01
How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...
Borodin, Andrei N
2017-01-01
This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.
Giant calculus: review and report of a case.
Woodmansey, Karl; Severine, Anthony; Lembariti, Bakari S
2013-01-01
Dental calculus is a common oral finding. The term giant calculus is used to describe unusually large deposits of dental calculus. Several extreme cases have been reported in the dental literature. The specific etiology of these cases remains uncertain. This paper reviews previously reported cases, and presents another extreme example of giant calculus.
Using Dynamic Software to Address Common College Calculus Stumbling Blocks
Seneres, Alice W.; Kerrigan, John A.
2014-01-01
There are specific topics in college calculus that can be major stumbling blocks for students. Having taught college calculus for four years to over a thousand students, we observed that even the students who have already taken pre-calculus or calculus during their high school careers had common misunderstandings. Students may remember a technique…
Geometric calculus: a new computational tool for Riemannian geometry
International Nuclear Information System (INIS)
Moussiaux, A.; Tombal, P.
1988-01-01
We compare geometric calculus applied to Riemannian geometry with Cartan's exterior calculus method. The correspondence between the two methods is clearly established. The results obtained by a package written in an algebraic language and doing general manipulations on multivectors are compared. We see that the geometric calculus is as powerful as exterior calculus
Higher order differential calculus on SLq(N)
International Nuclear Information System (INIS)
Heckenberger, I.; Schueler, A.
1997-01-01
Let Γ be a bicovariant first order differential calculus on a Hopf algebra A. There are three possibilities to construct a differential N 0 -graded Hopf algebra Γcirconflex which contains Γ as its first order part. In all cases Γcirconflex is a quotient Γcirconflex = Γ x /J of the tensor algebra by some suitable ideal. We distinguish three possible choices u J, s J, and w J, where the first one generates the universal differential calculus (over Γ) and the last one is Woronowicz' external algebra. Let q be a transcendental complex number and let Γ be one of the N 2 -dimensional bicovariant first order differential calculi on the quantum group SL q (N). Then for N ≥ 3 the three ideals coincide. For Woronowicz' external algebra we calculate the dimensions of the spaces of left-invariant and bi-invariant k-forms. In this case each bi-invariant form is closed. In case of 4D ± calculi on SL q (2) the universal calculus is strictly larger than the other two calculi. In particular, the bi-invariant 1-form is not closed. (author)
The BFKL pomeron calculus in the dipole approach
International Nuclear Information System (INIS)
Kozlov, M.; Levin, E.; Prygarin, A.
2007-01-01
In this paper we continue to pursue a goal of finding an effective theory for high energy interaction in QCD based on the colour dipole approach, for which the BFKL pomeron calculus gives a low energy limit. The key problem, that we try to solve in this paper is the probabilistic interpretation of the BFKL pomeron calculus in terms of the colourless dipoles and their interactions. We demonstrate that the BFKL pomeron calculus has two equivalent descriptions: (i) one is the generating functional which gives a clear probabilistic interpretation of the processes of high energy scattering and also provides a Hamiltonian-like description of the system of interacting dipoles; (ii) the second is the Langevin equation with a specific noise term which is rather complicated. We found that at high energies this Langevin equation can be reduced to the Langevin equation for directed percolation in the momentum space if the impact parameter is large, namely, b1/k, where k is the transverse momentum of a dipole. Unfortunately, this simplified form of Langevin equation is not applicable for summation of pomeron loops, where one integrates over all possible values of impact parameter. We show that the BFKL pomeron calculus with two vertices (splitting P->P+P and merging P+P->P of pomerons) can be interpreted as a system of colourless dipoles with two processes: the decay of one dipole into two and the merging of two dipoles into one dipole. However, a number of assumptions we have to make on the way to simplify the noise term in the Langevin equation and/or to apply the probabilistic interpretation, therefore, we can consider both of these approaches in the present form only as the QCD motivated models
Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation
Tarun Kumar Rawat; Abhirup Lahiri; Ashish Gupta
2008-01-01
In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parame...
