WorldWideScience

Sample records for space sensing investigation

  1. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  2. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis

    Directory of Open Access Journals (Sweden)

    Qicong Peng

    2010-03-01

    Full Text Available Near-space, defined as the region between 20 km and 100 km, offers many new capabilities that are not accessible to low earth orbit (LEO satellites and airplanes, because it is above storm and not constrained by either the orbital mechanics of satellites or the high fuel consumption of airplanes. By placing radar transmitter/receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed in a cheaper way. Inspired by these advantages, this paper introduces several near-space vehicle-based radar configurations, such as near-space passive bistatic radar and high-resolution wide-swath (HRWS synthetic aperture radar (SAR. Their potential applications, technical challenges and possible solutions are investigated. It is shown that near-space is a satisfactory solution to some specific remote sensing applications. Firstly, near-space passive bistatic radar using opportunistic illuminators offers a solution to persistent regional remote sensing, which is particularly interest for protecting homeland security or monitoring regional environment. Secondly, near-space provides an optimal solution to relative HRWS SAR imaging. Moreover, as motion compensation is a common technical challenge for the described radars, an active transponder-based motion compensation is also described.

  3. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  4. Global land ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth's cryosphere

    Science.gov (United States)

    Bishop, Michael P.; Olsenholler, Jeffrey A.; Shroder, John F.; Barry, Roger G.; Rasup, Bruce H.; Bush, Andrew B. G.; Copland, Luke; Dwyer, John L.; Fountain, Andrew G.; Haeberli, Wilfried; Kääb, Andreas; Paul, Frank; Hall, Dorothy K.; Kargel, Jeffrey S.; Molnia, Bruce F.; Trabant, Dennis C.; Wessels, Rick L.

    2004-01-01

    Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earth's cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.

  5. Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.

    Science.gov (United States)

    Sun, Jiaqi; Sakhaee, Elham; Entezari, Alireza; Vemuri, Baba C

    2015-01-01

    Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal S(q) in the q-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint (k, q)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization. In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of (k, q) for the reconstruction of P(x, r). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of P(x, r). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial (k, q)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach,.we present several synthetic and real data examples.

  6. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  7. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  8. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  9. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  10. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  11. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  12. Non-Topographic Space-Based Laser Remote Sensing

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  13. Potential for remote sensing of agriculture from the international space station

    International Nuclear Information System (INIS)

    Morgenthaler, George W.; Khatib, Nader

    1999-01-01

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make 'precision agriculture', i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during 'daylight hours' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural 'truth' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural 'truth' site in eastern Colorado. The 'truth' site was highly instrumented for measuring trace gas concentrations (NO x , SO x , CO 2 , O 3 , organics

  14. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    Science.gov (United States)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  15. Space-Based Remote Sensing of the Earth: A Report to the Congress

    Science.gov (United States)

    1987-01-01

    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.

  16. Rejection of atrial sensing artifacts by a pacing lead with short tip-to-ring spacing.

    Science.gov (United States)

    Nash, A; Fröhlig, G; Taborsky, M; Stammwitz, E; Maru, F; Bouwens, L H M; Celiker, C

    2005-01-01

    The ability of a new pacing lead design, with a 10 mm tip-to-ring spacing, to facilitate rejection of sensed far field R-waves and myopotentials was evaluated. Measurements were performed in 66 patients. The occurrence of far field R-wave sensing and myopotential sensing was determined by means of the surface ECG and the ECG markers provided by the pacemaker. At an atrial sensitivity of 0.25 mV and an atrial blanking of 50 ms far field R-wave sensing was observed in 12 patients (18.2%) and at an atrial sensitivity of 1.0 mV no far-field R-wave sensing was observed. Myopotentials were sensed in 3 patients. In all patients the measured P-wave amplitude was at least twice the estimated amplitude of the far field R-wave at an atrial blanking of 50 ms. The results from this study show that a small tip-to-ring spacing allows for programming of a high atrial sensitivity and short atrial blanking with an acceptably low risk for atrial artifact sensing.

  17. Application of remote sensing methods and GIS in erosive process investigations

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2007-01-01

    Full Text Available Modern geomorphologic investigations of condition and change of the intensity of erosive process should be based on application of remote sensing methods which are based on processing of aerial and satellite photographs. Using of these methods is very important because it enables good possibilities for realizing regional relations of the investigated phenomenon, as well as the estimate of spatial and temporal variability of all physical-geographical and anthropogenic factors influencing given process. Realizing process of land erosion, on the whole, is only possible by creating universal data base, as well as by using of appropriate software, more exactly by establishing uniform information system. Geographical information system, as the most effective one, the most complex and the most integral system of information about the space enables unification as well as analytical and synthetically processing of all data.

  18. Child-friendly integrated public spaces (RPTRA): Uses and sense of attachment

    Science.gov (United States)

    Prakoso, S.; Dewi, J.

    2018-03-01

    The Jakarta City Provincial Government undertook an extensive citywide initiative to build small public urban green spaces, called child-friendly integrated public spaces (RPTRA). Studies on how citizens, including children, use RPTRA was limited, and questions regarding whether children had become attached to the RPTRA as one of their favorite places remain unanswered. This paper presents a preliminary study on ten RPTRA located in Jakarta. We examine how children and citizens use the spaces, based on data from respondents who completed on-site questionnaires during the course of their visit to the RPTRA. We also measure the degree of children’s sense of attachment to RPTRA. The results show that children primarily use RPTRA for playing and learning. Women and girls use RPTRA the most, and elderly citizens use it the least. The results of the study also demonstrate that children had developed a sense of attachment to RPTRA and it had become one of their favorite places. This study may have implications on the existence of small public urban green spaces like RPTRA as valuable assets in the everyday lives of children and citizens. It proposes that RPTRA should be taken into account for future planning of densely populated urban areas.

  19. On Spectrum Sensing for TV White Space in China

    Directory of Open Access Journals (Sweden)

    Christian Kocks

    2012-01-01

    Full Text Available In the field of wireless communications the idea of cognitive radio is of utmost interest. Due to its advantageous propagation properties, the TV white space can be considered to become the first commercial application of cognitive radio. It allows the usage of secondary communication systems at non-occupied frequency bands. Within this paper, spectrum sensing algorithms are introduced for the three predominant Chinese TV standards DTMB, CMMB, and PAL-D/K. A prototype platform is presented and its underlying architecture based on a combination of DSP and FPGA is illustrated including the setup of the cognitive radio application. Furthermore, the performance of the sensing algorithms implemented on the prototype platform is shown in comparison to simulation results.

  20. The use of the Space Shuttle for land remote sensing

    Science.gov (United States)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  1. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  2. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    Science.gov (United States)

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  3. Private sector involvement in civil space remote sensing. Volume 2: Appendices

    Science.gov (United States)

    1980-01-01

    The U.S. Space Policy concerning the investment and direct participation in the establishment and operations of remote sensing systems is addressed. Private sector views and state and local government views are presented. Results of a market analysis are pregiven and the economic feasibility of such a program is considered.

  4. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    Science.gov (United States)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  5. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  6. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, Babar Hasan

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion techniques has seen mitigation of some artifacts. We reformulate the problem by taking advantage of some of the developments from the field of Compressive Sensing. The seismic data is compressed at the sensor level by recording projections of the traces. We then process this compressed data directly to estimate the inverse data space. Due to the smaller number of data set we also gain in terms of computational complexity.

  7. Restoring directional growth sense to plants in space

    Science.gov (United States)

    Gorgolewski, S.

    Introduction of new plant classification: electrotropic (Et) and non-electrotropic (nEt) plants gives us a criterion which plants need electric field to grow "normally" in space. The electric field: E is measured in V/m (volt per meter). Do not confuse "electrotropism" understood by some as the response to current flow transversely through the plant's root. This effect was previously described in biological textbooks. I suggest to call it as (Ct) (here C stands for current and t for tropism). In the laboratory we have in the plant growth chamber two transparent to light (wire mesh) conducting sheets separated by m(meters) and V volts potential difference. It has been shown in laboratory that Et is a very important factor in electrotropic plant development. Space experiments with plants grown in orbit from seed to seed have been fully successful only (in my very best knowledge) with nEt plants. The most common nEt plants are grasses (more than 50% of all plants). The nEt plants in space use phototropism as their sensor of direction. In space (and most greenhouses) we have to provide the electric field at least for the Et plants. It has been shown that the electric field is also beneficial to nEt plants which also acquire the sense of direction imposed by stronger than the normal 130V/m E field (vector). The stronger horizontal E field of 1.6kV/m (slightly more than 12 times stronger than 130V/m) does not influence the rate of growth of maize (which is nEt) in 130V/m vertical field or even in the Faraday cage 0V/m. Yet when the maize gets its leaves, they all lean in the horizontal field (1.6kV/m) towards the anode. The direction of the E vector is defined by the E field lines running from the positive to the negative charges. Because the electric forces are a factor of 1038 times stronger than the gravitational forces, it is not important for the E field whether it acts on ions in the gravity or in weightlessness. We have to recall that on the Earth and in space Et

  8. The remote sensing of tropospheric composition from space

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John P. [Bremen Univ. (DE). Inst. fuer Umweltphysik (IUP); Platt, Ulrich [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Borrell, Peter (eds.) [P and PMB Consultants, Newcastle-under-Lyme (United Kingdom)

    2011-07-01

    The impact of anthropogenic activities on our atmospheric environment is of growing public concern and satellite-based techniques now provide an essential component of observational strategies on regional and global scales. The purpose of this book is to summarise the state of the art in the field in general, while describing both key techniques and findings in particular. It opens with an historical perspective of the field together with the basic principles of remote sensing from space. Three chapters follow on the techniques and on the solutions to the problems associated with the various spectral regions in which observations are made. The particular challenges posed by aerosols and clouds are covered in the next two chapters. Of special importance is the accuracy and reliability of remote sensing data and these issues are covered in a chapter on validation. The final section of the book is concerned with the exploitation of data, with chapters on observational aspects, which includes both individual and synergistic studies, and on the comparison of global and regional observations with chemical transport and climate models and the added value that the interaction brings to both. The book concludes with scientific needs and likely future developments in the field, and the necessary actions to be taken if we are to have the global observation system that the Earth needs in its present, deteriorating state. The appendices provide a comprehensive list of satellite instruments, global representations of some ancillary data such as fire counts and light pollution, a list of abbreviations and acronyms, and a set of colourful timelines indicating the satellite coverage of tropospheric composition in the foreseeable future. Altogether, this book will be a timely reference and overview for anyone working at the interface of environmental, atmospheric and space sciences. (orig.)

  9. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office

  10. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    Science.gov (United States)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  11. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  12. Pointwise Multipliers on Spaces of Homogeneous Type in the Sense of Coifman and Weiss

    Directory of Open Access Journals (Sweden)

    Yanchang Han

    2014-01-01

    homogeneous type in the sense of Coifman and Weiss, pointwise multipliers of inhomogeneous Besov and Triebel-Lizorkin spaces are obtained. We make no additional assumptions on the quasi-metric or the doubling measure. Hence, the results of this paper extend earlier related results to a more general setting.

  13. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  14. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    Science.gov (United States)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  15. Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    Science.gov (United States)

    Menzies, Robert T. (Editor)

    1986-01-01

    Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.

  16. Children's Sense of Agency in Preschool: A Sociocultural Investigation

    Science.gov (United States)

    Hilppö, Jaakko; Lipponen, Lasse; Kumpulainen, Kristiina; Rainio, Anna

    2016-01-01

    This socioculturally informed study investigated children's sense of agency in relation to their everyday life in preschool. The empirical data comprised focus groups reflection situations wherein Finnish preschool children (n. 19, aged 6-7) reflected on their everyday life with the help of photographs and drawings they made. Building on a…

  17. Overview of the Performance of the Compact Total Electron Content Sensor (CTECS) on the Space Environmental NanoSatellite Experiment (SENSE)

    Science.gov (United States)

    Bishop, R. L.; Hansel, S.; Stoffel, D.; Ping, D.; Bardeen, J.; Chin, A.; Bielat, S.; Mulligan, T. L.

    2014-12-01

    The Air Force's Space & Missile Systems Center (SMC) SENSE mission consists of two identical cubesat buses with space weather payloads. One of the goals of the SENSE mission is to demonstrate the operational potential and usefulness of space weather measurements from a cubesat platform. The payloads on the two cubesats include the Cubesat Tiny Ionospheric Photometer (SRI), Wind Ion Neutral Composite Suite (NRL), and Compact Total Electron Content GPS radio occultation sensor (CTECS). After initial contact with both space vehicles (SV), we were able to confirm successful operation of both CTECS. Because of power issues on SV2, only SV1 has provided consistent data. In this presentation, we present an overview of the CTECS sensor. Then we present initial CTECS data, discuss the data quality, and lessons learned.

  18. METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of

  19. Laboratory Investigation of Space and Planetary Dust Grains

    Science.gov (United States)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  20. European Space Agency lidar development programs for remote sensing of the atmosphere

    Science.gov (United States)

    Armandillo, Errico

    1992-12-01

    Active laser remote sensing from space is considered an important step forward in the understanding of the processes which regulate weather and climate changes. The planned launching into polar orbit in the late 1990s of a series of dedicated Earth observation satellites offer new possibilities for flying lidar in space. Among the various lidar candidates, ESA has recognized in the backscattering lidar and Doppler wind lidar the instruments which can most contribute to the Earth observation program. To meet the schedule of the on-coming flight opportunities, ESA has been engaged over the past years in a preparatory program aimed to define the instruments and ensure timely availability of the critical components. This paper reviews the status of the ongoing developments and highlights the critical issues addressed.

  1. Space-Time Data fusion for Remote Sensing Applications

    Science.gov (United States)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  2. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  3. An Investigation into the Number Sense Performance of Secondary School Students in Turkey

    Science.gov (United States)

    Akkaya, Recai

    2016-01-01

    The purpose of this study is to investigate the number sense performance of secondary school students according to grade level, gender and the components of number sense. A descriptive survey design was used to collect data. A total of 576 secondary school students (291 girls and 285 boys) participated in the study. The results revealed that the…

  4. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    Science.gov (United States)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  5. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  6. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives

    Directory of Open Access Journals (Sweden)

    Marco Scaioni

    2014-10-01

    Full Text Available Landslides represent major natural hazards, which cause every year significant loss of lives and damages to buildings, properties and lifelines. In the last decades, a significant increase in landslide frequency took place, in concomitance to climate change and the expansion of urbanized areas. Remote sensing techniques represent a powerful tool for landslide investigation: applications are traditionally divided into three main classes, although this subdivision has some limitations and borders are sometimes fuzzy. The first class comprehends techniques for landslide recognition, i.e., the mapping of past or active slope failures. The second regards landslide monitoring, which entails both ground deformation measurement and the analysis of any other changes along time (e.g., land use, vegetation cover. The third class groups methods for landslide hazard analysis and forecasting. The aim of this paper is to give an overview on the applications of remote-sensing techniques for the three categories of landslide investigations, focusing on the achievements of the last decade, being that previous studies have already been exhaustively reviewed in the existing literature. At the end of the paper, a new classification of remote-sensing techniques that may be pertinently adopted for investigating specific typologies of soil and rock slope failures is proposed.

  7. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  8. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    Science.gov (United States)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  9. Using the Internet to investigate consumer choice spaces.

    Science.gov (United States)

    Crow, Janis J; Shanteau, James; Casey, John D

    2003-05-01

    Traditional investigations of consumer choice processes include a matrix of alternatives described by attributes. The researcher-created matrix presents a product option space for the participant. In this article, we propose an alternative methodological approach to consumer choice processes. Specifically, we investigate choice processes when a participant creates his/her own product space. We describe a Web-based program and methodology used to collect data for three customizable products. Empirical results indicate that consumers are willing and able to make choices from their own product space. This research provides a new avenue for exploring choice processes.

  10. Space Rose Pleases the Senses

    Science.gov (United States)

    2002-01-01

    International Flavors and Fragrances (IFF), Inc., discovered a new scent by flying a miniature rose plant aboard NASA's Space Shuttle Discovery Flight STS-95. IFF and the Wisconsin Center for Space Automation and Robotics (WCSAR) partnered to fly the rose plant in the commercial plant research facility, ASTROCULTURE(TM), for reduced-gravity environment research. IFF commercialized the space rose note, which is now a fragrance ingredient in a perfume developed by Shiseido Cosmetics (America), Ltd. In addition to providing a light crisp scent, the oil from the space rose can also serve as a flavor enhancer. ASTROCULTURE(TM) is a trademark of the Wisconsin Center for Space Automation and Robotics.

  11. Investigation of remote sensing geology in the northern Anxi area of Gansu Province

    International Nuclear Information System (INIS)

    Dai Wenhan

    1993-07-01

    The study of 1 : 50,000 remote sensing geology survey and prognosis of gold (uranium) mineralization in the area of northern Anxi of Gansu province has been completed. The synthetical remote sensing and multi-source information compounding technologies, such as land-satellites TM and MSS images, airborne color infrared photography and infrared ray scanning digital images, are used in the study. On the basis of information enhancement and extraction of remote-sensing images, using the theory of remote sensing to explore mineral deposits and the field investigations, many achievements have been reached, such as applications of synthetical remote sensing technology, fundamental study of geology, prognosis of gold (uranium) minerals and 1 : 50,000 remote-geologic mapping. 21 mineral resource maps and geologic maps are obtained. Nearly one thousand of altered rock zones are interpreted and found. 71 new gold anomaly hydrothermal alteration zones and 23 gold mineralized places are discovered (maximum Au 71 x 10 -6 ). 17 minerogeneration prospective areas, 67 gold-ore searching targets and favorable areas of uranium mineralization are identified. It gives important materials for searching new mines

  12. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  13. An Investigation of Students' Perceptions about Democratic School Climate and Sense of Community in School

    Science.gov (United States)

    Karakus, Memet

    2017-01-01

    This study aims to investigate students' perceptions about democratic school climate and sense of community in school. In line with this purpose, it aims to find answers to the following questions: How democratic do students find the school climate? What is students' sense of belonging level at school? What is the academic success level of…

  14. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  15. Ethical approach to digital skills. Sense and use in virtual educational spaces

    Directory of Open Access Journals (Sweden)

    Juan GARCÍA-GUTIÉRREZ

    2013-12-01

    Full Text Available In the context of technology and cyberspace, should we do everything we can do? The answer given to this question is not ethical, is political: safety. The safety and security are overshadowing the ethical question about the meaning of technology. Cyberspace imposes a "new logic" and new forms of "ownership". When it comes to the Internet in relation to children not always adopt logic of accountability to the cyberspace, Internet showing a space not only ethical and technical. We talk about safe Internet, Internet healthy, and Internet Fit for Children... why not talk over Internet ethics? With this work we approach digital skills as those skills that help us to position ourselves and guide us in cyberspace. Something that is not possible without also ethical skills. So, in this article we will try to build and propose a model for analyzing the virtual learning spaces (and cyberspace in general based on the categories of "use" and "sense" as different levels of ownership that indicate the types of competences needed to access cyberspace.  

  16. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  17. Smart Sensing Using Wavelets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Further refinements to the FOSS technologies are focusing on “smart” sensing techniques that adjust sensing parameters as needed in real time so that...

  18. Support for global science: Remote sensing's challenge

    Science.gov (United States)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  19. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  20. TESTBED IMPLEMENTATION OF MULTI DIMENSIONAL SPECTRUM SENSING SCHEMES FOR COGNITIVE RADIO

    Directory of Open Access Journals (Sweden)

    Deepa N Reddy

    2016-06-01

    Full Text Available Cognitive Radio (CR is a promising technology to exploit the underutilized spectrum. Spectrum sensing is one of the most important components for the establishment of cognitive radio system. Spectrum sensing allows the secondary users (SUs to detect the presence of the primary users (PUs. The aim of this work is to create a CR environment to study the spectrum sensing methods using Universal software radio Peripheral (USRP boards. In this paper a novel method of estimation of spectrum opportunities in multiple dimensions especially the space and the angle dimensions are carried out on USRP boards. This paper typically provides the experimental results carried out in an indoor wireless environment. To enhance the sensing performance the space dimension is firstly studied using spatial diversity of the cooperative SUs. Secondly the receiver diversity is analyzed using multiple antennas to enhance the error performance of the wireless system. The spectrum usage is also determined in the angle dimension by investigating the direction of the dominant signals using MUSIC algorithm.

  1. The relationship between psychological comfort space and self-esteem in people with mental disorders.

    Science.gov (United States)

    Kunikata, Hiroko; Shiraishi, Yuko; Nakajima, Kazuo; Tanioka, Tetsuya; Tomotake, Masahito

    2011-02-01

    The purpose of this study was to demonstrate a causal model of the sense of having psychological comfortable space that is call 'ibasho' in Japanese and self-esteem in people with mental disorders who had difficulty in social activities. The subjects were 248 schizophrenia patients who were living in the community and receiving day care treatment. Data were collected from December 2007 to April 2009 using the Scale for the Sense of ibasho for persons with mentally ill (SSI) and the Rosenberg Self-Esteem Scale (RSES), and analyzed for cross-validation of construct validity by conducting covariance structure analysis. A relationship between the sense of having comfortable space and self-esteem was investigated. Multiple indicator models of the sense of having psychological comfortable space and self-esteem were evaluated using structural equation modeling. Furthermore, the SSI scores were compared between the high- and low-self-esteem groups. The path coefficient from the sense of having comfortable space to self-esteem was significant (0.80). High-self-esteem group scored significantly higher in the SSI subscales, 'the sense of recognizing my true self' and 'the sense of recognizing deep person-to-person relationships' than the low-self-esteem group. It was suggested that in order to help people with mental disorders improve self-esteem, it might be useful to support them in a way they can enhance the sense of having comfortable space.

  2. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  3. The International Space Station: A Unique Platform for Remote Sensing of Natural Disasters

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.

