WorldWideScience

Sample records for space science informatics

  1. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  2. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  3. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  4. Earth and Space Science Informatics: Raising Awareness of the Scientists and the Public

    Science.gov (United States)

    Messerotti, M.; Cobabe-Ammann, E.

    2009-04-01

    The recent developments in Earth and Space Science Informatics led to the availability of advanced tools for data search, visualization and analysis through e.g. the Virtual Observatories or distributed data handling infrastructures. Such facilities are accessible via web interfaces and allow refined data handling to be carried out. Notwithstanding, to date their use is not exploited by the scientific community for a variety of reasons that we will analyze in this work by considering viable strategies to overcome the issue. Similarly, such facilities are powerful tools for teaching and for popularization provided that e-learning programs involving the teachers and respectively the communicators are made available. In this context we will consider the present activities and projects by stressing the role and the legacy of the Electronic Geophysical Year.

  5. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  6. Informatics for Health 2017: Advancing both science and practice

    Directory of Open Access Journals (Sweden)

    Philip J. Scott

    2017-04-01

    Full Text Available Introduction: The Informatics for Health congress, 24-26 April 2017, in Manchester, UK, brought together the Medical Informatics Europe (MIE conference and the Farr Institute International Conference. This special issue of the Journal of Innovation in Health Informatics contains 113 presentation abstracts and 149 poster abstracts from the congress. Discussion: The twin programmes of “Big Data” and “Digital Health” are not always joined up by coherent policy and investment priorities. Substantial global investment in health IT and data science has led to sound progress but highly variable outcomes. Society needs an approach that brings together the science and the practice of health informatics. The goal is multi-level Learning Health Systems that consume and intelligently act upon both patient data and organizational intervention outcomes. Conclusions: Informatics for Health demonstrated the art of the possible, seen in the breadth and depth of our contributions. We call upon policy makers, research funders and programme leaders to learn from this joined-up approach.

  7. International Conference on Informatics and Management Science (IMS)

    CERN Document Server

    Informatics and Management Science III

    2013-01-01

    The International Conference on Informatics and Management Science (IMS) 2012 will be held on November 16-19, 2012, in Chongqing, China, which is organized by Chongqing Normal University, Chongqing University, Shanghai Jiao Tong University, Nanyang Technological University, University of Michigan, Chongqing University of Arts and Sciences, and sponsored by National Natural Science Foundation of China (NSFC). The objective of IMS 2012 is to facilitate an exchange of information on best practices for the latest research advances in a range of areas. Informatics and Management Science contains over 600 contributions to suggest and inspire solutions and methods drawing from multiple disciplines including: ·         Computer Science ·         Communications and Electrical Engineering ·         Management Science ·         Service Science ·         Business Intelligence

  8. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  9. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  10. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. International Conference on Informatics and Management Science (IMS) 2012

    CERN Document Server

    Informatics and Management Science VI

    2013-01-01

    The International Conference on Informatics and Management Science (IMS) 2012 will be held on November 16-19, 2012, in Chongqing, China, which is organized by Chongqing Normal University, Chongqing University, Shanghai Jiao Tong University, Nanyang Technological University, University of Michigan, Chongqing University of Arts and Sciences, and sponsored by National Natural Science Foundation of China (NSFC). The objective of IMS 2012 is to facilitate an exchange of information on best practices for the latest research advances in a range of areas. Informatics and Management Science contains over 600 contributions to suggest and inspire solutions and methods drawing from multiple disciplines including: ·         Computer Science ·         Communications and Electrical Engineering ·         Management Science ·         Service Science ·         Business Intelligence

  12. Bridging Informatics and Earth Science: a Look at Gregory Leptoukh's Contributions

    Science.gov (United States)

    Lynnes, C.

    2012-12-01

    With the tragic passing this year of Gregory Leptoukh, the Earth and Space Sciences community lost a tireless participant in--and advocate for--science informatics. Throughout his career at NASA, Dr. Leptoukh established a theme of bridging the gulf between the informatics and science communities. Nowhere is this more evident than his leadership in the development of Giovanni (GES DISC Interactive Online Visualization ANd aNalysis Infrastructure). Giovanni is an online tool that serves to hide the often-complex technical details of data format and structure, making science data easier to explore and use by Earth scientists. To date Giovanni has been acknowledged as a contributor in 500-odd scientific articles. In recent years, Leptoukh concentrated his efforts on multi-sensor data inter-comparison, merging and fusion. This work exposed several challenges at the intersection of data and science. One of these was the ease with which a naive user might generate spurious comparisons, a potential hazard that was the genesis of the Multi-sensor Data Synergy Advisor (MDSA). The MDSA uses semantic ontologies and inference rules to organize knowledge about dataset quality and other salient characteristics in order to advise users on potential caveats for comparing or merging two datasets. Recently, Leptoukh also led the development of AeroStat, an online Giovanni instance to investigate aerosols via statistics from station and satellite comparisons and merged maps of data from more than one instrument. Aerostat offers a neural net based bias adjustment to "harmonize" the data by removing systematic offsets between datasets before merging. These examples exhibit Leptoukh's talent for adopting advanced computer technologies in the service of making science data more accessible to researchers. In this, he set an example that is at once both vital and challenging for the ESSI community to emulate.

  13. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  14. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  15. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  16. INFORMATIZATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    А А Меджидова

    2016-12-01

    Full Text Available The article draws attention to the fact that the Informatization of primary education is a uniform process, in which I the first turn mathematics and computer science are associated. Learning these disciplines is in natural interrelation and this comes from the nature of these disciplines. But in other subjects both mathematics and computer science play an applied role. It is proved that at the modern stage of Informatization in education contributes to improving the quality of assimilated knowledge acquired and skills.The article touches upon issues that reveal the relevance of the subject of Informatics in education. In connection with the information development there is a need of Informatization of education and society as a whole. The basic concepts of Informatics as a scientific and academic discipline are shown. Set out the subject, object and objectives of teaching science. Methodical program of the subject, aimed to develop school education is also considered.

  17. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  18. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  19. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  20. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  1. Informatics everywhere : information and computation in society, science, and technology

    NARCIS (Netherlands)

    Verhoeff, T.

    2013-01-01

    Informatics is about information and its processing, also known as computation. Nowadays, children grow up taking smartphones and the internet for granted. Information and computation rule society. Science uses computerized equipment to collect, analyze, and visualize massive amounts of data.

  2. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    Science.gov (United States)

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.

  3. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  4. Computer science, biology and biomedical informatics academy: outcomes from 5 years of immersing high-school students into informatics research

    Directory of Open Access Journals (Sweden)

    Andrew J King

    2017-01-01

    Full Text Available The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  5. Modern education of future teacher of physical culture in the conditions of informatization of educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-03-01

    Full Text Available The informatization of the educational space is determined by the organizational, scientific-technical, educational processes, which update the creation of the unified information and educational space for the comprehensive use of information technologies in educational process of a future teacher of physical culture at the higher school. Stated that the integration and expansion of the educational space of the orients the higher school not only in the preparation of the literate student on the issues of information culture, but also to help the younger generation in the mastery of basic social abilities and skills in conditions of informatization of the educational space.

  6. Evaluation of Founding Members of the International Academy of Health Sciences Informatics (IAHSI) Based on Google Scholar and Scopus Parameters.

    Science.gov (United States)

    Masic, Izet

    2017-12-01

    The International Academy of Health Sciences Informatics (IAHSI) is established by International Medical Informatics Association (IMIA) which is the world body for health and biomedical informatics. The Academy will serve as an honor society that recognizes expertise in biomedical and health informatics internationally. Academy membership will be one of the highest honors in the international field of biomedical and health informatics. To present scientometric analysis of founding members of the International Academy of Health Sciences Informatics, to evaluate members and their scientific rating. The work has an analytical character and presents analysis of the data obtained from the Google Scholar and Scopus database. Results are shown through number of cases, percentage and graphically. The analysis showed a significant correlation between the Academy and the country (continent) of origin of the academician. In IAHSI are mainly represented academics originating from Europe - 40 members (33,3%), North America - 39 members (32,5%), Asia - 20 members (16,6%), South America - 9 members (7,5%), Australia - 7 members (5,8%), while only 5 members or 4,16% come from Africa. Criteria for number of representatives of each continent to main academic communities are relatively questionable, as this analysis showed. Development of Health Sciences Informatics should be the main purpose, and it should be evenly distributed with slight deviations in number of representatives of each continent.

  7. Earth Science Informatics Community Requirements for Improving Sustainable Science Software Practices: User Perspectives and Implications for Organizational Action

    Science.gov (United States)

    Downs, R. R.; Lenhardt, W. C.; Robinson, E.

    2014-12-01

    Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.

  8. An information technology emphasis in biomedical informatics education.

    Science.gov (United States)

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  9. Informatics for materials science and engineering data-driven discovery for accelerated experimentation and application

    CERN Document Server

    Rajan, Krishna

    2014-01-01

    Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this ""quantitative avalanche""-and the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisiting in

  10. Passive design solutions to improve thermal and visual indoor environment. Case Study: University of Informatics Sciences

    International Nuclear Information System (INIS)

    González Couret, Dania; Rodríguez García, Elizabeth; González Milián, Nataly; Llovet Salazar, Mónica

    2017-01-01

    The results of a research carried out in order to improve sustainability in the University of Informatics Sciences in Havana are presented in the paper. The initial qualitative evaluation of the three more energy consumer buildings allow to identify main problems and to select indoor spaces where temperature and relative humidity were measured. Intervention proposals were elaborated which positive impact was verified by automatized simulation of results and its comparison to the departing situation. The results of the empirical research corroborate the integral qualitative evaluation carries out. It has been demonstrated that it is possible to reduce indoor temperature by modifying the envelope without high investments, if advantage is taken from benefit of green shadow. (author)

  11. Philosophy of Information and Fundamental Problems of Modern Informatics

    Directory of Open Access Journals (Sweden)

    Konstantin Kolin

    2011-10-01

    Full Text Available Actual philosophical and scientifically methodological problems of modern Informatics as fundamental science and a complex scientific direction are considered. Communication of these problems with prospects of development of Informatics and fundamental science as a whole is shown.

  12. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  13. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  14. A Science Cloud: OneSpaceNet

    Science.gov (United States)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage

  15. Assessment of Health Informatics Competencies in Undergraduate ...

    African Journals Online (AJOL)

    Rwanda Journal Series F: Medicine and Health Sciences Vol. ... establishment of continuous on-the-job training in health informatics for those ... deals with the resources, devices and formalized methods .... informatics competencies in undergraduate level, the tool ... Descriptive statistics were used to describe numerical.

  16. Construction informatics - Issues in engineering, computer science and ontology

    DEFF Research Database (Denmark)

    Eir, Asger

    2004-01-01

    and conceptual modelling of civil engineering and design. Due to the interdisciplinary content, the first half of the study has been carried out at Department of Civil Engineering (BYG"DTU), The Technical University of Denmark; whereas the second half has been carried out at Informatics and Mathematical....... With origin in civil engineering and design issues, the study was directed towards computer science oriented theories in an attempt to introduce such theories in modelling and clarification of the domain. This strategy turned out to be a strength for the study and this thesis. However, it also discovered some...... problems in carrying out such a truly interdisciplinary Ph.D. study. Per Galle s and Dines Bjørner's common background in computer science has been essential for the success of this study. The original title of the Ph.D. project was Design and application of a civil engineering ontology. However, it became...

  17. An Overview of data science uses in bioimage informatics.

    Science.gov (United States)

    Chessel, Anatole

    2017-02-15

    This review aims at providing a practical overview of the use of statistical features and associated data science methods in bioimage informatics. To achieve a quantitative link between images and biological concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object, a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from carefully crafted biologically relevant measurements to features learnt through deep neural networks. This replacement allows for the use of practical algorithms for visualisation, comparison and inference, such as the ones from machine learning or multivariate statistics. While originating mainly, for biology, in high content screening, those methods are integral to the use of data science for the quantitative analysis of microscopy images to gain biological insight, and they are sure to gather more interest as the need to make sense of the increasing amount of acquired imaging data grows more pressing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Research-based Curricula in the Context of 21st Century Data Science

    Science.gov (United States)

    Fox, P. A.

    2017-12-01

    When the Informatics revolution began again a little more than 10 years ago (longer for bio-informatics) geosciences (or Earth and Space Sciences) was paying attention via international attention from the Electronic Geophysical Year (eGY) and related endeavours (IPY, IYPE, IHY). The research agenda was in the spotlight, or moreso what Earth and Space Science informatics, cast in emergent escience or cyber-infrastructures, could benefit from was the main focus of attention and funding. At the time almost all "Xinformatics" efforts were novel in their discipline or traditionally defined. However, a broader research and education agenda was clearly needed. At the same time, a much more cross-disciplinary field; data science emerged. In this presentation, we relate the development, delivery and assessment of research oriented informatics, data science and their specializations into geoscience education in generak and as undertaken at RPI over the last nine years. We conclude with a longitudinal view of the impacts on career paths in the 21st century

  19. Comparative effectiveness research and medical informatics.

    Science.gov (United States)

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  20. Translational Research from an Informatics Perspective

    Science.gov (United States)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  1. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  2. Quantum Bio-Informatics:From Quantum Information to Bio-Informatics

    CERN Document Server

    Freudenberg, W; Ohya, M

    2008-01-01

    The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized. Sample Chapter(s). Markov Fields on Graphs (599 KB). Contents: Markov Fields on Graphs (L Accardi & H Ohno); Some Aspects of

  3. Craniofacial imaging informatics and technology development.

    Science.gov (United States)

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  4. The Teaching of Informatics for Business Students

    Science.gov (United States)

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  5. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  6. Sciences, computing, informatics: who is the keeper of the real faith?

    OpenAIRE

    Benvenuti, Laura; van der Vet, P.E.; van der Veer, Gerrit C.; Sloep, P.; van Eekelen, M.

    2011-01-01

    Computing, or informatics as we call it in Europe, covers many areas. In this paper we will discuss an important difference between two of these areas: software engineering and information systems. Epistemology, the study of the question: "What grounds can we justifiably have for believing the truth of assertions about reality?", is complex in informatics. This question has different answers, depending on the area we investigate. Curricula in informatics do not discuss this difference explici...

  7. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    Science.gov (United States)

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  8. Medical Informatics Education & Research in Greece.

    Science.gov (United States)

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  9. A decadal view of biodiversity informatics: challenges and priorities.

    Science.gov (United States)

    Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona

    2013-04-15

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.

  10. A decadal view of biodiversity informatics: challenges and priorities

    Science.gov (United States)

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species. It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible. This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens’ science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike. PMID:23587026

  11. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  12. Health Informatics 3.0 and other increasingly dispersed technologies require even greater trust: promoting safe evidence-based health informatics. Contribution of the IMIA Working Group on Technology Assessment & Quality Development in Health Informatics.

    Science.gov (United States)

    Rigby, M; Ammenwerth, E; Talmon, J; Nykänen, P; Brender, J; de Keizer, N

    2011-01-01

    Health informatics is generally less committed to a scientific evidence-based approach than any other area of health science, which is an unsound position. Introducing the new Web 3.0 paradigms into health IT applications can unleash a further great potential, able to integrate and distribute data from multiple sources. The counter side is that it makes the user and the patient evermore dependent on the 'black box' of the system, and the re-use of the data remote from the author and initial context. Thus anticipatory consideration of uses, and proactive analysis of evidence of effects, are imperative, as only when a clinical technology can be proven to be trustworthy and safe should it be implemented widely - as is the case with other health technologies. To argue for promoting evidence-based health informatics as systems become more powerful and pro-active yet more dispersed and remote; and evaluation as the means of generating the necessary scientific evidence base. To present ongoing IMIA and EFMI initiatives in this field. Critical overview of recent developments in health informatics evaluation, alongside the precedents of other health technologies, summarising current initiatives and the new challenges presented by Health Informatics 3.0. Web 3.0 should be taken as an opportunity to move health informatics from being largely unaccountable to one of being an ethical and responsible science-based domain. Recent and planned activities of the EFMI and IMIA working groups have significantly progressed key initiatives. Concurrent with the emergence of Web 3.0 as a means of new-generation diffuse health information systems comes an increasing need for an evidence-based culture in health informatics.

  13. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  14. Selected Topics on Business Informatics: Editorial Introduction to Issue 13 of CSIMQ

    Directory of Open Access Journals (Sweden)

    Jelena Zdravkovic

    2017-12-01

    Full Text Available Business Informatics is the scientific discipline targeting information processes and related phenomena in their socio-economical business context, including companies, organisations, administrations and society in general. As a field of study, it endeavours to take a systematic and analytic approach in adopting a multi-disciplinary orientation that draws theories and practices from the fields of management science, organisational science, computer science, systems engineering, information systems, information management, social science, and economics information science.The objective of this thematic issue is to bring attention to actual research on Business Informatics, as being publicized on the 19th IEEE Conference on Business Informatics (CBI 2017, July 24-27, 2017, in Thessaloniki, Greece. The conference created a productive forum for researchers and practitioners from the fields that contribute to the construction, use and maintenance of information systems and the organisational context in which they are embedded. This issue of CSIMQ comprises extended version of four CBI papers and one external article.

  15. Computational intelligence in medical informatics

    CERN Document Server

    Gunjan, Vinit

    2015-01-01

    This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications.

  16. MIRASS: medical informatics research activity support system using information mashup network.

    Science.gov (United States)

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.

  17. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  18. Education of medical informatics in Bosnia and Herzegowina.

    Science.gov (United States)

    Masić, I

    1998-06-01

    Time of information in which the authors live resulted in the increase of the amount of the information exponential growth of the new kind of knowledge, flourishing of the familiar ones and the appearance of the new sciences. Medical (health) informatics occupies the central place in all the segments of modern medicine in the past 30 years--in practical work, education and scientific research. In all that, computers have taken over the most important role and are used intensively for the development of the health information systems. Following activities develop within the area of health informatics: health-documentation, health-statistics, health-informatics and bio-medical, scientific and professional information. The pioneer in the development of the health statistics and informatics in Bosnia and Herzegovina (BiH) was Dr Evgenije Sherstnew, who was the Chief of Health Statistics in the Ministry of Health of BiH from 1946-1952, and who founded and led, from 1952 to the end of his life, the Department of Medical Documentation and Health Statistics of the Central Health Institute of BiH, the core around which a group of experts for the development of this field have gathered. In the eighties computers were intensively used as a tool for the processing medical data and with them the development of health information systems at the level of the outpatient-clinics, hospitals, clinical centers, as well as the integral information system of health, health insurance and the social security system of BiH began. Finally, Society for Medical Informatics of BiH, which as a professional association gathers experts in the area of health informatics, actively propagates this profession in the Republic, was founded. With reform of the lectures and curriculum at the medical faculty in Sarajevo, the course in 'Medical Informatics' has been in 1992. into the second semester, since it was assumed that an early insight into the principles of information along with studies of so

  19. Emerging medical informatics research trends detection based on MeSH terms.

    Science.gov (United States)

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  20. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    Science.gov (United States)

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.

  1. Case-based medical informatics

    Directory of Open Access Journals (Sweden)

    Arocha José F

    2004-11-01

    Full Text Available Abstract Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences

  2. Statistics and Informatics in Space Astrophysics

    Science.gov (United States)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  3. Managing the space sciences

    Science.gov (United States)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  4. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  5. Network chemistry, network toxicology, network informatics, and network behavioristics: A scientific outline

    OpenAIRE

    WenJun Zhang

    2016-01-01

    In present study, I proposed some new sciences: network chemistry, network toxicology, network informatics, and network behavioristics. The aims, scope and scientific foundation of these sciences are outlined.

  6. Analysis of controversial items in the theoretical design of the undergraduate's thesis at the Cuban University of Informatics Sciences (UIS.

    Directory of Open Access Journals (Sweden)

    Rolando Quintana Aput

    2011-03-01

    Full Text Available The present paper encloses the analysis of some troubles related to the development of theoretical design concerning the undergraduate thesis at the Cuban University of Informatics Sciences (UIS. This analysis proves to be decisive due to the existing demand for improving professionals training in the fields of investigation related to computing world.

  7. A stimulus to define informatics and health information technology.

    Science.gov (United States)

    Hersh, William

    2009-05-15

    Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field. The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technology and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics. The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms.