The Impact of Taking a College Pre-Calculus Course on Students' College Calculus Performance
Sonnert, Gerhard; Sadler, Philip M.
2014-01-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and…
Gibson, Megan
2013-01-01
Due in part to the growing popularity of the Advanced Placement program, an increasingly large percentage of entering college students are enrolling in calculus courses having already taken calculus in high school. Many students do not score high enough on the AP calculus examination to place out of Calculus I, and many do not take the…
Relativistic collapse using Regge calculus: Pt. 1
International Nuclear Information System (INIS)
Dubal, M.R.; Leicester Univ.
1989-01-01
Regge calculus is used to simulate the dynamical collapse of model stars. In this paper we describe the general methodology of including a perfect fluid in dynamical Regge calculus spacetimes. The Regge-Einstein equations for spherical collapse are obtained and are then specialised to mimic a particular continuum gauge. The equivalent continuum problem is also set up. This is to be solved using standard numerical techniques (i.e. the method of finite difference). A subsequent paper will consider the solution of the equations presented here and will use the continuum problem for comparison purposes in order to check the Regge calculus results. (author)
Area Regge calculus and continuum limit
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2002-01-01
Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity
Applications of fractional calculus in physics
2000-01-01
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and co
Recursive sequences in first-year calculus
Krainer, Thomas
2016-02-01
This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.
Pre-calculus workbook for dummies
Gilman, Michelle Rose; Neal, Karina
2009-01-01
Get the confidence and the math skills you need to get started with calculus! Are you preparing for calculus? This easy-to-follow, hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in your cour sework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. 100s of Problems! Detailed, fully worked-out solutions to problem
AP calculus AB & BC crash course
Rosebush, J
2012-01-01
AP Calculus AB & BC Crash Course - Gets You a Higher Advanced Placement Score in Less Time Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject. AP Calculus AB & BC Crash Course gives you: Targeted, Focused Review - Study Only What You Need to Know Crash Course is based on an in-depth analysis of the AP Calculus AB & BC course description outline and actual AP test questions. It covers only the information tested on the exams, so you can make the most of your valuable study time. Written by experienced math teachers, our
Linear stochastic differential equations with anticipating initial conditions
DEFF Research Database (Denmark)
Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib
In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....
Restricted diversity of dental calculus methanogens over five centuries, France
Hong T. T. Huynh; Vanessa D. Nkamga; Michel Signoli; Stéfan Tzortzis; Romuald Pinguet; Gilles Audoly; Gérard Aboudharam; Michel Drancourt
2016-01-01
Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14th to 19th centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR...
On Some Syntactic Properties of the Modalized Heyting Calculus
Muravitsky, Alexei
2016-01-01
We show that the modalized Heyting calculus introduced by Leo Esakia admits a normal axiomatization. Then, we prove that the inference rules $\\square\\alpha/\\alpha$ and $\\square\\alpha\\rightarrow\\alpha/\\alpha$ are admissible in this calculus. Finally, we show that this calculus and intuitionistic propositional calculus are assertorically equipollent, which leads to a variant of limited separation property for the modalized Heyting calculus.
Generalized Multiparameters Fractional Variational Calculus
Directory of Open Access Journals (Sweden)
Om Prakash Agrawal
2012-01-01
Full Text Available This paper builds upon our recent paper on generalized fractional variational calculus (FVC. Here, we briefly review some of the fractional derivatives (FDs that we considered in the past to develop FVC. We first introduce new one parameter generalized fractional derivatives (GFDs which depend on two functions, and show that many of the one-parameter FDs considered in the past are special cases of the proposed GFDs. We develop several parts of FVC in terms of one parameter GFDs. We point out how many other parts could be developed using the properties of the one-parameter GFDs. Subsequently, we introduce two new two- and three-parameter GFDs. We introduce some of their properties, and discuss how they can be used to develop FVC. In addition, we indicate how these formulations could be used in various fields, and how the generalizations presented here can be further extended.
Jet calculus beyond leading logarithms
International Nuclear Information System (INIS)
Kalinowski, J.; Konishi, K.; Taylor, T.R.