    2014-01-01

    Assembly of the International Space Station (ISS) was completed in 2012, and the station is now fully operational as a platform for remote sensing instruments tasked with collecting scientific data about the Earth system. Remote sensing systems are mounted inside the ISS, primarily in the U.S. Destiny Module's Window Observational Research Facility (WORF), or are located on the outside of the ISS on any of several attachment points. While NASA and other space agencies have had remote sensing systems orbiting Earth and collecting publicly available data since the early 1970s, these sensors are carried onboard free-flying, unmanned satellites. These satellites are traditionally placed into Sun-synchronous polar orbits that allow imaging of the entire surface of the Earth to be repeated with approximately the same Sun illumination (typically local solar noon) over specific areas, with set revisit times that allow uniform data to be taken over long time periods and enable straightforward analysis of change over time. In contrast, the ISS has an inclined, Sun-asynchronous orbit (the solar illumination for data collections over any location changes as the orbit precesses) that carries it over locations on the Earth between approximately 52degnorth and 52deg south latitudes (figure 1). The ISS is also unique among NASA orbital platforms in that it has a human crew. The presence of a crew provides options not available to robotic sensors and platforms, such as the ability to collect unscheduled data of an unfolding event using handheld digital cameras as part of the Crew Earth Observations (CEO) facility and on-the-fly assessment of environmental conditions, such as cloud cover, to determine whether conditions are favorable for data collection. The crew can also swap out internal sensor systems installed in the WORF as needed. The ISS orbit covers more than 90 percent of the inhabited surface of the Earth, allowing the ISS to pass over the same ground locations at

  4. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    Science.gov (United States)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  5. Distributed sensing signal analysis of deformable plate/membrane mirrors

    Science.gov (United States)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  6. Embodied Space in Early Blind Individuals

    OpenAIRE

    Crollen, Virginie; Collignon, Olivier

    2012-01-01

    The impact of sensory experience during early life on space perception and control of action has only been scarcely studied. The visual system typically provides the more accurate and reliable spatial information of our surrounding and is then usually considered as the frontrunner sense when spatial processing is at play. The study of visually deprived individual therefore offers a unique opportunity to investigate the role that vision plays in shaping how we process our surrounding space. Ho...

  7. An Investigation of Alerting and Prioritization Criteria for Sense and Avoid (SAA)

    Science.gov (United States)

    2013-10-01

    TECHNICAL REPORT RDMR-TM-13-01 AN INVESTIGATION OF ALERTING AND PRIORITIZATION CRITERIA FOR SENSE AND AVOID ( SAA ...OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE . i/ii (Blank) REPORT DOCUMENTATION PAGE Form Approved...burden to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

  8. Experimental investigation of the streaming potential hypothesis for ionic polymer transducers in sensing

    International Nuclear Information System (INIS)

    Kocer, Bilge; Weiland, Lisa Mauck

    2013-01-01

    Ionic polymer transducers (IPTs) are ionomers that are plated with conductive media such as metals, leading to capacitive behavior. IPTs exhibit bending deformation when a voltage difference is applied across the surfaces of the transducer, thus displaying actuation. A current is generated when they are deformed, thus exhibiting sensing. However, the mechanisms responsible for actuation and sensing differ; research to date has focused predominantly on actuation, while identification of the dominant mechanism responsible for IPT sensing remains an open topic. The goal of this work is to initiate experimental investigations of the streaming potential hypothesis for IPT sensing. This hypothesis argues that the presence of unbound counter-ions within the hydrophilic phase of an ionic polymer behaves as an electrolyte in the presence of the electrode. Thus, as per classic streaming potential analyses, relative motion of the electrolyte with respect to the electrode will result in the evolution of a streaming potential. According to this hypothesis, the extent of communication between the electrode and electrolyte becomes important in the evolution of an electrical signal. This study experimentally explores the effect of electrode architecture on the sensing response where the IPTs are prepared via the direct assembly process (DAP). The DAP is selected because it enables control over the fabrication of the electrode structure. In this study, cantilevered IPT samples having different electrode composition are tested under several step input tip displacements. The experimental outcomes are consistent with predicted trends via streaming potential theory. (paper)

  9. The Spaces of Functions of Two Variables of Bounded κΦ-Variation in the Sense of Schramm-Korenblum

    Directory of Open Access Journals (Sweden)

    A. Azócar

    2015-01-01

    Full Text Available The purpose of this paper is twofold. Firstly, we introduce the concept of bounded κΦ-variation in the sense of Schramm-Korenblum for real functions with domain in a rectangle of R2. Secondly, we study some properties of these functions and we prove that the space generated by these functions has a structure of Banach algebra.

  10. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    Science.gov (United States)

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  11. Mechanical properties of metallic ribbons investigated by depth sensing indentation technique

    International Nuclear Information System (INIS)

    Pesek, Ladislav; Dobrzanski, Leszek A.; Zubko, Pavol; Konieczny, Jaroslaw

    2006-01-01

    The paper presents mechanical properties of two kinds of Co-based and one Fe-based metallic ribbons by the depth sensing indentation (DSI) technique. Investigations were carried out on two kinds ternary alloy Co 77 Si 11,5 B 11,5 and Fe 78 Si 13 B 9 and multicomponent Co 68 Fe 4 Mo 1 Si 13,5 B 13,5 , which are so-called 'zero-magnetostriction' materials. Metallic ribbons were investigated in amorphous state and partially crystallized state after annealing in 400deg. C in argon atmosphere. Heating of ribbons obtained by melt spinning technique was performed to check its effect on changes of mechanical properties

  12. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  13. The dark patterns of proxemic sensing

    DEFF Research Database (Denmark)

    Boring, Sebastian; Greenberg, Saul; Vermeulen, Jo

    2014-01-01

    To be accepted and trusted by the public, proxemic sensing systems must respect people's conception of physical space, make it easy to opt in or out, and benefit users as well as advertisers and other vendors.......To be accepted and trusted by the public, proxemic sensing systems must respect people's conception of physical space, make it easy to opt in or out, and benefit users as well as advertisers and other vendors....

  14. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    Science.gov (United States)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  15. Investigating shape and space in mathematics: A case study | Kotze ...

    African Journals Online (AJOL)

    Evidence was obtained regarding mathematics teachers' and mathematics learners' knowledge of space and shape. Problems experienced in concept formation in geometry were investigated and analysed. An account is provided of how teachers and learners responded to problems related to space and shape.

  16. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.

    2018-03-01

    We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

  17. Investigating the Prospective Sense of Agency: Effects of Processing Fluency, Stimulus Ambiguity, and Response Conflict

    Science.gov (United States)

    Sidarus, Nura; Vuorre, Matti; Metcalfe, Janet; Haggard, Patrick

    2017-01-01

    How do we know how much control we have over our environment? The sense of agency refers to the feeling that we are in control of our actions, and that, through them, we can control our external environment. Thus, agency clearly involves matching intentions, actions, and outcomes. The present studies investigated the possibility that processes of action selection, i.e., choosing what action to make, contribute to the sense of agency. Since selection of action necessarily precedes execution of action, such effects must be prospective. In contrast, most literature on sense of agency has focussed on the retrospective computation whether an outcome fits the action performed or intended. This hypothesis was tested in an ecologically rich, dynamic task based on a computer game. Across three experiments, we manipulated three different aspects of action selection processing: visual processing fluency, categorization ambiguity, and response conflict. Additionally, we measured the relative contributions of prospective, action selection-based cues, and retrospective, outcome-based cues to the sense of agency. Manipulations of action selection were orthogonally combined with discrepancy of visual feedback of action. Fluency of action selection had a small but reliable effect on the sense of agency. Additionally, as expected, sense of agency was strongly reduced when visual feedback was discrepant with the action performed. The effects of discrepant feedback were larger than the effects of action selection fluency, and sometimes suppressed them. The sense of agency is highly sensitive to disruptions of action-outcome relations. However, when motor control is successful, and action-outcome relations are as predicted, fluency or dysfluency of action selection provides an important prospective cue to the sense of agency. PMID:28450839

  18. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  19. Real-time multimodal sensing in nano/bio environment

    Science.gov (United States)

    Song, Bo

    As a sensing device in nano-scale, scanning probe microscopy (SPM) is a powerful tool for exploring nano world. Nevertheless two fundamental problems tackle the development and application of SPM based imaging and measurement: slow imaging/measurement speed and inaccuracy of motion or position control. Usually, SPM imaging/properties measuring speed is too slow to capture a dynamic observation on sample surface. In addition, Both SPM imaging and properties measurement always experience positioning inaccuracy problems caused by hysteresis and creep of the piezo scanner. This dissertation will try to solve these issues and proposed a SPM based real-time multimodal sensing system which can be used in nano/bio environment. First, a compressive sensing based video rate fast SPM imaging system is shown as an efficient method to dynamically capture the sample surface change with the imaging speed 1.5 frame/s with the scan size of 500 nm * 500 nm. Besides topography imaging, a new additional modal of SPM: vibration mode, will be introduced, and it is developed by us to investigate the subsurface mechanical properties of the elastic sample such as cells and bacteria. A followed up study of enzymatic hydrolysis will demonstrate the ability of in situ observation of single molecule event using video rate SPM. After that we will introduce another modal of this SPM sensing system: accurate electrical properties measurement. In this electrical properties measurement mode, a compressive feedbacks based non-vector space control approach is proposed in order to improve the accuracy of SPM based nanomanipulations. Instead of sensors, the local images are used as both the input and feedback of a non-vector space closed-loop controller. A followed up study will also be introduced to shown the important role of non-vector space control in the study of conductivity distribution of multi-wall carbon nanotubes. At the end of this dissertation, some future work will be also proposed to

  20. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  1. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  2. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  3. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  4. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment

    NARCIS (Netherlands)

    Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Jackson, T.J.; Graham, S.T.; Rodell, M.; Oevelen, van P.J.

    1999-01-01

    Surface soil moisture content is highly variable in both space and time. While remote sensing provides an effective methodology for mapping surface moisture content over large areas, it averages within-pixel variability thereby masking the underlying heterogeneity observed at the land surface. This

  5. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  6. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  7. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  8. Assessing forest resources in Denmark using wall-to-wall remote sensing data

    DEFF Research Database (Denmark)

    Schumacher, Johannes

    then be applied to estimate resources on both small and large scales. Numerous studies have investigated the possibilities of using remote sensing data for forest monitoring at plot or single tree levels. However, experience of estimating these properties for larger areas, for example regional or country...... assessments, is lacking. In this thesis wall-to-wall remote sensing data (from aerial images, airborne LiDAR, and space-borne SAR) were combined with ground reference data (from NFI plots and tree species experiments) to build and evaluate models estimating properties such as basal area, timber volume......, the thesis extends the application of remote sensing methods to estimate important variables with relevance to water catchment management....

  9. Sensing Mine, Yours, Theirs and Ours

    DEFF Research Database (Denmark)

    Mitchell, Robb

    2015-01-01

    To effectively leverage human sensorimotor abilities, this paper urges going beyond the traditional five senses. When users share physical space or location with other people, a crucial neglected modality is argued to be a sense of ownership. If, how, and what someone can see, touch, hear, feel....... Drawing upon urbanism theory helps show how different variations of territorial blending can articulate tactics for increasing sociality through interactive garments. These insights are offered to aid understanding of the design space for developers directly concerned with influencing co...

  10. Vision sensing techniques in aeronautics and astronautics

    Science.gov (United States)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  11. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  12. Stationary vacuum fields with a conformally flat three-space Pt. 1

    International Nuclear Information System (INIS)

    Lukacs, B.; Perjes, Z.; Sebestyen, A.; Sparling, G.A.J.

    1982-01-01

    A generalized notion of conformastat space-times is introduced in relativity theory. In this sense, the conformastat space-time is stationary with the three-space of time-like Killing trajectories being conformally flat. A 3+1 decomposition of the field equations is given, and two classes of nonstatic conformastat vacuum fields are exhaustively investigated. The resulting three metrics form a NUT-type extension of the solution of the static conformastat vacuum problem. The authors conjecture that all conformastat vacuum space-times are axially symmetric. (author)

  13. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points

    Science.gov (United States)

    Kraft, S.; Puschmann, K. G.; Luntama, J. P.

    2017-09-01

    As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.

  14. Ultra Long-Lived Autonomous Air Quality Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental sensing will be key to autonomous vehicle operation and crew health monitoring in tended/untended long-duration habitats for Human Space Exploration in...

  15. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  16. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    Science.gov (United States)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  17. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  18. Investigating Kindergarteners' Number Sense and Self-Regulation Scores in Relation to Their Mathematics and Turkish Scores in Middle School

    Science.gov (United States)

    Ivrendi, Asiye

    2016-01-01

    Number sense and self-regulation are considered foundational skills for later school learning. This study aimed to investigate the predictive power of kindergarten children's number sense and self-regulation scores on their mathematics and Turkish language examination scores in the 5th and 6th grades. The participants in this study were 5th grade…

  19. Children’s Sense of Security in Social Spaces

    Directory of Open Access Journals (Sweden)

    Sara Imanian

    2014-12-01

    Full Text Available This article is a study of the sense of security of middle-class children in Iran. Through taking a grounded theory approach, it explores the concept of insecurity in homes and cities and children’s reactions to feeling insecure. To do so, Draw and Write, Picture-Aided Questionnaire, and interview were applied to 100 children between 7 and 14 years of age. The findings revealed an ever-present feeling of anxiety and helplessness which was rooted in the human security conditions and in children’s status in society. The children showed two different reactions of active and passive when facing this feeling. As a consequence of active strategy, children grow a sense of fear management, become optimistic, and feel satisfied. Those who passively react to feeling insecure grow a desire for power and become depressed and unable to trust others.

  20. Charge collection and depth sensing investigation on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    CZT drift strip detectors with Planar Transverse Field (PTF) configuration are suitable for high energy astrophysics instrumentation, where high efficiency, high energy and position resolution are required from the sensors. We report on experimental investigations on the DTU Space developed CZT d...

  1. Fiber optic sensing for telecommunication satellites

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  2. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  3. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  4. Investigation of Genetic Disturbances in Oxygen Sensing and Erythropoietin Signaling Pathways in Cases of Idiopathic Erythrocytosis

    Directory of Open Access Journals (Sweden)

    Carla Luana Dinardo

    2013-01-01

    Full Text Available Background. Idiopathic erythrocytosis is the term reserved for cases with unexplained origins of abnormally increased hemoglobin after initial investigation. Extensive molecular investigation of genes associated with oxygen sensing and erythropoietin signaling pathways, in those cases, usually involves sequencing all of their exons and it may be time consuming. Aim. To perform a strategy for molecular investigation of patients with idiopathic erythrocytosis regarding oxygen sensing and erythropoietin signaling pathways. Methods. Samples of patients with idiopathic erythrocytosis were evaluated for the EPOR, VHL, PHD2, and HIF-2α genes using bidirectional sequencing of their hotspots. Results. One case was associated with HIF-2α mutation. Sequencing did not identify any pathogenic mutation in 4 of 5 cases studied in any of the studied genes. Three known nonpathogenic polymorphisms were found (VHL p.P25L, rs35460768; HIF-2α p.N636N, rs35606117; HIF-2α p.P579P, rs184760160. Conclusion. Extensive molecular investigation of cases considered as idiopathic erythrocytosis does not frequently change the treatment of the patient. However, we propose a complementary molecular investigation of those cases comprising genes associated with erythrocytosis phenotype to meet both academic and genetic counseling purposes.

  5. Space optical materials and space qualification of optics; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Hale, Robert R.

    1989-10-01

    The present conference on space optical materials discusses current metals and nonmetals-related processing R&D efforts, investigations of space optical effects, and the spaceborne qualification of optical components and systems. Attention is given to CVD SiC for optical applications, optical materials for space-based lasers, the high-efficiency acoustooptic and optoelectronic crystalline material Tl3AsSe3, HIPed Be for low-scatter cryogenic optics, durable solar-reflective surfacing for Be optics, thermal effects on Be mirrors, contamination effects on optical surfaces in the monolayer regime, and IR background signature survey experiment results. Also discussed are the contamination-control program for the EUE instrument, an optical multipass radiation system for the heating of levitated samples, optical sample-position sensing for electrostatic levitation, and the qualification of space lighting systems.

  6. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  7. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  8. Sacred Space.

    Science.gov (United States)

    Adelstein, Pamela

    2018-01-01

    A space can be sacred, providing those who inhabit a particular space with sense of transcendence-being connected to something greater than oneself. The sacredness may be inherent in the space, as for a religious institution or a serene place outdoors. Alternatively, a space may be made sacred by the people within it and events that occur there. As medical providers, we have the opportunity to create sacred space in our examination rooms and with our patient interactions. This sacred space can be healing to our patients and can bring us providers opportunities for increased connection, joy, and gratitude in our daily work.

  9. On rarely generalized regular fuzzy continuous functions in fuzzy topological spaces

    Directory of Open Access Journals (Sweden)

    Appachi Vadivel

    2016-11-01

    Full Text Available In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.

  10. Detection of Social Interaction in Smart Spaces.

    Science.gov (United States)

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  11. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  12. Utilizing 1-meter Landcover Data to Assess Associations between Green Space and Stress

    Science.gov (United States)

    Purpose: When using remotely-sensed data to study health, researchers must identify an appropriate spatial resolution to capture potential exposures. Investigations into urban green space are often limited by the unavailability of fine-scale landcover data. We analyzed 1-meter gr...

  13. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  14. Awareness-based game-theoretic space resource management

    Science.gov (United States)

    Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.

    2009-05-01

    Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.

  15. Space psychology

    Science.gov (United States)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  16. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    Science.gov (United States)

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  17. Stereotype locally convex spaces

    International Nuclear Information System (INIS)

    Akbarov, S S

    2000-01-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis

  18. Stereotype locally convex spaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbarov, S S

    2000-08-31

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  19. Stereotype locally convex spaces

    Science.gov (United States)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  20. Making sense of root cause analysis investigations of surgery-related adverse events.

    Science.gov (United States)

    Cassin, Bryce R; Barach, Paul R

    2012-02-01

    This article discusses the limitations of root cause analysis (RCA) for surgical adverse events. Making sense of adverse events involves an appreciation of the unique features in a problematic situation, which resist generalization to other contexts. The top priority of adverse event investigations must be to inform the design of systems that help clinicians to adapt and respond effectively in real time to undesirable combinations of design, performance, and circumstance. RCAs can create opportunities in the clinical workplace for clinicians to reflect on local barriers and identify enablers of safe and reliable outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  2. Combining machine learning and remotely sensed bandratios to investigate chlorophyll content and photosynthetic processes

    Science.gov (United States)

    Gholizadeh, Hamed

    Photosynthesis in aquatic and terrestrial ecosystems is the key component of the food chain and the most important driver of the global carbon cycle. Therefore, estimation of photosynthesis at large spatial scales is of great scientific importance and can only practically be achieved by remote sensing data and techniques. In this dissertation, remotely sensed information and techniques, as well as field measurements, are used to improve current approaches of assessing photosynthetic processes. More specifically, three topics are the focus here: (1) investigating the application of spectral vegetation indices as proxies for terrestrial chlorophyll in a mangrove ecosystem, (2) evaluating and improving one of the most common empirical ocean-color algorithms (OC4), and (3) developing an improved approach based on sunlit-to-shaded scaled photochemical reflectance index (sPRI) ratios for detecting drought signals in a deciduous forest at eastern United States. The results indicated that although the green normalized difference vegetation index (GNDVI) is an efficient proxy for terrestrial chlorophyll content, there are opportunities to improve the performance of vegetation indices by optimizing the band weights. In regards to the second topic, we concluded that the parameters of the OC4 algorithm and similar empirical models should be tuned regionally and the addition of sea-surface temperature makes the global ocean-color approaches more valid. Results obtained from the third topic showed that considering shaded and sunlit portions of the canopy (i.e., two-leaf models instead of single big leaf models) and taking into account the divergent stomatal behavior of the species (i.e. isohydric and anisohydric) can improve the capability of sPRI in detecting drought. In addition to investigating the photosynthetic processes, the other common theme of the three research topics is the evaluation of "off- the-shelf" solutions to remote-sensing problems. Although widely used

  3. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  4. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  5. CYBERNETIC BASIS AND SYSTEM PRACTICE OF REMOTE SENSING AND SPATIAL INFORMATION SCIENCE

    Directory of Open Access Journals (Sweden)

    X. Tan

    2017-09-01

    Full Text Available Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  6. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  7. Collision risk investigation for an operational spacecraft caused by space debris

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2017-04-01

    The collision probability between an operational spacecraft and a population of space debris is investigated. By dividing the 3-dimensional operational space of the spacecraft into several space volume cells (SVC) and proposing a boundary selection method to calculate the collision probability in each SVC, the distribution of the collision risk, as functions of the time, the orbital height, the declination, the impact elevation, the collision velocity, etc., can be obtained. Thus, the collision risk could be carefully evaluated over a time span for the general orbital configurations of the spacecraft and the space debris. As an application, the collision risk for the Tiangong-2 space laboratory caused by the cataloged space debris is discussed and evaluated. Results show that most of the collision threat comes from the front left and front right in Tiangong-2's local, quasi-horizontal plane. And the collision probability will also accumulate when Tiangong-2 moves to the largest declinations (about {±} 42°). As a result, the manned space activities should be avoided at those declinations.

  8. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  9. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  10. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  11. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  12. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    Science.gov (United States)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  13. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing.

    Science.gov (United States)

    Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger

    2017-08-01

    To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Quorum Sensing of Periodontal Pathogens

    Directory of Open Access Journals (Sweden)

    Darije Plančak

    2015-01-01

    Full Text Available The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Grampositive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species but also between species (inter-species, for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  15. 3rd Symposium on Space Optical Instruments and Applications

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. .

  16. Investigations of the Dynamics of Space Charged Dominated Beams

    International Nuclear Information System (INIS)

    York, Richard C.

    2002-01-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool

  17. Investigations of the Dynamics of Space Charged Dominated Beams

    Energy Technology Data Exchange (ETDEWEB)

    York, Richard C.

    2002-08-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool.