  8. Open Access Publishing in the Field of Medical Informatics.

    Science.gov (United States)

    Kuballa, Stefanie

    2017-05-01

    The open access paradigm has become an important approach in today's information and communication society. Funders and governments in different countries stipulate open access publications of funded research results. Medical informatics as part of the science, technology and medicine disciplines benefits from many research funds, such as National Institutes of Health in the US, Wellcome Trust in UK, German Research Foundation in Germany and many more. In this study an overview of the current open access programs and conditions of major journals in the field of medical informatics is presented. It was investigated whether there are suitable options and how they are shaped. Therefore all journals in Thomson Reuters Web of Science that were listed in the subject category "Medical Informatics" in 2014 were examined. An Internet research was conducted by investigating the journals' websites. It was reviewed whether journals offer an open access option with a subsequent check of conditions as for example the type of open access, the fees and the licensing. As a result all journals in the field of medical informatics that had an impact factor in 2014 offer an open access option. A predominantly consistent pricing range was determined with an average fee of 2.248 € and a median fee of 2.207 €. The height of a journals' open access fee did not correlate with the height of its Impact Factor. Hence, medical informatics journals have recognized the trend of open access publishing, though the vast majority of them are working with the hybrid method. Hybrid open access may however lead to problems in questions of double dipping and the often stipulated gold open access.

  9. An overview of medical informatics education in China.

    Science.gov (United States)

    Hu, Dehua; Sun, Zhenling; Li, Houqing

    2013-05-01

    To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that

  10. Informatics to support the IOM social and behavioral domains and measures.

    Science.gov (United States)

    Hripcsak, George; Forrest, Christopher B; Brennan, Patricia Flatley; Stead, William W

    2015-07-01

    Consistent collection and use of social and behavioral determinants of health can improve clinical care, prevention and general health, patient satisfaction, research, and public health. A recent Institute of Medicine committee defined a panel of 11 domains and 12 measures to be included in electronic health records. Incorporating the panel into practice creates a number of informatics research opportunities as well as challenges. The informatics issues revolve around standardization, efficient collection and review, decision support, and support for research. The informatics community can aid the effort by simultaneously optimizing the collection of the selected measures while also partnering with social science researchers to develop and validate new sources of information about social and behavioral determinants of health. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  11. Toward a Big Data Science: A challenge of "Science Cloud"

    Science.gov (United States)

    Murata, Ken T.; Watanabe, Hidenobu

    2013-04-01

    During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science

  12. Crossing Borders: An Online Interdisciplinary Course in Health Informatics for Students From Two Countries.

    Science.gov (United States)

    Fossum, Mariann; Fruhling, Ann; Moe, Carl Erik; Thompson, Cheryl Bagley

    2017-04-01

    A cross-countries and interprofessional novel approach for delivering an international interdisciplinary graduate health informatics course online is presented. Included in this discussion are the challenges, lessons learned, and pedagogical recommendations from the experiences of teaching the course. Four professors from three different fields and from three universities collaborated in offering an international health informatics course for an interdisciplinary group of 18 US and seven Norwegian students. Highly motivated students and professors, an online technology infrastructure that supported asynchronously communication and course delivery, the ability to adapt the curriculum to meet the pedagogy requirements at all universities, and the support of higher administration for international collaboration were enablers for success. This project demonstrated the feasibility and advantages of an interdisciplinary, interprofessional, and cross-countries approach in teaching health informatics online. Students were able to establish relationships and conduct professional conversations across disciplines and international boundaries using content management software. This graduate course can be used as a part of informatics, computer science, and/or health science programs.

  13. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  14. The Methodical Approaches to the Research of Informatization of the Global Economic Development

    Directory of Open Access Journals (Sweden)

    Kazakova Nadezhda A.

    2018-03-01

    Full Text Available The article is aimed at researching the identification of global economic development informatization. The complex of issues connected with research of development of informatization of the world countries in the conditions of globalization is considered. The development of informatization in the global economic space, which facilitates opening of new markets for international trade enterprises, international transnational corporations and other organizations, which not only provide exports, but also create production capacities for local producers. The methodical approach which includes three stages together with formation of the input information on the status of informatization of the global economic development of the world countries has been proposed.

  15. An informatics research agenda to support precision medicine: seven key areas.

    Science.gov (United States)

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  16. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  17. Journal of Innovation in Health Informatics: building on the 20-year history of a BCS Health peer review journal

    Directory of Open Access Journals (Sweden)

    Simon de Lusignan

    2015-02-01

    Full Text Available After 20-years as Informatics in Primary Care the journal is renamed Journal of Innovation in Health Informatics. The title was carefully selected to reflect that:(1 informatics provides the opportunity to innovate rather than simply automates;(2 implementing informatics solutions often results in unintended consequences, and many implementations fail and benefits and innovations may go unrecognised;(3 health informatics is a boundary spanning discipline and is by its very nature likely to give rise to innovation.Informatics is an innovative science, and informaticians need to innovate across professional and discipline boundaries.

  18. Perceptions and Experiences of Baccalaureate Nursing Program Leaders Related to Nursing Informatics

    Science.gov (United States)

    Larson, Lisa R.

    2017-01-01

    Nursing program leadership for integrating nursing informatics (NI) into curricula is essential. NI is a specialty that combines nursing science, computer science, and information science to manage health information and improve patient health outcomes (American Nurses Association, 2008). Approximately 98,000 patient deaths per year occur due to…

  19. Life Sciences Data Archive (LSDA)

    Science.gov (United States)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  20. The Top 100 Articles in the Medical Informatics: a Bibliometric Analysis.

    Science.gov (United States)

    Nadri, Hamed; Rahimi, Bahlol; Timpka, Toomas; Sedghi, Shahram

    2017-08-19

    The number of citations that a research paper receives can be used as a measure of its scientific impact. The objective of this study was to identify and to examine the characteristics of top 100 cited articles in the field of Medical Informatics based on data acquired from the Thomson Reuters' Web of Science (WOS) in October, 2016. The data was collected using two procedures: first we included articles published in the 24 journals listed in the "Medical Informatics" category; second, we retrieved articles using the key words: "informatics", "medical informatics", "biomedical informatics", "clinical informatics" and "health informatics". After removing duplicate records, articles were ranked by the number of citations they received. When the 100 top cited articles had been identified, we collected the following information for each record: all WOS database citations, year of publication, journal, author names, authors' affiliation, country of origin and topics indexed for each record. Citations for the top 100 articles ranged from 346 to 7875, and citations per year ranged from 11.12 to 525. The majority of articles were published in the 2000s (n=43) and 1990s (n=38). Articles were published across 10 journals, most commonly Statistics in medicine (n=71) and Medical decision making (n=28). The articles had an average of 2.47 authors. Statistics and biostatistics modeling was the most common topic (n=71), followed by artificial intelligence (n=12), and medical errors (n=3), other topics included data mining, diagnosis, bioinformatics, information retrieval, and medical imaging. Our bibliometric analysis illustrated a historical perspective on the progress of scientific research on Medical Informatics. Moreover, the findings of the current study provide an insight on the frequency of citations for top cited articles published in Medical Informatics as well as quality of the works, journals, and the trends steering Medical Informatics.

  1. An international course on strategic information management for medical informatics students: aim, content, structure, and experiences

    NARCIS (Netherlands)

    Haux, R.; Ammenwerth, E.; ter Burg, W. J.; Pilz, J.; Jaspers, M. W. M.

    2004-01-01

    We report on a course for medical informatics students on hospital information systems, especially on its strategic information management. Starting as course at the Medical Informatics Program of the University of Heidelberg/University of Applied Sciences Heilbronn, it is now organized as

  2. Biomedical Informatics Education at Charles University in Prague for Undergraduate and Doctoral Degree Studies

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Svačina, Š.; Dostálová, T.; Seydlová, M.; Zvára Jr., Karel; Papíková, Vendula; Zvolský, Miroslav; Štuka, Č.; Vejražka, M.; Feberová, J.

    2011-01-01

    Roč. 7, č. 2 (2011), s. 72-78 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : education * biomedicine * informatics * e-learning * healthcare Subject RIV: IN - Informatics, Computer Science http://www.ejbi.org/img/ejbi/2011/2/Zvarova_en.pdf

  3. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Medical decision support and medical informatics education: roots, methods and applications in czechoslovakia and the czech republic.

    Science.gov (United States)

    Zvárová, Jana

    2013-01-01

    The paper describes the history of medical informatics in Czechoslovakia and the Czech Republic. It focuses on the topics of medical informatics education and decision support methods and systems. Several conferences held in Czechoslovakia and in the Czech Republic organized in cooperation with IMIA or EFMI are described. Support of European Union and Czech agencies in several European and national projects focused on medical informatics topics highly contributed to medical informatics development in Czechoslovakia and the Czech Republic and to the establishment of the European Center for Medical Informatics, Statistics and Epidemiology as the joint workplace of Charles University in Prague and Academy of Sciences of the Czech Republic in 1994.

  5. Microcomputers and Informatics Education at the University Level.

    Science.gov (United States)

    Boyanov, Todor

    1984-01-01

    Because of the widespread use of microcomputers in Bulgaria, informatics education for all college students is considered both possible and necessary. Uses of microcomputers in various disciplines are described, including those in mathematics/mechanics, the experimental sciences, and humanities. Brief comments on computer-assisted-learning and…

  6. 1st International Conference on Advanced Intelligent System and Informatics

    CERN Document Server

    Hassanien, Aboul; El-Bendary, Nashwa; Dey, Nilanjan

    2016-01-01

    The conference topics address different theoretical and practical aspects, and implementing solutions for intelligent systems and informatics disciplines including bioinformatics, computer science, medical informatics, biology, social studies, as well as robotics research. The conference also discuss and present solutions to the cloud computing and big data mining which are considered hot research topics. The conference papers discussed different topics – techniques, models, methods, architectures, as well as multi aspect, domain-specific, and new solutions for the above disciplines. The accepted papers have been grouped into five parts: Part I—Intelligent Systems and Informatics, addressing topics including, but not limited to, medical application, predicting student performance, action classification, and detection of dead stained microscopic cells, optical character recognition, plant identification, rehabilitation of disabled people. Part II—Hybrid Intelligent Systems, addressing topics including, b...

  7. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association

    Directory of Open Access Journals (Sweden)

    David Little

    2003-06-01

    Full Text Available The Primary Care Informatics Working Group (PCIWG of the American Medical Informatics Association (AMIA has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI, to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  8. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  9. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  10. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    Science.gov (United States)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  11. Bioimage Informatics in the context of Drosophila research.

    Science.gov (United States)

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Biomedical Informatics Research for Individualized Life - Long Shared Healthcare

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Hanzlíček, Petr; Nagy, Miroslav; Přečková, Petra; Zvára, K.; Seidl, L.; Bureš, V.; Šubrt, D.; Dostálová, T.; Seydlová, M.

    2009-01-01

    Roč. 29, č. 2 (2009), s. 31-41 ISSN 0208-5216 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * semantic interoperability * dentistry * cardiology Subject RIV: IN - Informatics, Computer Science

  13. Strengthening Partnerships along the Informatics Innovation Stages and Spaces: Research and Practice Collaboration in Utah

    Science.gov (United States)

    Xu, Wu; Pettey, Warren; Livnat, Yarden; Gesteland, Per; Rajeev, Deepthi; Reid, Jonathan; Samore, Matthew; Evans, R. Scott; Rolfs, Robert T.; Staes, Catherine

    2011-01-01

    Collaborate, translate, and impact are key concepts describing the roles and purposes of the research Centers of Excellence (COE) in Public Health Informatics (PHI). Rocky Mountain COE integrated these concepts into a framework of PHI Innovation Space and Stage to guide their collaboration between the University of Utah, Intermountain Healthcare, and Utah Department of Health. Seven research projects are introduced that illustrate the framework and demonstrate how to effectively manage multiple innovations among multiple organizations over a five-year period. A COE is more than an aggregation of distinct research projects over a short time period. The people, partnership, shared vision, and mutual understanding and appreciation developed over a long period of time form the core and foundation for ongoing collaborative innovations and its successes. PMID:23569614

  14. Training multidisciplinary biomedical informatics students: three years of experience.

    Science.gov (United States)

    van Mulligen, Erik M; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    The European INFOBIOMED Network of Excellence recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a 'brokerage service' which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.

  15. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  16. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  17. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  18. ICTEI-2015: International Conference on Telecommunications, Electronics and Informatics. Proceedings

    International Nuclear Information System (INIS)

    Kantser, V.; Andronic, S.

    2015-01-01

    This book includes articles which cover a vast range of subjects, such as: telecommunications networks and technologies; electronic, optoelectronic, photonic and information systems and devices; materials, components and equipment in electronics and communications; informatics and computer science; software development and testing etc.

  19. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    Science.gov (United States)

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  20. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  1. Medical informatics in morocco.

    Science.gov (United States)

    Bouhaddou, O; Bennani Othmani, M; Diouny, S

    2013-01-01

    Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.

  2. Recommendations of the International Medical Informatics Association (IMIA) on Education in Health and Medical Informatics

    Czech Academy of Sciences Publication Activity Database

    Arokiasamy, J.; Ball, M.; Barnett, D.; Bearman, M.; Bemmel van, J.; Douglas, J.; Fisher, P.; Garrie, R.; Gatewood, L.; Goossen, W.; Grant, A.; Hales, J.; Hasman, A.; Haux, R.; Hovenga, E.; Johns, M.; Knaup, P.; Leven, F. J.; Lorenzi, N.; Murray, P.; Neame, R.; Protti, D.; Power, M.; Richard, J.; Schuster, E.; Swinkels, W.; Yang, J.; Zelmer, L.; Zvárová, Jana

    2001-01-01

    Roč. 40, č. 5 (2001), s. 267-277 ISSN 0026-1270 Institutional research plan: AV0Z1030915 Keywords : health informatics * medical informatics * education * recommendations * International Medical Informatics Association * IMIA Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.254, year: 2001

  3. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    Science.gov (United States)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT

  4. Interdisciplinary innovations in biomedical and health informatics graduate education.

    Science.gov (United States)

    Demiris, G

    2007-01-01

    Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.

  5. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  6. Topical directions of informatics in memory of V. M. Glushkov

    CERN Document Server

    Sergienko, Ivan V

    2014-01-01

    This work is devoted to the late Ukrainian computer scientist V. M. Glushkov  on the 90th anniversary of his birthday. Dr. Glushkov is known for his contribution to the world computer science and technology, and this volume analyzes the ideas and paths of development of informatics formulated by him, and demonstrates their important role in constructing computer technologies of basic research in the fields of applied mathematics, theories of computer programming, and computing systems.   A significant portion of the monograph is devoted to the elucidation of new results obtained  in the field of mathematical modeling of complicated processes, creation of new methods for solving and investigating optimization problems in different statements, and development of computer technologies for investigations in the field of economy, biology, medicine, and information security in systems.   The monograph will be of particular interest to informatics specialists and experts using methods of informatics and computer...

  7. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  8. Sciences, computing, informatics: who is the keeper of the real faith?

    NARCIS (Netherlands)

    Benvenuti, Laura; van der Vet, P.E.; van der Veer, Gerrit C.; Sloep, P.; van Eekelen, M.

    2011-01-01

    Computing, or informatics as we call it in Europe, covers many areas. In this paper we will discuss an important difference between two of these areas: software engineering and information systems. Epistemology, the study of the question: "What grounds can we justifiably have for believing the truth

  9. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    Science.gov (United States)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a

  10. NURSING INFORMATICS EDUCATION AND USE: CHALLENGES ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    179 .... how organizations can utilize IT to progress their strategic goal from ... Clinical informatics, Veterinary informatics, Dental informatics ... In the late 1990s, the Finnish/Nigerian research ..... International Journal of Nursing &. Midwifery, 5, (5): ...

  11. Conversational informatics a data-intensive approach with emphasis on nonverbal communication

    CERN Document Server

    Nishida, Toyoaki; Ohmoto, Yoshimasa; Mohammad, Yasser

    2014-01-01

    This book covers an approach to conversational informatics which encompasses science and technology for understanding and augmenting conversation in the network age. A major challenge in engineering is to develop a technology for conveying not just messages but also underlying wisdom. Relevant theories and practices in cognitive linguistics and communication science, as well as techniques developed in computational linguistics and artificial intelligence, are discussed.

  12. Some Innovative Approaches for Public Health and Epidemiology Informatics.

    Science.gov (United States)

    Toubiana, L; Griffon, N

    2016-11-10

    Summarize excellent current research published in 2015 in the field of Public Health and Epidemiology Informatics. The complete 2015 literature concerning public health and epidemiology informatics has been searched in PubMed and Web of Science, and the returned references were reviewed by the two section editors to select 14 candidate best papers. These papers were then peer-reviewed by external reviewers to allow the editorial team an enlightened selection of the best papers. Among the 1,272 references retrieved from PubMed and Web of Science, three were finally selected as best papers. The first one presents a language agnostic approach for epidemic event detection in news articles. The second paper describes a system using big health data gathered by a statewide system to forecast emergency department visits. The last paper proposes a rather original approach that uses machine learning to solve the old issue of outbreak detection and prediction. The increasing availability of data, now directly from health systems, will probably lead to a boom in public health surveillance systems and in large-scale epidemiologic studies.

  13. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  14. The Influence of Secondary School Education on the Success of Informatics Education in University

    Directory of Open Access Journals (Sweden)

    Marina Čičin-Šain

    2008-10-01

    Full Text Available The suppositions and dimensions of the influence of secondary school education on the quality and effects of informatics education in University are manifold. The influence of secondary school education can be perceived through two basic dimensions: 1 the general influence dimension of a specific secondary school, and 2 the dimension of the influence of computer and related classes, which students were exposed to during secondary school. The aforementioned dimensions of influence can be analyzed by defining key factors of general secondary school education, and the factors of informatics education in secondary school, which are significant for the quality and effects in higher computer science education. The defined basic and exactly measurable criteria of the influence of secondary school education on the students' informatics education in college are the criterion of the number of school years during which information science classes were taken, as well as the criterion of secondary school orientation (course, among which those students were selected, who graduated from economics secondary schools and gymnasium (comprehensive secondary schools.

  15. Interdisciplinary training to build an informatics workforce for precision medicine

    Directory of Open Access Journals (Sweden)

    Marc S. Williams

    2015-09-01

    Full Text Available The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine.

  16. ASHP statement on the pharmacy technician's role in pharmacy informatics.

    Science.gov (United States)

    2014-02-01

    The American Society of Health- System Pharmacists (ASHP) believes that specially trained pharmacy technicians can assume important supportive roles in pharmacy informatics. These roles include automation and technology systems management, management of projects, training and education, policy and governance, customer service, charge integrity, and reporting. Such roles require pharmacy technicians to gain expertise in information technology (IT) systems, including knowledge of interfaces, computer management techniques, problem resolution, and database maintenance. This knowledge could be acquired through specialized training or experience in a health science or allied scientific field (e.g., health informatics). With appropriate safeguards and supervision, pharmacy technician informaticists (PTIs) will manage IT processes in health-system pharmacy services, ensuring a safe and efficient medication-use process.

  17. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision

    NARCIS (Netherlands)

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K. C.; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-01

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop

  18. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  19. Current Status of Nursing Informatics Education in Korea.

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  20. Engaging clinicians in health informatics projects.

    Science.gov (United States)

    Caballero Muñoz, Erika; Hullin Lucay Cossio, Carola M

    2010-01-01

    This chapter gives an educational overview of: * The importance of the engagement of clinicians within a health informatics project * Strategies required for an effective involvement of clinicians throughout a change management process within a clinical context for the implementation of a health informatics project * The critical aspects for a successful implementation of a health informatics project that involves clinicians as end users * Key factors during the administration of changes during the implementation of an informatics project for an information system in clinical practice.

  1. Nursing informatics: the future now.

    Science.gov (United States)

    Mamta

    2014-01-01

    Technological advancements in the health care field have always impacted the health care practices. Nursing practice has also been greatly influenced by the technology. In the recent years, use of information technology including computers, handheld digital devices, internet has advanced the nursing by bridging the gap from nursing as an art to nursing as science. In every sphere of nursing practice, nursing research, nursing education and nursing informatics play a very important role. If used properly it is a way to save time, helping to provide quality nursing care and increases the proficiency of nursing personnel.

  2. Current Status of Nursing Informatics Education in Korea

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  3. Community Based Informatics: Geographical Information Systems, Remote Sensing and Ontology collaboration - A technical hands-on approach

    Science.gov (United States)

    Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.

    2009-12-01

    With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.

  4. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation

    Science.gov (United States)

    Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.

    2016-01-01

    Summary Introduction Official recognition and certification for informatics professionals are essential aspects of workforce development. Objective: To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. Methods (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results The literature search for ‘nursing informatics certification’ yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing

  5. The Chief Clinical Informatics Officer (CCIO): AMIA Task Force Report on CCIO Knowledge, Education, and Skillset Requirements.

    Science.gov (United States)

    Kannry, Joseph; Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    The emerging operational role of the "Chief Clinical Informatics Officer" (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science.

  6. Health informatics 3.0.

    Science.gov (United States)

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  7. Informatics and Technology in Resident Education.

    Science.gov (United States)

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  9. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  10. International space science

    International Nuclear Information System (INIS)

    Mark, H.