1981-01-01
It is shown that the evolution of hadronic jets produced in hard processes can be studied in terms of a simple parton branching picture, beyond the leading log approximation of QCD. The jet calculus is generalized to any given order of logs (but always to all orders of αsub(s)). We discuss the general structure of the formalism. Universality of jet evolution is discussed. We consider also a jet calorimetry measure and the multiplicity distribution of final states in a form which allows a systematic improvement of approximation. To the next-to-leading order, we prove the finiteness and elucidate the scheme dependence of parton subprocess probabilities. The physical inclusive cross section is shown to be scheme independent: next-to-leading results for e + e - → q (nonsinglet) + X agree with those of Curci and others. (orig.)
N=1 supersymmetric yang-mills theory in Ito Calculus
International Nuclear Information System (INIS)
Nakazawa, Naohito
2003-01-01
The stochastic quantization method is applied to N = 1 supersymmetric Yang-Mills theory, in particular in 4 and 10 dimensions. In the 4 dimensional case, based on Ito calculus, the Langevin equation is formulated in terms of the superfield formalism. The stochastic process manifestly preserves both the global N = 1 supersymmetry and the local gauge symmetry. The expectation values of the local gauge invariant observables in SYM 4 are reproduced in the equilibrium limit. In the superfield formalism, it is impossible in SQM to choose the so-called Wess-Zumino gauge in such a way to gauge away the auxiliary component fields in the vector multiplet, while it is shown that the time development of the auxiliary component fields is determined by the Langevin equations for the physical component fields of the vector multiplet in an ''almost Wess-Zumino gauge''. The physical component expressions of the superfield Langevin equation are naturally extended to the 10 dimensional case, where the spinor field is Majorana-Weyl. By taking a naive zero volume limit of the SYM 10 , the IIB matrix model is studied in this context. (author)
Iacus, Stefano M
2018-01-01
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...
The calculus lifesaver all the tools you need to excel at calculus
Banner, Adrian
2009-01-01
For many students, calculus can be the most mystifying and frustrating course they will ever take. The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it. All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of
Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras
Energy Technology Data Exchange (ETDEWEB)
Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany)
2012-03-15
Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.
Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras
International Nuclear Information System (INIS)
Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.
2012-01-01
Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.
Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras
Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.
2012-03-01
Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.
International Nuclear Information System (INIS)
Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.
1975-01-01
A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)
Directory of Open Access Journals (Sweden)
Romanu Ekaterini
2006-01-01
Full Text Available This article shows the similarities between Claude Debussy’s and Iannis Xenakis’ philosophy of music and work, in particular the formers Jeux and the latter’s Metastasis and the stochastic works succeeding it, which seem to proceed parallel (with no personal contact to what is perceived as the evolution of 20th century Western music. Those two composers observed the dominant (German tradition as outsiders, and negated some of its elements considered as constant or natural by "traditional" innovators (i.e. serialists: the linearity of musical texture, its form and rhythm.
Fractional Vector Calculus and Fractional Special Function
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2010-01-01
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
Newton Binomial Formulas in Schubert Calculus
Cordovez, Jorge; Gatto, Letterio; Santiago, Taise
2008-01-01
We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.
Differential calculus for q-deformed twistors
International Nuclear Information System (INIS)
Akulov, V.P.; Duplij, S.A.; Chitov, V.V.
1998-01-01
Brief type of q-deformed differential calculus at light cone with using of twistor representation is suggested. Commutative relations between coordinates and moments are obtained. Considered quasiclassical limit gives exact form of vanish from mass shell
Null-strut calculus. II. Dynamics
International Nuclear Information System (INIS)
Kheyfets, A.; LaFave, N.J.; Miller, W.A.