  18. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  19. Investigations Some Impact Space Debris and Working Satellites

    Science.gov (United States)

    Vovchyk, Yeva

    Combining the coordinate with the photometric date of the artificial satellite the information of its behavior on the orbit, its orientation, form and optical characteristics of the object’s surface could be determined. The successful solution of this task could be received only on the base of complex observations. It means that one must have coordinate and photometric observations from some (at least two) stations and the observations must be done synchronous. Photometric observations enable to record the reflection of the Sunlight from the separate fragments of the object’s surface. The periodic splashes give the information of the own rotation and the precession of the object. But from the light curve of the object to the information of its rotations is a long way of mathematics analysis with the supplement of the information from the other type observations. As the example the way of received the information of the behavior of the two satellites -- “EgyptSat” in the June-August 2010 after its collision on the orbit with unknown space debris and Russian station “Fobos-grunt” in the November 2011 during the unsuccessfully launching, inoperative spacecraft Envisat is shown. In the paper the initial observations and mathematical process of the solution of this task would be given. These investigations were made by the team "Astronoms from Ukraine" -- Ja. Blagodyr, A.Bilinsky, Ye.Vovchyk,K.Martyniyuk-Lotocky from Astronomical Observatory of Ivan Franko National University, Lviv; V.Yepishev, V.Kudak, I.Motrunych,I.Najbaer from Laboratory of the Space Investigations, National University of Uzgorod; N.Koshkin,L. Shakun from Astronomical Observatory of National University of Odessa; V.Lopachenko,V.Rykhalsky from National Centre of Direction and Testing of the Space System, Yevpatoriya.

  20. The use of desk studies, remote sensing and surface geological and geophysical techniques in site investigations

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-02-01

    The geoscientific investigations required to characterise a site for the underground disposal of radioactive wastes involve a wide range of techniques and expertise. Individual national investigations need to be planned with the specific geological environment and waste form in mind. However, in any investigation there should be a planned sequence of operations leading through desk studies and surface investigations to the more expensive and sophisticated sub-surface investigations involving borehole drilling and the construction of in situ test facilities. Desk studies are an important and largely underestimated component of site investigations. Most developed countries have archives of topographical, geological and environmental data within government agencies, universities, research institutes and learned societies. Industry is another valuable source but here confidentiality can be a problem. However, in developing countries and in some regions of developed countries the amount of basic data, which needs to be collected over many decades, will not be as extensive. In such regions remote sensing offers a rapid method of examining large areas regardless of land access, vegetation or geological setting, rapidly and at relatively low cost. It can also be used to examine features, such as discontinuity patterns, over relatively small areas in support of intensive ground investigations. Examples will be given of how remote sensing has materially contributed to site characterisation in a number of countries, particularly those such as Sweden, Canada and the United Kingdom where the major effort has concentrated on crystalline rocks. The main role of desk studies and surface investigations is to provide basic data for the planning and execution of more detailed subsurface investigations. However, such studies act as a valuable screening mechanism and if they are carried out correctly can enable adverse characteristics of a site to be identified at an early stage before

  1. Science Students Creating Hybrid Spaces when Engaging in an Expo Investigation Project

    Science.gov (United States)

    Ramnarain, Umesh; de Beer, Josef

    2013-02-01

    In this paper, we report on the experiences of three 9th-grade South African students (13-14 years) in doing open science investigation projects for a science expo. A particular focus of this study was the manner in which these students merge the world of school science with their social world to create a hybrid space by appropriating knowledge and resources of the school and home. Within this hybrid space they experienced a deeper, more meaningful and authentic engagement in science practical work. This hybrid space redefined the landscape of the science learning experience for these students, as they could derive the twofold benefit of appropriating support when necessary and at the same time maintain their autonomy over the investigation. For South Africa and quite probably other countries; these findings serve as a guideline as to how opportunities can be created for students to do open science investigations, against prevailing school factors such as large classes, a lack of physical resources, the lack of time for practical work and the demands of syllabus coverage.

  2. Remote sensing by satellite - Technical and operational implications for international cooperation

    Science.gov (United States)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  3. Collapsing perfect fluid in self-similar five dimensional space-time and cosmic censorship

    International Nuclear Information System (INIS)

    Ghosh, S.G.; Sarwe, S.B.; Saraykar, R.V.

    2002-01-01

    We investigate the occurrence and nature of naked singularities in the gravitational collapse of a self-similar adiabatic perfect fluid in a five dimensional space-time. The naked singularities are found to be gravitationally strong in the sense of Tipler and thus violate the cosmic censorship conjecture

  4. Studying the Earth from space

    Science.gov (United States)

    ,

    1981-01-01

    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  5. Openly Published Environmental Sensing (OPEnS) | Advancing Open-Source Research, Instrumentation, and Dissemination

    Science.gov (United States)

    Udell, C.; Selker, J. S.

    2017-12-01

    The increasing availability and functionality of Open-Source software and hardware along with 3D printing, low-cost electronics, and proliferation of open-access resources for learning rapid prototyping are contributing to fundamental transformations and new technologies in environmental sensing. These tools invite reevaluation of time-tested methodologies and devices toward more efficient, reusable, and inexpensive alternatives. Building upon Open-Source design facilitates community engagement and invites a Do-It-Together (DIT) collaborative framework for research where solutions to complex problems may be crowd-sourced. However, barriers persist that prevent researchers from taking advantage of the capabilities afforded by open-source software, hardware, and rapid prototyping. Some of these include: requisite technical skillsets, knowledge of equipment capabilities, identifying inexpensive sources for materials, money, space, and time. A university MAKER space staffed by engineering students to assist researchers is one proposed solution to overcome many of these obstacles. This presentation investigates the unique capabilities the USDA-funded Openly Published Environmental Sensing (OPEnS) Lab affords researchers, within Oregon State and internationally, and the unique functions these types of initiatives support at the intersection of MAKER spaces, Open-Source academic research, and open-access dissemination.

  6. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    Science.gov (United States)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  7. Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing

    Science.gov (United States)

    Ricotta, Vincent Anthony

    Advancements in stem cell biology and materials science have enabled the development of new treatments for tissue repair. Dental pulp stem cells (DPSCs), which are highly proliferative and can be induced to differentiate along several mesenchymal cell lineages, offer the possibility for pulpal regeneration and treatment of injured dentition. Polybutadiene (PB) may be used as a substrate for these cells. This elastomer can be spun casted into films of different thicknesses with different moduli. DPSCs grown on PB films, which are relatively hard (less than 1500 A thick), biomineralize depositing crystalline calcium phosphate without a requirement for the typical induction factor, dexamethasone (Dex). The moduli of cells track with the moduli of the surface suggesting that mechanics controls mineralization. The purpose of this study was to determine whether the major effect of Dex on biomineralization is the result of its ability to alter cell mechanics or its ability to induce osteogenesis/odontogenesis. DPSCs sense substrate mechanics through the focal adhesions, whose function is in part regulated by the Ras homolog gene (Rho) and its downstream effectors Rho associated kinases (ROCKs). ROCKs control actin filament polymerization and interactions with myosin light chain. Because cells sense substrate mechanics through focal adhesion proteins whose function is regulated by ROCKs, the impact of a ROCK inhibitor, Y-27632, was monitored. Blocking this pathway with Y-27632 suppressed the ability of DPSCs to sense the PB substrate. The cell modulus, plasma membrane stiffness, and cytosol stiffness were all lowered and biomineralization was suppressed in all cultures independent of substrate modulus or the presence of Dex. In other words, the inability of DPSCs to sense mechanical cues suppressed their ability to promote mineralization. On the other hand the expression of osteogenic/odontogenic markers (alkaline phosphatase and osteocalcin) was enhanced, perhaps due to Y

  8. Investigation of coastline changes in three provinces of Thailand using remote sensing

    Science.gov (United States)

    Tochamnanvita, T.; Muttitanon, W.

    2014-11-01

    The measuring of coastal in the certain short period of time is almost impossible, but applying the remote sensing with the satellite imagery bring mankind to track down and analyze the approximately length of the coastal changes at the Nano technology speed. An attempt has been made to study the length of shoreline changes along three provinces in the upper gulf of Thailand. The significant purpose is to investigate coastline length changes and to evaluate those different coastal changes at different times. Two specialties of chosen areas are the outstanding location at mouth of river in curve pattern and ecological important mangrove forest, as nominated and designated area listed in Ramsar convention, international wetlands treaty. In employing the remote sensing will help to investigate the shoreline erosion, stable or construction shoreline. Rapid and drastic shoreline changes have been compared and measured base on satellite image Landsat 5 TM on 1994, 2002 and 2007 at path129 row 051. There were geometrically co-registered and, in the process were resampled to 25 m. By composing RGB band, fusion, supervised classification. By apply different theories will give different results but the similarly pattern. Training sites were selected by signature editor, area of interest, evaluate by seperabilitly and contingency. Principle component analysis (PCA) was employed as a method of change detection. This is to conclude that these shoreline areas were in erosion from natural processes and manmade activities, for example, aquaculture and agriculture expansion, such as shrimp farm. These coastal line lost were not just losing the land; it's losing the soul of the cycle of marine life, economically, and environmentally. Moreover, this project, in the future, could benefit to set the recovery buffer zone for mangrove restoration also.

  9. Force loading explains spatial sensing of ligands by cells

    Science.gov (United States)

    Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere

    2017-12-01

    Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds

  10. Tungsten sulfide nanoflakes. Synthesis by electrospinning and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Feng, Wen-Lin [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing (China).

    2017-07-01

    Tungsten sulfide (WS{sub 2}) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS{sub 2} (Ag-WS{sub 2}) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS{sub 2} has a graphene-like structure with P{sub 63/mmc} space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS{sub 2} and Ag-WS{sub 2} nanomaterials. The sensing responses of WS{sub 2} and Ag-WS{sub 2} on the ammonia (NH{sub 3}), ethanol (C{sub 2}H{sub 5}OH), and acetone (C{sub 3}H{sub 6}O) were investigated at about 220 C. The results indicate that gas sensor based on WS{sub 2} and Ag-WS{sub 2} nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS{sub 2} and Ag-WS{sub 2} gas sensors is surface control via charge transfer.

  11. Study on the construction of multi-dimensional Remote Sensing feature space for hydrological drought

    International Nuclear Information System (INIS)

    Xiang, Daxiang; Tan, Debao; Wen, Xiongfei; Shen, Shaohong; Li, Zhe; Cui, Yuanlai

    2014-01-01

    Hydrological drought refers to an abnormal water shortage caused by precipitation and surface water shortages or a groundwater imbalance. Hydrological drought is reflected in a drop of surface water, decrease of vegetation productivity, increase of temperature difference between day and night and so on. Remote sensing permits the observation of surface water, vegetation, temperature and other information from a macro perspective. This paper analyzes the correlation relationship and differentiation of both remote sensing and surface measured indicators, after the selection and extraction a series of representative remote sensing characteristic parameters according to the spectral characterization of surface features in remote sensing imagery, such as vegetation index, surface temperature and surface water from HJ-1A/B CCD/IRS data. Finally, multi-dimensional remote sensing features such as hydrological drought are built on a intelligent collaborative model. Further, for the Dong-ting lake area, two drought events are analyzed for verification of multi-dimensional features using remote sensing data with different phases and field observation data. The experiments results proved that multi-dimensional features are a good method for hydrological drought

  12. Learning-based compressed sensing for infrared image super resolution

    Science.gov (United States)

    Zhao, Yao; Sui, Xiubao; Chen, Qian; Wu, Shaochi

    2016-05-01

    This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.

  13. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  14. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Science.gov (United States)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  15. The Perception of Sounds in Phonographic Space

    DEFF Research Database (Denmark)

    Walther-Hansen, Mads

    . The third chapter examines how listeners understand and make sense of phonographic space. In the form of a critique of Pierre Schaeffer and Roger Scruton’s notion of the acousmatic situation, I argue that our experience of recorded music has a twofold focus: the sound-in-itself and the sound’s causality...... the use of metaphors and image schemas in the experience and conceptualisation of phonographic space. With reference to descriptions of recordings by sound engineers, I argue that metaphors are central to our understanding of recorded music. This work is grounded in the tradition of cognitive linguistics......This thesis is about the perception of space in recorded music, with particular reference to stereo recordings of popular music. It explores how sound engineers create imaginary musical environments in which sounds appear to listeners in different ways. It also investigates some of the conditions...

  16. Recent developments in remote sensing for coastal and marine applications

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2017-01-01

    Full Text Available at the coast is that it is in a permanent state of change. Remote sensing, whether from orbiting (space-borne) or air-borne platforms, can greatly assist in the task of monitoring coastal environments. In particular, remote sensing enables simultaneous or near...

  17. Long-range strategy for remote sensing: an integrated supersystem

    Science.gov (United States)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  18. SPACE: Enhancing Life on Earth. Proceedings Report

    Science.gov (United States)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  19. Remote Sensing: The View from Above. Know Your Environment.

    Science.gov (United States)

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  20. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  1. Restoration of color in a remote sensing image and its quality evaluation

    Science.gov (United States)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe

    2003-09-01

    This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.

  2. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  3. (Re-)construing Space as Capital: Contributions from a Study with Local Entrepreneurs

    OpenAIRE

    Anderson de Souza Sant'Anna; Daniela Martins Diniz

    2017-01-01

    Taking as reference the approaches adopted by Bourdieu (2010) and Jacobs (2011), the focus of this article is to present the findings of a research effort designed to investigate the relationships between the constructs Space and Social Dynamics. In this sense, it seeks to investigate in which manner did the relationships among different social agents – emphasizing the roles played by local entrepreneurs – which, upon mobilizing different capitals – economic, social, cultural and symbolic (BO...

  4. Earth Observation from the International Space Station -Remote Sensing in Schools-

    Science.gov (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  5. Event-based Sensing for Space Situational Awareness

    Science.gov (United States)

    Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.

    A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding

  6. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  7. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  8. Collaborative neighbour monitoring in TV white space networks

    CSIR Research Space (South Africa)

    Takyi, A

    2016-09-01

    Full Text Available Collaborative sensing among secondary users in television white space (cognitive radio) networks can considerably increase the probability of detecting primary or secondary users. In current collaborative sensing schemes, all collaborative secondary...

  9. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  10. Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee.

    Science.gov (United States)

    Henninger, B; Raithel, E; Kranewitter, C; Steurer, M; Jaschke, W; Kremser, C

    2018-05-01

    To prospectively evaluate a prototypical 3D turbo-spin-echo proton-density-weighted sequence with compressed sensing and free-stop scan mode for preventing motion artefacts (3D-PD-CS-SPACE free-stop) for knee imaging in a clinical setting. 80 patients underwent 3T magnetic resonance imaging (MRI) of the knee with our 2D routine protocol and with 3D-PD-CS-SPACE free-stop. In case of a scan-stop caused by motion (images are calculated nevertheless) the sequence was repeated without free-stop mode. All scans were evaluated by 2 radiologists concerning image quality of the 3D-PD-CS-SPACE (with and without free-stop). Important knee structures were further assessed in a lesion based analysis and compared to our reference 2D-PD-fs sequences. Image quality of the 3D-PD-CS-SPACE free-stop was found optimal in 47/80, slightly compromised in 21/80, moderately in 10/80 and severely in 2/80. In 29/80, the free-stop scan mode stopped the 3D-PD-CS-SPACE due to subject motion with a slight increase of image quality at longer effective acquisition times. Compared to the 3D-PD-CS-SPACE with free-stop, the image quality of the acquired 3D-PD-CS-SPACE without free-stop was found equal in 6/29, slightly improved in 13/29, improved with equal contours in 8/29, and improved with sharper contours in 2/29. The lesion based analysis showed a high agreement between the results from the 3D-PD-CS-SPACE free-stop and our 2D-PD-fs routine protocol (overall agreement 96.25%-100%, Cohen's Kappa 0.883-1, p SPACE free-stop is a reliable alternative for standard 2D-PD-fs protocols with acceptable acquisition times. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine)

    Science.gov (United States)

    Trelogan, Jessica; Crawford, Melba; Carter, Joseph

    2002-01-01

    In 1998 the University of Texas Institute of Classical Archaeology, in collaboration with the University of Texas Center for Space Research and the National Preserve of Tauric Chersonesos (Ukraine), began a collaborative project, funded by NASA's Solid Earth and Natural Hazards program, to investigate the use of remotely sensed data for the study and protection of the ancient a cultural territory, or chora, of Chersonesos in Crimea, Ukraine.

  12. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  13. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.

    Science.gov (United States)

    Job, Xavier E; de Fockert, Jan W; van Velzen, José

    2016-08-01

    Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Investigations on the transverse phase space at a photo injector for minimized emittance

    Energy Technology Data Exchange (ETDEWEB)

    Miltchev, V.

    2006-08-15

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs{sub 2}Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  15. Investigations on the transverse phase space at a photo injector for minimized emittance

    International Nuclear Information System (INIS)

    Miltchev, V.

    2006-08-01

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs 2 Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  16. Synthesis of γ-WO{sub 3} thin films by hot wire-CVD and investigation of its humidity sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Jadkar, Vijaya; Waykar, Ravindra; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Date, Abhijit [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Plenty Road, Bundoora, Melbourne VIC 3083 (Australia); Late, Dattatray [Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Pathan, Habib; Gosavi, Suresh; Jadkar, Sandesh [Department of Physics, Savitribai Phule Pune University, Pune 411 007 (India)

    2017-05-15

    In this study, monoclinic tungsten oxide (γ-WO{sub 3}) have been grown in a single step using HW-CVD method by resistively heating W filaments in a constant O{sub 2} pressure. The formation of γ-WO{sub 3} was confirmed using low angle-XRD and Raman spectroscopy analysis. Low angle-XRD analysis revealed that as-deposited WO{sub 3} film are highly crystalline and the crystallites have preferred orientation along the (002) direction. HRTEM analysis and SAED pattern also show the highly crystalline nature of WO{sub 3} with d spacing of ∝ 0.38 nm, having an orientation along the (002) direction. Surface topography investigated by SEM analysis shows the formation of a uniform and homogeneous cauliflower like morphology throughout the substrate surface without flaws and cracks. A humidity sensing device incorporating WO{sub 3} is also fabricated, which shows a maximum humidity sensitivity factor of ∝ 3954% along with a response time of ∝14 s and a recovery time of ∝25 s. The obtained results demonstrate that it is possible to synthesize WO{sub 3} in a single step by HW-CVD method and to fabricate a humidity sensor by using it. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The Voces Project: Investigating How Latino/a Immigrant Children Make Sense of Engaging in School and School Mathematics

    Science.gov (United States)

    Knudson-Martin, John C.

    2013-01-01

    This study investigates how a group of Mexican immigrant children in the United States made sense of engaging in school and school mathematics. The research focused on a population of Latino/a middle school students who were a distinct minority, building a model that shows how a complex set of cognitive, sociocultural, and institutional factors…

  18. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA...

  19. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  20. Filaments of Meaning in Word Space

    OpenAIRE

    Karlgren, Jussi; Holst, Anders; Sahlgren, Magnus

    2008-01-01

    Word space models, in the sense of vector space models built on distributional data taken from texts, are used to model semantic relations between words. We argue that the high dimensionality of typical vector space models lead to unintuitive effects on modeling likeness of meaning and that the local structure of word spaces is where interesting semantic relations reside. We show that the local structure of word spaces has substantially different dimensionality and character than the global s...

  1. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    Science.gov (United States)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  2. Allocentric and egocentric manipulations of the sense of self-location in full-body illusions and their relation with the sense of body ownership.

    Science.gov (United States)

    Maselli, Antonella

    2015-09-01

    Self-location refers to the experience of occupying a given position in the environment. Recent research has addressed the sense of self-location as one of the key components of self-consciousness, together with the experience of owning the physical body (ownership) (Blanke and Metzinger, Trends Cogn Sci 13:7-13 in 2009. doi: 10.1016/j.tics.2008.10.003 ). Experimentally controlled full-body illusions proved to be valuable research tools to study these components and their interaction, and to explore their underlying neural underpinning. The focus of this manuscript is to provide a close look into the nuances of different illusory experiences affecting the sense of self-location and to examine their relation to the concurrent experienced sense of body ownership. On the basis of previous reviewed studies, it is proposed that the sense of self-location may be regarded as the blending of two paralllel representations: the abstract allocentric coding of the position occupied in the environment, mainly associated with visual-perspective, and the egocentric mapping of somatosensory sensations into the external space, mainly associated with peripersonal space. Open questions to be addressed by future research are further addressed.

  3. Playing with Sims as a space of one's own

    DEFF Research Database (Denmark)

    Iversen, Sara Mosberg

    2014-01-01

    Studies of women’s use of popular media have highlighted how these contested genres may be used by women to create a space of their own. Is this also the case when the media text in question is a digital game and the community around it moves online? Investigated via a netnographic approach...... according to mood,” “managing and taking control,” “experimentation,” “get what one does not have,” “making something one’s own,” and “creative outlet.” A central denominator of these seven categories is the notion of a space of one’s own in the widest sense of the phrase. In the discussed accounts playing...

  4. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  5. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  6. Pseudodifferential operators on alpha-modulation spaces

    DEFF Research Database (Denmark)

    Borup, Lasse

    2004-01-01

    We study expansions of pseudodifferential operators from the Hörmander class in a special family of functions called brushlets. We prove that such operators have a sparse representation in a brushlet system. Using this sparsity, we show that a pseudodifferential operator extends to a bounded oper...... operator between $alpha$-modulation spaces. These spaces were introduced by Gröbner in [15]. They are, in some sense, intermediate spaces between the classical Besov and Modulation spaces....

  7. Strategies and Policies for Space - Indian Perspective

    Science.gov (United States)

    Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund

    2002-01-01

    Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.

  8. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  9. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  10. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  11. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  12. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    Science.gov (United States)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this

  13. Integration of Distinct Educating Spaces and Their Potential for a More Comprehensive Environmental Education Work

    Science.gov (United States)

    Iared, Valéria Ghisloti; de Oliveira, Haydée Torres

    2012-01-01

    To investigate if the units of the São Carlos Ecological Pole (São Carlos, São Paulo, Brazil) are educating spaces that may contribute to the understanding of the complexity of environmental issues and stimulate a sense of belonging and social responsibility, we interviewed primary school teachers who had accompanied visits to these places and…

  14. International cooperation in the commercial era of space

    Science.gov (United States)

    Allnutt, R. F.