    1988-01-01

    The author begins his paper by noting the range of international cooperation which has occured in science since its earliest days. The brightest minds were allowed to cross international frontiers even in the face of major wars, to work on their interests and to interact with like minded scientists in other countries. There has of course been a political side to this movement at times. The author makes the point that doing science on an international basis is extemely important but it is not a way of conducting foreign policy. Even though governments may work together on scientific efforts, it is no glue which will bind them to work together on larger political or economic issues. The reason for doing science on an international basis is that it will lead to better science, not better international relations. There are a limited number of great scientists in the world, and they must be allowed to develop their talents. He then discusses two internationl space programs which have has such collaboration, the Soviet-American Space Biology Program, and the Infrared Astronomical Satellite (IRAS). He then touches on the NASA space exploration program, and the fact that its basic objectives were laid out in the 1940's and l950's. With this laid out he argues in favor of establishment of a lunar base, one of the key elements of NASA's plan, arguing for the value of this step based upon the infrared astronomical work which could be done from a stable lunar site, away from the earth's atmosphere

  11. Audiovisual heritage preservation in Earth and Space Science Informatics: Videos from Free and Open Source Software for Geospatial (FOSS4G) conferences in the TIB|AV-Portal.

    Science.gov (United States)

    Löwe, Peter; Marín Arraiza, Paloma; Plank, Margret

    2016-04-01

    The influence of Free and Open Source Software (FOSS) projects on Earth and Space Science Informatics (ESSI) continues to grow, particularly in the emerging context of Data Science or Open Science. The scientific significance and heritage of FOSS projects is only to a limited amount covered by traditional scientific journal articles: Audiovisual conference recordings contain significant information for analysis, reference and citation. In the context of data driven research, this audiovisual content needs to be accessible by effective search capabilities, enabling the content to be searched in depth and retrieved. Thereby, it is ensured that the content producers receive credit for their efforts within the respective communities. For Geoinformatics and ESSI, one distinguished driver is the OSGeo Foundation (OSGeo), founded in 2006 to support and promote the interdisciplinary collaborative development of open geospatial technologies and data. The organisational structure is based on software projects that have successfully passed the OSGeo incubation process, proving their compliance with FOSS licence models. This quality assurance is crucial for the transparent and unhindered application in (Open) Science. The main communication channels within and between the OSGeo-hosted community projects for face to face meetings are conferences on national, regional and global scale. Video recordings have been complementing the scientific proceedings since 2006. During the last decade, the growing body of OSGeo videos has been negatively affected by content loss, obsolescence of video technology and dependence on commercial video portals. Even worse, the distributed storage and lack of metadata do not guarantee concise and efficient access of the content. This limits the retrospective analysis of video content from past conferences. But, it also indicates a need for reliable, standardized, comparable audiovisual repositories for the future, as the number of OSGeo projects

  12. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  13. eScience and archiving for space science

    Directory of Open Access Journals (Sweden)

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  14. Research progress on quantum informatics and quantum computation

    Science.gov (United States)

    Zhao, Yusheng

    2018-03-01

    Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.

  15. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  16. Public Policy and Health Informatics.

    Science.gov (United States)

    Bell, Katherine

    2018-04-05

    To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    Science.gov (United States)

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful

  18. Personality Questionnaires as a Basis for Improvement of University Courses in Applied Computer Science and Informatics

    Directory of Open Access Journals (Sweden)

    Vladimir Ivančević

    2017-07-01

    Full Text Available In this paper, we lay the foundation for an adaptation of the teaching process to the personality traits and academic performance of the university students enrolled in applied computer science and informatics (ACSI. We discuss how such an adaptation could be supported by an analytical software solution and present the initial version of this solution. In the form of a case study, we discuss the scores from a personality questionnaire that was administered to a group of university students enrolled in an introductory programming course at the Faculty of Technical Sciences, University of Novi Sad, Serbia. During a non-mandatory workshop on programming, the participants completed the 48-item short-scale Eysenck Personality Questionnaire–Revised (EPQ– R. By using various exploratory and analytical techniques, we inspect the student EPQ–R scores and elaborate on the specificities of the participating student group. As part of our efforts to understand the broader relevance of different student personality traits in an academic environment, we also discuss how the EPQ–R scores of students could provide information valuable to the process of improving student learning and performance in university courses in ACSI.

  19. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The state and profile of open source software projects in health and medical informatics.

    Science.gov (United States)

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  1. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  2. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  3. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  4. Towards health informatics 3.0. Editorial.

    Science.gov (United States)

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  5. Clinical research informatics

    CERN Document Server

    Richesson, Rachel L

    2012-01-01

    This book provides foundational coverage of key areas, concepts, constructs, and approaches of medical informatics as it applies to clinical research activities, in both current settings and in light of emerging policies. The field of clinical research is fully characterized (in terms of study design and overarching business processes), and there is emphasis on information management aspects and informatics implications (including needed activities) within various clinical research environments. The purpose of the book is to provide an overview of clinical research (types), activities, and are

  6. Informatic search strategies to discover analogues and variants of natural product archetypes.

    Science.gov (United States)

    Johnston, Chad W; Connaty, Alex D; Skinnider, Michael A; Li, Yong; Grunwald, Alyssa; Wyatt, Morgan A; Kerr, Russell G; Magarvey, Nathan A

    2016-03-01

    Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.

  7. Social Sciences and Space Exploration

    Science.gov (United States)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  8. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  9. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  10. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  11. The Informatics Security Cost of Distributed Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2010-01-01

    Full Text Available The objective, necessity, means and estimated efficiency of information security cost modeling are presented. The security requirements of distributed informatics applications are determined. Aspects regarding design, development and implementation are established. Influence factors for informatics security are presented and their correlation is analyzed. The costs associated to security processes are studied. Optimal criteria for informatics security are established. The security cost of the informatics application for validating organizational identifiers is determined using theoretical assumptions made for cost models. The conclusions highlight the validity of research results and offer perspectives for future research.

  12. Pathology informatics fellowship training: Focus on molecular pathology

    Directory of Open Access Journals (Sweden)

    Diana Mandelker

    2014-01-01

    Full Text Available Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program′s core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  13. Pathology informatics fellowship training: Focus on molecular pathology.

    Science.gov (United States)

    Mandelker, Diana; Lee, Roy E; Platt, Mia Y; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K F; Klepeis, Veronica E; Mahowald, Michael; Lane, William J; Beckwith, Bruce A; Baron, Jason M; McClintock, David S; Kuo, Frank C; Lebo, Matthew S; Gilbertson, John R

    2014-01-01

    Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  14. Database Description - AT Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available 1-8540, JAPAN Platform for Drug Discovery, Informatics, and Structural Life Science Research Organization...m for Drug Discovery, Informatics, and Structural Life Science Research Organization of Information and Syst

  15. Biomedical informatics: we are what we publish.

    Science.gov (United States)

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  16. Science on a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Jorgensen, A. M. (Anders M.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe in-situ science stations mounted on a science-dedicated space elevator tether. The concept presented here involves a carbon nanotube ribbon that is constructed by an existing space elevator and then science sensors are stationed along the ribbon at differing altitudes. The finished ribbon can be moved across the earth to the position at which its scientific measurements are to be taken. The ability to station scientific, in-situ instrumentation at different altitudes for round-the-clock observations is a unique capability of the SE. The environments that the science packages sense range from the troposphere out beyond the magnetopause of the magnetosphere on the solar side of the earth. Therefore, the very end of the SE can sense the solar wind. The measurements at various points along its length include temperature, pressure, density, sampling, chemical analyses, wind speed, turbulence, free oxygen, electromagnetic radiation, cosmic rays, energetic particles and plasmas in the earth's magnetosphere and the solar wind. There exist some altitudes that are difficult to access with aircraft or balloons or rockets and so remain relatively unexplored. The space elevator solves these problems and opens these regions up to in-situ measurements. Without the need for propulsion, the SE provides a more benign and pristine environment for atmospheric measurements than available with powered aircraft. Moreover, replacing and upgrading instrumentation is expected to be very cost effective with the SE. Moving and stationing the science SE affords the opportunity to sense multiple regions of the atmosphere. The SE's geosynchronous, orbital motion through the magnetosphere, albeit nominally with Earth's magnetic field, will trace a plane

  17. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  18. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    Science.gov (United States)

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  19. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  20. Approaches, requirements and trends in teacher training informatics to attestation of pedagogical stuff under conditions of informatization

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2013-12-01

    Full Text Available This article describes the requirements for the training of teachers of Informatics, the need for managerial competence. Recommendations to the teacher of Informatics for the attestation of pedagogical staff.

  1. NASA Space Science Resource Catalog

    Science.gov (United States)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  2. Deep Space Gateway Science Opportunities

    Science.gov (United States)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  3. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  4. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  5. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  6. The Civic Informatics of FracTracker Alliance: Working with Communities to Understand the Unconventional Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Kirk Jalbert

    2017-09-01

    Full Text Available Unconventional oil and gas extraction is fueling a wave of resource development often touted as a new era in US energy independence. However, assessing the true costs of extraction is made difficult by the vastness of the industry and lack of regulatory transparency. This paper addresses efforts to fill knowledge gaps taken up by civil society groups, where the resources produced in these efforts are used to make informed critiques of extraction processes and governance. We focus on one civil society organization, called FracTracker Alliance, which works to enhance public understanding by collecting, interpreting, and visualizing oil and gas data in broad partnerships. Drawing on the concepts of civic science, we suggest that the informational practices of civil society research organizations facilitate critical knowledge flows that we term “civic informatics.” We offer three case studies illustrating how different characteristics of civic informatics enable public-minded research as well as build capacity for political mobilizations. Finally, we suggest that empirical studies of civic informatics and its facilitators offer insights for the study of “engaged” Science and Technologies Studies (STS that seek to generate new models of science at the intersection of praxis and theory.

  7. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  8. Space life sciences strategic plan, 1991

    Science.gov (United States)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  9. Beyond information retrieval and electronic health record use: competencies in clinical informatics for medical education

    Directory of Open Access Journals (Sweden)

    Hersh WR

    2014-07-01

    Full Text Available William R Hersh,1 Paul N Gorman,1 Frances E Biagioli,2 Vishnu Mohan,1 Jeffrey A Gold,3 George C Mejicano4 1Department of Medical Informatics and Clinical Epidemiology, 2Department of Family Medicine, 3Department of Medicine, 4School of Medicine, Oregon Health & Science University, Portland, OR, USA Abstract: Physicians in the 21st century will increasingly interact in diverse ways with information systems, requiring competence in many aspects of clinical informatics. In recent years, many medical school curricula have added content in information retrieval (search and basic use of the electronic health record. However, this omits the growing number of other ways that physicians are interacting with information that includes activities such as clinical decision support, quality measurement and improvement, personal health records, telemedicine, and personalized medicine. We describe a process whereby six faculty members representing different perspectives came together to define competencies in clinical informatics for a curriculum transformation process occurring at Oregon Health & Science University. From the broad competencies, we also developed specific learning objectives and milestones, an implementation schedule, and mapping to general competency domains. We present our work to encourage debate and refinement as well as facilitate evaluation in this area. Keywords: curriculum transformation, clinical decision support, patient safety, health care quality, patient engagement

  10. Enabling Open Science for Health Research: Collaborative Informatics Environment for Learning on Health Outcomes (CIELO).

    Science.gov (United States)

    Payne, Philip; Lele, Omkar; Johnson, Beth; Holve, Erin

    2017-07-31

    There is an emergent and intensive dialogue in the United States with regard to the accessibility, reproducibility, and rigor of health research. This discussion is also closely aligned with the need to identify sustainable ways to expand the national research enterprise and to generate actionable results that can be applied to improve the nation's health. The principles and practices of Open Science offer a promising path to address both goals by facilitating (1) increased transparency of data and methods, which promotes research reproducibility and rigor; and (2) cumulative efficiencies wherein research tools and the output of research are combined to accelerate the delivery of new knowledge in proximal domains, thereby resulting in greater productivity and a reduction in redundant research investments. AcademyHealth's Electronic Data Methods (EDM) Forum implemented a proof-of-concept open science platform for health research called the Collaborative Informatics Environment for Learning on Health Outcomes (CIELO). The EDM Forum conducted a user-centered design process to elucidate important and high-level requirements for creating and sustaining an open science paradigm. By implementing CIELO and engaging a variety of potential users in its public beta testing, the EDM Forum has been able to elucidate a broad range of stakeholder needs and requirements related to the use of an open science platform focused on health research in a variety of "real world" settings. Our initial design and development experience over the course of the CIELO project has provided the basis for a vigorous dialogue between stakeholder community members regarding the capabilities that will add the greatest value to an open science platform for the health research community. A number of important questions around user incentives, sustainability, and scalability will require further community dialogue and agreement. ©Philip Payne, Omkar Lele, Beth Johnson, Erin Holve. Originally published

  11. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    Science.gov (United States)

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  12. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  13. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  14. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  15. Energy informatics: Fundamentals and standardization

    Directory of Open Access Journals (Sweden)

    Biyao Huang

    2017-06-01

    Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

  16. Nursing informatics and nursing ethics

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities......-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how...... nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched...

  17. Massive open online course for health informatics education.

    Science.gov (United States)

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  18. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  19. BACHELOR OF INFORMATICS COMPETENCE IN PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Andrii M. Striuk

    2015-04-01

    Full Text Available Based on the analysis of approaches to the definition of professional competencies of IT students the competence in programming of bachelor of informatics is proposed. Due to the standard of training in 040302 “Informatics” and Computing Curricula 2001 it was defined the content and structure of the competence in programming of bachelor of informatics. The system of content modules providing its formation was designed. The contribution of regulatory competencies of bachelor of informatics in the formation of competence in programming is defined. The directions of formation of competence in programming in the cloudy-oriented learning environment are proposed.

  20. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  1. Space Interferometry Science Working Group

    Science.gov (United States)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  2. Designing for an inclusive school of informatics for blind students

    DEFF Research Database (Denmark)

    Vargas Brenes, Ronald

    enrolled in UNA attended education careers programmes or philosophy. So I asked myself: Why are blind people not interested in studying informatics? Then I learned about a blind student who was interested in enrolling in the system engineering career programme a few years ago, but she quit from her...... and efficient in ensuring equal opportunities for blind and sighted students, particularly in connection with system engineering or other computer science-related career programmes....

  3. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  4. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Machine learning in materials informatics: recent applications and prospects

    Science.gov (United States)

    Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam; Mannodi-Kanakkithodi, Arun; Kim, Chiho

    2017-12-01

    Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as "descriptors", may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven "materials informatics" strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.

  6. History of health informatics: a global perspective.

    Science.gov (United States)

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  7. MEDICAL INFORMATICS: AN ESSENTIAL TOOL FOR HEALTH SCIENCES RESEARCH IN ACUTE CARE

    OpenAIRE

    Li, Man; Pickering, Brian W.; Smith, Vernon D.; Hadzikadic, Mirsad; Gajic, Ognjen; Herasevich, Vitaly

    2009-01-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and adminis...

  8. Medical Informatics: An Essential Tool for Health Sciences Research in Acute Care

    OpenAIRE

    Man Li; Brian W. Pickering; Vernon D. Smith; Mirsad Hadzikadic; Ognjen Gajic; Vitaly Herasevich

    2009-01-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and adminis...

  9. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  10. Discussion on informatization teaching of certain radar transmitter

    Science.gov (United States)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  11. Health Informatics.

    Science.gov (United States)

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  12. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  13. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  14. Epilepsy informatics and an ontology-driven infrastructure for large database research and patient care in epilepsy

    Science.gov (United States)

    Sahoo, Satya S.; Zhang, Guo-Qiang; Lhatoo, Samden D.

    2013-01-01

    Summary The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a “data-driven” paradigm in epilepsy research. PMID:23647220

  15. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    Science.gov (United States)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  16. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  17. ISS External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  18. [Standards in Medical Informatics: Fundamentals and Applications].

    Science.gov (United States)

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  20. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  1. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  2. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  3. Continued multidisciplinary project-based learning - implementation in health informatics.

    Science.gov (United States)

    Wessel, C; Spreckelsen, C

    2009-01-01

    Problem- and project-based learning are approved methods to train students, graduates and post-graduates in scientific and other professional skills. The students are trained on realistic scenarios in a broader context. For students specializing in health informatics we introduced continued multidisciplinary project-based learning (CM-PBL) at a department of medical informatics. The training approach addresses both students of medicine and students of computer science. The students are full members of an ongoing research project and develop a project-related application or module, or explore or evaluate a sub-project. Two teachers guide and review the students' work. The training on scientific work follows a workflow with defined milestones. The team acts as peer group. By participating in the research team's work the students are trained on professional skills. A research project on a web-based information system on hospitals built the scenario for the realistic context. The research team consisted of up to 14 active members at a time, who were scientists and students of computer science and medicine. The well communicated educational approach and team policy fostered the participation of the students. Formative assessment and evaluation showed a considerable improvement of the students' skills and a high participant satisfaction. Alternative education approaches such as project-based learning empower students to acquire scientific knowledge and professional skills, especially the ability of life-long learning, multidisciplinary team work and social responsibility.

  4. The science of space-time

    International Nuclear Information System (INIS)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  5. INFORMATIZATION: PHILOSOPHICAL AND ANTHROPOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Kosolapov

    2015-07-01

    Full Text Available Purpose.Computerization and informatization in recent decades gave the mankind automated electronic document management systems, automated process of production, Internet and network information resources WWW, expanded the communications capabilities and led to the globalization of the information society. At the same time gives rise to a number of processes of informatization philosophical and anthropological problems, that has become an existential character. It is necessary to identify and understanding of these issues on the basis of the gnoseological model of the evolution informatization paradigms and determine their main characteristics. Methodology. The system-activity approach was used; it allowed identifying and analyzing the impact of the main components of information and communication technologies (ICT for educational activities. And further to present them as a unified system of human activity in conditions computerization/informatization. The philosophical principles: a comprehensive review of the subject, the unity of the logical and historical, ascending from the abstract to the concrete was used. The general scientific principles: unity and development of the system, the decomposition hierarchy, individualization and cooperation, diversity and taxonomy were applied. Findings.The three-stage gnoseological model of the paradigms computerization/informatization evolution was proposed by the author. It is based on three information system characteristics: speed, interface and data access. The seven-bar anthrop-centric model, which is called the architecture of information systems (AIS, which describes the changes in their types of procuring, was proposed for each paradigm. The philosophical-anthropological problems that affect negatively its progress were formulated for each stage of modern information society transformation. Originality. The gnoseological model of development processes of informatization in the form of three

  6. Educational Outreach: The Space Science Road Show

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  7. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools.

    Science.gov (United States)

    Lee, Roy E; McClintock, David S; Balis, Ulysses J; Baron, Jason M; Becich, Michael J; Beckwith, Bruce A; Brodsky, Victor B; Carter, Alexis B; Dighe, Anand S; Haghighi, Mehrvash; Hipp, Jason D; Henricks, Walter H; Kim, Jiyeon Y; Klepseis, Veronica E; Kuo, Frank C; Lane, William J; Levy, Bruce P; Onozato, Maristela L; Park, Seung L; Sinard, John H; Tuthill, Mark J; Gilbertson, John R

    2012-01-01

    Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012) and involved both local and visiting faculty and fellows. Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions). Case studies have become an important component of our fellowship's educational platform.

  8. The rate commitment to ISO 214 standard among the persian abstracts of approved research projects at school of health management and medical informatics, Isfahan University of Medical Sciences, Isfahan, Iran.

    Science.gov (United States)

    Papi, Ahmad; Khalaji, Davoud; Rizi, Hasan Ashrafi; Shabani, Ahmad; Hassanzadeh, Akbar

    2014-01-01

    Commitment to abstracting standards has a very significant role in information retrieval. The present research aimed to evaluate the rate of Commitment to ISO 214 Standard among the Persian abstracts of approved research projects at School of Health Management and Medical Informatics, Isfahan University of Medical Sciences, Isfahan, Iran. This descriptive study used a researcher-made checklist to collect data, which was then analyzed through content analysis. The studied population consisted of 227 approved research projects in the School of Health Management and Medical Informatics, Isfahan University of Medical Sciences during 2001-2010. The validity of the checklist was measured by face and content validity. Data was collected through direct observations. Statistical analyzes including descriptive (frequency distribution and percent) and inferential statistics (Chi-square test) were performed in SPSS-16. The highest and lowest commitment rates to ISO 214 standard were in using third person pronouns (100%) and using active verbs (34/4%), respectively. In addition, the highest commitment rates to ISO 214 standard (100%) related to mentioning third person pronouns, starting the abstract with a sentence to explain the subject of the research, abstract placement, and including keyword in 2009. On the other hand, during 2001-2003, the lowest commitment rate was observed in reporting research findings (16/7%). Moreover, various educational groups differed significantly only in commitment to study goals, providing research findings, and abstaining from using abbreviations, signs, and acronyms. Furthermore, educational level of the corresponding author was significantly related with extracting the keywords from the text. Other factors of ISO 214 standard did not have significant relations with the educational level of the corresponding author. In general, a desirable rate of commitment to ISO 214 standard was observed among the Persian abstracts of approved research

  9. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  10. Informatics for Metabolomics.