1990-01-01
In this paper, we continue from the preceding paper to develop a fully functional Regge calculus geometrodynamic algorithm from the null-strut-calculus construction. The developments discussed include (a) the identification of the Regge calculus analogue of the constraint and evolution equations on the null-strut lattice, (b) a description of the Minkowski solid geometry for the simplicial blocks of the null-strut lattice, (c) a description of the evolution algorithm for the geometrodynamic scheme and an analysis of its consistency, and (d) a presentation of the dynamical degrees of freedom for a simplicial hypersurface and the description of an initial-value prescription. To demonstrate qualitatively this new approach to geometrodynamics, we present the most simple application of null-strut calculus that we know of---the Friedmann cosmology using the three-boundary of a 600-cell simplicial polytope to model the simplicial hypersurface
One Answer to "What Is Calculus?"
Shilgalis, Thomas W.
1979-01-01
A number of questions are posed that can be answered with the aid of calculus. These include best value problems, best shape problems, problems involving integration, and growth and decay problems. (MP)
The contracted Bianchi identities in Regge calculus
International Nuclear Information System (INIS)
Williams, Ruth M
2012-01-01
In this note, we show explicitly how the linearized contracted Bianchi identities at a vertex in four-dimensional Regge calculus are related to a sum of the equations of motion for all the edges meeting at that vertex. (note)
A primer on exterior differential calculus
Directory of Open Access Journals (Sweden)
Burton D.A.
2003-01-01
Full Text Available A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes' and divergence theorems replaced by the more powerful exterior expression of Stokes' theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional machinery, are stressed throughout the article. .
From Calculus to Wavelets: ANew Mathematical Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
Introductory analysis a deeper view of calculus
Bagby, Richard J
2000-01-01
Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students* A thorough concentration of basic topics of calculus* Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use* Covers natural logarithms and exponential functions* Provides the computational techniques often encountered in basic calculus
The origins of Cauchy's rigorous calculus
Grabiner, Judith V
2005-01-01
This text examines the reinterpretation of calculus by Augustin-Louis Cauchy and his peers in the 19th century. These intellectuals created a collection of well-defined theorems about limits, continuity, series, derivatives, and integrals. 1981 edition.
Algorithms, The λ Calculus and Programming
Indian Academy of Sciences (India)
IAS Admin
developed a model to understand ... Hence the ¸ calculus also served as an alternate model ...... Practical programming using usual languages based on .... and return values as. 'answers'. This style of programming that emerges is therefore.
Fundamentals of stochastic nature sciences
Klyatskin, Valery I
2017-01-01
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under wh...
Computational approach to Thornley's problem by bivariate operational calculus
Bazhlekova, E.; Dimovski, I.
2012-10-01
Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.
Tensor calculus, relativity, and cosmology a first course
Dalarsson, M
2005-01-01
This book combines relativity, astrophysics, and cosmology in a single volume, providing an introduction to each subject that enables students to understand more detailed treatises as well as the current literature. The section on general relativity gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes, Penrose processes, and similar topics), and considers the energy-momentum tensor for various solutions. The next section on relativistic astrophysics discusses
Drell-Yan cross section in the jet calculus scheme
International Nuclear Information System (INIS)
Tanaka, Hidekazu; Kobayashi, Hirokazu
2009-01-01
We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)
Generalized Cartan Calculus in general dimension
Wang, Yi-Nan
2015-07-01
We develop the generalized Cartan Calculus for the groups and SO(5 , 5). They are the underlying algebraic structures of d = 9 , 7 , 6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincaré lemmas in this new differential geometry is also discussed. Finally we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.
Sandboxing in a Distributed Pi-Calculus
DEFF Research Database (Denmark)
Hüttel, Hans; Kühnrich, Morten
2006-01-01
This paper presents an extension of the Dpi-calculus due to Hennessy and Riely with constructs for signing and authenticating code and for sandboxing. A sort system, built on Milner's sort systems for the polyadic pi-calculus, is presented and proven sound with respect to an error predicate which...... ensures that errors do not occur outside sandboxes and that authentication and migration only happen when allowed. Futhermore a weak subject reduction result involving partial well sortedness is presented....