    1984-01-01

    NASA plans permitting international participation in space activities are reviewed, with an emphasis on the increasing commercialization of these endeavors. The potential indicated by the recent success of the STS, long-term and large-scale Soviet missions, and the Ariane launcher is discussed; the development of the Space Station concept is traced; the increasing use of remote-sensing and telecommunications satellites is documented; currently planned space science missions are listed; and the NASA policy on international cooperation (full payment by the second nation, clean payload-spacecraft interfaces to prevent technology transfer, and open availability of scientific results) is outlined. It is argued that space activity, having passed through first and second phases dominated by exploration and military goals, respectively, will now soon enter a primarily commercial phase, with competition in telecommunications and remote-sensing services and private investment in space processing, manufacturing, and even launchers.

  15. Quantum symmetries of classical spaces

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam

    2009-01-01

    We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...

  16. Slums from Space: 15 Years of Slum Mapping Using Remote Sensing

    NARCIS (Netherlands)

    Kuffer, M.; Pfeffer, K.; Sliuzas, R.

    2016-01-01

    The body of scientific literature on slum mapping employing remote sensing methods has increased since the availability of more very-high-resolution (VHR) sensors. This improves the ability to produce capable of supporting systematic global slum monitoring required for international policy

  17. Use of Remote Sensing for Decision Support in Africa

    Science.gov (United States)

    Policelli, Frederick S.

    2007-01-01

    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  18. Remote sensing investigations at a hazardous-waste landfill

    Science.gov (United States)

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  19. Study the topology of Branciari metric space via the structure proposed by Csaszar

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2017-06-01

    Full Text Available In this paper, we topologically study the generalized metric space proposed by Branciari [3] via the weak structure proposed by Cs´asz´ar [9, 10], and compare convergent sequences in several different senses. We also introduce the concepts of available points and unavailable points on such structures. Besides, we define the continuous function on structures and investigate further characterizations of continuous functions.

  20. Remote sensing from the desktop up, a students's personal stairway to space (Invited)

    Science.gov (United States)

    Church, W.

    2013-12-01

    Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a

  1. Land water storage from space and the geodetic infrastructure

    Science.gov (United States)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  2. UWBRAD: Ultra Wideband Software Defined Microwave Radiometer for Ice Sheet Subsurface Temperature Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing space and airborne remote sensing instruments have pushed the state-of-the-art in the characterization of ice sheet behaviors with the exception of one key...

  3. A clinical investigation of force delivery systems for orthodontic space closure.

    Science.gov (United States)

    Nightingale, C; Jones, S P

    2003-09-01

    To investigate the force retention, and rates of space closure achieved by elastomeric chain and nickel titanium coil springs. Randomized clinical trial. Eastman Dental Hospital, London and Queen Mary's University Hospital, Roehampton, 1998-2000. Twenty-two orthodontic patients, wearing the pre-adjusted edgewise appliance undergoing space closure in opposing quadrants, using sliding mechanics on 0.019 x 0.025-inch posted stainless steel archwires. Medium-spaced elastomeric chain [Durachain, OrthoCare (UK) Ltd., Bradford, UK] and 9-mm nickel titanium coil springs [OrthoCare (UK) Ltd.] were placed in opposing quadrants for 15 patients. Elastomeric chain only was used in a further seven patients. The initial forces on placement and residual forces at the subsequent visit were measured with a dial push-pull gauge [Orthocare (UK) Ltd]. Study models of eight patients were taken before and after space closure, from which measurements were made to establish mean space closure. The forces were measured in grammes and space closure in millimetres. Fifty-nine per cent (31/53) of the elastomeric sample maintained at least 50 per cent of the initial force over a time period of 1-15 weeks. No sample lost all its force, and the mean loss was 47 per cent (range: 0-76 per cent). Nickel titanium coil springs lost force rapidly over 6 weeks, following that force levels plateaued. Forty-six per cent (12/26) maintained at least 50 per cent of their initial force over a time period of 1-22 weeks, and mean force loss was 48 per cent (range: 12-68 per cent). The rate of mean weekly space closure for elastomeric chain was 0.21 mm and for nickel titanium coil springs 0.26 mm. There was no relationship between the initial force applied and rate of space closure. None of the sample failed during the study period giving a 100 per cent response rate. In clinical use, the force retention of elastomeric chain was better than previously concluded. High initial forces resulted in high force decay

  4. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    Science.gov (United States)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  5. A New Neurocognitive Interpretation of Shoulder Position Sense during Reaching: Unexpected Competence in the Measurement of Extracorporeal Space

    Directory of Open Access Journals (Sweden)

    Teresa Paolucci

    2016-01-01

    Full Text Available Background. The position sense of the shoulder joint is important during reaching. Objective. To examine the existence of additional competence of the shoulder with regard to the ability to measure extracorporeal space, through a novel approach, using the shoulder proprioceptive rehabilitation tool (SPRT, during reaching. Design. Observational case-control study. Methods. We examined 50 subjects: 25 healthy and 25 with impingement syndrome with a mean age [years] of 64.52 +/− 6.98 and 68.36 +/− 6.54, respectively. Two parameters were evaluated using the SPRT: the integration of visual information and the proprioceptive afferents of the shoulder (Test 1 and the discriminative proprioceptive capacity of the shoulder, with the subject blindfolded (Test 2. These tasks assessed the spatial error (in centimeters by the shoulder joint in reaching movements on the sagittal plane. Results. The shoulder had proprioceptive features that allowed it to memorize a reaching position and reproduce it (error of 1.22 cm to 1.55 cm in healthy subjects. This ability was lower in the impingement group, with a statistically significant difference compared to the healthy group (p<0.05 by Mann–Whitney test. Conclusions. The shoulder has specific expertise in the measurement of the extracorporeal space during reaching movements that gradually decreases in impingement syndrome.

  6. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  7. Data Fusion for Earth Science Remote Sensing

    Science.gov (United States)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  8. Miniature Flexible Humidity Sensitive Patches for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suit technologies demand improved, simplified, long-life regenerative sensing technologies, including humidity sensors, that exceed the performance of...

  9. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  10. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  11. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  12. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  13. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  14. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  15. Characterizing Space Weather Effects in the Post-DMSP Era

    Science.gov (United States)

    Groves, K. M.

    2015-12-01

    Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize

  16. The Dress Room: responsive spaces and embodied interaction

    DEFF Research Database (Denmark)

    Vallgårda, Anna

    2014-01-01

    What does it entail to be embraced by a space that responds to your actions? What kind of relations can we create between the active body and the active space? What qualities does the responsivity have for creating certain experiences of a space? Through the Dress Room, I begin to explore...... help create a sense of intimacy as well as motivate our motions within the space....

  17. Multiscale and Multitemporal Urban Remote Sensing

    Science.gov (United States)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  18. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  19. Making Sense of Trajectory Data in Indoor Spaces

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Thom, Andreas; Blunck, Henrik

    2015-01-01

    The increasing prevalence of positioning and tracking systems has helped simplify tracking large amounts of, e.g., people moving through buildings or cars traveling on roads, over long periods of time. However, technical limitations of positioning algorithms and traditional sensing infrastructures......-specific analysis tools. Additionally, it allows to predict the locally occurring expected positioning error biases. This in turn allows improved positioning, e.g., for real-time navigation assistance scenarios. We evaluate the proposed methods using trajectory data from employees at a large hospital complex...... which route was taken in a particular travel instance or whether two travel instances followed the same route. In this paper, we present a bootstrapping approach and several algorithms to mitigate error biases and related phenomena, focusing on indoor scenarios. In particular, we are able to estimate...

  20. Science on a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Jorgensen, A. M. (Anders M.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe in-situ science stations mounted on a science-dedicated space elevator tether. The concept presented here involves a carbon nanotube ribbon that is constructed by an existing space elevator and then science sensors are stationed along the ribbon at differing altitudes. The finished ribbon can be moved across the earth to the position at which its scientific measurements are to be taken. The ability to station scientific, in-situ instrumentation at different altitudes for round-the-clock observations is a unique capability of the SE. The environments that the science packages sense range from the troposphere out beyond the magnetopause of the magnetosphere on the solar side of the earth. Therefore, the very end of the SE can sense the solar wind. The measurements at various points along its length include temperature, pressure, density, sampling, chemical analyses, wind speed, turbulence, free oxygen, electromagnetic radiation, cosmic rays, energetic particles and plasmas in the earth's magnetosphere and the solar wind. There exist some altitudes that are difficult to access with aircraft or balloons or rockets and so remain relatively unexplored. The space elevator solves these problems and opens these regions up to in-situ measurements. Without the need for propulsion, the SE provides a more benign and pristine environment for atmospheric measurements than available with powered aircraft. Moreover, replacing and upgrading instrumentation is expected to be very cost effective with the SE. Moving and stationing the science SE affords the opportunity to sense multiple regions of the atmosphere. The SE's geosynchronous, orbital motion through the magnetosphere, albeit nominally with Earth's magnetic field, will trace a plane

  1. Site-specific investigations of aquifer thermal energy storage for space and process cooling

    International Nuclear Information System (INIS)

    Brown, D.R.

    1991-01-01

    This paper reports on the Pacific Northwest Laboratory (PNL) that has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low

  2. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  3. Investigation of remote sensing scale up for hot cell waste tank applications. CPAC optical moisture monitoring

    International Nuclear Information System (INIS)

    Jones, P.L.

    1994-01-01

    This report discusses work done to investigate the feasibility of using non-contact optical absorption to remotely sense the surface moisture content of salt cake materials. Optical measurements were made in a dimensionally scaled setup to investigate this technique for in-situ waste tank applications. Moisture measurements were obtained from BY-104 simulant samples with 0 wt%, 10 wt%, and 20 wt% moisture content using the back-scattered light from a pulsed infrared optical parametric converter (OPC) laser source operating from 1.51 to 2.12 micron. An InGaAs detector, with 0.038 steradian solid angle (hemisphere = 6.28 steradians) collection angle was used to detect the back-scattered light. This work indicated that there was sufficient back-scatter from the BY-104 material to provide an indication of the surface moisture content

  4. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  5. A Web-Based Airborne Remote Sensing Telemetry Server, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  6. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  7. Improved quorum sensing capacity by culturing Vibrio harveyi in microcapsules.

    Science.gov (United States)

    Gao, Meng; Song, Huiyi; Liu, Xiudong; Yu, Weiting; Ma, Xiaojun

    2016-04-01

    Microcapsule entrapped low density cells with culture (ELDCwc), different from free cell culture, conferred stronger stress resistance and improved cell viability of microorganisms. In this paper, the quorum sensing (QS) system of Vibrio harveyi was used to investigate changes when cells were cultured in microcapsules. Cells in ELDCwc group grew into cell aggregates, which facilitated cell-cell communication and led to increased bioluminescence intensity. Moreover, the luxS-AI-2 system, a well-studied QS signal pathway, was detected as both luxS gene and the AI-2 signaling molecule, and the results were analyzed with respect to QS capacity of unit cell. The V. harveyi of ELDCwc also showed higher relative gene expression and stronger quorum sensing capacity when compared with free cells. In conclusion, the confined microcapsule space can promote the cell aggregates formation, reduce cell-cell communication distance and increase local concentration of signal molecule, which are beneficial to bacterial QS. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  9. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  10. Making Sense Bringing Everyday Life at Work

    DEFF Research Database (Denmark)

    Egmose, Jonas; Gleerup, Janne; Nielsen, Birger Steen

    Inspired by contemporary work life studies on making sense at work this paper elaborates on using Critical Utopian Action Research as methodology for enabling shared learning spaces in which citizens and professionals can conjoin around discussions of deeper human aspirations enabled through...... synergies between civil engagement and organisational capabilities. The paper reports on experiences with enabling free spaces in the contexts of everyday life, where broader human concerns and aspirations can be addressed, as in the context of work life, where organisational responses on these orientations...

  11. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    National Research Council Canada - National Science Library

    Schgallis, Richard J

    2007-01-01

    Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...

  12. The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting

    International Nuclear Information System (INIS)

    Schuster, T; Schöpfer, F; Rieder, A

    2012-01-01

    This article concerns the method of approximate inverse to solve semi-discrete, linear operator equations in Banach spaces. Semi-discrete means that we search for a solution in an infinite-dimensional Banach space having only a finite number of data available. In this sense the situation is applicable to a large variety of applications where a measurement process delivers a discretization of an infinite-dimensional data space. The method of approximate inverse computes scalar products of the data with pre-computed reconstruction kernels which are associated with mollifiers and the dual of the model operator. The convergence, approximation power and regularization property of this method when applied to semi-discrete operator equations in Hilbert spaces has been investigated in three prequels to this paper. Here we extend these results to a Banach space setting. We prove convergence and stability for general Banach spaces and reproduce the results specifically for the integration operator acting on the space of continuous functions. (paper)

  13. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  14. ESPRIT: Exercise Sensing and Pose Recovery Inference Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ESPRIT: an Exercise Sensing and Pose Recovery Inference Tool, in support of NASA's effort in developing crew exercise technologies for...

  15. Yb:YAG Lasers for Space Based Remote Sensing

    Science.gov (United States)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  16. Earth and atmospheric remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Curran, Robert J. (Editor); Smith, James A. (Editor); Watson, Ken (Editor)

    1991-01-01

    The papers presented in this volume address the technical aspects of earth and atmospheric remote sensing. Topics discussed include spaceborne and ground-based applications of laser remote sensing, advanced applications of lasers in remote sensing, laser ranging applications, data analysis and systems for biospheric processes, measurements for biospheric processes, and remote sensing for geology and geophysics. Papers are presented on a space-qualified laser transmitter for lidar applications, solid state lasers for planetary exploration, automated band selection for multispectral meteorological applications, aerospace remote sensing of natural water organics, and remote sensing of volcanic ash hazards to aircraft.

  17. Spectrum sensing using single-radio switched-beam antenna systems

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Wilcox, David; De Carvalho, Elisabeth

    2012-01-01

    of the reactive loads rotate the narrowband beampattern to different angular positions dividing the whole space around the cognitive receiver into several angular subspaces. The beampattern directionality leverages the performance of spectrum sensing algorithms like the energy detection by enhancing the receive......The paper describes spectrum sensing using single-radio switched-beam arrays with reactance-loaded parasitic elements. At a given frequency, the antenna's loading conditions (reactive loads) are optimized for maximum average beamforming gain in the beampattern look direction. Circular permutations...

  18. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  19. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  20. Comparison of Uncalibrated Rgbvi with Spectrometer-Based Ndvi Derived from Uav Sensing Systems on Field Scale

    Science.gov (United States)

    Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.

    2016-06-01

    The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.

  1. Classical and quantum investigations of four-dimensional maps with a mixed phase space

    International Nuclear Information System (INIS)

    Richter, Martin

    2012-01-01

    Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

  2. Remote sensing of natural resources. Quarterly literature review, October-December 1980

    International Nuclear Information System (INIS)

    Gonzales, R.W.; Inglis, M.H.

    1981-02-01

    This review covers literature pertaining to documented data and data gathering techniques that are performed or obtained remotely from space, aircraft, or ground-based stations. All of the documentation is related to remote sensing sensors or the remote sensing of the natural resources. Section headings are: general; geology; environmental quality; hydrology; vegetation; oceanography; regional planning and land use; data manipulation; and instrumentation and technology

  3. Instantons from geodesics in AdS moduli spaces

    Science.gov (United States)

    Ruggeri, Daniele; Trigiante, Mario; Van Riet, Thomas

    2018-03-01

    We investigate supergravity instantons in Euclidean AdS5 × S5/ℤk. These solutions are expected to be dual to instantons of N = 2 quiver gauge theories. On the supergravity side the (extremal) instanton solutions are neatly described by the (lightlike) geodesics on the AdS moduli space for which we find the explicit expression and compute the on-shell actions in terms of the quantised charges. The lightlike geodesics fall into two categories depending on the degree of nilpotency of the Noether charge matrix carried by the geodesic: for degree 2 the instantons preserve 8 supercharges and for degree 3 they are non-SUSY. We expect that these findings should apply to more general situations in the sense that there is a map between geodesics on moduli-spaces of Euclidean AdS vacua and instantons with holographic counterparts.

  4. Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space.

    Science.gov (United States)

    Westheimer, Gerald

    2008-09-01

    Differences between the geometrical properties of simple configurations and their visual percept are called geometrical-optical illusions. They can be differentiated from illusions in the brightness or color domains, from ambiguous figures and impossible objects, from trompe l'oeil and perspective drawing with perfectly valid views, and from illusory contours. They were discovered independently by several scientists in a short time span in the 1850's. The clear distinction between object and visual space that they imply allows the question to be raised whether the transformation between the two spaces can be productively investigated in terms of differential geometry and metrical properties. Perceptual insight and psychophysical research prepares the ground for investigation of the neural representation of space but, because visual attributes are processed separately in parallel, one looks in vain for a neural map that is isomorphic with object space or even with individual forms it contains. Geometrical-optical illusions help reveal parsing rules for sensory signals by showing how conflicts are resolved when there is mismatch in the output of the processing modules for various primitives as a perceptual pattern's unitary structure is assembled. They point to a hierarchical ordering of spatial primitives: cardinal directions and explicit contours predominate over oblique orientation and implicit contours (Poggendorff illusion); rectilinearity yields to continuity (Hering illusion), point position and line length to contour orientation (Ponzo). Hence the geometrical-optical illusions show promise as analytical tools in unraveling neural processing in vision.

  5. Using Tree-Rings and Remote Sensing to Investigate Forest Productivity Response to Landscape Fragmentation in Northeastern Algeria

    Science.gov (United States)

    Rouini, N.; Lepley, K. S.; Messaoudene, M.

    2017-12-01

    Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.

  6. Fiber Optic Shape Sensing for Tethered Marsupial Rovers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Building upon the successful proof of concept work in Phase I, Luna Innovations Incorporated is proposing to design, build, and test a sensing tether for marsupial...

  7. Supersymmetries and constants of motion in Taub-NUT spinning space

    International Nuclear Information System (INIS)

    Vaman, D.; Visinescu, M.

    1998-01-01

    Models of relativistic particles with spin have been proposed for a long time. The models involving only conventional coordinates are called classical, while the models involving anticommuting coordinates are generally called pseudo-classical. In this paper, the relativistic spin one half particle models involving anticommuting vectorial degrees of freedom, which are usually called the spinning particles, are considered. Spinning particles are in some sense the classical limit of the Dirac particles. After the first quantization these new anticommuting variables are mapped into the Dirac matrices and they disappear from the theory. In the present paper, the motion of pseudo-classical spinning particles in curved spaces is investigated and the relevant equations of motion are investigated. The generalized Killing equations for the configuration space of spinning particles (spinning spaces) are discussed and the constants of motion are derived in terms of the solutions of these equations. We also analysed the motion of pseudo-classical spinning particles in the Euclidean Taub-NUT space. The generalized Killing equations for this spinning space are examined and derivation of the constants of motion in terms of the Killing-Yano tensors is described. The equations obtained for the special case of motion on cone are solved. This case represents an extension of the scalar particle motions in the usual Taub-NUT space in which the orbits are conic sections. An explicit exact solution is given. In spite of its simplicity, this solution occurs to be far from trivial. (authors)

  8. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  9. A Reparametrization Approach for Dynamic Space-Time Models

    OpenAIRE

    Lee, Hyeyoung; Ghosh, Sujit K.

    2008-01-01

    Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...

  10. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  11. Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space

    Science.gov (United States)

    Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos

    This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.

  12. Sense of Efficacy among Beginning Teachers in Sarawak

    Science.gov (United States)

    Murshidi, Rahmah; Konting, Mohd Majid; Elias, Habibah; Fooi, Foo Say

    2006-01-01

    This study examined the level of teachers' sense of efficacy among beginning teachers in Sarawak, Malaysia. It also sought to investigate whether there is any difference in beginning teachers' sense of efficacy in relation to gender, race and types of teacher preparation program. The study was conducted by using the teacher sense of efficacy…

  13. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  14. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  15. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  16. Supersymmetries and constants of motion in spinning spaces

    International Nuclear Information System (INIS)

    Visinescu, Mihai

    1999-01-01

    The models of relativistic particles with spin have been proposed for a long time. The first published work concerning the Lagrangian description of the relativistic particle with spin was the paper by Frenkel which appeared in 1926. After that the literature on the particle with spin grew vast. The models involving only conventional coordinates are called the classical models while the models involving anticommuting (Grassmann) coordinates are generally called pseudo-classical. We shall confine ourselves to discuss the relativistic spin one half particle models involving anticommuting vectorial degrees of freedom which are usually called spinning particles. Spinning particles are in some sense the classical limit of the Dirac particles. After the first quantization these new anticommuting variables are mapped into the Dirac matrices and they disappear from the theory. We investigate the motion of pseudo-classical spinning point particles in curved spaces. The generalized Killing equations for the configuration space of spinning particles (spinning space) are analyzed and the solutions are expressed in terms of Killing-Yano tensors. The general results are applied to the case of the four-dimensional Euclidean Taub-NUT spinning space. (author)

  17. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be

  18. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  19. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  20. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    Science.gov (United States)

    McElroy, James L.; McNeal, Robert J.

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements. (For individual items see A93-31377 to A93-31412)

  1. Establishing space research capability in Ethiopia

    Science.gov (United States)

    Bosinger, T.; Damtie, B.; Usoskin, I. G.

    It is often considered by various sources and institutions around the world that promotion of space physics activities in a developing country like Ethiopia is a waste of time and resources. It has, of course, some sense: developing countries should put all their efforts in improving the standard of life, infrastructure and basic education. However, it is straightforward to realize that nowadays improvement in any of the basic needs of developing countries is related to high technology (e.g. mobile phones, GPS, remote sensing). This means that a developing country has to take care of recruiting specialists among their own people who can take part in the decision making processes which are increasingly of global nature. Moreover, many citizens of developing countries are studying and working abroad attaining high expertise. As a matter of fact, there are more Ethiopians with PhD in physics working abroad than in the country. These people are lost for the benefit of their own country if there is no need for their profession in their home country. There is no doubt that the main task of improving the standard of living cannot be achieved without development and social transformation of the society, which can take place efficiently in a self-adopting and dynamic process. In line with the above argument, we have initiated the establishment of the Washera Space Physics Laboratory (WASPL) at Addis Ababa University in Ethiopia. It is a collaboration project between Oulu University and Addis Ababa University. The laboratory is expected to start operation of a pulsation magnetometer and photometer in September 2004. Other types of standard geophysical instruments are to be installed in subsequent missions. The project is of mutual interest of both parties. The equatorial ionosphere is still a poorly investigated region of our near Earth's space. In a first pilot investigation the existence and properties of the ionospheric Alfvén resonator (IAR) in the equatorial ionosphere

  2. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    ... (mesosphere and thermosphere) in terms of the structure of the underlying medium. Advances in non-LTE radiative transfer and atmospheric waves and localized excitations are detailed, as well as analysis and modeling of the databases resulting from two groundbreaking space infrared experiments, DoD MSX/SPIRIT III and NASA TIMED/SABER.