    Science.gov (United States)

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  11. Integrating Informatics Technologies into Oracle

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2006-01-01

    Full Text Available A characteristic of the actual informatics’ context is the interference of the technologies, which assumes that for creating an informatics product, is necessary to use integrate many technologies. This thing is also used for database systems which had integrated, in the past few years, almost everything is new in informatics technology. The idea is that when using database management systems - DBMS the user can benefit all the necessary interfaces and instruments for developing an application with databases from the very beginning to the end, no matter the type of application and the work environment. For example, if the database application needs any Internet facilities these could be appealed from the products that the DBMS is working with offers. The concept of the interference of informatics technologies has many advantages, which all contribute to increasing the efficiency of the activities that develop and maintain complex databases applications.

  12. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  13. Informatization Level Assessment Framework and Educational Policy Implications

    OpenAIRE

    Ana Sekulovska; Pece Mitrevski

    2018-01-01

    Seeing the informatization as a measure of the educational policy, we propose an informatization level assessment framework and introduce a composite indicator – Education Informatization Index, calculated as a weighted sum by applying the Rank-Order Centroid method for weight designation. Although it is made up of only two main categories (Educational Policy Implementation subindex and Educational Policy Creation subindex) and a total of six individual indicators, it captures well all the so...

  14. The New England Space Science Initiative in Education (NESSIE)

    Science.gov (United States)

    Waller, W. H.; Clemens, C. M.; Sneider, C. I.

    2002-12-01

    Founded in January 2002, NESSIE is the NASA/OSS broker/facilitator for education and public outreach (E/PO) within the six-state New England region. NESSIE is charged with catalyzing and fostering collaborations among space scientists and educators within both the formal and informal education communities. NESSIE itself is a collaboration of scientists and science educators at the Museum of Science, Harvard-Smithsonian Center for Astrophysics, and Tufts University. Its primary goals are to 1) broker partnerships among space scientists and educators, 2) facilitate a wide range of educational and public outreach activities, and 3) examine and improve space science education methods. NESSIE's unique strengths reside in its prime location (the Museum of Science), its diverse mix of scientists and educators, and its dedicated board of advisors. NESSIE's role as a clearinghouse and facilitator of space science education is being realized through its interactive web site and via targeted meetings, workshops, and conferences involving scientists and educators. Special efforts are being made to reach underserved groups by tailoring programs to their particular educational needs and interests. These efforts are building on the experiences of prior and ongoing programs in space science education at the Museum of Science, the Harvard-Smithsonian Center for Astrophysics, Tufts University, and NASA.

  15. The history of pathology informatics: A global perspective

    Science.gov (United States)

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  16. Artistic Research on Freedom in Space and Science

    Science.gov (United States)

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on

  17. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  18. Clinical Informatics Fellowship Programs: In Search of a Viable Financial Model: An open letter to the Centers for Medicare and Medicaid Services.

    Science.gov (United States)

    Lehmann, C U; Longhurst, C A; Hersh, W; Mohan, V; Levy, B P; Embi, P J; Finnell, J T; Turner, A M; Martin, R; Williamson, J; Munger, B

    2015-01-01

    In the US, the new subspecialty of Clinical Informatics focuses on systems-level improvements in care delivery through the use of health information technology (HIT), data analytics, clinical decision support, data visualization and related tools. Clinical informatics is one of the first subspecialties in medicine open to physicians trained in any primary specialty. Clinical Informatics benefits patients and payers such as Medicare and Medicaid through its potential to reduce errors, increase safety, reduce costs, and improve care coordination and efficiency. Even though Clinical Informatics benefits patients and payers, because GME funding from the Centers for Medicare and Medicaid Services (CMS) has not grown at the same rate as training programs, the majority of the cost of training new Clinical Informaticians is currently paid by academic health science centers, which is unsustainable. To maintain the value of HIT investments by the government and health care organizations, we must train sufficient leaders in Clinical Informatics. In the best interest of patients, payers, and the US society, it is therefore critical to find viable financial models for Clinical Informatics fellowship programs. To support the development of adequate training programs in Clinical Informatics, we request that the Centers for Medicare and Medicaid Services (CMS) issue clarifying guidance that would allow accredited ACGME institutions to bill for clinical services delivered by fellows at the fellowship program site within their primary specialty.

  19. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  20. The CAS-NAS forum for new leaders in space science

    Science.gov (United States)

    Smith, David H.

    The space science community is thoroughly international, with numerous nations now capable of launching scientific payloads into space either independently or in concert with others. As such, it is important for national space-science advisory groups to engage with like-minded groups in other spacefaring nations. The Space Studies Board of the US National Academy of Sciences' (NAS') National Research Council has provided scientific and technical advice to NASA for more than 50 years. Over this period, the Board has developed important multilateral and bilateral partnerships with space scientists around the world. The primary multilateral partner is COSPAR, for which the Board serves as the US national committee. The Board's primary bilateral relationship is with the European Science Foundation’s European Space Science Committee. Burgeoning Chinese space activities have resulted in several attempts in the past decade to open a dialogue between the Board and space scientists in China. On each occasion, the external political environment was not conducive to success. The most recent efforts to engage the Chinese space researchers began in 2011 and have proved particularly successful. Although NASA is currently prohibited from engaging in bilateral activities with China, the Board has established a fruitful dialogue with its counterpart in the Chinese Academy of Sciences (CAS). A joint NAS-CAS activity, the Forum for New Leaders in Space Science, has been established to provide opportunities for a highly select group of young space scientists from China and the United States to discuss their research activities in an intimate and collegial environment at meetings to be held in both nations. The presentation will describe the current state of US-China space relations, discuss the goals of the joint NAS-CAS undertaking and report on the activities at the May, 2014, Forum in Beijing and the planning for the November, 2014, Forum in Irvine, California.

  1. Calling Taikong a strategy report and study of China's future space science missions

    CERN Document Server

    Wu, Ji

    2017-01-01

    This book describes the status quo of space science in China, details the scientific questions to be addressed by the Chinese space science community in 2016-2030, and proposes key strategic goals, space science programs and missions, the roadmap and implementation approaches. Further, it explores the supporting technologies needed and provides an outlook of space science beyond the year 2030. “Taikong” means “outer space” in Chinese, and space science is one of the most important areas China plans to develop in the near future. This book is authored by Ji Wu, a leader of China's space science program, together with National Space Science Center, Chinese Academy of Sciences, a leading institute responsible for planning and managing most of China’s space science missions. It also embodies the viewpoints shared by many space scientists and experts on future space science development. Through this book, general readers and researchers alike will gain essential insights into the current developments an...

  2. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  3. Open Genetic Code: on open source in the life sciences

    OpenAIRE

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first ...

  4. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools

    Directory of Open Access Journals (Sweden)

    Roy E Lee

    2012-01-01

    Full Text Available Background: Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. Methods: The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012 and involved both local and visiting faculty and fellows. Results: Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Conclusions: Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions. Case studies have become an important component of our fellowship′s educational platform.

  5. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Topos of the cosmic space in science fiction

    Directory of Open Access Journals (Sweden)

    Poutilo Oleg Olegovich

    2015-09-01

    Full Text Available The article examines the forms of cosmic space in science fiction, its characteristics and main trends of evolution. Cosmic space is seen as a dichotomy of “our” and “their”, though their interaction is complicated and full interiorization is impossible. The specificity of the described cosmic space is the absence of the traditional system of coordinates associated with the sides of the world. Authors have to resort to the use of “map-route”, describing the journey sequentially, from the point of view of a moving person. In this regard, in recent years there has been a tendency to reduce the role of images of cosmic space in science fiction novels. Their appearance in the works becomes a kind of stamp, a concession to the classical traditions of the genre. Once popular genres of strict science fiction or space opera inferior position to the other, recreating a far more convincing picture of the probable future of humanity - cyberpunk dystopia and post-apocalyptic fiction.

  7. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  8. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    Science.gov (United States)

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  9. Information science in transition

    CERN Document Server

    Gilchrist, Alan

    2013-01-01

    Are we at a turning point in digital information? The expansion of the internet is unprecedented. Will information science become part of computer science and does rise of the term informatics demonstrate convergence of information science and information technology - a convergence that must surely develop? This work reflects on such issues.

  10. Research and development and industrial informatization

    International Nuclear Information System (INIS)

    1995-08-01

    This book deals with research and development and industrial informatization with development of technology international trend, the present conditions of scientific technology in the major nations, politics of technical development and trend, process of national research and development, research for industrial research and development, strengthen cooperation for scientific technology among nations, current situation and development of technology by field such as energy, software and system, and technology for industrial informatization.

  11. Achievements and Challenges in the Science of Space Weather

    Science.gov (United States)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  12. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    Science.gov (United States)

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  13. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 8 ... (SF) receivers has the advantages of stand-alone, absolute positioning and cost efficiency. ... College of Informatics, South China Agricultural University, Guangzhou, ...

  15. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  16. Addressing informatics challenges in Translational Research with workflow technology.

    Science.gov (United States)

    Beaulah, Simon A; Correll, Mick A; Munro, Robin E J; Sheldon, Jonathan G

    2008-09-01

    Interest in Translational Research has been growing rapidly in recent years. In this collision of different data, technologies and cultures lie tremendous opportunities for the advancement of science and business for organisations that are able to integrate, analyse and deliver this information effectively to users. Workflow-based integration and analysis systems are becoming recognised as a fast and flexible way to build applications that are tailored to scientific areas, yet are built on a common platform. Workflow systems are allowing organisations to meet the key informatics challenges in Translational Research and improve disease understanding and patient care.

  17. Impact of space on science

    Science.gov (United States)

    Elachi, Charles

    1993-01-01

    The advent of the capability to conduct space-based measurements has revolutionized the study of the Earth, the planetary system and the astrophysical universe. The resultant knowledge has yielded insights into the management of our planet's resources and provides intellectual enrichment for our civilization. New investigation techniques hold promise for extending the scope of space science to address topics in fundamental physics such as gravitational waves and certain aspects of Einstein's Theory of General Relativity.

  18. Embedded librarian within an online health informatics graduate research course: a case study.

    Science.gov (United States)

    Kumar, Sajeesh; Wu, Lin; Reynolds, Rebecca

    2014-01-01

    The Health Sciences Library and the Department of Health Informatics & Information Management at the University of Tennessee Health Science Center in Memphis piloted an embedded librarian project in summer 2012. The value and effectiveness of the pilot project was evaluated by analyzing the content of e-mail questions received from the students and the students' answers to the pre- and post-class surveys. The project received positive feedback from the students and course faculty. Librarians collaborating with teaching faculty and interacting one-on-one with students in health information-intensive courses proved to be helpful for student learning.

  19. Perceptions of pathology informatics by non-informaticist pathologists and trainees

    Directory of Open Access Journals (Sweden)

    Addie Walker

    2016-01-01

    Full Text Available Background: Although pathology informatics (PI is essential to modern pathology practice, the field is often poorly understood. Pathologists who have received little to no exposure to informatics, either in training or in practice, may not recognize the roles that informatics serves in pathology. The purpose of this study was to characterize perceptions of PI by noninformatics-oriented pathologists and to do so at two large centers with differing informatics environments. Methods: Pathology trainees and staff at Cleveland Clinic (CC and Massachusetts General Hospital (MGH were surveyed. At MGH, pathology department leadership has promoted a pervasive informatics presence through practice, training, and research. At CC, PI efforts focus on production systems that serve a multi-site integrated health system and a reference laboratory, and on the development of applications oriented to department operations. The survey assessed perceived definition of PI, interest in PI, and perceived utility of PI. Results: The survey was completed by 107 noninformatics-oriented pathologists and trainees. A majority viewed informatics positively. Except among MGH trainees, confusion of PI with information technology (IT and help desk services was prominent, even in those who indicated they understood informatics. Attendings and trainees indicated desire to learn more about PI. While most acknowledged that having some level of PI knowledge would be professionally useful and advantageous, only a minority plan to utilize it. Conclusions: Informatics is viewed positively by the majority of noninformatics pathologists at two large centers with differing informatics orientations. Differences in departmental informatics culture can be attributed to the varying perceptions of PI by different individuals. Incorrect perceptions exist, such as conflating PI with IT and help desk services, even among those who claim to understand PI. Further efforts by the PI community could

  20. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  1. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  2. Inspiring the Next Generation in Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  3. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  4. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    Science.gov (United States)

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  6. Health Informatics for Development: a Three-pronged Strategy of Partnerships, Standards, and Mobile Health. Contribution of the IMIA Working Group on Health Informatics for Development.

    Science.gov (United States)

    Marcelo, A; Adejumo, A; Luna, D

    2011-01-01

    Describe the issues surrounding health informatics in developing countries and the challenges faced by practitioners in building internal capacity. From these issues, the authors propose cost-effective strategies that can fast track health informatics development in these low to medium income countries (LMICs). The authors conducted a review of literature and consulted key opinion leaders who have experience with health informatics implementations around the world. Despite geographic and cultural differences, many LMICs share similar challenges and opportunities in developing health informatics. Partnerships, standards, and inter-operability are well known components of successful informatics programs. Establishing partnerships can be comprised of formal inter-institutional collaborations on training and research, collaborative open source software development, and effective use of social networking. Lacking legacy systems, LMICs can discuss standards and inter-operability more openly and have greater potential for success. Lastly, since cellphones are pervasive in developing countries, they can be leveraged as access points for delivering and documenting health services in remote under-served areas. Mobile health or mHealth gives LMICs a unique opportunity to leapfrog through most issues that have plagued health informatics in developed countries. By employing this proposed roadmap, LMICs can now develop capacity for health informatics using appropriate and cost-effective technologies.

  7. A Network Enabled Platform for Canadian Space Science Data

    Science.gov (United States)

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE

  8. Chapter 17: bioimage informatics for systems pharmacology.

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2013-04-01

    Full Text Available Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi. Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  9. Improving Bridging from Informatics Practice to Theory.

    Science.gov (United States)

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  10. Eco-informatics and natural resource management

    Science.gov (United States)

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  11. The pathology informatics curriculum wiki: Harnessing the power of user-generated content.

    Science.gov (United States)

    Kim, Ji Yeon; Gudewicz, Thomas M; Dighe, Anand S; Gilbertson, John R

    2010-07-13

    The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  12. Context Sensitive Health Informatics

    DEFF Research Database (Denmark)

    involves careful consideration of both human and organizational factors. This book presents the proceedings of the Context Sensitive Health Informatics (CSHI) conference, held in Copenhagen, Denmark, in August 2013. The theme of this year’s conference is human and sociotechnical approaches. The Human...... different healthcare contexts. Healthcare organizations, health policy makers and regulatory bodies globally are starting to acknowledge this essential role of human and organizational factors for safe and effective health information technology. This book will be of interest to all those involved......Healthcare information technologies are now routinely deployed in a variety of healthcare contexts. These contexts differ widely, but the smooth integration of IT systems is crucial, so the design, implementation, and evaluation of safe, effective, efficient and easy to adopt health informatics...

  13. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  14. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  15. Perspectives of System Informatics

    National Research Council Canada - National Science Library

    Bjørner, D

    1999-01-01

    The volume comprises extended abstracts of the papers selected for the presentation at the Third International Andrei Ershov Memorial Conference Perspectives of System Informatics, Akademgorodok (Novosibirsk, Russia), July 6-9, 1999...

  16. Omics Informatics: From Scattered Individual Software Tools to Integrated Workflow Management Systems.

    Science.gov (United States)

    Ma, Tianle; Zhang, Aidong

    2017-01-01

    Omic data analyses pose great informatics challenges. As an emerging subfield of bioinformatics, omics informatics focuses on analyzing multi-omic data efficiently and effectively, and is gaining momentum. There are two underlying trends in the expansion of omics informatics landscape: the explosion of scattered individual omics informatics tools with each of which focuses on a specific task in both single- and multi- omic settings, and the fast-evolving integrated software platforms such as workflow management systems that can assemble multiple tools into pipelines and streamline integrative analysis for complicated tasks. In this survey, we give a holistic view of omics informatics, from scattered individual informatics tools to integrated workflow management systems. We not only outline the landscape and challenges of omics informatics, but also sample a number of widely used and cutting-edge algorithms in omics data analysis to give readers a fine-grained view. We survey various workflow management systems (WMSs), classify them into three levels of WMSs from simple software toolkits to integrated multi-omic analytical platforms, and point out the emerging needs for developing intelligent workflow management systems. We also discuss the challenges, strategies and some existing work in systematic evaluation of omics informatics tools. We conclude by providing future perspectives of emerging fields and new frontiers in omics informatics.

  17. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  18. Informatics and Standards for Nanomedicine Technology

    Science.gov (United States)

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  19. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Science.gov (United States)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  20. The Structure of Medical Informatics Journal Literature

    Science.gov (United States)

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393

  1. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  2. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  3. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    Science.gov (United States)

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  4. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    International Nuclear Information System (INIS)

    Phillips, M; Kalet, I; McNutt, T; Smith, W

    2014-01-01

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  5. Characteristics of the Audit Processes for Distributed Informatics Systems

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2009-01-01

    Full Text Available The paper contains issues regarding: main characteristics and examples of the distributed informatics systems and main difference categories among them, concepts, principles, techniques and fields for auditing the distributed informatics systems, concepts and classes of the standard term, characteristics of this one, examples of standards, guidelines, procedures and controls for auditing the distributed informatics systems. The distributed informatics systems are characterized by the following issues: development process, resources, implemented functionalities, architectures, system classes, particularities. The audit framework has two sides: the audit process and auditors. The audit process must be led in accordance with the standard specifications in the IT&C field. The auditors must meet the ethical principles and they must have a high-level of professional skills and competence in IT&C field.

  6. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this paper author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility. (author)

  7. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this presentation author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility

  8. SpacePy - a Python-based library of tools for the space sciences

    International Nuclear Information System (INIS)

    Morley, Steven K.; Welling, Daniel T.; Koller, Josef; Larsen, Brian A.; Henderson, Michael G.

    2010-01-01

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the

  9. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  10. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  11. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  12. The Recurrence Relations in Teaching Students of Informatics

    Science.gov (United States)

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  13. Medical informatics: an essential tool for health sciences research in acute care.

    Science.gov (United States)

    Li, Man; Pickering, Brian W; Smith, Vernon D; Hadzikadic, Mirsad; Gajic, Ognjen; Herasevich, Vitaly

    2009-10-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and administrative data from heterogeneous sources within the EMR to support research and practice improvement in the ICUs. Examples of intelligent alarms -- "sniffers", administrative reports, decision support and clinical research applications are presented.

  14. Medical Informatics: An Essential Tool for Health Sciences Research in Acute Care

    Directory of Open Access Journals (Sweden)

    Man Li

    2009-10-01

    Full Text Available Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR in complex environments such as intensive care units (ICU. We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and administrative data from heterogeneous sources within the EMR to support research and practice improvement in the ICUs. Examples of intelligent alarms – “sniffers”, administrative reports, decision support and clinical research applications are presented.

  15. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  16. Space science in the twenty-first century: imperatives for the decades 1995 to 2015 : life sciences

    National Research Council Canada - National Science Library

    1988-01-01

    Early in 1984, NASA asked the Space Science Board to undertake a study to determine the principal scientific issues that the disciplines of space science would face during the period from about 1995 to 2015...

  17. 1st International Conference on Computational Intelligence and Informatics

    CERN Document Server

    Prasad, V; Rani, B; Udgata, Siba; Raju, K

    2017-01-01

    The book covers a variety of topics which include data mining and data warehousing, high performance computing, parallel and distributed computing, computational intelligence, soft computing, big data, cloud computing, grid computing, cognitive computing, image processing, computer networks, wireless networks, social networks, wireless sensor networks, information and network security, web security, internet of things, bioinformatics and geoinformatics. The book is a collection of best papers submitted in the First International Conference on Computational Intelligence and Informatics (ICCII 2016) held during 28-30 May 2016 at JNTUH CEH, Hyderabad, India. It was hosted by Department of Computer Science and Engineering, JNTUH College of Engineering in association with Division V (Education & Research) CSI, India. .