Area Regge calculus and discontinuous metrics
International Nuclear Information System (INIS)
Wainwright, Chris; Williams, Ruth M
2004-01-01
Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave
Directory of Open Access Journals (Sweden)
Matteo Mio
2013-08-01
Full Text Available The paper explores properties of Łukasiewicz mu-calculus, a version of the quantitative/probabilistic modal mu-calculus containing both weak and strong conjunctions and disjunctions from Łukasiewicz (fuzzy logic. We show that this logic encodes the well-known probabilistic temporal logic PCTL. And we give a model-checking algorithm for computing the rational denotational value of a formula at any state in a finite rational probabilistic nondeterministic transition system.
A Graph Calculus for Predicate Logic
Directory of Open Access Journals (Sweden)
Paulo A. S. Veloso
2013-03-01
Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.
A calculus for attribute-based communication
DEFF Research Database (Denmark)
Alrahman, Yehia Abd; De Nicola, Rocco; Loreti, Michele
2015-01-01
The notion of attribute-based communication seems promising to model and analyse systems with huge numbers of interacting components that dynamically adjust and combine their behaviour to achieve specific goals. A basic process calculus, named AbC, is introduced that has as primitive construct...... of how well-established process calculi could be encoded into AbC is given by considering the translation into AbC of a proto-typical π-calculus process....
Superconformal tensor calculus in five dimensions
International Nuclear Information System (INIS)
Fujita, Tomoyuki; Ohashi, Keisuke
2001-01-01
We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived using dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, a vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given. (author)
Endoscopic vs. tactile evaluation of subgingival calculus.
Osborn, Joy B; Lenton, Patricia A; Lunos, Scott A; Blue, Christine M
2014-08-01
Endoscopic technology has been developed to facilitate imagery for use during diagnostic and therapeutic phases of periodontal care. The purpose of this study was to compare the level of subgingival calculus detection using a periodontal endoscope with that of conventional tactile explorer in periodontitis subjects. A convenience sample of 26 subjects with moderate periodontitis in at least 2 quadrants was recruited from the University of Minnesota School of Dentistry to undergo quadrant scaling and root planing. One quadrant from each subject was randomized for tactile calculus detection alone and the other quadrant for tactile detection plus the Perioscope ™ (Perioscopy Inc., Oakland, Cali). A calculus index on a 0 to 3 score was performed at baseline and at 2 post-scaling and root planing visits. Sites where calculus was detected at visit 1 were retreated. T-tests were used to determine within-subject differences between Perioscope™ and tactile measures, and changes in measures between visits. Significantly more calculus was detected using the Perioscope™ vs. tactile explorer for all 3 subject visits (pcalculus detection from baseline to visit 1 were statistically significant for both the Perioscope™ and tactile quadrants (pcalculus detection from visit 1 to visit 2 was only significant for the Perioscope™ quadrant (pcalculus at this visit. It was concluded that the addition of a visual component to calculus detection via the Perioscope™ was most helpful in the re-evaluation phase of periodontal therapy. Copyright © 2014 The American Dental Hygienists’ Association.
Stochastic quantization of instantons
International Nuclear Information System (INIS)
Grandati, Y.; Berard, A.; Grange, P.
1996-01-01
The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig
On the inverse problem of the calculus of variations in field theory
International Nuclear Information System (INIS)
Henneaux, M.
1984-01-01
The inverse problem of the calculus of variations is investigated in the case of field theory. Uniqueness of the action principle is demonstrated for the vector Laplace equation in a non-decomposable Riemannian space, as well as for the harmonic map equation. (author)
A proposition calculus in quantum mechanisms
International Nuclear Information System (INIS)
Omnes, R.