  3. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    Science.gov (United States)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  4. Compressed Sensing for Space-Based High-Definition Video Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-based imaging sensors are important for NASA's mission in both performing scientific measurements and producing literature and documentary cinema. The recent...

  5. Economic consequences of commercial space operations

    Science.gov (United States)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  6. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  7. Linking climate change education through the integration of a kite-borne remote sensing system

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    2014-09-01

    Full Text Available A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn climate change concepts by analyzing National Aeronautics and Space Administration (NASA global data collected through satellites and by imitating the NASA data collection process through NASA Airborne Earth Research Observation Kites And Tethered Systems (AEROKATS, a kite-borne remote sensing system. Besides AEROKATS, other major components of this system include a web-collection of NASA and remote sensing data and related educational resources, project-based learning for teacher professional development, teacher and student field trips, iOS devices, smart field data collector apps, portable weather stations, probeware, and a virtual teacher collaboratory supported with a GIS-enabled mapping portal. Three sets of research instruments, the NASA Long-Term Experience –Educator End of Event Survey, the Teacher End of Project Survey, and the pre-and-post-Investigating Climate Change and Remote Sensing (ICCARS project student exams, are adapted to study the pedagogical impacts of the NASA AEROKATS remote sensing system. These findings confirm that climate change education is more effective when both teachers and students actively participate in authentic scientific inquiry by collecting and analyzing remote sensing data, developing hypotheses, designing experiments, sharing findings, and discussing results.

  8. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  9. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in spacesuits are required to support the ISS and future human exploration. Spacesuit development and ground-based testing tasks require sensing and...

  10. Space activity impact on science and technology. Proceedings of the twenty-fourth international astronautical congress, Baku, USSR, October 7--13, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, L G; Contensou, P; Hilton, W F [eds.

    1976-01-01

    Topics covered include: Soviet automatic vehicles for lunar exploration and their influence on the progress of automatics and control theory; the problems of space technology and their influence on science and technics; industrial use of aerospace technology; development of liquid-propellant rocket engine engineering and its influence on science and technology in the USSR; space medicine and public health; impact of space activity on technology in a country the size of France; astronautics as a stimulus for celestial mechanics; space activity impact on the science and technology of rotating bodies; skylab systems flight performance, an interim report; the design and utilization of a spacelab for sortie missions; the spacelab program; man and the environment, remote sensing from space; EOLE application program for meteorological experiments, complementary experiences; machine processing methods for earth observational data; recent advances in geologic applications of remote sensing from space; infrared scanning for meteorological purposes; spatial antartic glaciology; reflection spectra usage in recognition of plant covers; experimental investigation of aeronautical and maritime communications and surveillance using satellites; the ESRO MAROTS program; the problem of habitability in spaceships; atmosphere revitalization for manned spacecraft; prospects of international cooperation in medical sciences; developing a technology base in planetary entry aerothermodynamics; scientific results of the automatic ionospheric laboratory Yantar 4 flight; nonlinear unsteady motions in solid propellant rockets with application to large motors; investigation of the physical and mechanical properties of the lunar sample brought by Luna 20 and along the route of motion of Lunokhod 2; orbiting astronomical observatory Copernicus; the delta launch vehicle model 2914 series; space tug mission and program planning; space and education; and safety in youth rocket experiments. (GHT)

  11. Space Commercialization and the Development of Space Law

    Science.gov (United States)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  12. Topological vector spaces admissible in economic equilibrium theory

    DEFF Research Database (Denmark)

    Keiding, Hans

    2009-01-01

    In models of economic equilibrium in markets with infinitely many commodities, the commodity space is an ordered topological vector space endowed with additional structure. In the present paper, we consider ordered topological vector spaces which are admissible (for equilibrium analysis) in the s......) in the sense that every economy which is reasonably well behaved posesses an equilibrium. It turns out that this condition may be characterized in terms of topology and order. This characterization implies that the commodity space has the structure of a Kakutani space....

  13. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  14. GRAVI-2 space experiment: investigating statoliths displacement and location effects on early stages of gravity perception pathways in lentil roots.

    Science.gov (United States)

    Bizet, François; Eche, Brigitte; Pereda Loth, Veronica; Badel, Eric; Legue, Valerie; Brunel, Nicole; Label, Philippe; Gérard, Joëlle

    2016-07-01

    displacement and location on intracellular calcium localization. Complementary RNA sequencing was done and current transcriptomic analyses will show the regulation of calcium-downstream gene expression and of auxin dependent pathways at two short time steps following gravistimulus. In addition, some of the lentil roots grown in microgravity aboard the ISS were submitted for several hours to low level of gravity (10-2 g) close to the detection threshold determined on a previous experiment (GRAVI-1; Driss-Ecole et al., 2008). Root gravitropism in response to such a low level of gravity was investigated and compared to the very low statoliths displacement expected. This study give insights about the molecular mechanisms underlying the very high sensitivity of roots to gravity and are among the firsts studies involving global transcriptomic analyses of root material grown in microgravity. Keywords: Calcium; ISS; Microgravity; Root; Statholith; Transcriptomic Acknowledgments: The authors thank G. Perbal, D. Driss-Ecole, the European space agency and the Norwegian user support and operations center team for their considerable help in the preparation and achievement of the GRAVI experiments. This work should not have been possible without the financial supports of the Centre National d'Etudes Spatiales (CNES) through a postdoctoral fellowship. References: Driss-Ecole, D., Legué, V., Carnero-Diaz, E. and Perbal, G. 2008. Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space Station. Physiologia Plantarum. 134, 1 (2008), 191-201. Morita, M. 2010. Directional Gravity Sensing in Gravitropism. Plant Biology. 61, 1 (2010), 705-720. Sack, F.D. 1991. Plant gravity sensing. International review of cytology. 127, (1991), 193-252. Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K. and Swarup, R. 2015. New insights into root gravitropic signalling. Journal of experimental botany. 66, 8 (Apr. 2015), 2155-65.

  15. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.; Brewin, Robert J. W.; Zhan, Peng; Dreano, Denis; Pradhan, Yaswant; Nanninga, Gerrit B.; Hoteit, Ibrahim

    2017-01-01

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  16. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  17. Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte–insulator–semiconductor for bio-sensing applications

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Liao, Pei-You; Chang, Kung-Yuan; Chi, Lifeng

    2013-01-01

    Highlights: ► The structural and sensing properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 and Lu 2 Ti 2 O 7 sensing films grown on Si substrates by reactive co-sputtering. ► The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity, a larger drift rate, a higher hysteresis voltage, and a larger hysteresis gap than other sensing films. ► The impedance effect of EIS sensors has been investigated using C–V method. -- Abstract: This paper describes the structural and sensing characteristics of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 sensing membranes deposited on Si substrates through reactive co-sputtering for electrolyte–insulator–semiconductor (EIS) pH sensors. In this work, the structural properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 membranes were investigated by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The observed structural properties were then correlated with the resulting pH sensing performances. The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity (59.32 mV pH −1 ), a larger drift rate (0.55 mV h −1 ), a higher hysteresis voltage (5 mV), and a larger hysteresis gap (∼70 mV) compared to those of the other sensing films. This result is attributed to the higher surface roughness and the formation of a thicker interfacial layer at the oxide–Si interface. Furthermore, the impedance effect of EIS sensors has been investigated using capacitance–voltage (C–V) method (frequency-dependent C–V curves). From the impedance spectroscopy analysis, we find that the diameter of a semicircle of an EIS sensor becomes smaller due to a gradual decrease in the bulk resistance of the device with degree of pH value

  18. Energy/bandwidth-Saving Cooperative Spectrum Sensing for Two-hopWRAN

    Directory of Open Access Journals (Sweden)

    Ming-Tuo Zhou

    2014-07-01

    Full Text Available A two-hop wireless regional area network (WRAN providing monitoring services operating in Television White Space (TVWS, i.e., IEEE P802.22b, may employ a great number of subscriber customer-premises equipments (S-CPEs possibly without mains power supply, leading to requirement of cost-effective and power-saving design. This paper proposes a framework of cooperative spectrum sensing (CSS and an energy/bandwidth saving CSS scheme to P802.22b. In each round of sensing, S-CPEs with SNRs lower than a predefined threshold are excluded from reporting sensing results. Numerical results show that the fused missed-detection probability and false alarmprobability could remainmeeting sensing requirements, and the overall fused error probability changes very little. With 10 S-CPEs, it is possible to save more than 40% of the energy/bandwidth on a Rayleigh channel. The principle proposed can apply to other advanced sensing technologies capable of detecting primary signals with low average SNR.

  19. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  20. An Overview of GNSS Remote Sensing

    Science.gov (United States)

    2014-08-27

    Aplicaciones Cientificas-C (SAC-C) satellites. CHAMP provided 8 years of radio oc- cultation data consisting of around 440,000 measurements from February...applications, various modifi- cations of terrestrial receivers are required, including hardware and software modifications to enhance surviv- ability in a...Dop- pler shifts. On the other hand, special hardware and software is required to support non-navigation remote sensing applications in space, such

  1. Remote sensing and modeling in the Adriatic Sea

    International Nuclear Information System (INIS)

    Bekkering, J.A.

    1989-01-01

    The final objective of the project is to cast the scientific and practical base for the creation of an operational system to trace and predict the pathway and fate of pollutants in the marine environment, based principally on Remote Sensing from space. 20 refs, 2 figs, 5 tabs

  2. Wireless Hybrid Identification and Sensing Platform for Equipment Recovery (WHISPER), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Systems & Technologies proposed WHISPER (Wireless Hybrid Identification and Sensing Platform for Equipment Recovery) solution to NASA's need for...

  3. Wireless Hybrid Identification and Sensing Platform for Equipment Recovery (WHISPER), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Systems & Technologies proposed WHISPER (Wireless Hybrid Identification and Sensing Platform for Equipment Recovery) solution to NASA's need for...

  4. Spacing Identity

    DEFF Research Database (Denmark)

    Stang Våland, Marianne; Georg, Susse

    2018-01-01

    In this paper, we analyze how architectural design, and the spatial and material changes this involves, contributes to the continuous shaping of identities in an organization. Based upon a case study of organizational and architectural change in a municipal administration at a time of major public...... sector reforms, we examine how design interventions were used to (re)form work and professional relationships. The paper examines how engagements with spatial arrangements and material artifacts affected people’s sense of both occupational and organizational identity. Taking a relational approach...... to sociomateriality, the paper contributes to the further theorizing of space in organization studies by proposing the concept of spacing identity to capture the fluidity of identity performance....

  5. Space-qualifiable Digital Radar Transceiver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radar technology offers a very flexible, powerful tool for applications such as object detection, tracking, and characterization, as well as remote sensing, imaging,...

  6. Smell, Odor, and Somatic Work: Sense-Making and Sensory Management

    Science.gov (United States)

    Waskul, Dennis D.; Vannini, Phillip

    2008-01-01

    Sensation (noun) is emergent in joint acts of sensing (verb). To sense, in other words, is to make sense, and sense making entails what we call "somatic work." We investigate these dynamics in the context of olfaction, highlighting how olfaction intersects with social, cultural, and moral order--thus compelling reflexive forms of somatic…

  7. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  8. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms.

    Science.gov (United States)

    Hoge, W Scott; Brooks, Dana H

    2008-08-01

    Two strategies are widely used in parallel MRI to reconstruct subsampled multicoil image data. SENSE and related methods employ explicit receiver coil spatial response estimates to reconstruct an image. In contrast, coil-by-coil methods such as GRAPPA leverage correlations among the acquired multicoil data to reconstruct missing k-space lines. In self-referenced scenarios, both methods employ Nyquist-rate low-frequency k-space data to identify the reconstruction parameters. Because GRAPPA does not require explicit coil sensitivities estimates, it needs considerably fewer autocalibration signals than SENSE. However, SENSE methods allow greater opportunity to control reconstruction quality though regularization and thus may outperform GRAPPA in some imaging scenarios. Here, we employ GRAPPA to improve self-referenced coil sensitivity estimation in SENSE and related methods using very few auto-calibration signals. This enables one to leverage each methods' inherent strength and produce high quality self-referenced SENSE reconstructions. (c) 2008 Wiley-Liss, Inc.

  9. Investigating “Othering” in Visual Arts Spaces of Learning

    Directory of Open Access Journals (Sweden)

    Monique Biscombe

    2017-04-01

    Full Text Available In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored “othered” identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in terms of their experiences in the Department of Visual Arts. Theoretical perspectives such as “othering”, symbolic racism, the racialised body and visual art theory were used to interpret these experiences. It was found that “othering” because of indirect racism and language or economic circumstances affects students’ creative expression. Causes of “othering” experiences should be investigated in order to promote necessary transformation within the visual arts and within higher education institutions. 

  10. A software architecture for adaptive modular sensing systems.

    Science.gov (United States)

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  11. Dual Vector Spaces and Physical Singularities

    Science.gov (United States)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  12. Evaluate the use of space monitoring methods for the study of the ecological state of the territory contaminated with heavy metals

    Directory of Open Access Journals (Sweden)

    Kroik G.A.

    2010-06-01

    Full Text Available Possibilities of modern Earth remote sensing systems are investigated in the space environmental monitoring of areas, contaminated with heavy metals, and the best of them are identified. The most informative E-field radiation spectrum zones for remote indication of heavy metals are identified and the special spectral indexes are offered.

  13. Remote-sensing image encryption in hybrid domains

    Science.gov (United States)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  14. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  15. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  16. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    International Nuclear Information System (INIS)

    Atkin, P.A.

    2000-10-01

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137 Cs concentration is proven in-situ (R 2 =0.94), thus remotely sensed SSC can act as a surrogate for 137 Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R 2 =0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  17. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  18. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Science.gov (United States)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  19. The use of remotely sensed data as a tool in urban heat island investigations: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Orvis, K.H.; Akbari, H. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1992-01-01

    Remotely sensed data contribute an important tool to areawide, cost-effective studies of urban heat island phenomena. This paper provides an overview of its use dating from the first satellite thermal images of urban heat signatures in the early 1970`s, and briefly examines the range of previous uses of remotely sensed data in urban studies, including identification and analysis of heat island effects, modeling of energy budgets, attempts to analyze and classify the urban landscape, and temporal analyses. The intent is not to provide an exhaustive review but rather to describe research trends and patterns. In addition the paper lists an compares those sensing devices that have seen significant use in urban studies and briefly discusses potential strengths and weaknesses of remotely sensed data for use in urban analyses. Three annotated bibliographies, divided by subject, are included. 95 refs.

  20. Tunable Laser for High-Performance, Low-Cost Distributed Sensing Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will establish technical feasibility of an approach to optimizing a low-cost, fast-sweeping tunable laser for distributed sensing. Multiple...

  1. Monitoring Traffic Information with a Developed Acceleration Sensing Node

    Directory of Open Access Journals (Sweden)

    Zhoujing Ye

    2017-12-01

    Full Text Available In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line. Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  2. Monitoring Traffic Information with a Developed Acceleration Sensing Node.

    Science.gov (United States)

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-12-05

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  3. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  4. Leadership Development in Digital Spaces Through Mentoring, Coaching, and Advising.

    Science.gov (United States)

    Guthrie, Kathy L; Meriwether, Jason L

    2018-06-01

    The increasing population of students engaging in online and digital spaces poses unique leadership development challenges in mentoring, coaching, and advising. This chapter discusses the importance of using digital spaces for leadership development and students' sense of belonging. © 2018 Wiley Periodicals, Inc.

  5. Nanofluidic structures for coupled sensing and remediation of toxins

    Science.gov (United States)

    Shaw, K.; Contento, N. M.; Xu, Wei; Bohn, P. W.

    2014-05-01

    One foundational motivation for chemical sensing is that knowledge of the presence and level of a chemical agent informs decisions about treatment of the agent, for example by sequestration, separation or chemical conversion to a less harmful substance. Commonly the sensing and treatment steps are separate. However, the disjoint detection/treatment approach is neither optimal, nor required. Thus, we are investigating how nanostructured architectures can be constructed so that molecular transport (analyte/reagent delivery), chemical sensing (optical or electrochemical) and subsequent treatment can all be coupled in the same physical space during the same translocation event. Chemical sensors that are uniquely well-poised for integration into 3-D micro-/nanofluidic architectures include those based on plasmonics and impedance. Following detection, treatment can be substantially enhanced if mass transport limitations can be overcome. In this context, in situ generation of reactive species within confined geometries, such as nanopores or nanochannels, is of significant interest, because of its potential utility in overcoming mass transport limitations in chemical reactivity. Solvent electrolysis in electrochemically coupled nanochannels supporting electrokinetic flow for the generation of reactive species, can produce arbitrarily tunable quantities of reagents, such as O2 or H2, in situ in close proximity to the site of a hydrogenation catalyst, for example. Semi-quantitative estimates of the local H2 concentration are obtained by comparing the spatiotemporal fluorescence behavior and current measurements with finite element simulations accounting for electrolysis and subsequent convection and diffusion within the confined geometry. H2 saturation can easily be achieved at modest overpotentials.

  6. QR-decomposition based SENSE reconstruction using parallel architecture.

    Science.gov (United States)

    Ullah, Irfan; Nisar, Habab; Raza, Haseeb; Qasim, Malik; Inam, Omair; Omer, Hammad

    2018-04-01

    Magnetic Resonance Imaging (MRI) is a powerful medical imaging technique that provides essential clinical information about the human body. One major limitation of MRI is its long scan time. Implementation of advance MRI algorithms on a parallel architecture (to exploit inherent parallelism) has a great potential to reduce the scan time. Sensitivity Encoding (SENSE) is a Parallel Magnetic Resonance Imaging (pMRI) algorithm that utilizes receiver coil sensitivities to reconstruct MR images from the acquired under-sampled k-space data. At the heart of SENSE lies inversion of a rectangular encoding matrix. This work presents a novel implementation of GPU based SENSE algorithm, which employs QR decomposition for the inversion of the rectangular encoding matrix. For a fair comparison, the performance of the proposed GPU based SENSE reconstruction is evaluated against single and multicore CPU using openMP. Several experiments against various acceleration factors (AFs) are performed using multichannel (8, 12 and 30) phantom and in-vivo human head and cardiac datasets. Experimental results show that GPU significantly reduces the computation time of SENSE reconstruction as compared to multi-core CPU (approximately 12x speedup) and single-core CPU (approximately 53x speedup) without any degradation in the quality of the reconstructed images. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A Software Architecture for Adaptive Modular Sensing Systems

    Directory of Open Access Journals (Sweden)

    Andrew C. Lyle

    2010-08-01

    Full Text Available By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  8. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.

    2017-07-01

    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  9. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    Science.gov (United States)

    Ladewski, Barbara G.

    and proximities of elements within the interaction space---play an important role in shared sense-making. Findings further suggest that the mutually constitutive interaction of inquiry and reflection plays a key role in flexible shared sense-making. Finally, findings lend support to the idea of a dialectical relationship between human models of shared sense-making and human systems of shared sense-making; that is, the ways in which human minds are coordinated is a work in progress, shaping and shaped by human culture.

  10. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  11. Confinement Sensing and Signal Optimization via Piezo1/PKA and Myosin II Pathways

    Directory of Open Access Journals (Sweden)

    Wei-Chien Hung

    2016-05-01

    Full Text Available Summary: Cells adopt distinct signaling pathways to optimize cell locomotion in different physical microenvironments. However, the underlying mechanism that enables cells to sense and respond to physical confinement is unknown. Using microfabricated devices and substrate-printing methods along with FRET-based biosensors, we report that, as cells transition from unconfined to confined spaces, intracellular Ca2+ level is increased, leading to phosphodiesterase 1 (PDE1-dependent suppression of PKA activity. This Ca2+ elevation requires Piezo1, a stretch-activated cation channel. Moreover, differential regulation of PKA and cell stiffness in unconfined versus confined cells is abrogated by dual, but not individual, inhibition of Piezo1 and myosin II, indicating that these proteins can independently mediate confinement sensing. Signals activated by Piezo1 and myosin II in response to confinement both feed into a signaling circuit that optimizes cell motility. This study provides a mechanism by which confinement-induced signaling enables cells to sense and adapt to different physical microenvironments. : Hung et al. demonstrate that a Piezo1-dependent intracellular calcium increase negatively regulates protein kinase A (PKA as cells transit from unconfined to confined spaces. The Piezo1/PKA and myosin II signaling modules constitute two confinement-sensing mechanisms. This study provides a paradigm by which signaling enables cells to sense and adapt to different microenvironments.

  12. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    National Research Council Canada - National Science Library

    Le Vine, David M; Abraham, Saji; Wentz, F; Lagerloef, G. S

    2005-01-01

    ... to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes...

  13. Period, Place and Mental Space: Using Historical Scholarship to Develop Year 7 Pupils' Sense of Period

    Science.gov (United States)

    Smith, Dan

    2014-01-01

    What is a sense of period? And how can pupils' sense of period be developed? Questions such as these have troubled history teachers for many years, often revolving around debates over the role played by empathy and imagination in coming to know a period on its own terms. Rather than adopt a comparative approach, Dan Smiths decided in his teaching…

  14. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  15. Space weathering on near-Earth objects investigated by neutral-particle detection

    Science.gov (United States)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.