  18. Communications and Informational Technologies: professional preparation of the Informatics professor

    Directory of Open Access Journals (Sweden)

    Adrian Robaina Valdés

    2017-09-01

    Full Text Available The development of the society it is sign by the development of the techniques and the science that has challenges the educational system in the formation of the new generation. The Cuban Educational politics had defined the social mission to each subsystem of education, in the particular case of the professional polytechnic education, belongs to the professors of Informatics, the accomplish of this mission, develop an important role in the educational use of the communication and informational technologies that requires and an adequate professional preparation. The aim of this article is to based form the theoretical and methodological point, the process of the professional preparation of the professors of informatics in the technical schools while they apply the communication and informational technologies, the theorical bases offered the historical past and tendencies of the professional preparation while they apply the communication and information technologies, the educative use of information technologies in the pedagogical process and the theoretical support in this process, using revision methods bibliography and systematizing . We may say that the research work concludes that the preparation of the professors had passed for different stages that had point to the need of the formation of professor to give answers to the introduction of the informatics subject at school, using different ways, the postgraduate updates and all the variety of ways to upgrade the professors will use. Form the educative point of view a part from the study as a subject must be use as an intermediate in the pedagogical process, also, to determine the characteristic that distinguish the professional preparation process.

  19. Public health informatics in India: the potential and the challenges.

    Science.gov (United States)

    Athavale, A V; Zodpey, Sanjay P

    2010-01-01

    Public health informatics is emerging as a new and distinct specialty area in the global scenario within the broader discipline of health informatics. The potential role of informatics in reducing health disparities in underserved populations has been identified by a number of reports from all over the world. The article discusses the scope, the limitations, and future perspective of this novice discipline in context to India. It also highlights information and technology related tools namely Geographical Information Systems, Telemedicine and Electronic Medical Record/Electronic Health Record. India needs to leverage its "technology" oriented growth until now (e.g., few satellite-based telemedicine projects, etc.) simultaneously toward development of "information"-based public health informatics systems in future. Under the rapidly evolving scenario of global public health, the future of the public health governance and population health in India would depend upon building and integrating the comprehensive and responsive domain of public health informatics.

  20. Impact Analysis for Risks in Informatics Systems

    OpenAIRE

    Baicu, Floarea; Baches, Maria Alexandra

    2013-01-01

    In this paper are presented methods of impact analysis on informatics system security accidents, qualitative and quantitative methods, starting with risk and informational system security definitions. It is presented the relationship between the risks of exploiting vulnerabilities of security system, security level of these informatics systems, probability of exploiting the weak points subject to financial losses of a company, respectively impact of a security accident on the company. Herewit...

  1. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  2. The twenty first century informatization and artificial intelligence system

    International Nuclear Information System (INIS)

    Noh, Jung Ho

    1999-12-01

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  3. The twenty first century informatization and artificial intelligence system

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jung Ho

    1999-12-15

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  4. Enhanced science capability on the International Space Station

    Science.gov (United States)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  5. Improving the quality of the evidence base of health informatics.

    Science.gov (United States)

    Talmon, Jan

    2008-11-06

    Evaluation of health informatics technology has had attention from quite a few researchers in health informatics in the last few decades. In the early nineties of the past century several working groups and research projects have discussed evaluation methods and methodologies. Despite these activities, evaluation of health informatics has not received the recognition it deserves. In this presentation we will reiterate the arguments put forward in the Declaration of Innsbruck to consider evaluation an essential element of the evidence base of health informatics. Not only are evaluation studies essential, it is also required that such studies are properly reported. A joint effort of the IMIA, EFMI and AMIA working groups on evaluation has resulted in a guideline for reporting the results of evaluation studies of health informatics applications (STARE-HI). STARE-HI is currently endorsed by EFMI. The general assembly of IMIA has adopted STARE-HI as an official IMIA document. Endorsement from AMIA is being sought. A pilot study in which STARE-HI was applied to assess the quality of current reporting clearly indicates that there is quite some room for improvement. Application of guidelines such as STARE-HI would contribute to a further improvement of the evidence base of health informatics and would open the road for high quality reviews and meta-analyses.

  6. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  7. Informatics and communication in a state public health department: a case study.

    Science.gov (United States)

    Hills, Rebecca A; Turner, Anne M

    2008-11-06

    State and local health departments are witnessing growth in the area of informatics. As new informatics projects commence, existing methods of communication within the health department may not be sufficient. We gathered information about roles and communication between a development team and a user group working simultaneously on an informatics project in a state public health department in an effort to better define how communication and role definition is best used within an informatics project.

  8. Fellowship training at John Hopkins: programs leading to careers in librarianship and informatics as informaticians or informationists.

    Science.gov (United States)

    Campbell, Jayne M; Roderer, Nancy K

    2005-01-01

    Preparing librarians to meet the information challenges faced in the current and future health care environments is critical. At Johns Hopkins University, three NLM-funded fellowship programs provide opportunities for librarians to utilize the rich environments of the Welch Medical Library and the Division of Health Sciences Informatics in support of life-long learning.

  9. Developing capacity in health informatics in a resource poor setting: lessons from Peru.

    Science.gov (United States)

    Kimball, Ann Marie; Curioso, Walter H; Arima, Yuzo; Fuller, Sherrilynne; Garcia, Patricia J; Segovia-Juarez, Jose; Castagnetto, Jesus M; Leon-Velarde, Fabiola; Holmes, King K

    2009-10-27

    The public sectors of developing countries require strengthened capacity in health informatics. In Peru, where formal university graduate degrees in biomedical and health informatics were lacking until recently, the AMAUTA Global Informatics Research and Training Program has provided research and training for health professionals in the region since 1999. The Fogarty International Center supports the program as a collaborative partnership between Universidad Peruana Cayetano Heredia in Peru and the University of Washington in the United States of America. The program aims to train core professionals in health informatics and to strengthen the health information resource capabilities and accessibility in Peru. The program has achieved considerable success in the development and institutionalization of informatics research and training programs in Peru. Projects supported by this program are leading to the development of sustainable training opportunities for informatics and eight of ten Peruvian fellows trained at the University of Washington are now developing informatics programs and an information infrastructure in Peru. In 2007, Universidad Peruana Cayetano Heredia started offering the first graduate diploma program in biomedical informatics in Peru.

  10. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    Science.gov (United States)

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.

  11. Popularizing Natural Sciences by Means of Scientific Fair

    Directory of Open Access Journals (Sweden)

    Martin Cápay

    2011-12-01

    Full Text Available Science popularization is demanding from the financial as well as the time point of view. It is necessary to find the premises that would be easily available to general public. Another important step is to promote the event so that it would attract the audience. The preparation of scientific experiments itself also requires some financial resources. If we want to take advantage of these resources in the most useful and effective way, we have to find answers to the question: “What, where and how do we want to popularise?” In the paper, we describe one-day project aimed to popularization of scientific fields carried out by eight departments of the Faculty of Natural Sciences, Constantine the Philosopher University in Nitra. The project was named Scientific Fair – Science you can see, hear and experience. Its main goal was to present seven scientific fields - Physics, Informatics, Mathematics, Geography, Ecology, Chemistry and Biology. Popularization was carried out as experimental interactive activities unveiling the undisclosed corners of science. Their aim was to inspire the audience, arouse their interest in science and motivate the participants to cognitive activities. We introduce the idea of the project in detail concentrating mainly on informatics realized by the Department of Informatics.

  12. The Africa Initiative for Planetary and Space Sciences

    Science.gov (United States)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  13. Biomedical and Health Informatics Education – the IMIA Years

    Science.gov (United States)

    2016-01-01

    Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405

  14. RAS - Target Identification - Informatics

    Science.gov (United States)

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  15. USSR Space Life Sciences Digest, issue 2

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  16. USSR Space Life Sciences Digest, issue 3

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  17. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  18. Middle East and North African Health Informatics Association (MENAHIA): Building Sustainable Collaboration.

    Science.gov (United States)

    Al-Shorbaji, Najeeb; Househ, Mowafa; Taweel, Adel; Alanizi, Abdullah; Mohammed, Bennani Othmani; Abaza, Haitham; Bawadi, Hala; Rasuly, Hamayon; Alyafei, Khalid; Fernandez-Luque, Luis; Shouman, Mohamed; El-Hassan, Osama; Hussein, Rada; Alshammari, Riyad; Mandil, Salah; Shouman, Sarah; Taheri, Shahrad; Emara, Tamer; Dalhem, Wasmiya; Al-Hamdan, Zaid; Serhier, Zineb

    2018-04-22

    There has been a growing interest in Health Informatics applications, research, and education within the Middle East and North African Region over the past twenty years. People of this region share similar cultural and religious values, primarily speak the Arabic language, and have similar health care related issues, which are in dire need of being addressed. Health Informatics efforts, organizations, and initiatives within the region have been largely under-represented within, but not ignored by, the International Medical Informatics Association (IMIA). Attempts to create bonds and collaboration between the different organizations of the region have remained scattered, and often, resulted in failure despite the fact that the need for a united health informatics collaborative within the region has never been more crucial than today. During the 2017 MEDINFO, held in Hangzhou, China, a new organization, the Middle East and North African Health Informatics Association (MENAHIA) was conceived as a regional non-governmental organization to promote and facilitate health informatics uptake within the region endorsing health informatics research and educational initiatives of the 22 countries represented within the region. This paper provides an overview of the collaboration and efforts to date in forming MENAHIA and displays the variety of initiatives that are already occurring within the MENAHIA region, which MENAHIA will help, endorse, support, share, and improve within the international forum of health informatics. Georg Thieme Verlag KG Stuttgart.

  19. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  20. Informatics, Data Mining, Econometrics and Financial Economics: A Connection

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2015-01-01

    textabstractThis short communication reviews some of the literature in econometrics and financial economics that is related to informatics and data mining. We then discuss some of the research on econometrics and financial economics that could be extended to informatics and data mining beyond the

  1. A Model for Clinical Informatics Education for Residents: Addressing an Unmet Need.

    Science.gov (United States)

    Mai, Mark V; Luo, Brooke T; Orenstein, Evan W; Luberti, Anthony A

    2018-04-01

    Opportunities for education in clinical informatics exist throughout the spectrum of formal education extending from high school to postgraduate training. However, physicians in residency represent an underdeveloped source of potential informaticians. Despite the rapid growth of accredited fellowship programs since clinical informatics became a board-eligible subspecialty in 2011, few resident physicians are aware of their role at the intersection of clinical medicine and health information technology or associated opportunities. In an effort to educate and engage residents in clinical informatics, Children's Hospital of Philadelphia has developed a three-pronged model: (1) an elective rotation with hands-on project experience; (2) a longitudinal experience that offers increased exposure and mentorship; and (3) a resident founded and led working group in clinical informatics. We describe resident participation in these initiatives and lessons learned, as well as resident perceptions of how these components have positively influenced informatics knowledge and career choices. Since inception of this model, five residents have pursued the clinical informatics fellowship. This educational model supports resident involvement in hospital-wide informatics efforts with tangible projects and promotes wider engagement through educational opportunities commensurate with the resident's level of interest. Schattauer GmbH Stuttgart.

  2. The exploration of the exhibition informatization

    Science.gov (United States)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  3. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  4. Space Sciences and Idealism

    Science.gov (United States)

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  5. Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics.

    Science.gov (United States)

    Leider, Jonathon P; Shah, Gulzar H; Williams, Karmen S; Gupta, Akrati; Castrucci, Brian C

    Health informatics can play a critical role in supporting local health departments' (LHDs') delivery of certain essential public health services and improving evidence base for decision support. However, LHDs' informatics capacities are below an optimum level. Efforts to build such capacities face ongoing challenges. Moreover, little is known about LHD leaders' desires for the future of public health informatics. Conduct a qualitative analysis of LHDs' future informatics plans, perceived barriers to accomplishing those plans, and potential impact of future advances in public health informatics on the work of the public health enterprise. This research presents findings from 49 in-depth key informant interviews with public health leaders and informatics professionals from LHDs, representing insights from across the United States. Interviewees were selected on the basis of the size of the population their LHD serves, as well as level of informatics capacity. Interviews were transcribed, verified, and double coded. Major barriers to doing more with informatics included staff capacity and training, financial constraints, dependency on state health agency, and small LHD size/lack of regionalization. When asked about the role of leadership in expanding informatics, interviewees said that leaders could make it a priority through (1) learning more about informatics and (2) creating appropriate budgets for integrated information systems. Local health department leaders said that they desired data that were timely and geographically specific. In addition, LHD leaders said that they desired greater access to clinical data, especially around chronic disease indicators. Local health department leadership desires to have timely or even real-time data. Local health departments have a great potential to benefit from informatics, particularly electronic health records in advancing their administrative practices and service delivery, but financial and human capital represents the

  6. Why do science in space? Researchers' Night at CERN 2017

    CERN Multimedia

    Nellist, Clara

    2017-01-01

    Space topic and debate "Why do science in space?" With the special presence of Matthias Maurer, European Space Agency astronaut, and Mercedes Paniccia, PhD, Senior Research Associate for space experiment AMS.

  7. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  8. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  9. [Role of self-leadership in the relationship between organizational culture and informatics competency].

    Science.gov (United States)

    Kim, Myoung Soo

    2009-10-01

    The purpose of this study was to identify the moderating and mediating effects of self-leadership in the relationship between organizational culture and nurses' informatics competency. Participants in this study were 297 nurses from the cities of Busan and Ulsan. The scales of organizational culture, self-leadership and informatics competency for nurses were used in this study. Descriptive statistics, Pearson correlation coefficient, stepwise multiple regression were used for data analysis. Nursing informatics competency of the participants was relatively low with a mean score 3.02. There were significant positive correlations between subcategories of perceived organizational culture, self-leadership and nursing informatics competency. Self-leadership was a moderator and a mediator between organizational culture and informatics competency. Based on the results of this study, self-leadership promotion strategies to improve nursing informatics competency are needed.

  10. Integrating Informatics into the Undergraduate Curriculum: A Report on a Pilot Project.

    Science.gov (United States)

    Ingram, D; Murphy, J

    1996-01-01

    Previous case reports in this series on Education and Training have looked at specialist courses for postgraduate students seeking an in-depth knowledge of informatics and a career in the field. By contrast, this review describes a project designed to pilot a series of learning opportunities for undergraduate medical students. Although some UK medical colleges have opted to introduce informatics into the curriculum as a discipline in its own right, the Informatics Department at St Bartholomew's Hospital Medical College chose a different approach. When a new curriculum was introduced at St Bartholomew's and at The London Hospital Medical College, the Head of the Informatics Department saw this as an ideal opportunity to explore ways of integrating informatics into the curriculum. The initiatives described in this paper were made possible as a result of an award from the UK government Department of Employment. Money from an Enterprise in Higher Education grant funded a range of programmes, one of which was designed to introduce students to selected aspects of informatics and to demonstrate what is feasible in the undergraduate curriculum. The work carried out over a period of three and a half years was intended to provide the basis for the next phase of curriculum development. However, in the wake of the restructuring which has taken place in London medical colleges, the Informatics Department at what was St Bartholomew's has relocated to University College London Medical School, and is now called The Centre for Health Informatics and Multiprofessional Education (CHIME). University College is designing a new medical curriculum and CHIME is drawing on the experience gained through the Enterprise Project to find the best way to integrate informatics into this curriculum.

  11. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    Science.gov (United States)

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  12. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    Science.gov (United States)

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  13. Neurosurgery clinical registry data collection utilizing Informatics for Integrating Biology and the Bedside and electronic health records at the University of Rochester.

    Science.gov (United States)

    Pittman, Christine A; Miranpuri, Amrendra S

    2015-12-01

    In a population health-driven health care system, data collection through the use of clinical registries is becoming imperative to continue to drive effective and efficient patient care. Clinical registries rely on a department's ability to collect high-quality and accurate data. Currently, however, data are collected manually with a high risk for error. The University of Rochester's Department of Neurosurgery in conjunction with the university's Clinical and Translational Science Institute has implemented the integrated use of the Informatics for Integrating Biology and the Bedside (i2b2) informatics framework with the Research Electronic Data Capture (REDCap) databases.

  14. Applications of the pipeline environment for visual informatics and genomics computations

    Directory of Open Access Journals (Sweden)

    Genco Alex

    2011-07-01

    Full Text Available Abstract Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The

  15. South Dakota Space Grant Consortium: Balancing Indigenous Earth System and Space Science with Western/Contemporary Science

    Science.gov (United States)

    Bolman, J.; Nall, J.

    2005-05-01

    The South Dakota Space Grant Consortium (SDSGC) was established March 1, 1991 by a NASA Capability Enhancement Grant. Since that time SDSGC has worked to provide earth system and space science education, outreach and services to all students across South Dakota. South Dakota has nine tribes and five Tribal Colleges. This has presented a tremendous opportunity to develop sustainable equitable partnerships and collaborations. SDSGC believes strongly in developing programs and activities that highlight and reinforce the balance of Indigenous science and ways of knowing with current findings in Western/Contemporary Science. This blending of science and culture creates a learning community where individuals especially students, can gain confidence and pride in their unique skills and abilities. Universities are also witnessing the accomplishments and achievements of students who are able to experience a tribal environment and then carry that experience to a college/university/workplace and significantly increase the learning achievement of all. The presentation will highlight current Tribal College and Tribal Community partnerships with the Rosebud Sioux Reservation (Sinte Gleska University), Pine Ridge Indian Reservation (Oglala Lakota College), Standing Rock Sioux Reservation (Sitting Bull College) and Cheyenne River Sioux Reservation (Si Tanka) amongst others. Programs and activities to be explained during the presentation include but not limited to: NASA Workforce Native Connections, Scientific Knowledge for Indian Learning and Leadership (SKILL), NSF "Bridges to Success" Summer Research Program, NSF "Fire Ecology" Summer Research Experience, as well as geospatial and space science programs for students and general community members. The presentation will also cover the current initiatives underway through NASA Workforce Development. These include: partnering with the Annual He Sapa Wacipi (Black Hills Pow Wow - attendance of 14,000 Natives) to host Native Space

  16. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  17. Science opportunities through nuclear power in space

    International Nuclear Information System (INIS)

    Harris, H.M.

    1995-01-01

    With the downsizing or outright elimination of nuclear power capability in space in progress, it is important to understand what this means to science in therms of capability cost. This paper is a survey of the scientific possibilities inherent in the potential availability of between 15 to 30 kW through electrical nuclear power in space. The approach taken has been to interview scientists involved in space-research, especially those whose results are dependent or proportional to power availability and to survey previous work in high-power spacecraft and space-based science instruments. In addition high level studies were done to gather metrics about what kind and quantity of science could be achieved throughout the entire solar system assuming the availability in the power amounts quoted above. It is concluded that: (1) Sustained high power using a 10--30 kW reactor would allow the capture of an unprecedented amount of data on planetary objects through the entire solar system. (2) High power science means high qualtiy data through higher resolution of radars, optics and the sensitivity of many types of instruments. (3) In general, high power in the range of 10--30 kW provides for an order-of-magnitude increase of resolution of synthetic aperture radars over other planetary radars. (4) High power makes possible the use of particle accelerators to probe the atomic structure of planetary surface, particularly in the dim, outer regions of the solar system. (5) High power means active cooling is possible for devices that must operate at low temperature under adverse conditions. (6) High power with electric propulsion provides the mission flexibility to vary observational viewpoints and select targets of opportunity. copyright 1995 American Institute of Physics

  18. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  19. Social care informatics as an essential part of holistic health care: a call for action.

    Science.gov (United States)

    Rigby, Michael; Hill, Penny; Koch, Sabine; Keeling, Debbie

    2011-08-01

    The authors identified the need for a cross-disciplinary research view of issues to ensure an integrated citizen-centric support to achieve optimal health of individual citizens and, in particular, the role of informatics to inform and coordinate support towards integrated and holistic care. An Exploratory Workshop was approved and sponsored by the European Science Foundation. Twenty-three participants from 15 countries attended, covering a full range of health, social care and informatics professions and disciplines. The participants found strong common ground in identifying key issues to be addressed if citizens with compromised health are to receive integrated and coordinated support to a common set of objectives, while also ensuring appropriate choice and support for citizen, family and other informal carers. At the same time, optimal health was identified as a fundamental human right, and that achieving this is a necessary priority of a caring society. Moreover, Europe has a commitment to researching and developing health informatics (e-health), though not yet giving a priority to this integration of health and social care. Specifically the following main informatics challenges to be addressed were identified: (1) to identify available information and communication needs related to different scenarios of use in the intersection between health and social care, (2) to develop and map shared ontologies, and standards for integration and/or brokerage, (3) to enable planned information access and sharing, shaping a system of trust where the patient is an active partner and policies are established considering all partners/interests, (4) to investigate the use of automatic/intelligent knowledge based and context-relevant services, and (5) empowering the citizen (or their selected agent) as co-producer through modern informatics tools, while carefully avoiding selective disempowerment of the most vulnerable. The Exploratory Workshop resulted in a unanimous

  20. Unravelling the tangled taxonomies of health informatics

    Directory of Open Access Journals (Sweden)

    David Barrett

    2014-08-01

    Full Text Available Even though informatics is a term used commonly in healthcare, it can be a confusing and disengaging one. Many definitions exist in the literature, and attempts have been made to develop a clear taxonomy. Despite this, informatics is still a term that lacks clarity in both its scope and the classification of sub-terms that it encompasses.This paper reviews the importance of an agreed taxonomy and explores the challenges of establishing exactly what is meant by health informatics (HI. It reviews what a taxonomy should do, summarises previous attempts at categorising and organising HI and suggests the elements to consider when seeking to develop a system of classification.The paper does not provide all the answers, but it does clarify the questions. By plotting a path towards a taxonomy of HI, it will be possible to enhance understanding and optimise the benefits of embracing technology in clinical practice.