1987-01-01
In quantum mechanics, to a set of n+1 observables A 0 , A 1 ...A n and a set of time instants, one can associate a probabilized space (X, B, P) where X is the direct product of the spectra of A 1 ...A n . The sigma-field B has a basis that is not a direct product but constructed in a well-defined order using sets in the spectra or equivalently projectors in the Hilbert space. The probability measure P on B satisfies the axioms of probability theory if some compatibility conditions, first found by R. Griffiths, are satisfied. To do so, one must use some quasi-classical Fefferman approximants for A 1 ...A n . Sets in B can be used as predicates in a proposition calculus using P, such that a proposition π 1 implies a proposition π-2, also gives probability 1 for π 2 . This is consistent with the logical axioms about implication. Here E 0 , projector on a set on the spectrum of A 0 is a common first predicate.This formalism is used to analyze the Einstein-Podolsky-Rosen gedankenexperiment and turns out not to contradict the finite-velocity propogation axiom of special relativity. Since only propositions and no measuring apparatus nor external observer have to be introduced, this theory generalizing quantum mechanics satisfies the criteria of objectivity, and remains non-separable. It turns out that, when an actual measuring apparatus is used, wave-packet reduction is the logico-mathematical operation that takes care of the measurement result as a proposition [fr
Application of Stochastic Partial Differential Equations to Reservoir Property Modelling
Potsepaev, R.; Farmer, C.L.
2010-01-01
in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.
Stochastic models: theory and simulation.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Schoenly, Joshua E.; Seka, Wolf; Romanos, Georgios; Rechmann, Peter
A desired outcome of scaling and root planing is the complete removal of calculus and infected root tissue and preservation of healthy cementum for rapid healing of periodontal tissues. Conventional periodontal treatments for calculus removal, such as hand instrument scaling and ultrasonic scaling, often deeply scrape the surface of the underlying hard tissue and may leave behind a smear layer. Pulsed lasers emitting at violet wavelengths (specifically, 380 to 400 nm) are a potential alternative treatment since they can selectively ablate dental calculus without ablating pristine hard tissue (i.e., enamel, cementum, and dentin). In this study, light and scanning electron microscopy are used to compare and contrast the efficacy of in vitro calculus removal for several conventional periodontal treatments (hand instruments, ultrasonic scaler, and Er:YAG laser) to calculus removal with a frequency-doubled Ti:sapphire (λ = 400 nm). After calculus removal, enamel and cementum surfaces are investigated for calculus debris and damage to the underlying hard tissue surface. Compared to the smear layer, grooves, and unintentional hard tissue removal typically found using these conventional treatments, calculus removal using the 400-nm laser is complete and selective without any removal of pristine dental hard tissue. Based on these results, selective ablation from the 400-nm laser appears to produce a root surface that would be more suitable for successful healing of periodontal tissues.
On the Presentation of Pre-Calculus and Calculus Topics: An Alternate View
Davydov, Aleksandr; Sturm-Beiss, Rachel
2008-01-01
The orders of presentation of pre-calculus and calculus topics, and the notation used, deserve careful study as they affect clarity and ultimately students' level of understanding. We introduce an alternate approach to some of the topics included in this sequence. The suggested alternative is based on years of teaching in colleges within and…
The application of Regge calculus to quantum gravity and quantum field theory in a curved background
International Nuclear Information System (INIS)
Warner, N.P.
1982-01-01
The application of Regge calculus to quantum gravity and quantum field theory in a curved background is discussed. A discrete form of exterior differential calculus is developed, and this is used to obtain Laplacians for p-forms on the Regge manifold. To assess the accuracy of these approximations, the eigenvalues of the discrete Laplacians were calculated for the regular tesselations of S 2 and S 3 . The results indicate that the methods obtained in this paper may be used in curved space-times with an accuracy comparing with that obtained in lattice gauge theories on a flat background. It also becomes evident that Regge calculus provides particularly suitable lattices for Monte-Carlo techniques. (author)
Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure
International Nuclear Information System (INIS)
Lim, S.C.
1983-05-01
It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)
Lanchier, Nicolas
2017-01-01
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...