    2009-04-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  16. Remote Sensing using Signals of Opportunity

    OpenAIRE

    Yertay, Alibek; Garrison, James L

    2013-01-01

    Today, there are more than eight thousand satellites in space. Therefore, Radio Frequency (RF) signals broadcast from satellites can be accessed from almost every point on the earth. There will be number of satellites available at most points on earth with different frequency bands. These satellite signals can be used for remote sensing, therefore software that visualizes footprints of satellites and shows characteristics of every satellite available at any point would be useful in determinin...

  17. Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province, China by integrating remote sensing and farmer investigation data

    Science.gov (United States)

    Xu, Duanyang; Song, Alin; Song, Xiao

    2017-12-01

    To combat desertification, the Chinese government has launched a series of Desertification Controlling Projects and Policies over the past several decades. However, the effect of these projects and policies remains controversial due to a lack of suitable methods and data to assess them. In this paper, the authors selected the farming-pastoral region of the northern Shaanxi Province in China as a sample region and attempted to assess the effect of Desertification Controlling Projects and Policies launched after 2000 by combining remote sensing and farmer investigation data. The results showed that the combination of these two complementary assessments can provide comprehensive information to support decision-making. According to the remote sensing and Net Primary Production data, the research region experienced an obvious desertification reversion between 2000 and 2010, and approximately 70% of this reversion can be explained by Desertification Controlling Projects and Policies. Farmer investigation data also indicated that these projects and policies were the dominating factor contributing to desertification reversion, and approximately 70% of investigated farmers agreed with this conclusion. However, low supervision and subsidy levels were issues that limited the policy effect. Therefore, it is necessary for the government to enhance supervision, raise subsidy levels, and develop environmental protection regulations to encourage more farmers to participate in desertification control.

  18. Ten ways remote sensing can contribute to conservation

    Science.gov (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  19. Ten ways remote sensing can contribute to conservation.

    Science.gov (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  20. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  1. AUTOMATED SYSTEM OF THE OPERATIONAL ANALYSIS OF THE FEASIBILITY OF EARTH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    N. A. Arkhipova

    2016-01-01

    Full Text Available The article scopes the hardware and software of the information system for pre-contractual real-time analysis of requests feasibility for supplying of Earth remote sensing data, which is an integral part of the Belarusian Space System for Earth Remote Sensing. The main purpose of the development of this information system is the creation of computer-aided system for real-time analysis of customers’ requests feasibility by using the resources of two space vehicles. This system is a decision support system in the pre-contractual phase on the everyday business practice. This automation activity is solved using multicriteria optimization approaches. The created information system allows to speed-up calculations and increase its quality as well as to augment the precision of assessment of space images acquisition by including the resources of two satellites during the requested period of time. This system has passed the evaluation test for both satellites and may be further used as the base for real-time analysis of requests feasibility taking into account the resources of several space vehicles.

  2. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition

    Science.gov (United States)

    Shariff, Abdul Rashid Mohamed

    2014-06-01

    IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence

  3. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (Pguide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  4. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  5. Beyond a lesbian space? An investigation on the intergenerational discourse surrounding lesbian public social places in Amsterdam.

    Science.gov (United States)

    Fobear, Katherine

    2012-01-01

    This article investigates intergenerational discourse on public lesbian social spaces within Amsterdam, Netherlands. The author seeks to address how lesbian women from different generations talk about lesbian social spaces in Amsterdam through anthropological ethnographic research and semistructured interviews with 20 lesbian women who have or currently are attending these places. The author also addresses the gradual decline of lesbian specific spaces in the city and the current belief that lesbian women are beyond having a public social space that services only the lesbian community. The rise in popularity of mixed gay- and lesbian-friendly bars and girl circuit parties will be identified as a key area where generational tensions and discourse are being played out. Issues pertaining to generational disagreements over lesbian identity, visibility, and space will be addressed.

  6. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  7. Human and remote sensing data to investigate the frontiers of urbanization in the south of Mexico City

    OpenAIRE

    Rodriguez Lopez, Juan Miguel; Heider, Katharina; Scheffran, J?rgen

    2016-01-01

    The data presented here were originally collected for the article “Frontiers of Urbanization: Identifying and Explaining Urbanization Hot Spots in the South of Mexico City Using Human and Remote Sensing” (Rodriguez et al. 2017) [4]. They were divided into three databases (remote sensing, human sensing, and census information), using a multi-method approach with the goal of analyzing the impact of urbanization on protected areas in southern Mexico City. The remote sensing database was prepared...

  8. Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

    DEFF Research Database (Denmark)

    Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka

    2013-01-01

    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analy......We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive...... an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits...

  9. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  10. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  11. Extra Dimensions of Space

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  12. Flexible Polymer Sensor for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics has developed an innovative new type of compliant tactile sensing solution, a polymeric skin (PolySkinTM) that can be molded into any form...

  13. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.

    Science.gov (United States)

    He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan

    2014-09-01

    Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.

  14. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  15. Blowing snow detection in Antarctica, from space borne and ground-based remote sensing

    Science.gov (United States)

    Gossart, A.; Souverijns, N.; Lhermitte, S.; Lenaerts, J.; Gorodetskaya, I.; Schween, J. H.; Van Lipzig, N. P. M.

    2017-12-01

    Surface mass balance (SMB) strongly controls spatial and temporal variations in the Antarctic Ice Sheet (AIS) mass balance and its contribution to sea level rise. Currently, the scarcity of observational data and the challenges of climate modelling over the ice sheet limit our understanding of the processes controlling AIS SMB. Particularly, the impact of blowing snow on local SMB is not yet constrained and is subject to large uncertainties. To assess the impact of blowing snow on local SMB, we investigate the attenuated backscatter profiles from ceilometers at two East Antarctic locations in Dronning Maud Land. Ceilometers are robust ground-based remote sensing instruments that yield information on cloud base height and vertical structure, but also provide information on the particles present in the boundary layer. We developed a new algorithm to detect blowing snow (snow particles lifted by the wind from the surface to substantial height) from the ceilometer attenuated backscatter. The algorithm successfully allows to detect strong blowing snow signal from layers thicker than 15 m at the Princess Elisabeth (PE, (72°S, 23°E)) and Neumayer (70°S, 8° W) stations. Applying the algorithm to PE, we retrieve the frequency and annual cycle of blowing snow as well as discriminate between clear sky and overcast conditions during blowing snow. We further apply the blowing snow algorithm at PE to evaluate the blowing snow events detection by satellite imagery (Palm et al., 2011): the near-surface blowing snow layers are apparent in lidar backscatter profiles and enable snowdrift events detection (spatial and temporal frequency, height and optical depth). These data are processed from CALIPSO, at a high resolution (1x1 km digital elevation model). However, the remote sensing detection of blowing snow events by satellite is limited to layers of a minimal thickness of 20-30 m. In addition, thick clouds, mostly occurring during winter storms, can impede drifting snow

  16. Twistor Cosmology and Quantum Space-Time

    International Nuclear Information System (INIS)

    Brody, D.C.; Hughston, L.P.

    2005-01-01

    The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a

  17. The synthesis of porous Co3O4 micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    International Nuclear Information System (INIS)

    Jamil, Saba; Jing, Xiaoyan; Wang, Jun; Li, Songnan; Liu, Jingyuan; Zhang, Milin

    2013-01-01

    Graphical abstract: - Highlights: • Micro cuboid Co 3 O 4 particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co 3 O 4 from cuboid CoCO 3 . • Investigation of gas sensing properties of porous Co 3 O 4 . • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co 3 O 4 with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co 3 O 4 are also investigated

  18. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  19. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  20. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  1. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  2. Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Yaocheng Shi

    2016-03-01

    Full Text Available A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0 and liquid sensing (ncl ~ 1.33 are considered. When using SOI nanowires (with a SiO2 buffer layer, the sensitivity for liquid sensing (S ~ 0.55 is higher than that for gas sensing (S ~ 0.35 due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0. The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm. In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43 while the fabrication tolerance is very small (i.e., ∆w < ±5 nm. The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.

  3. Precision force sensing with optically-levitated nanospheres

    Science.gov (United States)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  4. Husserl’s theory of noematic sense

    Directory of Open Access Journals (Sweden)

    Nikolić Olga

    2016-01-01

    Full Text Available After Husserl’s transcendental turn and the discovery of the correlation between consciousness and the world the concept of the noema becomes one of the constant leitmotifs of Husserl’s philosophy. My paper will be devoted to the clarification of this concept and its implications for Husserl’s theory of sense. The leading question will be: How can the noema play the role of both the sense and the objective correlate of the intentional act? I will start with presenting the problematic of sense in Husserl’s phenomenology from the Logical Investigations to the Ideas I. The central part of my paper will be devoted to the influential debate regarding the interpretation of the noema. Finally, I intend to point out the most important ways in which the notion of the noema becomes enriched in later Husserl’s philosophy, as well as the difference between linguisitic and non-linguistic sense, based on the Analyses Concerning Passive and Active Synthesis. I hope to show that Husserl’s phenomenological theory of sense offers a valuable alternative to the exclusively language-oriented theories of sense. [This paper is the abridged and reworked version of my Master’s Thesis "Husser’s Notion of the Noema: The Phenomenological Theory of Sense" defended at KU Leuven in January 2016.

  5. Nanogenerators for Self-Powered Gas Sensing

    Science.gov (United States)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  6. Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Cui, Mengyang; Ye, Zhenhua

    2016-01-01

    Highlights: • Ethanol adsorbed on V 2 O 5 (010) surface was investigated by ab initio calculations. • Ethanol prefers to adsorb on “Hill”-like surface, rather than“Valley”-like region. • Surface O 1(H) site plays a key role to dominate the ethanol adsorption process. • Sensing mechanism is related with electronic structure and electron redistribution. • Gas sensitivity is reflected by quantitative electron population analysis. - Abstract: The adsorption of ethanol on V 2 O 5 (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O 1(H) ) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V 2 O 5 and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V 2 O 5 . The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V 2 O 5 (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and correlates the adsorption ability of surface sites

  7. Striction-based Power Monitoring in Space Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...

  8. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Garvin, J.B.; Schnetzler, C.; Grieve, R.A.F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  9. Landsat's role in ecological applications of remote sensing.

    Science.gov (United States)

    Warren B. Cohen; Samuel N. Goward

    2004-01-01

    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  10. How to desynchronize quorum-sensing networks

    Science.gov (United States)

    Russo, Giovanni

    2017-04-01

    In this paper we investigate how so-called quorum-sensing networks can be desynchronized. Such networks, which arise in many important application fields, such as systems biology, are characterized by the fact that direct communication between network nodes is superimposed to communication with a shared, environmental variable. In particular, we provide a new sufficient condition ensuring that the trajectories of these quorum-sensing networks diverge from their synchronous evolution. Then, we apply our result to study two applications.

  11. Resistive and Capacitive Based Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Winncy Y. Du

    2008-04-01

    Full Text Available Resistive and capacitive (RC sensors are the most commonly used sensors. Their applications span homeland security, industry, environment, space, traffic control, home automation, aviation, and medicine. More than 30% of modern sensors are direct or indirect applications of the RC sensing principles. This paper reviews resistive and capacitive sensing technologies. The physical principles of resistive sensors are governed by several important laws and phenomena such as Ohm’s Law, Wiedemann-Franz Law; Photoconductive-, Piezoresistive-, and Thermoresistive Effects. The applications of these principles are presented through a variety of examples including accelerometers, flame detectors, pressure/flow rate sensors, RTDs, hygristors, chemiresistors, and bio-impedance sensors. The capacitive sensors are described through their three configurations: parallel (flat, cylindrical (coaxial, and spherical (concentric. Each configuration is discussed with respect to its geometric structure, function, and application in various sensor designs. Capacitance sensor arrays are also presented in the paper.

  12. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, Babar Hasan; Saragiotis, Christos; Alkhalifah, Tariq Ali

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion

  13. Big data for space situation awareness

    Science.gov (United States)

    Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter

    2017-05-01

    Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.

  14. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  15. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    Science.gov (United States)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  16. Using Multi-modal Sensing for Human Activity Modeling in the Real World

    Science.gov (United States)

    Harrison, Beverly L.; Consolvo, Sunny; Choudhury, Tanzeem

    Traditionally smart environments have been understood to represent those (often physical) spaces where computation is embedded into the users' surrounding infrastructure, buildings, homes, and workplaces. Users of this "smartness" move in and out of these spaces. Ambient intelligence assumes that users are automatically and seamlessly provided with context-aware, adaptive information, applications and even sensing - though this remains a significant challenge even when limited to these specialized, instrumented locales. Since not all environments are "smart" the experience is not a pervasive one; rather, users move between these intelligent islands of computationally enhanced space while we still aspire to achieve a more ideal anytime, anywhere experience. Two key technological trends are helping to bridge the gap between these smart environments and make the associated experience more persistent and pervasive. Smaller and more computationally sophisticated mobile devices allow sensing, communication, and services to be more directly and continuously experienced by user. Improved infrastructure and the availability of uninterrupted data streams, for instance location-based data, enable new services and applications to persist across environments.

  17. Compressive sensing based algorithms for electronic defence

    CERN Document Server

    Mishra, Amit Kumar

    2017-01-01

    This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.

  18. Emerging Space Powers The New Space Programs of Asia, the Middle East, and South America

    CERN Document Server

    Harvey, Brian; Pirard, Théo

    2010-01-01

    This work introduces the important emerging space powers of the world. Brian Harvey describes the origins of the Japanese space program, from rocket designs based on WW II German U-boats to tiny solid fuel 'pencil' rockets, which led to the launch of the first Japanese satellite in 1970. The next two chapters relate how Japan expanded its space program, developing small satellites into astronomical observatories and sending missions to the Moon, Mars, comet Halley, and asteroids. Chapter 4 describes how India's Vikram Sarabhai developed a sounding rocket program in the 1960s. The following chapter describes the expansion of the Indian space program. Chapter 6 relates how the Indian space program is looking ahead to the success of the moon probe Chandrayan, due to launch in 2008, and its first manned launching in 2014. Chapters 7, 8, and 9 demonstrate how, in Iran, communications and remote sensing drive space technology. Chapter 10 outlines Brazil's road to space, begun in the mid-1960's with the launch of th...

  19. Investigating the Impact of Lighting Educational Spaces on Learning and Academic Achievement of Elementary Students

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-05-01

    Full Text Available Background In modern education, physical space is considered as a dynamic factor in students' educational activities. This study was conducted to investigating the impact of lighting educational spaces on learning and academic achievement of elementary students. Materials and Methods At a cross-sectional study (2015-2016, a total of 210 students were selected randomly as sample of study. Cluster sampling was done by appropriate allocation and questionnaires were randomly divided among students. Data collection tools included Hermance’s achievement motivation questionnaire and researcher-constructed questionnaire (observation checklist to examine the physical parameters of learning environment lighting and interviews with students. Data of study were analyzed using SPSS- 21 software. Results Results of this study showed that lighting educational spaces has a significant impact on learning and academic achievement of elementary school students in Ahvaz, Iran (P

  20. Investigating the Impact of Schools' Open Space on Learning and Educational Achievement of Elementary Students

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-04-01

    Full Text Available Background It is obvious that most of informal learnings of social skills and constructive plays occur in school yards and play-fields where children spend much of their non-official time of teaching. This study aimed to investigate the impact of schools' open space on learning and educational achievement of elementary students in Ahvaz, Southwest of Iran. Materials and Methods At a cross-sectional study, 210 students were selected randomly as sample of study. Data collection tools included Hermance’s achievement motivation questionnaire and researcher-constructed questionnaire (observation checklist to examine the physical parameters of learning schools' open space and interviews with students. Data of study were analyzed in SPSS- 21 software. Results Results of this study showed that schools' open space has a significant impact on learning and academic achievement of elementary school students in Ahvaz- Iran (P

  1. Interspecies Quorum Sensing as a Stress-Anticipation Signal in E. coli

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin

    in the bacterial cell-cell communication field is why E. coli harbors SdiA, an orphan quorum sensing receptor that is activated in response to AHL quorum sensing molecules produced by other Gram-negative species. The overall aim of this PhD thesis was to investigate to what degree AHL quorum sensing signals...... are exploited by E. coli to increase its chances of surviving potential environmental threats. This thesis uncovers the first quorum sensing-regulated bacteriophage defense mechanism, which serves to protect E. coli against infection by the bacteriophage viruses λ and χ. Investigating the regulatory mechanism...... underlying the quorum sensing regulated defense mechanism, led to the discovery that AHL activates expression of cnu, encoding an Hha-family protein that interacts with the global regulatory protein H-NS, and potentially modifies its functions. Inspired by the discovery that AHL protects E. coli from...

  2. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  3. Landscape Archeology: Remote Sensing Investigation of the Ancient Maya in the Peten Rainforest of Northern Guatemala

    Science.gov (United States)

    Sever, Thomas L.; Irwin, Daniel E.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Through the use of airborne and satellite imagery we are improving our ability to investigate ancient Maya settlement, subsistence, and landscape modification in this dense forest region. Today the area is threatened by encroaching settlement and deforestation. However, it was in this region that the Maya civilization began, flourished, and abruptly disappeared for unknown reasons in the 9th century AD. At the time of their collapse they had attained one of the highest population densities in human history. How the Maya were able to successfully manage water and feed this dense population is not well understood at this time. A NASA-funded project used remote sensing technology to investigate large seasonal swamps (bajos) that make up 40 percent of the landscape. Through the use of remote sensing, ancient Maya features such as sites, roadways, canals and water reservoirs have been detected and verified through ground reconnaissance. The results of this preliminary research cast new light on the adaptation of the ancient Maya to their environment. Microenvironmental variation within the wetlands was elucidated and the different vegetation associations identified in the satellite imagery. More than 70 new archeological sites within and at the edges of the bajo were mapped and tested. Modification of the landscape by the Maya in the form of dams and reservoirs in the Holmul River and its tributaries and possible drainage canals in bajos was demonstrated. The use of Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM), one-meter IKONOS satellite imagery, as well as high resolution airborne STAR-3i radar imagery--2.5 meter backscatter/10 meter Digital Elevation Model (DEM)--are opening new possibilities for understanding how a civilization was able to survive for centuries upon a karat topographic landscape. This understanding is critical for the current population that is currently experiencing rapid population growth and destroying the landscape through

  4. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    Science.gov (United States)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  5. The Cacophony of Space and the Clink Clunk Clang in Architecture The mall corridor redux

    Science.gov (United States)

    Cipriano, Nolan

    The element of sound is nearly inescapable. The various ways in which sound is generated, perceived, represented, and hindered resonates not only within the realm of the auditory sense, but as well as the visual and tactile. Through investigating the representation of sound, both in the aural and visual worlds, a deeper understanding of its profound effects can be observed. In the world of architectural space it is the element of sound that is often forgotten, whereas the sonic nature of a space is not designed. This thesis endeavours to examine how, through a comprehensive understanding of the various facets of sound representations, effects, and history, it can inform specifically designed sonorously beneficial spaces that directly reflect and support their purpose. This notion will be explored through the redesign of the shopping-mall corridor within the heritage structure of the Ogilvy Building in Ottawa, Ontario. Through adaptive architecture, the possibility exists to create a subjective aural space.

  6. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  7. Space education in developing countries in the information era, regional reality and new educational material tendencies: example, South America

    Science.gov (United States)

    Sausen, Tania Maria

    The initial activities on space education began right after World War II, in the early 1950s, when USA and USSR started the Space Race. At that time, Space education was only and exclusively available to researchers and technicians working directly in space programs. This new area was restricted only to post-graduate programs (basically master and doctoral degree) or to very specific training programs dedicated for beginners. In South America, at that time there was no kind of activity on space education, simply because there was no activity in space research. In the beginning of the 1970s, Brazil, through INPE, had created masteral and doctoral courses on several space areas such as remote sensing and meteorology. Only in the mid-1980s did Brazil, after a UN request, create its specialisation course on remote sensing dedicated to Latin American professionals. At the same period, the Agustin Codazzi Institute (Bogota, Colombia) began to offer specialisation courses in remote sensing. In South America, educational space programs are currently being created for elementary and high schools and universities, but the author personally estimates that 90% of these educational programs still make use of traditional educational materials — such as books, tutorials, maps and graphics. There is little educational material that uses multimedia resources, advanced computing or communication methods and, basically, these are the materials that are best suited to conduct instructions in remote sensing, GIS, meteorology and astronomy.

  8. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  9. On convergence of nuclear and correlation operators in Hilbert space

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1985-01-01

    The convergence of sequences of nuclear operators on a separable Hilbert space is studied. Emphasis is given to trace-norm convergence, which is a basic property in stochastic systems theory. Obviously trace-norm convergence implies uniform convergence. The central theme of the paper focus the opposite way, by investigating when convergence in a weaker topology turns out to imply convergence in a stronger topology. The analysis carried out here is exhaustive in the following sense. All possible implications within a selected set of asymptotic properties for sequences of nuclear operators are established. The special case of correlation operators is also considered in detail. (Author) [pt

  10. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  11. MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?

    Directory of Open Access Journals (Sweden)

    Ruoxi Jia

    2016-04-01

    Full Text Available Estimating an occupant’s location is arguably the most fundamental sensing task in smart buildings. The applications for fine-grained, responsive building operations require the location sensing systems to provide location estimates in real time, also known as indoor tracking. Existing indoor tracking systems require occupants to carry specialized devices or install programs on their smartphone to collect inertial sensing data. In this paper, we propose MapSentinel, which performs non-intrusive location sensing based on WiFi access points and ultrasonic sensors. MapSentinel combines the noisy sensor readings with the floormap information to estimate locations. One key observation supporting our work is that occupants exhibit distinctive motion characteristics at different locations on the floormap, e.g., constrained motion along the corridor or in the cubicle zones, and free movement in the open space. While extensive research has been performed on using a floormap as a tool to obtain correct walking trajectories without wall-crossings, there have been few attempts to incorporate the knowledge of space use available from the floormap into the location estimation. This paper argues that the knowledge of space use as an additional information source presents new opportunities for indoor tracking. The fusion of heterogeneous information is theoretically formulated within the Factor Graph framework, and the Context-Augmented Particle Filtering algorithm is developed to efficiently solve real-time walking trajectories. Our evaluation in a large office space shows that the MapSentinel can achieve accuracy improvement of 31 . 3 % compared with the purely WiFi-based tracking system.