  1. Design of Cognitive Interfaces for Personal Informatics Feedback

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk

    to personal informatics systems, and propose an approach to design cognitive interfaces, which considers both users’ motivations, needs, and goals. In this thesis I propose a new personal informatics framework, the feedback loop, which incorporates lean agile design principles. Including hierarchical modeling...... of goals, activities, and tasks to create minimal viable products. While considering how micro-interactions based on an understanding of data, couples with user needs and the context they appear in, can contribute to creating cognitive interfaces. Designing cognitive interfaces requires a focus....... For instance, examining emotional responses to pleasant and unpleasant media content from brain activity, reveals the large amount of data and extensive analysis required to apply this to future personal informatics systems. In addition we analyse challenges related to temporal aspects of the feedback loop...

  2. A short history of medical informatics in bosnia and herzegovina.

    Science.gov (United States)

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  3. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    Science.gov (United States)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  4. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  5. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    Science.gov (United States)

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  6. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    Science.gov (United States)

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  7. Characteristics of Information Systems and Business Informatics Study Programs

    Science.gov (United States)

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  8. Big data science: A literature review of nursing research exemplars.

    Science.gov (United States)

    Westra, Bonnie L; Sylvia, Martha; Weinfurter, Elizabeth F; Pruinelli, Lisiane; Park, Jung In; Dodd, Dianna; Keenan, Gail M; Senk, Patricia; Richesson, Rachel L; Baukner, Vicki; Cruz, Christopher; Gao, Grace; Whittenburg, Luann; Delaney, Connie W

    Big data and cutting-edge analytic methods in nursing research challenge nurse scientists to extend the data sources and analytic methods used for discovering and translating knowledge. The purpose of this study was to identify, analyze, and synthesize exemplars of big data nursing research applied to practice and disseminated in key nursing informatics, general biomedical informatics, and nursing research journals. A literature review of studies published between 2009 and 2015. There were 650 journal articles identified in 17 key nursing informatics, general biomedical informatics, and nursing research journals in the Web of Science database. After screening for inclusion and exclusion criteria, 17 studies published in 18 articles were identified as big data nursing research applied to practice. Nurses clearly are beginning to conduct big data research applied to practice. These studies represent multiple data sources and settings. Although numerous analytic methods were used, the fundamental issue remains to define the types of analyses consistent with big data analytic methods. There are needs to increase the visibility of big data and data science research conducted by nurse scientists, further examine the use of state of the science in data analytics, and continue to expand the availability and use of a variety of scientific, governmental, and industry data resources. A major implication of this literature review is whether nursing faculty and preparation of future scientists (PhD programs) are prepared for big data and data science. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A repository of codes of ethics and technical standards in health informatics.

    Science.gov (United States)

    Samuel, Hamman W; Zaïane, Osmar R

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository.

  10. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  11. Personal Informatics in the Wild: Hacking Habits for Health & Happiness

    DEFF Research Database (Denmark)

    Li, Ian; Froehlich, Jon; Larsen, Jakob Eg

    2013-01-01

    Personal informatics is a class of systems that help people collect personal information to improve selfknowledge. Improving self-knowledge can foster selfinsight and promote positive behaviors, such as healthy living and energy conservation. The development of personal informatics applications p...

  12. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    Science.gov (United States)

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  13. The Anesthesiologist-Informatician: A Survey of Physicians Board-Certified in Both Anesthesiology and Clinical Informatics.

    Science.gov (United States)

    Poterack, Karl A; Epstein, Richard H; Dexter, Franklin

    2018-03-12

    All 36 physicians board-certified in both anesthesiology and clinical informatics as of January 1, 2016, were surveyed via e-mail, with 26 responding. Although most (25/26) generally expressed satisfaction with the clinical informatics boards, and view informatics expertise as important to anesthesiology, most (24/26) thought it unlikely or highly unlikely that substantial numbers of anesthesiology residents would pursue clinical informatics fellowships. Anesthesiologists wishing to qualify for the clinical informatics board examination under the practice pathway need to devote a substantive amount of worktime to informatics. There currently are options outside of formal fellowship training to acquire the knowledge to pass.

  14. A national survey on the current status of informatics residency education in pharmacy.

    Science.gov (United States)

    Blash, Anthony; Saltsman, Connie L; Steil, Condit

    2017-11-01

    Upon completion of their post-graduate training, pharmacy informatics residents need to be prepared to interact with clinical and technology experts in the new healthcare environment. This study describes pharmacy informatics residency programs within the United States. Preliminary information for all pharmacy informatics residency programs was accessed from program webpages. An email was sent out to programs asking them to respond to a six-item questionnaire. This questionnaire was designed to elicit information on attributes of the program, behaviors of the preceptors and residents, and attitudes of the residency directors. Of 22 pharmacy informatics residencies identified, nineteen (86%) participated. Twenty (91%) were second post-graduate year (PGY2) residencies. Ten (45%) were accredited by the American Society of Health-System Pharmacists (ASHP), while eight (36%) were candidates for accreditation. Hospital (17/22, 77%) and administrative offices (3/22, 14%) were the predominant training sites for pharmacy informatics residents. Large institutions were the predominant training environment for the pharmacy informatics resident, with 19 of 22 (86%) institutions reporting a licensed bed count of 500 or more. The median (range) number of informatics preceptors at a site was six to eight. Regarding barriers to pharmacy informatics residency education, residency directors reported that residents did not feel prepared based on the limited availability of curricular offerings. In the United States, relatively few residencies are explicitly focused on pharmacy informatics. Most of these are accredited and hospital affiliated, especially with large institutions (>500 beds). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Translational informatics: an industry perspective.

    Science.gov (United States)

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  16. An urban informatics approach to smart city learning in architecture and urban design education

    Directory of Open Access Journals (Sweden)

    Mirko Guaralda

    2013-08-01

    Full Text Available This study aims to redefine spaces of learning to places of learning through the direct engagement of local communities as a way to examine and learn from real world issues in the city. This paper exemplifies Smart City Learning, where the key goal is to promote the generation and exchange of urban design ideas for the future development of South Bank, in Brisbane, Australia, informing the creation of new design policies responding to the needs of local citizens. Specific to this project was the implementation of urban informatics techniques and approaches to promote innovative engagement strategies. Architecture and Urban Design students were encouraged to review and appropriate real-time, ubiquitous technology, social media, and mobile devices that were used by urban residents to augment and mediate the physical and digital layers of urban infrastructures. Our study’s experience found that urban informatics provide an innovative opportunity to enrich students’ place of learning within the city.

  17. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Science.gov (United States)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  18. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  19. Natural training tools of informatics in conditions of embodied and mental approach realization

    Directory of Open Access Journals (Sweden)

    Daria A. Barkhatova

    2017-01-01

    Full Text Available Modern processes of globalization and informatization of human activity cause the necessity of change of the educational paradigm in the field of information training of a person, focused on the formation of the strong fundamental knowledge and abilities, which are necessary for person’s information activities and self-education during all life.In connection with these requirements, it is necessary to pay attention to new approaches in education, based on achievements of cognitive science and modern pedagogic. One of such approaches is embodied and mental approach. The paper is devoted to the description of a way of realization of embodied and mental approach in training of informatics through application of the natural tools, providing the fullest and deep understanding of the educational material, and development of cognitive abilities of students.In the paper the theoretical analysis of psychology-pedagogical and methodical literature on a research subject is carried out, results are generalized, natural tools are modeled and results of their partial approbation are described. Achievement of necessary quality of education is offered due to the use of modern techniques, focused on the development of cognitive abilities and improvement of quality of the knowledge. In the conditions of information education, the combination of embodied and mental approaches will allow to acquaint students with the essence of the studied subject due to activation of motor area of the memory and the kinesthetic and visual perception channels. The instrument of realization of this idea is offered to use natural tools in informatics, what is actualized by age features of cognitive abilities of students and individual requirements to ways of perception and mastering of the material, matched according to the level of their knowledge.The research results describe the models of natural tools, developed by students and lecturers of the basic Department of Informatics

  20. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  1. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    Science.gov (United States)

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  2. The diversity and disparity in biomedical informatics (DDBI) workshop.

    Science.gov (United States)

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  3. Informatics for practicing anatomical pathologists: marking a new era in pathology practice.

    Science.gov (United States)

    Gabril, Manal Y; Yousef, George M

    2010-03-01

    Informatics can be defined as using highly advanced technologies to improve patient diagnosis or management. Pathology informatics had evolved as a response to the overwhelming amount of information that was available, in an attempt to better use and maintain them. The most commonly used tools of informatics can be classified into digital imaging, telepathology, as well as Internet and electronic data mining. Digital imaging is the storage of anatomical pathology information, either gross pictures or microscopic slides, in an electronic format. These images can be used for education, archival, diagnosis, and consultation. Virtual microscopy is the more advanced form of digital imaging with enhanced efficiency and accessibility. Telepathology is now increasingly becoming a useful tool in anatomical pathology practice. Different types of telepathology communications are available for both diagnostic and consultation services. The spectrum of applications of informatics in the field of anatomical pathology is broad and encompasses medical education, clinical services, and pathology research. Informatics is now settling on solid ground as an important tool for pathology teaching, with digital teaching becoming the standard tool in many institutions. After a slow start, we now witness the transition of informatics from the research bench to bedside. As we are moving into a new era of extensive pathology informatics utilization, several challenges have to be addressed, including the cost of the new technology, legal issues, and resistance of pathologists. It is clear from the current evidence that pathology informatics will continue to grow and have a major role in the future of our specialty. However, it is also clear that it is not going to fully replace the human factor or the regular microscope.

  4. 2nd International Conference on Advanced Intelligent Systems and Informatics

    CERN Document Server

    Shaalan, Khaled; Gaber, Tarek; Azar, Ahmad; Tolba, M

    2017-01-01

    This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.

  5. THE MAIN PSYCHOLOGICAL AND PEDAGOGICAL REQUIREMENTS OF INFORMATICS TEXTBOOKS FOR 6TH

    Directory of Open Access Journals (Sweden)

    Popel M.

    2017-03-01

    Full Text Available In the article the psychological characteristics of pupils 6th grade: rapid psychophysical development and crises inherent in early adolescence. For a comparative analysis of knowledge of pupils as the fifth and sixth grades by training years (2013-2014, 2014-2015 the dependence of quality of knowledge from the problems of adolescence. The specifics of semantic informatics textbooks for 6th grade is taking into account the age and characteristics of pupils need reflected on the psychological and educational requirements. Presents the basic functions performed by the textbook as a teaching tool, particularly in informatics. Considered the requirements set by the modern informatics textbook T. P. Sokolowski. Analysis of current informatics textbooks for 6th grade on the example of studying the topic "Algorithms and their performers' and found some problems in their content. Considering completed research were summarized and singled the basic psychological and pedagogical requirements to be met by informatics textbooks for 6th grade. As the prospects for further research appears analysis electronic editions of informatics and refinement requirements for defined existing textbooks considering psychological characteristics of young adolescents.

  6. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    Science.gov (United States)

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.

  7. The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.

    Science.gov (United States)

    Masic, Izet

    2009-01-01

    NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  8. Pharmacy informatics: A call to action for educators, administrators, and residency directors.

    Science.gov (United States)

    Steckler, Taylor J; Brownlee, Michael J; Urick, Benjamin Y; Farley, Matthew J

    2017-09-01

    Pharmacy informatics involves the customization and application of information technology to improve medication-related processes. It is a critical function given the recent expansion of technology and prevalence of medication use throughout healthcare. Despite the necessity for pharmacy involvement, many pharmacists and student pharmacists are unaware of how to get started in informatics. Ideally, training should start early with student pharmacists being enrolled in introductory courses taught by leaders in the field. Students especially interested in informatics can build upon their classroom experience with postgraduate year two (PGY2) residencies in several informatics-related areas. Additionally, current pharmacists can gather information from national pharmacy organizations and local information technology pharmacists to prepare for projects in the field. These approaches provide opportunities for all pharmacists to expand their knowledge and establish the basis for highly-motivated pharmacists to become experts in informatics. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  10. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care.

    Science.gov (United States)

    Pavel, Misha; Jimison, Holly B; Korhonen, Ilkka; Gordon, Christine M; Saranummi, Niilo

    2015-12-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations.

  11. Multiverse: Increasing Diversity in Earth and Space Science Through Multicultural Education

    Science.gov (United States)

    Peticolas, L. M.; Raftery, C. L.; Mendez, B.; Paglierani, R.; Ali, N. A.; Zevin, D.; Frappier, R.; Hauck, K.; Shackelford, R. L., III; Yan, D.; Thrall, L.

    2015-12-01

    Multiverse at the University of California, Berkeley Space Sciences Laboratory provides earth and space science educational opportunities and resources for a variety of audiences, especially for those who are underrepresented in the sciences. By way of carefully crafted space and earth science educational opportunities and resources, we seek to connect with people's sense of wonder and facilitate making personal ties to science and the learning process in order to, ultimately, bring the richness of diversity to science and make science discovery accessible for all. Our audiences include teachers, students, education and outreach professionals, and the public. We partner with NASA, the National Science Foundation, scientists, teachers, science center and museum educators, park interpreters, and others with expertise in reaching particular audiences. With these partners, we develop resources and communities of practice, offer educator workshops, and run events for the public. We will will present on our pedagogical techniques, our metrics for success, and our evaluation findings of our education and outreach projects that help us towards reaching our vision: We envision a world filled with science literate societies capable of thriving with today's technology, while maintaining a sustainable balance with the natural world; a world where people develop and sustain the ability to think critically using observation and evidence and participate authentically in scientific endeavors; a world where people see themselves and their culture within the scientific enterprise, and understand science within the context that we are all under one sky and on one Earth. Photo Caption: Multiverse Team Members at our Space Sciences Laboratory from left to right: Leitha Thrall, Daniel Zevin, Bryan Mendez, Nancy Ali, Igor Ruderman, Laura Peticolas, Ruth Paglierani, Renee Frappier, Rikki Shackelford, Claire Raftery, Karin Hauck, and Darlene Yan.

  12. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  13. Nursing Informatics Competency Program

    Science.gov (United States)

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  14. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  15. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  16. The Health Information Technology Competencies Tool: Does It Translate for Nursing Informatics in the United States?

    Science.gov (United States)

    Sipes, Carolyn; Hunter, Kathleen; McGonigle, Dee; West, Karen; Hill, Taryn; Hebda, Toni

    2017-12-01

    Information technology use in healthcare delivery mandates a prepared workforce. The initial Health Information Technology Competencies tool resulted from a 2-year transatlantic effort by experts from the US and European Union to identify approaches to develop skills and knowledge needed by healthcare workers. It was determined that competencies must be identified before strategies are established, resulting in a searchable database of more than 1000 competencies representing five domains, five skill levels, and more than 250 roles. Health Information Technology Competencies is available at no cost and supports role- or competency-based queries. Health Information Technology Competencies developers suggest its use for curriculum planning, job descriptions, and professional development.The Chamberlain College of Nursing informatics research team examined Health Information Technology Competencies for its possible application to our research and our curricular development, comparing it originally with the TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 tools, which examine informatics competencies at four levels of nursing practice. Additional analysis involved the 2015 Nursing Informatics: Scope and Standards of Practice. Informatics is a Health Information Technology Competencies domain, so clear delineation of nursing-informatics competencies was expected. Researchers found TIGER-based Assessment of Nursing Informatics Competencies and Nursing Informatics Competency Assessment of Level 3 and Level 4 differed from Health Information Technology Competencies 2016 in focus, definitions, ascribed competencies, and defined levels of expertise. When Health Information Technology Competencies 2017 was compared against the nursing informatics scope and standards, researchers found an increase in the number of informatics competencies but not to a significant degree. This is not surprising

  17. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  18. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  19. Evaluation of the Effects of Flipped Learning of a Nursing Informatics Course.

    Science.gov (United States)

    Oh, Jina; Kim, Shin-Jeong; Kim, Sunghee; Vasuki, Rajaguru

    2017-08-01

    This study evaluated the effects of flipped learning in a nursing informatics course. Sixty-four undergraduate students attending a flipped learning nursing informatics course at a university in South Korea participated in this study in 2013. Of these, 43 students participated at University A, and 46 students participated at University B, as a comparison group. Three levels of Kirkpatrick's evaluation model were used: level one (the students' satisfaction), level two (achievement on the course outcomes), and level three (self-perceived nursing informatics competencies). Students of the flipped learning course reported positive effects above the middle degree of satisfaction (level one) and achieved the course outcomes (level two). In addition, self-perceived nursing informatics competencies (level three) of the flipped learning group were higher than those of the comparison group. A flipped learning nursing informatics course is an effective teaching strategy for preparing new graduate nurses in the clinical setting. [J Nurs Educ. 2017;56(8):477-483.]. Copyright 2017, SLACK Incorporated.

  20. The Revolution in Earth and Space Science Education.

    Science.gov (United States)

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  1. MEANS OF FORMATION OF PROFESSIONAL COMPETENCE OF FUTURE TEACHERS OF INFORMATICS

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2010-09-01

    Full Text Available Teacher of Informatics has been in business in an environment that constantly change and modify, so his training requires the diversity of forms, methods, approaches and teaching technologies as well as learning tools that foster professional competence of students - future teachers of informatics. This article describes the use of author the Internet information resources, electronic textbook, multimedia training programs to ensure the process of studying professional disciplines in the context of the formation of professional competence of future teachers of informatics.

  2. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Chi-Fang Chin1 Arthur Chun-Chieh Shih2 Kuo-Chin Fan1 3. Department of Computer Science and Information Engineering, National Central University, Chung-Li, Taiwan; Institute of Information Science, Academia Sinica, Taipei, Taiwan; Department of Informatics, Fo Guang Univeristy, Ilan, Taiwan ...

  3. Informatics competencies for nurse leaders: protocol for a scoping review.

    Science.gov (United States)

    Kassam, Iman; Nagle, Lynn; Strudwick, Gillian

    2017-12-14

    Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  5. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  6. Assessing the current state of dental informatics in saudi arabia: the new frontier.

    Science.gov (United States)

    Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa

    2014-01-01

    Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.

  7. Building blocks for a clinical imaging informatics environment.

    Science.gov (United States)

    Kohli, Marc D; Warnock, Max; Daly, Mark; Toland, Christopher; Meenan, Chris; Nagy, Paul G

    2014-04-01

    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064-1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions.

  8. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    Science.gov (United States)

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed.

  9. Panel: Eco-informatics and decision making managing our natural resources

    Science.gov (United States)

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  10. The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies

    Science.gov (United States)

    Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.

    2014-01-01

    Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630

  11. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  12. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    Science.gov (United States)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  13. Life Sciences Data Archive (LSDA) in the Post-Shuttle Era

    Science.gov (United States)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2009-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management, the systematic use and reuse of information/experience/expertise to achieve a specific goal, are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries from the science communities.

  14. TRANING BACHELORS OF BUSINESS INFORMATICS TO SOLVE PRACTICAL PROBLEMS OF MARKETING

    Directory of Open Access Journals (Sweden)

    Л В Дегтярева

    2016-12-01

    Full Text Available In article need of an integrated approach is proved when training bachelors of business informatics for the solution of practical problems of marketing and the example of realization of such approach is given. The illustrated example proves need of use of an integrated approach for training of bachelors of business informatics, in particular, on such disciplines as the mathematics, informatics and marketing where theoretical knowledge uniting, give already synergetic effect in practical refraction. Such integration undergoes already biennial testing at our university and yields positive result.

  15. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  16. The Euratom informatics architecture

    International Nuclear Information System (INIS)

    Blerot, J.F.; Kschwendt, H.

    1991-01-01

    Open systems and standards in a multi product environment are the EURATOM guidelines. Consequently, the OSI model, UNIX (POSIX) and X/OPEN specifications determine the EURATOM informatic strategy. The major objectives are the development of secured telecommunications, the migration to open systems and the integration of data processing from measurements in the plants to accountancy the headquarters

  17. Information technology for clinical, translational and comparative effectiveness research. Findings from the section clinical research informatics.