Electronic Algebra and Calculus Tutor
Directory of Open Access Journals (Sweden)
Larissa Fradkin
2012-06-01
Full Text Available Modern undergraduates join science and engineering courses with poorer mathematical background than most contemporaries of the current faculty had when they were freshers. The problem is very acute in the United Kingdom but more and more countries adopt less resource intensive models of teaching and the problem spreads. University tutors and lecturers spend more and more time covering the basics. However, most of them still rely on traditional methods of delivery which presuppose that learners have a good memory and considerable time to practice, so that they can memorize disjointed facts and discover for themselves various connections between the underlying concepts. These suppositions are particularly unrealistic when dealing with a large number of undergraduates who are ordinary learners with limited mathematics background. The first author has developed a teaching system that allows such adult learners achieve relatively deep learning of mathematics – and remarkably quickly – through a teacher-guided (often called Socratic dialog, which aims at the frequent reinforcement of basic mathematical abstractions through Eulerian sequencing. These ideas have been applied to create a prototype of a Cognitive Mathematics Tutoring System aimed at teaching basic mathematics to University freshers., an electronic Personal Algebra and Calculus Tutor (e- PACT.
Stochastic dynamics of new inflation
International Nuclear Information System (INIS)
Nakao, Ken-ichi; Nambu, Yasusada; Sasaki, Misao.
1988-07-01
We investigate thoroughly the dynamics of an inflation-driving scalar field in terms of an extended version of the stochastic approach proposed by Starobinsky and discuss the spacetime structure of the inflationary universe. To avoid any complications which might arise due to quantum gravity, we concentrate our discussions on the new inflationary universe scenario in which all the energy scales involved are well below the planck mass. The investigation is done both analytically and numerically. In particular, we present a full numerical analysis of the stochastic scalar field dynamics on the phase space. Then implications of the results are discussed. (author)
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
Ancient DNA analysis of dental calculus.
Weyrich, Laura S; Dobney, Keith; Cooper, Alan
2015-02-01
Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fundamentals of tensor calculus for engineers with a primer on smooth manifolds
Mühlich, Uwe
2017-01-01
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth...
Regularization of positive definite matrix fields based on multiplicative calculus
Florack, L.M.J.; Bruckstein, A.M.; Haar Romeny, ter B.M.; Bronstein, A.M.; Bronstein, M.M.
2012-01-01
Multiplicative calculus provides a natural framework in problems involving positive images and positivity preserving operators. In increasingly important, complex imaging frameworks, such as diffusion tensor imaging, it complements standard calculus in a nontrivial way. The purpose of this article
Series expansion in fractional calculus and fractional differential equations
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2009-01-01
Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce fractional series expansion method to fractional calculus. We define a kind of fractional Taylor series of an infinitely fractionally-differentiable function. Further, based on our definition we generalize hypergeometric functio...
Fuzzy relational calculus theory, applications and software
Peeva, Ketty
2004-01-01
This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...
Calculus of tensors and differential forms
Sinha, Rajnikant
2014-01-01
Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
A MATLAB companion for multivariable calculus
Cooper, Jeffery
2001-01-01
Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton''s method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html.* Computer-oriented material that complements the essential topics in multivariable calculus* Main ideas presented with examples of computations and graphics displays using MATLAB * Numerous examples of short code in the text, which can be modified for use with the exercises* MATLAB files are used to implem...
The giant calculus within the prostatic urethra.
Demir, Omer; Kefi, Aykut; Cahangirov, Asif; Cihan, Ahmet; Obuz, Funda; Esen, Adil Ahmet; Celebi, Ilhan
2011-08-01
The giant calculus within the prostatic urethra is a rare clinical entity in the young population. Most of the calculi within the urethra migrate from the urinary bladder and obliterate the urethra. These stones are often composed of calcium phosphate or calcium oxalate. The decision of treatment strategy is affected by the size, shape and position of the calculus and by the status of the urethra. If the stone is large and immovable, it may be extracted via the perineal or the suprapubic approach. In most cases, the giant calculi were extracted via the transvesical approach and external urethrotomy. Our case is the biggest prostatic calculus, known in the literature so far, which was treated endoscopically by the combination of laser and the pneumatic lithotriptor.
Numerical studies of the stochastic Korteweg-de Vries equation
International Nuclear Information System (INIS)
Lin Guang; Grinberg, Leopold; Karniadakis, George Em
2006-01-01
We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approximation error, which is examined for different orders of spatial and stochastic approximation
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.