  12. Learning Agents for Autonomous Space Asset Management (LAASAM)

    Science.gov (United States)

    Scally, L.; Bonato, M.; Crowder, J.

    2011-09-01

    Current and future space systems will continue to grow in complexity and capabilities, creating a formidable challenge to monitor, maintain, and utilize these systems and manage their growing network of space and related ground-based assets. Integrated System Health Management (ISHM), and in particular, Condition-Based System Health Management (CBHM), is the ability to manage and maintain a system using dynamic real-time data to prioritize, optimize, maintain, and allocate resources. CBHM entails the maintenance of systems and equipment based on an assessment of current and projected conditions (situational and health related conditions). A complete, modern CBHM system comprises a number of functional capabilities: sensing and data acquisition; signal processing; conditioning and health assessment; diagnostics and prognostics; and decision reasoning. In addition, an intelligent Human System Interface (HSI) is required to provide the user/analyst with relevant context-sensitive information, the system condition, and its effect on overall situational awareness of space (and related) assets. Colorado Engineering, Inc. (CEI) and Raytheon are investigating and designing an Intelligent Information Agent Architecture that will provide a complete range of CBHM and HSI functionality from data collection through recommendations for specific actions. The research leverages CEI’s expertise with provisioning management network architectures and Raytheon’s extensive experience with learning agents to define a system to autonomously manage a complex network of current and future space-based assets to optimize their utilization.

  13. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  14. Creating Safe Spaces for Music Learning

    Science.gov (United States)

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  15. Enhanced damping for bridge cables using a self-sensing MR damper

    Science.gov (United States)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  16. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  17. A Ground Systems Template for Remote Sensing Systems

    Science.gov (United States)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  18. A ground systems template for remote sensing systems

    International Nuclear Information System (INIS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-01-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS

  19. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  20. Using remote sensing and GIS in addressing the future decisions regarding underused urban spaces; Hajj sites in Mecca as case study

    Science.gov (United States)

    Imam, Ayman; Roca, Josep

    2017-10-01

    The term Underused Urban Spaces (UUS) refers to spaces within urban areas that have become unused, or that are being used to a lesser degree than they could or should be such as former industrial zones, abandoned facilities or buildings and Expo or Olympic Games cities. The Islamic pilgrimage sites known as Hajj sites (HS) are considered form of the UUS concept as they are used lesser degree than they should be. However, the emergence of such spaces has therefore encouraged researchers, urban planner, social and local authorities to discuses about the appropriate decision regarding their future towards conversion or alternatively using those spaces in order to achieve positive social, economic and environmental benefits, according to Pagano and Bowman (2000), UUS can be a powerful tool for governments and investors to use during the urban growth (UG) of their cities. Since, remote sensing and GIS technologies are used recently to study and analyze the UG of cities; the main objective of this paper is to demonstrate the efficiency of those technologies in addressing the future decisions regarding the underused status of Hajj sites in relation to UG of the city of Mecca. Tow classified land cover maps of Mecca for two years (1998 and 2013), in addition to entropy index and multiple regression analyses were utilized in order to quantify the relationship between HS and Mecca UG. The results showed that the urban growth of Mecca has increased by approximately 56%, and almost 32% of that increased were around HS in on hand, and on the other hand the entropy and the regression analysis showed that there is 51% probability that the future growth to be also around HS. These findings will better addressing the future decisions regarding the underused status of HS, simultaneously revel that the use of RS and GIS was highly effective to be adopted within similar cases of UUS.

  1. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    Science.gov (United States)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  2. Investigating chlorophyll and nitrogen levels of mangroves at Al-Khor, Qatar: an integrated chemical analysis and remote sensing approach.

    Science.gov (United States)

    Al-Naimi, Noora; Al-Ghouti, Mohammad A; Balakrishnan, Perumal

    2016-05-01

    Mangroves are unique ecosystems that dominate tropical and subtropical coastlines around the world. They provide shelter and nursery to wide variety of species such as fish and birds. Around 73 species of mangroves were recognized around the world. In Qatar, there is only one mangrove species Avicennia marina that is predominant along the northeastern coast. Assessing the health of these valuable ecosystems is vital for protection, management, and conservation of those resources. In this study, an integrated approach of chemical and remote sensing analysis was implemented to investigate the current status of the mangrove trees in Al-Khor, Qatar. Fifteen different A. marina trees from different locations in the mangrove forest were examined for their chlorophyll and nitrogen content levels. Soil analysis was also conducted to understand the effect of moisture on nitrogen availability. Results shows that currently, mangroves are in a good status in terms of nitrogen availability and chlorophyll levels which are related and both are key factors for photosynthesis. Remote sensing techniques were used for chlorophyll prediction. The results showed that these methods have the potential to be used for chlorophyll prediction and estimation.

  3. Preliminary results of fisheries investigation associated with Skylab-3. [remotely sensed distribution and abundance of gamefish in Gulf of Mexico

    Science.gov (United States)

    Savastano, K. J. (Principal Investigator); Pastula, E. J., Jr.; Woods, G.; Faller, K.

    1974-01-01

    The author has identified the following significant results. This investigation is to establish the feasibility of utilizing remotely sensed data acquired from aircraft and satellite platforms to provide information concerning the distribution and abundance of oceanic gamefish. Data from the test area in the northeastern Gulf of Mexico has made possible the identification of fisheries significant environmental parameters for white marlin. Predictive models based on catch data and surface truth information have been developed and have demonstrated potential for reducing search significantly by identifying areas which have a high probability of being productive. Three of the parameters utilized by the model, chlorophyll-a, sea surface temperature, and turbidity have been inferred from aircraft sensor data. Cloud cover and delayed receipt have inhibited the use of Skylab data. The first step toward establishing the feasibility of utilizing remotely sensed data to assess amd monitor the distribution of ocean gamefish has been taken with the successful identification of fisheries significant oceanographic parameters and the demonstration of the capability of measuring most of these parameters remotely.

  4. Green synthesis of silver nanoparticles and investigation of their colorimetric sensing and cytotoxicity effects

    Science.gov (United States)

    Pahlavan Noghabi, Mohammad; Parizadeh, Mohammad Reza; Ghayour-Mobarhan, Majid; Taherzadeh, Danial; Hosseini, Hasan Ali; Darroudi, Majid

    2017-10-01

    The "Green" synthesis of metallic nanoparticles and investigation of their optical properties has become a useful application between nanoscience and medicine. In this work, silver nanoparticles (Ag-NPs) were successfully prepared through a facile and green method by treating silver ions with chitosan. Preparation of Ag-NPs in silver nitrate solution (0.01 M) resulted in small and spherical shapes of Ag-NPs with a mean diameter of 10.2 nm. The formation of Ag-NPs was approved by surface Plasmon resonance (SPR) absorption peaks, using UV-vis spectrophotometer, while Ag-NPs were successfully employed in colorimetric sensing of H2O2 via an analytical procedure. Degradation process of Ag-NPs, encouraged by the catalytic decomposition of H2O2, causes a significant change in the absorbance intensity of SPR band depending on the H2O2 concentration. The cytotoxicity effect of synthesized Ag-NPs was examined on HEK293 cell line. The results illustrate a concentration-dependent toxicity for the tested cells, while15.07 μg/mL of IC50 was obtained.

  5. Experimenting with Electrical Load Sensing on a Backhoe Loader

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Where traditional load sensing is made using hydro-mechanical regulators and load pressure is fed back hydraulically, electrical load sensing employs the usage of electronic sensors and electrically actuated components. This brings forth new possibilities, but also imposes problems concerning...... dynamic performance and stability. In this paper the possibilities for implementing electrical load sensing (ELS) on a backhoe loader is investigated. Major components in the system are modelled and verified, and a linear model of the pump is presented, which is used for designing the pump controller....... By comparing results from linear analyses performed on both the conventional hydraulic load sensing system (HLS) and the modified electrical load sensing system, it is concluded that system performance closely matching the conventional system is obtainable....

  6. Attitude Control Enhancement Using Distributed Wing Load Sensing for Dynamic Servoelastic Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Strain sensor information is used in nature to achieve robust flight, good rejection of wind disturbances, and stable head motion. Similar man-made sensing devices...

  7. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  8. Remote sensing investigations of fugitive soil arsenic and its effects on vegetation reflectance

    Science.gov (United States)

    Slonecker, E. Terrence

    2007-12-01

    Three different remote sensing technologies were evaluated in support of the remediation of fugitive arsenic and other hazardous waste-related risks to human and ecological health at the Spring Valley Formerly Used Defense Site in northwest Washington D.C., an area of widespread soil arsenic contamination as a result of World War I research and development of chemical weapons. The first evaluation involved the value of information derived from the interpretation of historical aerial photographs. Historical aerial photographs dating back as far as 1918 provided a wealth of information about chemical weapons testing, storage, handling and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5 % of the features were spatially correlated with current areas of contamination or remedial activity. The second investigation involved the phytoremediation of arsenic through the use of Pteris ferns and the evaluation of the spectral properties of these ferns. Three hundred ferns were grown in controlled laboratory conditions in soils amended with five levels (0, 20, 50, 100 and 200 parts per million) of sodium arsenate. After 20 weeks, the Pteris ferns were shown to have an average uptake concentration of over 4,000 parts per million each. Additionally, statistical analysis of the spectral signature from each fern showed that the frond arsenic concentration could be reasonably predicted with a linear model when the concentration was equal or greater than 500 parts per million. Third, hyperspectral imagery of Spring Valley was obtained and analyzed with a suite of spectral analysis software tools. Results showed the grasses growing in areas of known high soil arsenic could be identified and mapped at an approximate 85% level of accuracy when the hyperspectral image was processed

  9. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  10. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  11. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  12. Spaces of alienation: Dispossession and justice in South Africa

    Directory of Open Access Journals (Sweden)

    Petrus T. Delport

    2016-12-01

    Full Text Available Theories and philosophies of space and place have seen a rise in prominence in recent times, specifically in the disciplines of theology, law and philosophy. This so-called spatial turn in contemporary theory is one that attempts to think through the vicissitudes and conceptual lineages related to the existence of space as both a physical and a social reality. The politics of space in South Africa, however, cannot be thought of separately from the concept of alienation. South Africa is a space whose existence is predicated upon a relationship of alienation to its located place. South Africa, like most other settler colonies, is a space that was created through occupation and alienation: the occupation of a territory and the alienation of the indigenous people from this occupied territory. This relationship of alienation is not only observable in the physical reality engendered by this occupied space but also by its social reality. In this paper we reflect on the intersections of the physical and social manifestations – in Bourdieu’s sense – of an occupied space and consider its effects of alienation on the indigenous people. To this end we will proceed to interrogate current South African geographical markers – such as the existence of townships and suburbs – from its positionality within the history of South Africa as an occupied space. To discern a theological agenda for the issue of spatial justice would also require an investigation into the theological agenda that prohibited the realisation of spatial justice in South Africa or, in other words, the religious reconciliation preached post-1994 at the expense of justice.

  13. Public green spaces and positive mental health - investigating the relationship between access, quantity and types of parks and mental wellbeing.

    Science.gov (United States)

    Wood, Lisa; Hooper, Paula; Foster, Sarah; Bull, Fiona

    2017-11-01

    Associations between parks and mental health have typically been investigated in relation to the presence or absence of mental illness. This study uses a validated measure of positive mental health and data from RESIDential Environments (RESIDE) Project to investigate the association between the presence, amount and attributes of public green space in new greenfield neighbourhood developments and the mental health of local residents (n = 492). Both the overall number and total area of public green spaces were significantly associated with greater mental wellbeing, and findings support a dose-response relationship. Positive mental health was not only associated with parks with a nature focus, but also with green spaces characterised by recreational and sporting activity. The study demonstrates that adequate provision of public green space in local neighbourhoods and within walking distance is important for positive mental health. Copyright © 2017. Published by Elsevier Ltd.

  14. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    Science.gov (United States)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  15. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  16. Infrared Fibers for Use in Space-Based Smart Structures

    Science.gov (United States)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  17. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  18. Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Racault, Marie-Fanny; Brewin, Robert J.W.; Pradhan, Yaswant; Sathyendranath, Shubha; Platt, Trevor

    2016-01-01

    of remotely-sensed chlorophyll-a data (Chl-a, an index of phytoplankton biomass) acquired from the Ocean Colour Climate Change Initiative (OC-CCI) of the European Space Agency (ESA). The improved spatial coverage of OC-CCI data in the Gulf of Aden allows

  19. Business Context of Space Tourism

    Science.gov (United States)

    Schmitt, Harrison H.

    2003-01-01

    Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.

  20. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  1. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  2. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  3. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  4. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  5. Differential calculi on quantum vector spaces with Hecke-type relations

    International Nuclear Information System (INIS)

    Baez, J.C.

    1991-01-01

    From a vector space V equipped with a Yang-Baxter operator R one may form the r-symmetric algebra S R V=TV/ , which is a quantum vector space in the sense of Manin, and the associated quantum matrix algebra M R V=T(End(V))/ -1 >. In the case when R satisfies a Hecke-type identity R 2 =(1-q)R+q, we construct a differential calculus Ω R V for S R V which agrees with that constructed by Pusz, Woronowicz, Wess, and Zumino when R is essentially the R-matrix of GL q (n). Elements of Ω R V may be regarded as differential forms on the quantum vector space S R V. We show that Ω R V is M R V-covariant in the sense that there is a coaction Φ * :Ω R V→M R VxΩ R V with Φ * d=(1xd)Φ * extending the natural coaction Φ:S R V→M R VxS R V. (orig.)

  6. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  7. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  8. The Cambridge encyclopedia of space (revised edition)

    Science.gov (United States)

    D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.

    1990-01-01

    A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.

  9. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  10. Transition probability spaces in loop quantum gravity

    Science.gov (United States)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  11. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2018-06-01

    Full Text Available Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  12. Space Station view of the Pyramids at Giza

    Science.gov (United States)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  13. Design of Game Space

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2011-01-01

    Playing games of any kind, from tennis to board games, it is easy to notice that games are configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a visual border in a game like hide....... This makes sense, but also demands that play and non-play can be easily separated. I will examine how games make use of space, and show that the magic circle not only is a viable, though criticized, concept but should be understood as a spatial concept. In order to do this several games are examined, leading...... to introduce a spatial model of the game performance comprising a primary and secondary game space. I will show how new game genres can profit from using this model when designing new games....

  14. Kin-aesthetic Space-making

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2016-01-01

    -Francois Lyotard’s Gestus , discussing the work-of-art as a sensuously expressed ‘torsion’ of space/ time/ matter, producing its own space/ time/ matter. Erin Brannigan in Dancefilm uses the gesture-model as well, and points to a hybrid practice where dance and film work on each other. Likewise Shaun Gallagher...... as well as their production of meaning. Concurrently the practice questions presentation/ representation and creator/ spectator relations. Gesture-models call for an understanding of the work-of-art as creating affordance; affordance in the sense that effects generated between embodied-enactive perception......’s How the Body Shapes the Mind forms part of the theoretical approach to motile kin-aesthetical forces of art-making, underlying this paper. In my practice I work with body- and space gestures, interchanging through a ‘third’ material, featured on screens. The hybrid production includes animated 2 and 3...

  15. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    Science.gov (United States)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the

  16. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  17. Editorial: Special issue on smart optical instruments and systems for space applications

    Institute of Scientific and Technical Information of China (English)

    XING; Fei

    2015-01-01

    Optical systems are playing more and more important roles for space applications,such as high accurate attitude determination and remote sensing systems etc.Innovations in optical systems have brought great advantages,some even revolutionary for the space applications.Accordingly,in this special issue of Smart Optical systems and instruments

  18. A self-sensing carbon nanotube/cement composite for traffic monitoring

    International Nuclear Information System (INIS)

    Han Baoguo; Yu Xun; Kwon, Eil

    2009-01-01

    In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.

  19. Investigations of lymphatic drainage from the interstitial space

    Science.gov (United States)

    Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration

    2017-11-01

    The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.

  20. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  1. Smell, Space and Othering

    Directory of Open Access Journals (Sweden)

    Cecilia Fe L. Sta Maria

    2016-09-01

    Full Text Available Currently experiencing social shift from the rural/coastal to the urban, Matnog, Sorsogon, in the Philippines is left with markings of people who live by the coast, who are confronted by poverty, a poverty which can easily be seen in the space they occupy. The present article concerns itself less with seeing, but rather forms a spin-off from the spatial discourse to that of the smell/scent of a woman enmeshed with the space she inhabits and enabling the unfolding of the reproduction of social differences. As a way of knowing, a methodology, in this embodied qualitative research, the scent/smell becomes the agent and the space as the agency of power are both explored as a purview in cultural studies. The sense of smell as a sociocultural construction that establishes social identity and reifies and reproduces social differences is highlighted and positioned. Extrapolating from field work conducted in Matnog demonstrates that the smell of this rural space is rapidly transitioning to that of the urbane and the smell of women who inhabits that space. Through narrative poetry and the presentation of photographs and verbal analyses, olfactory identities and imprints, social differences, identity and spaces are explored, culminating in the transitional reconfiguration of poverty constructs.

  2. Pioneering space research in the USSR and mathematical modeling of large problems of radiation transfer

    International Nuclear Information System (INIS)

    Sushkevich, T.A.

    2011-01-01

    This review is to remind scientists of the older generation of some memorable historical pages and of many famous researchers, teachers and colleagues. For the younger researchers and foreign colleagues it will be useful to get to know about pioneer advancements of the Soviet scientists in the field of information and mathematical supply for cosmonautic problems on the eve of the space era. Main attention is paid to the scientific experiments conducted on the piloted space vehicles and the research teams who created the information and mathematical tools for the first space projects. The role of Mstislav Vsevolodovich Keldysh, the Major Theoretician of cosmonautics, is particularly emphasized. He determined for the most part the basic directions of development of space research and remote sensing of the Earth and planets that are shortly called remote sensing

  3. Self-Calibrating High Resolution Tunable Filter for Remote Gas Sensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for local and remote sensing of oxygen (O2) at 1.26 µm, carbon dioxide (CO2) at 1.56 µm and other...

  4. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    Science.gov (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  5. Generalized Wigner functions in curved spaces: A new approach

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime

  6. IMAGE QUALITY FORECASTING FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2013-05-01

    Full Text Available The article deals with an approach to quality predicting of the space objects images, which can be used to plan optoelectronic systems of remote sensing satellites work programs. The proposed approach is based on evaluation of the optoelectronic equipment transfer properties and calculation of indexes images quality considering the influence of the orbital shooting conditions.

  7. Flat space physics from holography

    International Nuclear Information System (INIS)

    Bousso, Raphael

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational back reaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle. (author)

  8. Rethinking the Space for Religion

    DEFF Research Database (Denmark)

    What happens to people’s sense of belonging when globalization meets with proclaimed regional identities resting heavily on conceptions of religion and ethnicity? Who are the actors stressing cultural heritage and authenticity as tools for self-understanding? In Rethinking the Space for Religion...... as a political and cultural argument. The approach makes a nuanced and fresh survey for researchers and other initiated readers to engage in....

  9. Modeling and control of a self-sensing polymer metal composite actuator

    International Nuclear Information System (INIS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems. (paper)

  10. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    Science.gov (United States)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  11. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  12. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  13. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P S

    2018-01-15

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  15. Spaces an introduction to real analysis

    CERN Document Server

    Lindstrøm, Tom L

    2017-01-01

    Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis ...

  16. Private sector involvement in civil space remote sensing. Volume 1: Report

    Science.gov (United States)

    1979-01-01

    A survey of private sector developers, users, and interpreters of Earth resources data was conducted in an effort to encourage private investment and participation in remote sensing systems. Results indicate positive interest in participation beyond the current hardware contracting level, however, there is a substantial gap between current market levels and system costs. Issues identified include the selection process for an operating entity, the public/private interface, data collection and access policies, price and profit regulation in a subsidized system, international participation, and the responsibility for research and development. It was agreed that the cost, complexity, and security implications of integrated systems need not be an absolute bar to their private operation.

  17. Life-space mobility and dimensions of depressive symptoms among community-dwelling older adults.

    Science.gov (United States)

    Polku, Hannele; Mikkola, Tuija M; Portegijs, Erja; Rantakokko, Merja; Kokko, Katja; Kauppinen, Markku; Rantanen, Taina; Viljanen, Anne

    2015-01-01

    To examine the association between life-space mobility and different dimensions of depressive symptoms among older community-dwelling people. Cross-sectional analyses of baseline data of the 'Life-Space Mobility in Old Age' cohort study were carried out. The participants were community-dwelling women and men aged 75-90 years (N = 848). Data were gathered via structured interviews in participants' home. Life-space mobility (the University of Alabama at Birmingham (UAB) Life-Space Assessment - questionnaire) and depressive symptoms (Centre for Epidemiological Studies Depression Scale, CES-D) were assessed. Other factors examined included sociodemographic factors, difficulties walking 500 m, number of chronic diseases and the sense of autonomy in participation outdoors (subscale of Impact on Participation and Autonomy questionnaire). Poorer life-space mobility was associated with higher prevalence of different dimensions of depressive symptoms. The associations were partially mediated through walking difficulties, health and the sense of autonomy in participation outdoor activities. Poorer life-space mobility interrelates with higher probability for depressive symptoms, thus compromising older adults' mental wellbeing. A focus on older adults' life-space mobility may assist early identification of persons, who have elevated risk for depressive symptoms. The association between life-space mobility and depressive symptoms should be studied further utilizing longitudinal study designs to examine temporality and potential causality.

  18. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  19. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  20. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    International Nuclear Information System (INIS)

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  1. NASA/ESTO investments in remote sensing technologies (Conference Presentation)

    Science.gov (United States)

    Babu, Sachidananda R.

    2017-02-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  2. ESTO Investments in Innovative Sensor Technologies for Remote Sensing

    Science.gov (United States)

    Babu, Sachidananda R.