    Science.gov (United States)

    Daniel, C; Choquet, R

    2013-01-01

    To summarize advances of excellent current research in the new emerging field of Clinical Research Informatics. Synopsis of four key articles selected for the IMIA Yearbook 2013. The selection was performed by querying PubMed and Web of Science with predefined keywords. From the original set of 590 papers, a first subset of 461 articles which was in the scope of Clinical Research Informatics was refined into a second subset of 79 relevant articles from which 15 articles were retained for peer-review. The four selected articles exemplify current research efforts conducted in the areas of data representation and management in clinical trials, secondary use of EHR data for clinical research, information technology platforms for translational and comparative effectiveness research and implementation of privacy control. The selected articles not only illustrate how innovative information technology supports classically organized randomized controlled trials but also demonstrate that the long promised benefits of electronic health care data for research are becoming a reality through concrete platforms and projects.

  18. USSR Space Life Sciences Digest, issue 4

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  19. Nursing Informatics Competencies Among Nursing Students and Their Relationship to Patient Safety Competencies: Knowledge, Attitude, and Skills.

    Science.gov (United States)

    Abdrbo, Amany Ahmed

    2015-11-01

    With implementation of information technology in healthcare settings to promote safety and evidence-based nursing care, a growing emphasis on the importance of nursing informatics competencies has emerged. This study assessed the relationship between nursing informatics and patient safety competencies among nursing students and nursing interns. A descriptive, cross-sectional correlational design with a convenience sample of 154 participants (99 nursing students and 55 interns) completed the Self-assessment of Nursing Informatics Competencies and Patient Safety Competencies. The nursing students and interns were similar in age and years of computer experience, and more than half of the participants in both groups had taken a nursing informatics course. There were no significant differences between competencies in nursing informatics and patient safety except for clinical informatics role and applied computer skills in the two groups of participants. Nursing informatics competencies and patient safety competencies were significantly correlated except for clinical informatics role both with patient safety knowledge and attitude. These results provided feedback to adjust and incorporate informatics competencies in the baccalaureate program and to recommend embracing the nursing informatics course as one of the core courses, not as an elective course, in the curriculum.

  20. Quo Vadis, Informatics Education?--Towards a More Up-to-Date Informatics Education

    Science.gov (United States)

    Zsakó, László; Horváth, Gyozo

    2017-01-01

    Informatics education has been in a cul-de-sac for several years (not only in Hungary), being less and less able to meet the needs of the industry and higher education. In addition, the latest PISA survey shows that--to put it a little strongly--the majority of the x-, y- and z generations are digital illiterates. The aim of this paper to examine…

  1. Peculiarities of Teaching Medical Informatics and Statistics

    Directory of Open Access Journals (Sweden)

    Sergey Glushkov

    2017-05-01

    Full Text Available The article reviews features of teaching Medical Informatics and Statistics. The course is referred to the disciplines of Mathematical and Natural sciences. The course is provided in all the faculties of I. M. Sechenov First Moscow State Medical University. For students of Preventive Medicine Department the time frame allotted for studying the course is significantly larger than for similar course provided at other faculties. To improve the teaching methodology of the discipline an analysis of the curriculum has been carried out, attendance and students’ performance statistics have been summarized. As a result, the main goals and objectives have been identified. Besides, general educational functions and the contribution to the solution of problems of education, students’ upbringing and development have been revealed; two stages of teaching have been presented. Recommendations referred to the newest methodological development aimed at improving the quality of teaching the discipline are provided. The ways of improving the methods and organizational forms of education are outlined.

  2. Creativity as a Key Driver for Designing Context Sensitive Health Informatics.

    Science.gov (United States)

    Zhou, Chunfang; Nøhr, Christian

    2017-01-01

    In order to face the increasing challenges of complexity and uncertainty in practice of health care, this paper aims to discuss how creativity can contribute to design new technologies in health informatics systems. It will firstly introduce the background highlighting creativity as a missing element in recent studies on context sensitive health informatics. Secondly, the concept of creativity and its relationship with activities of technology design will be discussed from a socio-culture perspective. This will be thirdly followed by understanding the roles of creativity in designing new health informatics technologies for meeting needs of high context sensitivity. Finally, a series of potential strategies will be suggested to improve creativity among technology designers working in healthcare industries. Briefly, this paper innovatively bridges two areas studies on creativity and context sensitive health informatics by issues of technology design that also indicates its important significances for future research.

  3. Open Genetic Code: on open source in the life sciences.

    Science.gov (United States)

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.

  4. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  5. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  6. Space science comes of age: Perspectives in the history of the space sciences Proceedings of the Symposium, Washington, DC, March 23, 24, 1981

    International Nuclear Information System (INIS)

    Hanle, P.A.; Chamberlain, V.D.

    1981-01-01

    The development of space science is recounted in two parts, the first written by founders and pioneers in the field who recount some of the important scientific discoveries in their areas, the second offering a preliminary view of space science by professional historians. The subjects of the first part are solar physics, rocket astronomy, the ultraviolet spectra of stars, lunar exploration and geology. James Van Allen's lecture first disclosing his discovery of the radiation belts surrounding the earth is reprinted. The second part includes the story of the development of theories about the origin of the solar system before 1960, a discussion of studies of the upper atmosphere, a concise history of space-launch vehicles, and a review of the politics and funding of the Landsat project

  7. Research on the Model of E-commerce of China’s Urban Informatization Community

    Directory of Open Access Journals (Sweden)

    Yu Han

    2014-02-01

    Full Text Available Urban informatization e-commerce is a business model of the combination of e-commerce operators and organizational forms of community property management, and the import of people management and property management into e-commerce. This paper analyzes the current situation of Chinese urban community e-commerce and informatization community building. It puts forward the model of community e-commerce based on informatization, and its feasibility was verified by PIECE method. Finally, focusing on the application, the model of community e-commerce based on informatization community is analyzed in detail from the perspective of the role and value, supply chain and collaborative management works. Information services are most likely to succeed in the entry point of e-commerce. The study has shown that the establishment of community e-commerce on the basis of urban informatization community can be regarded as a solution of e-commerce development.

  8. Transforming consumer health informatics through a patient work framework: connecting patients to context.

    Science.gov (United States)

    Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C

    2015-01-01

    Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients' and their family members' health-related activities, referred to here as 'patient work'. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients' biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients' health management in larger processes and contexts and prioritizes patients' perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients' everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com. For numbered affiliations see end of article.

  9. Earth and Space Science PhD Employment Trends

    Science.gov (United States)

    Giesler, J. L.

    2001-05-01

    A recent report by the American Geophysical Union and the American Geological Institute, "Earth and Space Science PhDs, Class of 1999" looked at employment trends of recent graduates. Demographically, our graduates are, as a population, older than those who graduated in any other physical science. While almost one-third of graduates are employed in a different subfield than that of their degree, more than 80% of Earth and space science PhDs secure initial employment in the geosciences. Graduates are finding employment in less than 6 months and the unemployment rate has dropped significantly below that of two years ago. The PhD classes of 1996, 1997, and 1998 had ~ 50% of their graduates taking postdoctoral appointments. In 1999, this declined to only 38% postdocs with an increase in permanent employment in both the education and government sectors. Perception of the job market is improving as well. Respondents are considerably happier than they were in 1996.

  10. Understanding the Essence of Caring from the Lived Experiences of Filipino Informatics Nurses.

    Science.gov (United States)

    Macabasag, Romeo Luis A; Diño, Michael Joseph S

    2018-04-01

    Caring is considered a unique concept in nursing because it subsumes all intrinsic attributes of nursing as a human helping discipline. Scholars have argued that caring is usually seen as an encounter between nurses and patients, but how about nurses with minimal or absent nurse-patient encounters, like informatics nurses? In this study, we explored the meaning of the phenomenon of caring to present lived experiences of caring, namely caring as actions of coming in between; caring as expressed within embodied relations; and caring and the path traversed by informatics nurses. The informatics nurse-cyborg-patient triad speaks of Filipino informatics nurses' insightful understanding of the phenomenon of caring.

  11. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  12. Health Departments’ Engagement in Emergency Preparedness Activities: The Influence of Health Informatics Capacity

    OpenAIRE

    Gulzar H. Shah; Bobbie Newell; Ruth E. Whitworth

    2016-01-01

    Background: Local health departments (LHDs) operate in a complex and dynamic public health landscape, with changing demands on their emergency response capacities. Informatics capacities might play an instrumental role in aiding LHDs emergency preparedness. This study aimed to explore the extent to which LHDs’ informatics capacities are associated with their activity level in emergency preparedness and to identify which health informatics capacities are associated with improved em...

  13. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  14. Health Informatics and E-health Curriculum for Clinical Health Profession Degrees.

    Science.gov (United States)

    Gray, Kathleen; Choo, Dawn; Butler-Henderson, Kerryn; Whetton, Sue; Maeder, Anthony

    2015-01-01

    The project reported in this paper models a new approach to making health informatics and e-health education widely available to students in a range of Australian clinical health profession degrees. The development of a Masters level subject uses design-based research to apply educational quality assurance practices which are consistent with university qualification frameworks, and with clinical health profession education standards; at the same time it gives recognition to health informatics as a specialised profession in its own right. The paper presents details of (a) design with reference to the Australian Qualifications Framework and CHIA competencies, (b) peer review within a three-university teaching team, (c) external review by experts from the professions, (d) cross-institutional interprofessional online learning, (e) methods for evaluating student learning experiences and outcomes, and (f) mechanisms for making the curriculum openly available to interested parties. The project has sought and found demand among clinical health professionals for formal health informatics and e-health education that is designed for them. It has helped the educators and organisations involved to understand the need for nuanced and complementary health informatics educational offerings in Australian universities. These insights may aid in further efforts to address substantive and systemic challenges that clinical informatics faces in Australia.

  15. The Clue to Minimizing the Developer-User Divide by Good Practice in Earth and Space Science Informatics

    Science.gov (United States)

    Messerotti, M.

    2009-04-01

    Earth and Space Science research, as well as many other disciplines, can nowadays benefit from advanced data handling techniques and tools capable to significantly relieve the scientist of the burden of data search, retrieval, visualization and manipulation, and to exploit the data information content. Some typical examples are Virtual Observatories (VO) specific to a variety of sub-disciplines but anyway interlinked, a feature intrinsic to the VO architecture, Virtual Globes as advanced 3D selection and visualization interfaces to distributed data repositories, and the Global Earth Observation System of Systems. These information systems are proving also effective in education and outreach activities as they are usable via web interfaces to give access to, to display and to download nonhomogeneous datasets in order to raise the awareness of the students and the public on the relevant disciplines. Despite of that, all of this effective machineries are still poorly used both by the scientific community and by the community active in education and outreach. All such infrastructures are designed and developed according to the state-of-the-art information and computer engineering techniques and are provided with top features such as ontology- and semantics-based data management, and advanced unified web-based interfaces. Anyway, a careful analysis of the issue mentioned above indicates a key aspect that play a major role, i.e., the inadequate interaction with the users' communities during the design, the development, the deployment and the test phases. Even the best technical tool can appear inadequate to the final user when it does not meet the user's requirements in terms of achievable goals and use friendliness. In this work, we consider the user-side features to be taken into account for the optimum exploitation of an information system in the framework of the interaction among the design engineers and the target communities towards the setting of a good practice

  16. Open Issues in Design Informatics

    DEFF Research Database (Denmark)

    McMahon, Chris

    2017-01-01

    Design informatics—the use of computers as a means of generating, communicating and sharing data, information and knowledge in design—has been a central theme in design research and practice for many years. This paper reviews the recent progress of research in design informatics, and makes...

  17. The Effectiveness of Hands-on Health Informatics Skills Exercises in the Multidisciplinary Smart Home Healthcare and Health Informatics Training Laboratories.

    Science.gov (United States)

    Sapci, A H; Sapci, H A

    2017-10-01

    This article aimed to evaluate the effectiveness of newly established innovative smart home healthcare and health informatics laboratories, and a novel laboratory course that focuses on experiential health informatics training, and determine students' self-confidence to operate wireless home health monitoring devices before and after the hands-on laboratory course. Two web-based pretraining and posttraining questionnaires were sent to 64 students who received hands-on training with wireless remote patient monitoring devices in smart home healthcare and health informatics laboratories. All 64 students completed the pretraining survey (100% response rate), and 49 students completed the posttraining survey (76% response rate). The quantitative data analysis showed that 95% of students had an interest in taking more hands-on laboratory courses. Sixty-seven percent of students had no prior experience with medical image, physiological data acquisition, storage, and transmission protocols. After the hands-on training session, 75.51% of students expressed improved confidence about training patients to measure blood pressure monitor using wireless devices. Ninety percent of students preferred to use a similar experiential approach in their future learning experience. Additionally, the qualitative data analysis demonstrated that students were expecting to have more courses with hands-on exercises and integration of technology-enabled delivery and patient monitoring concepts into the curriculum. This study demonstrated that the multidisciplinary smart home healthcare and health informatics training laboratories and the hands-on exercises improved students' technology adoption rates and their self-confidence in using wireless patient monitoring devices. Schattauer GmbH Stuttgart.

  18. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    Science.gov (United States)

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  19. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  20. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  1. Mathematics of the quantum informatics. An introduction; Mathematik der Quanteninformatik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Wolfgang

    2016-07-01

    Starting from the physical foundations all mathematics required for the quantum informatics are introduced and explained. The essential aspects of the quantum informatics are mathematically formulated. All statements made are also proved in the book.

  2. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  3. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  4. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    OpenAIRE

    Maggi, Fabrizio Maria; Matulevičius, Raimundas

    2016-01-01

    Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015) that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captu...

  5. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    Science.gov (United States)

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  6. Spreading knowledge in medical informatics: the contribution of the hospital Italiano de Buenos Aires.

    Science.gov (United States)

    Gonzalez Bernaldo de Quiros, F; Luna, D; Otero, P; Baum, A; Borbolla, D

    2009-01-01

    Medical Informatics (MI) is an emerging discipline with a high need of trained and skillful professionals. To describe the educational experience of the Department of Health Informatics of the Hospital Italiano de Buenos Aires. A descriptive study of the development of the Medical Informatics Residency Program (MIRP) and the e-learning courses related to medical informatics. A four-year MIRP with 15 rotations was started in 2000, and was awarded national educational accreditation. Eight residents have been fully trained and their main academic contributions are shown in this study. The e-learning courses related to medical informatics (Healthcare Management, Epidemiology & Biostatistics, Information Retrieval, Computer Literacy started, 10x10 Spanish version and HL7 introductory course) started in 2006 and were followed by more than 2266 students from all over the world, with an increase trend in foreign students. These educational activities have produced skilled human resources for the development and maintenance of the health informatics projects at our Hospital. In parallel, the number of students trained by e-learning continues to increase, demonstrating the worldwide need of knowledge in this field.

  7. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Science.gov (United States)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  8. Implementation of small group discussion as a teaching method in earth and space science subject

    Science.gov (United States)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  9. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  10. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  11. Mentoring Women in the Biological Sciences: Is Informatics Leading ...

    Indian Academy of Sciences (India)

    Yet mathematics, science, and high technology—the building blocks of informatics—are not typically consid- ... rior scientific skills but also highly ana- lytic modeling and computer science skills? The answer is twofold: ... Training, and Mentoring of Science. Communities.” Pennington, the pri- mary investigator for this project, ...

  12. Development of national competency-based learning objectives "Medical Informatics" for undergraduate medical education.

    Science.gov (United States)

    Röhrig, R; Stausberg, J; Dugas, M

    2013-01-01

    The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.

  13. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  14. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Science.gov (United States)

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  15. Proceedings of The Twentieth International Symposium on Space Technology and Science. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th international symposium on space technology and science was held in Nagaragawa city, Gifu prefecture on May 19-25, 1996, and 401 papers were made public. Out of those, 112 papers were summed up as Volume 2 following the previous Volume 1. As to space transportation, the paper included reports titled as follows: Conceptual study of H-IIA rocket (upgraded H-II rocket); Test flight of the launch vehicle; International cooperation in space transportation; etc. Concerning microgravity science, Recent advances in microgravity research; Use of microgravity environment to investigate the effect of magnetic field on flame shape; etc. Relating to satellite communications and broadcasting, `Project GENESYS`: CRL`s R and D project for realizing high data rate satellite communications networks; The Astrolink {sup TM/SM} system; etc. Besides, the paper contained reports on the following fields: lunar and planetary missions and utilization, space science and balloons, earth observations, life science and human presence, international cooperation and space environment, etc

  16. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  17. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    Science.gov (United States)

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on

  18. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  19. Science Students Creating Hybrid Spaces when Engaging in an Expo Investigation Project

    Science.gov (United States)

    Ramnarain, Umesh; de Beer, Josef

    2013-02-01

    In this paper, we report on the experiences of three 9th-grade South African students (13-14 years) in doing open science investigation projects for a science expo. A particular focus of this study was the manner in which these students merge the world of school science with their social world to create a hybrid space by appropriating knowledge and resources of the school and home. Within this hybrid space they experienced a deeper, more meaningful and authentic engagement in science practical work. This hybrid space redefined the landscape of the science learning experience for these students, as they could derive the twofold benefit of appropriating support when necessary and at the same time maintain their autonomy over the investigation. For South Africa and quite probably other countries; these findings serve as a guideline as to how opportunities can be created for students to do open science investigations, against prevailing school factors such as large classes, a lack of physical resources, the lack of time for practical work and the demands of syllabus coverage.

  20. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  1. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    Science.gov (United States)

    Andonov, Zdravko

    This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D

  2. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  3. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  4. Formation of the portfolio of projects for informatization programs

    Directory of Open Access Journals (Sweden)

    Ion Bolun

    2009-12-01

    Full Text Available in informatization programs are approached: criteria of efficiency, general problem, aggregate problem in continuous form, general problem in discrete form and solving of problems. As criterion of informatization projects' economic efficiency, the total profit maximization due to investments is used. In preliminary calculations, the opportunity of considering continuous dependences of profit on the volume of investments by domain activities is grounded. Eleven classes of such dependences are investigated and analytical solutions and algorithms for solving formulated problems are described.

  5. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    Science.gov (United States)

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  6. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    Directory of Open Access Journals (Sweden)

    Andrew M Quinn

    2014-01-01

    Full Text Available The Partners HealthCare system′s Clinical Fellowship in Pathology Informatics (Boston, MA, USA faces ongoing challenges to the delivery of its core curriculum in the forms of: (1 New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2 taxing electronic health record (EHR and laboratory information system (LIS implementations; and (3 increasing interest in the subspecialty at the academic medical centers (AMCs in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows′ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship′s core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among

  7. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics.

    Science.gov (United States)

    Quinn, Andrew M; Klepeis, Veronica E; Mandelker, Diana L; Platt, Mia Y; Rao, Luigi K F; Riedlinger, Gregory; Baron, Jason M; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E; Levy, Bruce P; McClintock, David S; Beckwith, Bruce A; Kuo, Frank C; Gilbertson, John R

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows' ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of the

  8. Public health informatics and information systems

    CERN Document Server

    Magnuson, J A

    2013-01-01

    In a revised edition, this book covers all aspects of public health informatics, and discusses the creation and management of an information technology infrastructure that is essential in linking state and local organizations in their efforts to gather data.

  9. A Study on Impact of Informatization on Tourist Behavior : Analysis of Anime Pilgrimage

    OpenAIRE

    岡本, 健

    2009-01-01

    This paper shows impact of informatization on tourist behavior in Japan. This research adopts analysis of "Anime Pilgrimage" in order to accomplish the above mentioned objective. Recently, in Japan, some of anime fans make "Anime Pilgrimage" which is a kind of tourist behavior. It would appear that this behavior was affected by informatization strongly. As a result, it was found that "Anime Pilgrim" was affected by informatization not only before "Anime Pilgrimage" but also throughout "Anime ...

  10. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    Science.gov (United States)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  11. USSR Space Life Sciences Digest, issue 7

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  12. The Great Chains of Computing: Informatics at Multiple Scales

    Directory of Open Access Journals (Sweden)

    Kevin Kirby

    2011-10-01

    Full Text Available The perspective from which information processing is pervasive in the universe has proven to be an increasingly productive one. Phenomena from the quantum level to social networks have commonalities that can be usefully explicated using principles of informatics. We argue that the notion of scale is particularly salient here. An appreciation of what is invariant and what is emergent across scales, and of the variety of different types of scales, establishes a useful foundation for the transdiscipline of informatics. We survey the notion of scale and use it to explore the characteristic features of information statics (data, kinematics (communication, and dynamics (processing. We then explore the analogy to the principles of plenitude and continuity that feature in Western thought, under the name of the "great chain of being", from Plato through Leibniz and beyond, and show that the pancomputational turn is a modern counterpart of this ruling idea. We conclude by arguing that this broader perspective can enhance informatics pedagogy.

  13. The Structure-Agency Dialectic in Contested Science Spaces: "Do Earthworms Eat Apples?"

    Science.gov (United States)

    Kane, Justine M.

    2015-01-01

    Focusing on a group of African American third graders who attend a high-poverty urban school, I explore the structure-agency dialectic within contested spaces situated in a dialogically oriented science classroom. Contested spaces entail the moments in which the students challenge each other's and their teacher's science ideas and, in the process,…

  14. Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program

    Directory of Open Access Journals (Sweden)

    Bruce P Levy

    2012-01-01

    Full Text Available Background: Pathology Informatics is a new field; a field that is still defining itself even as it begins the formalization, accreditation, and board certification process. At the same time, Pathology itself is changing in a variety of ways that impact informatics, including subspecialization and an increased use of data analysis. In this paper, we examine how these changes impact both the structure of Pathology Informatics fellowship programs and the fellows′ goals within those programs. Materials and Methods: As part of our regular program review process, the fellows evaluated the value and effectiveness of our existing fellowship tracks (Research Informatics, Clinical Two-year Focused Informatics, Clinical One-year Focused Informatics, and Clinical 1 + 1 Subspecialty Pathology and Informatics. They compared their education, informatics background, and anticipated career paths and analyzed them for correlations between those parameters and the fellowship track chosen. All current and past fellows of the program were actively involved with the project. Results: Fellows′ anticipated career paths correlated very well with the specific tracks in the program. A small set of fellows (Clinical - one or two year - Focused Informatics tracks anticipated clinical careers primarily focused in informatics (Director of Informatics. The majority of the fellows, however, anticipated a career practicing in a Pathology subspecialty, using their informatics training to enhance that practice (Clinical 1 + 1 Subspecialty Pathology and Informatics Track. Significantly, all fellows on this track reported they would not have considered a Clinical Two-year Focused Informatics track if it was the only track offered. The Research and the Clinical One-year Focused Informatics tracks each displayed unique value for different situations. Conclusions: It seems a "one size fits all" fellowship structure does not fit the needs of the majority of potential Pathology

  15. Proposed School of Earth And Space Sciences, Hyderabad, India

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    The hallmarks of the proposed school in the University of Hyderabad, Hyderabad,India, would be synergy, inclusivity and globalism. The School will use the synergy between the earth (including oceanic and atmospheric realms), space and information sciences to bridge the digital divide, and promote knowledge-driven and job-led economic development of the country. It will endeavour to (i) provide the basic science underpinnings for Space and Information Technologies, (ii) develop new methodologies for the utilization of natural resources (water, soils, sediments, minerals, biota, etc.)in ecologically-sustainable, employment-generating and economically-viable ways, (iii) mitigate the adverse consequences of natural hazards through preparedness systems,etc. The School will undertake research in the inter-disciplinary areas of earth and space sciences (e.g. climate predictability, satellite remote sensing of soil moisture) and linking integrative science with the needs of the decision makers. It will offer a two-year M.Tech. (four semesters, devoted to Theory, Tools, Applications and Dissertation, respectively ) course in Earth and Space Sciences. The Applications will initially cover eight course clusters devoted to Water Resources Management, Agriculture, Ocean studies, Energy Resources, Urban studies, Environment, Natural Hazards and Mineral Resources Management. The School will also offer a number of highly focused short-term refresher courses / supplementary courses to enable cadres to update their knowledge and skills. The graduates of the School would be able to find employment in macro-projects, such as inter-basin water transfers, and Operational crop condition assessment over large areas, etc. as well as in micro-projects, such as rainwater harvesting, and marketing of remote sensing products to stake-holders (e.g. precision agricultural advice to the farmers, using the large bandwidth of thousands of kilometres of unlit optical fibres). As the School is highly

  16. Analysis on Big Data Problems and Technique Supports of Archives Informatization

    Directory of Open Access Journals (Sweden)

    Du Xiaoyan

    2017-06-01

    Full Text Available [Purpose/significance] The realistic questions of the archives informatization management are faced with data size rapidly increasing, and their types and structures more diverse and complex. [Method/process] Based on the essential attribute of archives in this paper, the big data characteristics of digital archives in their storage and utilization links were analyzed, and the support of new big data techniques in the course of archives informatization, and their applications to the storage and utilization of digital archives and knowledge discovery were researched. [Result/conclusion] Modern processing technology for big data would not only bring certain supports for the management of archives informatization, but also promote the development of its theory and practice.

  17. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  18. The state of information and communication technology and health informatics in ghana.

    Science.gov (United States)

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions.

  19. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    Science.gov (United States)

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  20. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  1. Measuring the Value of AI in Space Science and Exploration

    Science.gov (United States)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  2. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  3. Without Gravity: Designing Science Equipment for the International Space Station and Beyond

    Science.gov (United States)

    Sato, Kevin Y.

    2016-01-01

    This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.

  4. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    Directory of Open Access Journals (Sweden)

    Fabrizio Maria Maggi

    2016-04-01

    Full Text Available Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015 that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captured important and novel topics on information logistics and knowledge supply, security and compliance in business processes, and use of ontologies in information systems. Within this context the fifth publication included in this issue complements the topic of the business informatics research with the investigation of a model-driven approach on the gesture-based interaction in information systems.

  5. New Millennium Program: Servicing Earth and Space Sciences

    Science.gov (United States)

    Li, F.

    1999-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints.

  6. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  7. IMIA Educational Recommendations and Nursing Informatics

    NARCIS (Netherlands)

    Mantas, John; Hasman, Arie

    2017-01-01

    The updated version of the IMIA educational recommendations has given an adequate guidelines platform for developing educational programs in Biomedical and Health Informatics at all levels of education, vocational training, and distance learning. This chapter will provide a brief introduction of the

  8. Handbook of evaluation methods for health informatics

    National Research Council Canada - National Science Library

    Brender, Jytte

    2006-01-01

    .... Amsterdam: lOS Press, Studies in Health Technology and Informatics 1997; 42, with permission. This book is printed on acid-free paper. (~ Copyright 92006, Elsevier Inc. All rights reserved. No part ...

  9. COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS

    OpenAIRE

    Viktor Shakotko

    2016-01-01

    The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...

  10. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  11. The imaging 3.0 informatics scorecard.

    Science.gov (United States)

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Computer, Informatics, Cybernetics and Applications : Proceedings of the CICA 2011

    CERN Document Server

    Hua, Ertian; Lin, Yun; Liu, Xiaozhu

    2012-01-01

    Computer Informatics Cybernetics and Applications offers 91 papers chosen for publication from among 184 papers accepted for presentation to the International Conference on Computer, Informatics, Cybernetics and Applications 2011 (CICA 2011), held in Hangzhou, China, September 13-16, 2011. The CICA 2011 conference provided a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development including technical challenges and social, legal, political, and economic issues, and to present and discuss their ideas, results, work in progress and experience on all aspects of Computer, Informatics, Cybernetics and Applications. Reflecting the broad scope of the conference, the contents are organized in these topical categories: Communication Technologies and Applications Intelligence and Biometrics Technologies Networks Systems and Web Technologies Data Modeling and Programming Languages Digital Image Processing Optimization and Scheduling Education and In...

  13. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research.

    Science.gov (United States)

    Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike

    2013-01-01

    tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

  14. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  15. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    -wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.

  16. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  17. Informaticology: combining Computer Science, Data Science, and Fiction Science

    NARCIS (Netherlands)

    Bergstra, J.A.

    2012-01-01

    Motivated by an intention to remedy current complications with Dutch terminology concerning informatics, the term informaticology is positioned to denote an academic counterpart of informatics where informatics is conceived of as a container for a coherent family of practical disciplines ranging

  18. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    Science.gov (United States)

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its

  19. Medical informatics: A boon to the healthcare industry

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available Newer healthcare technologies and treatment procedures are being developed rapidly, and clinicians are incorporating them into their daily practice. They are integrating the past and the present knowledge for better patient healthcare. Previously, it had been difficult to organize, store and retrieve medical and patient information. But, today, with the advent of computers and, moreover, information technology has led to the development of medical informatics that is helping physicians to overcome these challenges. Medical informatics deals with all aspects of understanding and promoting the effective organization analysis, management and use of information in healthcare, which are being highlighted in this review paper.

  20. The informatics teaching with the use of networks.

    Directory of Open Access Journals (Sweden)

    Eduardo Hernández Martín

    2013-09-01

    Full Text Available To achieve a differentiated teaching learning process in informatics, in which each student should be able to keep his/her own rhythm, is one of the most complex themes to deal with at any educational level. The present work is the result of the scientific methodological work in the Educative Informatics discipline, it is pretended to reflect about the way of using the UCP LAN in the teaching learning process. To carry out the article some documents such as the disciplines and subjects study syllabuses were revised, the information obtained from an updated bibliography was analyzed – synthesized and itwas exemplified with a theory practical lesson.

  1. The Western New York regional electronic health record initiative: Healthcare informatics use from the registered nurse perspective.

    Science.gov (United States)

    Sackett, Kay M; Erdley, W Scott; Jones, Janice

    2006-01-01

    This paper describes a select population of Western New York (WNY) Registered Nurses' (RN) perspectives on the use of healthcare informatics and the adoption of a regional electronic health record (EHR). A three part class assignment on healthcare informatics used a Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis, and a Healthcare Informatics Schemata: A paradigm shift over time(c) timeline to determine RN perspectives about healthcare informatics use at their place of employment. Qualitative analysis of 41 RNs who completed the SWOT analysis provided positive and negative themes related to perceptions about healthcare informatics and EHR use at their place of employment. 29 healthcare organizations were aggregated by year on the timeline from 1950 through 2000. Information suggests that, RNs have the capacity to positively drive the adoption of EHRs and healthcare informatics in WNY.

  2. Open Genetic Code : On open source in the life sciences

    NARCIS (Netherlands)

    Deibel, E.

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life

  3. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    Science.gov (United States)

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  4. Digest of Russian Space Life Sciences, issue 33

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  5. Building the foundations of an informatics agenda for global health - 2011 workshop report.

    Science.gov (United States)

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants' experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further

  6. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  7. Examining the Relationship Between Nursing Informatics Competency and the Quality of Information Processing.

    Science.gov (United States)

    Al-Hawamdih, Sajidah; Ahmad, Muayyad M

    2018-03-01

    The purpose of this study was to examine nursing informatics competency and the quality of information processing among nurses in Jordan. The study was conducted in a large hospital with 380 registered nurses. The hospital introduced the electronic health record in 2010. The measures used in this study were personal and job characteristics, self-efficacy, Self-Assessment Nursing Informatics Competencies, and Health Information System Monitoring Questionnaire. The convenience sample consisted of 99 nurses who used the electronic health record for at least 3 months. The analysis showed that nine predictors explained 22% of the variance in the quality of information processing, whereas the statistically significant predictors were nursing informatics competency, clinical specialty, and years of nursing experience. There is a need for policies that advocate for every nurse to be educated in nursing informatics and the quality of information processing.

  8. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  9. Evidence-based patient choice and consumer health informatics in the Internet age.

    Science.gov (United States)

    Eysenbach, G; Jadad, A R

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics, and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues.

  10. Synergy between Medical Informatics and Bioinformatics: Facilitating Genomic Medicine for Future Health Care

    Czech Academy of Sciences Publication Activity Database

    Martin-Sanchez, F.; Iakovidis, I.; Norager, S.; Maojo, V.; de Groen, P.; Van der Lei, J.; Jones, T.; Abraham-Fuchs, K.; Apweiler, R.; Babic, A.; Baud, R.; Breton, V.; Cinquin, P.; Doupi, P.; Dugas, M.; Eils, R.; Engelbrecht, R.; Ghazal, P.; Jehenson, P.; Kulikowski, C.; Lampe, K.; De Moor, G.; Orphanoudakis, S.; Rossing, N.; Sarachan, B.; Sousa, A.; Spekowius, G.; Thireos, G.; Zahlmann, G.; Zvárová, Jana; Hermosilla, I.; Vicente, F. J.

    2004-01-01

    Roč. 37, - (2004), s. 30-42 ISSN 1532-0464 Institutional research plan: CEZ:AV0Z1030915 Keywords : bioinformatics * medical informatics * genomics * genomic medicine * biomedical informatics Subject RIV: BD - Theory of Information Impact factor: 1.013, year: 2004

  11. IVth Azores International Advanced School in Space Sciences

    CERN Document Server

    Santos, Nuno; Monteiro, Mário

    2018-01-01

    This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.

  12. Current practices in library/informatics instruction in academic libraries serving medical schools in the Western United States: a three-phase action research study.

    Science.gov (United States)

    Eldredge, Jonathan D; Heskett, Karen M; Henner, Terry; Tan, Josephine P

    2013-09-04

    To conduct a systematic assessment of library and informatics training at accredited Western U.S. medical schools. To provide a structured description of core practices, detect trends through comparisons across institutions, and to identify innovative training approaches at the medical schools. Action research study pursued through three phases. The first phase used inductive analysis on reported library and informatics skills training via publicly-facing websites at accredited medical schools and the academic health sciences libraries serving those medical schools. Phase Two consisted of a survey of the librarians who provide this training to undergraduate medical education students at the Western U.S. medical schools. The survey revealed gaps in forming a complete picture of current practices, thereby generating additional questions that were answered through the Phase Three in-depth interviews. Publicly-facing websites reviewed in Phase One offered uneven information about library and informatics training at Western U.S. medical schools. The Phase Two survey resulted in a 77% response rate. The survey produced a clearer picture of current practices of library and informatics training. The survey also determined the readiness of medical students to pass certain aspects of the United States Medical Licensure Exam. Most librarians interacted with medical school curricular leaders through either curricula committees or through individual contacts. Librarians averaged three (3) interventions for training within the four-year curricula with greatest emphasis upon the first and third years. Library/informatics training was integrated fully into the respective curricula in almost all cases. Most training involved active learning approaches, specifically within Problem-Based Learning or Evidence-Based Medicine contexts. The Phase Three interviews revealed that librarians are engaged with the medical schools' curricular leaders, they are respected for their knowledge and

  13. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  14. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  15. European Space Science Scales New Heights

    Science.gov (United States)

    1995-06-01

    Satellites, comprising nine tonnes of hardware and sixty experiments, will be placed in orbit with a view to giving scientists a new perspective on the Sun, the Earth's magnetic environment and the universe in general. ISO, the Infrared Space Observatory, will allow astronomers to study all types of objects in the so1al. system - from nearby planets to the farthermost galaxies - with unparalleled sensitivity through the invisible, cold light of infrared radiation. Soho, the solar observatory, will be the fist satellite to continuously observe the Sun in detail, and will do so for at least two yews. The quartet of identical Cluster satellites will probe the Earth's magnetosphere in order to study the storms that can occur there which disrupt radio communications or electrical power supplies on Earth. As Roger Bonnet, Director of the European Space Agency's science programme, points out: "For the programme, this year marks the culmination often years of endeavour now drawing to a close. This shows that Europe is now taking the lead in in situ exploration of the universe". On 23 May ISO successfully completed final testing which validated the satellite's technical performance. It is currently on its way to Guiana onboard the Ariana. It will be launched from the Space Centre at Kourou by an Ariane 44P launcher in late October. On 14 June Soho will undergo similar checkouts which should give it a clean bill of health for dispatch to the Kennedy Space Center (Florida). It is scheduled for a launch on 30 October by NASA's Atlas rocket. Authorisation to dispatch the Cluster quartet to Kourou should be given in late June with a view to a launch at the end of the year on a flagship launcher: the first Ariane-5, which is set to become the most competitive launcher on the world market, Another milestone in space exploration is in the offing: the journey over the Sun's north pole by ESA's Ulysses probe begins this month and will continue through to September. During this phase

  16. The new space and earth science information systems at NASA's archive

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.L. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered. 8 refs.

  17. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  18. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    International Nuclear Information System (INIS)

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  19. International ties. [international cooperation in the space sciences

    Science.gov (United States)

    1980-01-01

    A historical overview of NASA's participation in international activities in space science is given. The Ariel, Alouette, Isis, and San Marco satellite programs are addressed along with sounding rocket and ground based projects. Relations and cooperation with the Soviet Union are also discussed.

  20. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    Science.gov (United States)

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  1. Framework of Information Science in Japan − Introduction: Comparison with United States −

    OpenAIRE

    加藤, 淳一; KATO, Junichi

    2008-01-01

    This report concisely explains the history of information science in the United States. The purpose of this report is to reconfirm the field framework of information science. The framework of information science of Japan is different from the information science that Machlup and Mansfield define, because it is a framework similar to informatics for Japan.

  2. Understanding the use of geographical information systems (GIS) in health informatics research: A review.

    Science.gov (United States)

    Shaw, Nicola; McGuire, Suzanne

    2017-06-23

    The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.

  3. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  4. Incorporating healthcare informatics into the strategic planning process in nursing education.

    Science.gov (United States)

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  5. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    Science.gov (United States)

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  6. Institutional paradoxes of informatization of state and municipal governance in modern Russia

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilyevich Lukashov

    2015-06-01

    Full Text Available Objective to show that the informatization of state and municipal governance in modern Russia should be aimed directly at reducing costs and improving productivity of the state and municipal authorities and not at the achievement of indirect performance indicators like ldquothe proportion of documents in digital formquot. Methods the method of analysis of the research object condition at various stages of its development the synthesis of cognition elements followed by synthesis and transition from the singular to the general. General scientific specific and private scientific research methods were used. Results basing on the analysis of informatization of state and municipal management it is shown that the main reason for its low efficiency is the current evaluation system based on indirect indicators. Scientific novelty the efficiency and effectiveness of informatization of state and municipal management are considered from the point of view of consistency and optimal allocation of resources. The scientific justification of performance indicators of informatization in the sphere of state and municipal management is proposed which is characterized by the blurring of the quality criteria difficult to express in monetary terms. Examples of such criteria are cost of rendering of state municipal services physical geographical by mode of operation by convenience accessibility of services time of waiting in queue and length of obtaining the service by a citizen regardless of in which form traditional or digital it is rendered. Practical value the article considers the problems of selecting the efficiency criteria of social control informatization. Specific measures are proposed aimed at improving the efficiency of informatization including in the framework of realization of the Federal program of the Russian Federation quotInformational societyquot for 20122020. nbsp

  7. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    Science.gov (United States)

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as

  8. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    Science.gov (United States)

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  9. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    Science.gov (United States)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  10. Cognitive informatics in health and biomedicine case studies on critical care, complexity and errors

    CERN Document Server

    Patel, Vimla L; Cohen, Trevor

    2014-01-01

    This interdisciplinary book offers an introduction to cognitive informatics, focusing on key examples drawn from the application of methods and theories from cognitive informatics to challenges specific to the practice of critical-care medicine.

  11. THE CONCEPT OF VOCATIONAL TRAINING OF FUTURE ELEMENTARY SCHOOL TEACHER TO INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Olena Sagan

    2016-09-01

    Full Text Available In the article the problem of professional training of future elementary school teacher to teach Informatics of junior schoolchild is revealed. Rapid development of information and communication technologies actualizes the high-quality requirements to informational competent members of society. Transformation of content of primary education, namely putting Informatics in the curricula, exerted impact on a social request of the elementary school teacher who doesn’t only thoroughly use means of information technologies, but also teaches Informatics as invariant discipline of elementary school. In work it is designed the methodical model of training of future elementary school teacher for teaching Informatics, its purpose is forming of methodology informational competence at future elementary school teacher, which is based on theoretical and practical readiness for teaching Informatics of junior schoolchild and is shown in abilities to organize of the teaching and educational process. Finding of a ratio of essential results of training in higher education institution and general and professional competences which were determined by means of expert evaluations became a basis of a substantial component of system. We design the expected result in the form of competence-based model of future elementary school teacher in a perspective of its preparation for the decision the informational and the methodology-informational tasks of elementary school.

  12. USSR Space Life Sciences Digest, issue 6

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  13. USSR Space Life Sciences Digest, issue 16

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  14. USSR Space Life Sciences Digest, Issue 18

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  15. Informatics with Systems Science and Cybernetics--Concepts and Definitions.

    Science.gov (United States)

    Samuelson, Kjell

    This dictionary defines information science, computer science, systems theory, and cybernetic terms in English and provides the Swedish translation of each term. An index of Swedish terms refers the user to the page where the English equivalent and definition appear. Most of the 38 references listed are in English. (RAA)

  16. U.S. Materials Science on the International Space Station: Status and Plans

    Science.gov (United States)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  17. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  18. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    Science.gov (United States)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future

  19. PRINCIPLES, BASES, AND LAWS OF FUNDAMENTAL INFORMATICS

    Directory of Open Access Journals (Sweden)

    Gennady N. Zverev

    2013-01-01

    Full Text Available This paper defines the goals and problems of fundamental informatics, formulates principal laws of information universe and constructive bases of information objects and processes. The classification of semantics types of knowledge and skills is presented. 

  20. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.