    2017-01-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  3. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    Science.gov (United States)

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  4. The Gene: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    It has only been since the late nineteenth century that people have understood the mechanics of heredity and the discoveries of genes and DNA are even more recent. This booklet considers three aspects of genetics; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several…

  5. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  6. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  7. Systematic analysis of geo-location and spectrum sensing as access methods to TV white space

    CSIR Research Space (South Africa)

    Mauwa, H

    2016-11-01

    Full Text Available Access to the television white space by white space devices comes with a major technical challenge: white space devices can potentially interfere with existing television signals. Two methods have been suggested in the literature to help white space...

  8. The Factors Influencing the Sense of Home in Nursing Homes: A Systematic Review from the Perspective of Residents

    Directory of Open Access Journals (Sweden)

    M. D. Rijnaard

    2016-01-01

    Full Text Available Purpose. To provide an overview of factors influencing the sense of home of older adults residing in the nursing home. Methods. A systematic review was conducted. Inclusion criteria were (1 original and peer-reviewed research, (2 qualitative, quantitative, or mixed methods research, (3 research about nursing home residents (or similar type of housing, and (4 research on the sense of home, meaning of home, at-homeness, or homelikeness. Results. Seventeen mainly qualitative articles were included. The sense of home of nursing home residents is influenced by 15 factors, divided into three themes: (1 psychological factors (sense of acknowledgement, preservation of one’s habits and values, autonomy and control, and coping; (2 social factors (interaction and relationship with staff, residents, family and friends, and pets and activities; and (3 the built environment (private space and (quasi-public space, personal belongings, technology, look and feel, and the outdoors and location. Conclusions. The sense of home is influenced by numerous factors related to the psychology of the residents and the social and built environmental contexts. Further research is needed to determine if and how the identified factors are interrelated, if perspectives of various stakeholders involved differ, and how the factors can be improved in practice.

  9. Ionization current sensing; Jonstroem-maetning

    Energy Technology Data Exchange (ETDEWEB)

    Aengeby, Jakob; Goeras, Anders; Nytomt, Jan [Hoerbiger Control Systems AB, Aamaal, (Sweden)

    2012-05-15

    Ion current measurements give information on the combustion in the cylinders of an internal combustion engine in run time, cycle by cycle. Ion sense has been used in gasoline engines for many years for detection of knock and misfire, combustion stability and for air to fuel ratio estimation. However, the use of ion sense in industrial gas engines has been limited, despite the potential of ion sense. The objective with the project is to investigate which combustion process information that can be retrieved using ion sense applied to industrial lean burn engines using pre-chambers for the ignition in which case the spark plug is encapsulated in the pre-chamber. Experiments show that ion current measured in the pre-chamber can successfully be used to retrieve information from the in-cylinder combustion process. It is possible to detect misfire and to some extent knock. It is also possible to optimize the ignition and hence minimize emissions and optimize the performance by using the ion current measured in the pre- chamber. A statistical signal processing approach to use more than one ion current feature in the estimation of combustion parameters was evaluated on a heavy duty gas engine. By using more than one feature the performance of in cylinder air to fuel ratio estimation was improved.

  10. Mingling, observing, and lingering: everyday public spaces and their implications for well-being and social relations.

    Science.gov (United States)

    Cattell, Vicky; Dines, Nick; Gesler, Wil; Curtis, Sarah

    2008-09-01

    The rejuvenation of public spaces is a key policy concern in the UK. Drawing on a wide literature and on qualitative research located in a multi-ethnic area of East London, this paper explores their relationship to well-being and social relations. It demonstrates that ordinary spaces are a significant resource for both individuals and communities. The beneficial properties of public spaces are not reducible to natural or aesthetic criteria, however. Social interaction in spaces can provide relief from daily routines, sustenance for people's sense of community, opportunities for sustaining bonding ties or making bridges, and can influence tolerance and raise people's spirits. They also possess subjective meanings that accumulate over time and can contribute to meeting diverse needs. Different users of public spaces attain a sense of well- being for different reasons: the paper calls for policy approaches in which the social and therapeutic properties of a range of everyday spaces are more widely recognised and nurtured.

  11. Synthetic quorum sensing in model microcapsule colonies

    Science.gov (United States)

    Shum, Henry; Balazs, Anna C.

    2017-08-01

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the “repressilator” network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  12. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  13. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  14. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  15. The canonical partial metric and the uniform convexity on normed spaces

    Directory of Open Access Journals (Sweden)

    S. Oltra

    2005-10-01

    Full Text Available In this paper we introduce the notion of canonical partial metric associated to a norm to study geometric properties of normed spaces. In particular, we characterize strict convexity and uniform convexity of normed spaces in terms of the canonical partial metric defined by its norm. We prove that these geometric properties can be considered, in this sense, as topological properties that appear when we compare the natural metric topology of the space with the non translation invariant topology induced by the canonical partial metric in the normed space.

  16. Tunable Seed Lasers for Laser Remote Sensing of CO2 and O2, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vescent Photonics propose to develop a chip-sized narrow linewidth ( 10 nm's) diode laser that will be suitable for a wide variety of NASA remote sensing missions....

  17. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    Science.gov (United States)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  18. A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Wang, Chia-Husan; Shih, Fu-Yuan; Wu, Yu-Fu; Chi, Sien

    2009-01-01

    In this investigation, we propose and experimentally investigate a simple self-restored fiber Bragg grating (FBG)-based sensor ring system. This proposed multi-ring passive sensing architecture does not require active components in the network. In this experiment, the network survivability and capacity for the multi-point sensor systems are also enhanced. Besides, the tunable laser source (TLS) is adopted in a central office (CO) for FBG sensing. The survivability of an eight-point FBG sensor is examined and analyzed. It is cost effective since the sensing system is entirely centralized in the CO. Experimental results show that the proposed system can enhance the reliability of the FBG sensing network for large-scale and multi-point architecture. (rapid communication)

  19. An Efficient, Reliable, Vibration-Free Refrigerant Pump for Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future remote sensing science missions require advanced thermal management technologies to maintain multiple instruments at very stable temperatures and...

  20. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  1. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on...

  2. Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products

    Science.gov (United States)

    Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.

    2015-01-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isotopologue remote sensing and in situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products, generated from ground-based FTIR (Fourier transform infrared), spectrometer and space-based IASI (infrared atmospheric sounding interferometer) observation. The study is made in the area of the Canary Islands in the subtropical northern Atlantic. As reference we use well calibrated in situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues, and the scatter with respect to the in situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In both remote sensing data sets we find a positive δD bias of 30-70‰. Complementing H2O observations with δD data allows moisture transport studies that are not possible with H2O observations alone. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data. We document that the δD-H2O curves obtained from the different in situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.

  3. Report on achievements of commissioned studies on research and development of a technology to apply human senses to measurements in fiscal 1994. 2. Main issue (Part 5 for research and development of a correlation and evaluation technology); 1994 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu. 2. Honronhen (Sokan hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This paper describes the research and development of (1) working environment having human senses and affinity at nuclear electric power plants, (2) a correlation technology for comfort in composite environments composed mainly of warm heat environment, (3) space-type human interface adapted to human senses, and (4) a human comfort meter. With regard to the subject (1), improvements were made on the experimental facilities, data processing systems, and environment improving devices, and data were collected and evaluated from subject experiments. With regard to the subject (2), 'development of a system to investigate correlation among externally stimulating environment, physiological effects, and sense volume based on a physiological reaction model', and 'research and development of a quantitative evaluation technology for comfort in composite environments composed mainly of warm heat environment' were executed. With respect to the subject (3), 'measurement of factors in visual sense operating environment affecting mental burden feeling', 'development of space-type human interface', and 'research on a method to utilize the eyeball movement information' were carried out. With regard to the subject (4), a warm heat sensing element structure was developed. In addition, a comfort determining software was completed that calculates hot-cold heat sense of a human body from different conditions of the warm heat sensing elements. (NEDO)

  4. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

    CERN Document Server

    Gigli, Nicola

    2018-01-01

    The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

  5. STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction.

    Science.gov (United States)

    Zhou, Zechen; Wang, Jinnan; Balu, Niranjan; Li, Rui; Yuan, Chun

    2016-02-01

    A new subspace-based iterative reconstruction method, termed Self-supporting Tailored k-space Estimation for Parallel imaging reconstruction (STEP), is presented and evaluated in comparison to the existing autocalibrating method SPIRiT and calibrationless method SAKE. In STEP, two tailored schemes including k-space partition and basis selection are proposed to promote spatially variant signal subspace and incorporated into a self-supporting structured low rank model to enforce properties of locality, sparsity, and rank deficiency, which can be formulated into a constrained optimization problem and solved by an iterative algorithm. Simulated and in vivo datasets were used to investigate the performance of STEP in terms of overall image quality and detail structure preservation. The advantage of STEP on image quality is demonstrated by retrospectively undersampled multichannel Cartesian data with various patterns. Compared with SPIRiT and SAKE, STEP can provide more accurate reconstruction images with less residual aliasing artifacts and reduced noise amplification in simulation and in vivo experiments. In addition, STEP has the capability of combining compressed sensing with arbitrary sampling trajectory. Using k-space partition and basis selection can further improve the performance of parallel imaging reconstruction with or without calibration signals. © 2015 Wiley Periodicals, Inc.

  6. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  7. Land use and land cover change based on historical space-time model

    Science.gov (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing

    2016-09-01

    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  8. Solid State Laser Technology Development for Atmospheric Sensing Applications

    Science.gov (United States)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  9. The synthesis of porous Co{sub 3}O{sub 4} micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Saba, E-mail: saba_hrb@yahoo.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Li, Songnan; Liu, Jingyuan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Zhang, Milin [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Micro cuboid Co{sub 3}O{sub 4} particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co{sub 3}O{sub 4} from cuboid CoCO{sub 3}. • Investigation of gas sensing properties of porous Co{sub 3}O{sub 4}. • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co{sub 3}O{sub 4} with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co{sub 3}O{sub 4} are also investigated.

  10. Cause and Properties of the Extreme Space Weather Event of 2012 July 23

    Science.gov (United States)

    Liu, Y. D.; Luhmann, J. G.; Kajdic, P.; Kilpua, E.; Lugaz, N.; Nitta, N.; Lavraud, B.; Bale, S. D.; Farrugia, C. J.; Galvin, A. B.

    2013-12-01

    Extreme space weather refers to extreme conditions in space driven by solar eruptions and subsequent disturbances in interplanetary space, or otherwise called solar superstorms. Understanding extreme space weather events is becoming ever more vital, as the vulnerability of our society and its technological infrastructure to space weather has increased dramatically. Instances of extreme space weather, however, are very rare by definition and therefore are difficult to study. Here we report and investigate an extreme event, which occurred on 2012 July 23 with a maximum speed of about 3050 km/s near the Sun. This event, with complete modern remote sensing and in situ observations from multiple vantage points, provides an unprecedented opportunity to study the cause and consequences of extreme space weather. It produced a superfast shock with a peak solar wind speed of 2246 km/s and a superstrong magnetic cloud with a peak magnetic field of 109 nT observed near 1 AU at STEREO A. The record solar wind speed and magnetic field would produce a record geomagnetic storm since the space era with a minimum Dst of -1200 - -600 nT, if this event hit the Earth. We demonstrate how successive coronal mass ejections (CMEs) can be enhanced into a solar superstorm as they interact en route from the Sun to 1 AU. These results not only provide a benchmark for studies of extreme space weather, but also present a new view of how an extreme space weather event can be generated from usual solar eruptions.

  11. Collective space of high-rise housing complex

    Directory of Open Access Journals (Sweden)

    Bakaeva Tatyana

    2018-01-01

    Full Text Available The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  12. Collective space of high-rise housing complex

    Science.gov (United States)

    Bakaeva, Tatyana

    2018-03-01

    The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  13. In the webs of discourse: senses on scholar library, reading and research

    Directory of Open Access Journals (Sweden)

    Ludmila Ferrarezi

    2012-04-01

    Full Text Available From the theoretical framework of french Discourse Analysis, we observed how the social, historical and ideological conditions affect the construction / formulation / circulation of the senses which can be naturalized, outlining a particular image on scholar library, reading and research. For this, we did a brief historical account on the development of the brazilian school libraries that was marked by senses of lack and restriction which are updated by the operation of discursive memory when they are reproduced in the contemporary discourse about this institution and the activities that are realized in its space. These senses show the importance of teachers and librarians change of attitude, make possible discoursive practices of reading and research that are more critical, creative and inquisitive, in the classroom and in the library, which is much more than a deposit or a collection of books.

  14. Introduction to the mathematics of inversion in remote sensing and indirect measurements

    CERN Document Server

    Twomey, S

    2013-01-01

    Developments in Geomathematics, 3: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements focuses on the application of the mathematics of inversion in remote sensing and indirect measurements, including vectors and matrices, eigenvalues and eigenvectors, and integral equations. The publication first examines simple problems involving inversion, theory of large linear systems, and physical and geometric aspects of vectors and matrices. Discussions focus on geometrical view of matrix operations, eigenvalues and eigenvectors, matrix products, inverse of a matrix, transposition and rules for product inversion, and algebraic elimination. The manuscript then tackles the algebraic and geometric aspects of functions and function space and linear inversion methods, as well as the algebraic and geometric nature of constrained linear inversion, least squares solution, approximation by sums of functions, and integral equations. The text examines information content of indirect sensing m...

  15. The influence of selected senses on consumer experience: A brandy case

    OpenAIRE

    Chris Pentz; Charlene Gerber

    2013-01-01

    Orientation: Sensory marketing has become a popular marketing technique to enhance consumer experience. Researchers have suggested that marketers should incorporate as many senses as possible in order for sensory marketing to be effective. Research purpose: To investigate the influence of selected senses – sight, sound and smell – on consumers’ experience, specifically in terms of the tastiness of brandy. Motivation for the study: Even though the use of the senses such as sight, sound ...

  16. A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI

    International Nuclear Information System (INIS)

    Usman, M; Prieto, C; Schaeffter, T; Batchelor, P G; Odille, F; Atkinson, D

    2011-01-01

    Compressed sensing (CS) methods in MRI are computationally intensive. Thus, designing novel CS algorithms that can perform faster reconstructions is crucial for everyday applications. We propose a computationally efficient orthogonal matching pursuit (OMP)-based reconstruction, specifically suited to cardiac MR data. According to the energy distribution of a y-f space obtained from a sliding window reconstruction, we label the y-f space as static or dynamic. For static y-f space images, a computationally efficient masked OMP reconstruction is performed, whereas for dynamic y-f space images, standard OMP reconstruction is used. The proposed method was tested on a dynamic numerical phantom and two cardiac MR datasets. Depending on the field of view composition of the imaging data, compared to the standard OMP method, reconstruction speedup factors ranging from 1.5 to 2.5 are achieved. (note)

  17. The LAM space active optics facility

    Science.gov (United States)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  18. Coding Strategies and Implementations of Compressive Sensing

    Science.gov (United States)

    Tsai, Tsung-Han

    information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  19. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee

    2011-01-01

    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  20. The Expanding Universe: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    Nearly every culture has made important discoveries about the universe. Most cultures have searched for a better understanding of the cosmos and how the earth and human life relate. The discussion in this booklet considers time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought.…

  1. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  2. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  3. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  4. COMPARISON OF UNCALIBRATED RGBVI WITH SPECTROMETER-BASED NDVI DERIVED FROM UAV SENSING SYSTEMS ON FIELD SCALE

    Directory of Open Access Journals (Sweden)

    G. Bareth

    2016-06-01

    Full Text Available The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers’ field in Western Germany. (i A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1 to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2 investigate the UAV-based performance of the modified Yara N-Sensor, and (3 compare the results of the two different UAV-based sensing approaches for winter wheat.

  5. Investigation of flood pattern using ANOVA statistic and remote sensing in Malaysia

    International Nuclear Information System (INIS)

    Ya'acob, Norsuzila; Ismail, Nor Syazwani; Mustafa, Norfazira; Yusof, Azita Laily

    2014-01-01

    Flood is an overflow or inundation that comes from river or other body of water and causes or threatens damages. In Malaysia, there are no formal categorization of flood but often broadly categorized as monsoonal, flash or tidal floods. This project will be focus on flood causes by monsoon. For the last few years, the number of extreme flood was occurred and brings great economic impact. The extreme weather pattern is the main sector contributes for this phenomenon. In 2010, several districts in the states of Kedah neighbour-hoods state have been hit by floods and it is caused by tremendous weather pattern. During this tragedy, the ratio of the rainfalls volume was not fixed for every region, and the flood happened when the amount of water increase rapidly and start to overflow. This is the main objective why this project has been carried out, and the analysis data has been done from August until October in 2010. The investigation was done to find the possibility correlation pattern parameters related to the flood. ANOVA statistic was used to calculate the percentage of parameters was involved and Regression and correlation calculate the strength of coefficient among parameters related to the flood while remote sensing image was used for validation between the calculation accuracy. According to the results, the prediction is successful as the coefficient of relation in flood event is 0.912 and proved by Terra-SAR image on 4th November 2010. The rates of change in weather pattern give the impact to the flood

  6. Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Science.gov (United States)

    Schumacher, J.; Otero, Toribio F.; Pascual, Victor H.

    2017-04-01

    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.

  7. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  8. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at

  9. The Strategies of Mathematics Teachers When Solving Number Sense Problems

    Directory of Open Access Journals (Sweden)

    Sare Şengül

    2014-04-01

    Full Text Available Number sense involves efficient strategies and the ability to think flexibly with numbers and number operations and flexible thinking ability and the inclination getting for making sound mathematical judgements. The aim of this study was to investigate the strategies used by mathematics teachers while solving number sense problems. Eleven mathematics teachers from a graduate program in education were the participants. A number sense test which has a total of 12 problems is used as the data gathering tool. Teachers’ responses and strategies were analyzed both qualitatively and quantitatively.First, participants’ responses were evaluated for correctness. Then the strategies teachers used were analyzed. The strategies were categorized as based on the use of number sense or rule based strategies. When the correct and incorrect responses were considered together, in the 46% of the responses number sense strategies were used and in 54% the rule-based strategies were used. The results of this study showed that even though teachers can use number sense strategies at some level, there is still room for development in teachers’ number sense.

  10. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    Science.gov (United States)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  11. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  12. Optimized Strategies for Detecting Extrasolar Space Weather

    Science.gov (United States)

    Hallinan, Gregg

    2018-06-01

    Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.

  13. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  14. Limitation and life in space

    Science.gov (United States)

    Israel, Marvin; Smith, T. Scott

    1986-08-01

    ``The Earth is the very quintescence of the human condition...,'' says Hannah Arendt. Georg Simmel writes: ``The stranger is by nature no `owner of soil'—soil not only in the physical, but also in the figurative sense of a life-substance which is fixed, if not in a point in space, at least in an ideal point of social environment.'' How will no longer being Earthbound affect persons' experience of themselves and of others? Space colonization offers an opportunity for new self-definition by the alteration of existing limits. Thus ``limitation'' is a useful concept for exploring the physical, social and psychological significance of the colonization of space. Will people seek the security of routine, of convention, of hierarchy as in the military model governing our present-day astronauts? or will they seek to maximize the freedom inherent in extraordinary living conditions—as bohemians, deviants, travelers?

  15. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  16. Place attachment of the public space in Krueng Cunda

    Science.gov (United States)

    Novianti, Yenny; Ginting, Nurlisa; Marpaung, B. O. Y.

    2018-03-01

    Attachment to place will have an impact on the design a city, especially the public space. Part of important from place attachment can the great benefit in from a city. One of the result is influence to quality of life from urban society. That is not only, but forming of identity a city, dependence and sense of place. That is all measureable when the people have activity to place. Place attachment is connection human to place involve a psychological process. As for the issue in reservoir area and the river of Krueng Cunda. The main purpose in this study is find interaction individuals or urban society to public space. This study have use mixed method are combination with quantitave and qualitative. The quantitative method make use of questionnaires and qualitative with observations. The results of this study indicate that psychological process is more dominant than attachment to the place or human. At finally is this research show attachment to the psychological process feel better than to community because can fulfill a sense, comfortable, safety, lifestyle and goal needs of life to the public space.

  17. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    Science.gov (United States)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  18. On the Convergence of Implicit Iterative Processes for Asymptotically Pseudocontractive Mappings in the Intermediate Sense

    Directory of Open Access Journals (Sweden)

    Xiaolong Qin

    2011-01-01

    Full Text Available An implicit iterative process is considered. Strong and weak convergence theorems of common fixed points of a finite family of asymptotically pseudocontractive mappings in the intermediate sense are established in a real Hilbert space.

  19. Surface holograms for sensing application

    Science.gov (United States)

    Zawadzka, M.; Naydenova, I.

    2018-01-01

    Surface gratings with periodicity of 2 μm and amplitude in the range of 175 and 240 nm were fabricated in a plasticized polyvinylchloride doped with a metalloporphyrin (ZnTPP), via a single laser pulse holographic ablation process. The effect of the laser pulse energy on the profiles of the fabricated surface structure was investigated. The sensing capabilities of the fabricated diffractive structures towards amines (triethylamine, diethylamine) and pyridine vapours were then explored; the holographic structures were exposed to the analyte vapours and changes in the intensity of the diffracted light were monitored in real time at 473 nm. It was demonstrated that surface structures, fabricated in a polymer doped with a metalloporphyrin which acts as analyte receptor, have a potential in sensing application.

  20. Remote Sensing Open Access Journal: Leading a New Paradigm in Publishing

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2011-12-01

    Full Text Available Remote Sensing is a pathfinding open access journal providing great opportunities for the growing community of remote sensing and geoscience scientists and practitioners to publish high quality research and practical papers expeditiously. It is a journal keeping up with the changing times we live in: open access, instant access, free access, and global access from whichever precise latitude and longitude you live in on the planet Earth or for that matter anywhere in space as long as we have internet access! So, open access journals are breaking many paradigms and setting forth new ones that will soon become the norm as we advance into the twenty-first century. The days of inordinate delays in publishing good science research articles are fast disappearing with open access journals. In remote sensing and geoscience, Remote Sensing (http://www.mdpi.com/journal/remotesensing/ is one of the pioneers, thanks to the vision of Dr. Shu-Kun Lin, the publisher. It started in the year 2009 with headquarters in Basel, Switzerland and a branch office in Beijing, China. It will soon complete Volume 3 by the end of 2011.