WorldWideScience

Sample records for space reactors informal

  1. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  2. Inform@ed space

    DEFF Research Database (Denmark)

    Bjerrum, Peter; Olsen, Kasper Nefer

    2001-01-01

    Inform@ed space Sensorial Perception And Computer Enchancement - bidrag til Nordisk Arkitekturforskningsforenings IT-konference, AAA april 2001.......Inform@ed space Sensorial Perception And Computer Enchancement - bidrag til Nordisk Arkitekturforskningsforenings IT-konference, AAA april 2001....

  3. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  4. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  5. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    Energy Technology Data Exchange (ETDEWEB)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  6. Unique features of space reactors

    International Nuclear Information System (INIS)

    Buden, D.

    1990-01-01

    This paper reports on space reactors that are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K

  7. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  8. Nuclear reactor refuelable in space

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Buden, D.; Mims, J.E.

    1992-01-01

    This patent describes a gas cooled nuclear reactor suitable for use in space. It comprises a lightweight structure comprising a plurality of at least three sections, each sector comprising a container for a reactor core separate and distinct from the reactor cores of the other sectors, each sector being capable of operating on its own and in cooperation with one or more of the other sectors and each sector having a common juncture with every other structure; and means associated with each sector independently introducing gas coolant into and extracting coolant from each sector to cool the core therein, wherein in event of failure of the cooling system of a core in a sector, one or more of the other sectors comprise means for conducting heat away from the failed sector core and means for convecting the heat away, and wherein operation of the one or more other sectors is maintained

  9. Information Space, Information Field, Information Environment

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-08-01

    Full Text Available The article analyzes information space, information field and information environment; shows that information space can be natural and artificial; information field is substantive and processual object and articulates the space property; information environment is concerned with some object and acts as the surrounding in relation to it and is considered with regard to it. It enables to define information environment as a subset of information space. It defines its passive description. Information environment can also be defined as a subset of information field. It corresponds to its active description.

  10. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  11. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  12. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  13. INFORMATION SPACE– EDUCATIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Monica LIA

    2015-11-01

    Full Text Available This paper has set the objective of researching how education is influenced by the information society. The first step was to define more precisely the information space. The second step was to identify how information space intersects with the family space and institutional space educational levels represented by pre-school / school and pre-university (kindergarten, at elementary / middle school / high school. Interrelationship between the above mentioned areas was another objective of the research. All these elements have been investigated through the original intention to identify how the information space can become an educational tool to support the family space, education and institutional space. Also, the aim of this research is to offer some solutions in this regard. Often the educational efforts appear to be blocked by the existence of this space. But this paper demonstrates that Informational space can be an enemy of the educational system or can support systems if we knew the internal structure and mechanisms. We can make the Informational Space to work in order to accomplish the educational scope.

  14. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  15. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.

    1983-01-01

    In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  16. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  17. Reactor Operations informal monthly report December 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Reactor operations at the MRR and HFBR reactors at Brookhaven National Laboratory are presented for December 1994. Reactor run-time and power levels, instrumentation, mechanical maintenance, occurrence reports, and safety information are included

  18. SP-100 Program: space reactor system and subsystem investigations

    International Nuclear Information System (INIS)

    Harty, R.B.

    1983-01-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs

  19. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  20. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  1. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  2. New generation of reactors for space power

    International Nuclear Information System (INIS)

    Boudreau, J.E.; Buden, D.

    1982-01-01

    Space nuclear reactor power is expected to enable many new space missions that will require several times to several orders of magnitude anything flown in space to date. Power in the 100-kW range may be required in high earth orbit spacecraft and planetary exploration. The technology for this power system range is under development for the Department of Energy with the Los Alamos National Laboratory responsible for the critical components in the nuclear subsystem. The baseline design for this particular nuclear sybsystem technology is described in this paper; additionally, reactor technology is reviewed from previous space power programs, a preliminary assessment is made of technology candidates covering an extended power spectrum, and the status is given of other reactor technologies

  3. Russian RBMK reactor design information

    International Nuclear Information System (INIS)

    1993-11-01

    This document concerns the systems, design, and operations of the graphite-moderated, boiling, water-cooled, channel-type (RBMK) reactors located in the former Soviet Union (FSU). The Russian Academy of Sciences Nuclear Safety Institute (NSI) in Moscow, Russia, researched specific technical questions that were formulated by the Pacific Northwest Laboratory (PNL) and provided detailed technical answers to those questions. The Russian response was prepared in English by NSI in a question-and-answer format. This report presents the results of that technical exchange in the context they were received from the NSI organization. Pacific Northwest Laboratory is generating this document to support the US Department of Energy (DOE) community in responding to requests from FSU states, which are seeking Western technological and financial assistance to improve the safety systems of the Russian-designed reactors. This report expands upon information that was previously available to the United States through bilateral information exchanges, international nuclear society meetings, International Atomic Energy Agency (IAEA) reactor safety programs, and Research and Development Institute of Power Engineering (RDIPE) reports. The response to the PNL questions have not been edited or reviewed for technical consistency or accuracy by PNL staff or other US organizations, but are provided for use by the DOE community in the form they were received

  4. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  5. Space reactors - past, present, and future

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A.

    1983-01-01

    The successful test flights of the Space Shuttle mark the start of a new era--an era of routine manned access into cislunar space. Human technical development at the start of the next Millenium will be highlighted by the creation of Man's extraterrestrial civilization with off-planet expansion of the human resource base. In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond

  6. Nuclear reactors for space electric power

    International Nuclear Information System (INIS)

    Buden, D.

    1978-06-01

    The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission. Lifetimes of 7 to 10 yr at full power, at converter operating temperatures of 1275 to 1675 0 K, are being studied. The systems are being designed such that no single-failure modes exist that will cause a complete loss of power. In fact, to meet the long lifetimes, highly redundant design features are being emphasized. Questions have been raised about safety since the COSMOS 954 incident. ''Fail-safe'' means to prevent exposure of the population to radioactive material, meeting the environmental guidelines established by the U.S. Government have been and continue to be a necessary requirement for any space reactor program. The major safety feature to prevent prelaunch and launch radioactive material hazards is not operating the reactor before achieving the prescribed orbit. Design features in the reactor ensure that accidental criticality cannot occur. High orbits (above 400 to 500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit, where orbital lifetimes are practically indefinite, the safety considerations are negligible. Orbits below 400 to 500 nautical miles are the ones where a safety issue is involved in case of satellite malfunction. The potential missions, the question of why reactors are being considered as a prime power candidate, reactor features, and safety considerations will be discussed

  7. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  8. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  9. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  10. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  11. Prometheus Project Reactor Module Final Report, For Naval Reactors Information

    International Nuclear Information System (INIS)

    MJ Wollman; MJ Zika

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) led the development of a power plant for a civilian nuclear electric propulsion (NEP) system concept as part of the Prometheus Project. This report provides a summary of the facts, technical insights, and programmatic perspectives gained from this two-year program. The Prometheus Project experience has been extensively documented to better position the US for future space reactor development. Major Technological and engineering challenges exist to develop a system that provides useful electric power from a nuclear fission heat source operating in deep space. General issues include meeting mission requirements in a system that has a mass low enough to launch from earth while assuring public safety and remaining safely shutdown during credible launch accidents. These challenges may be overcome in the future if there is a space mission with a compelling need for nuclear power to drive development. Past experience and notional mission requirements indicate that any useful space reactor system will be unlike past space reactors and existing terrestrial reactors

  12. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  13. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  14. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  15. Space reactor safety, 1985--1995 lessons learned

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1995-01-01

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration

  16. Space reactor safety, 1985--1995 lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1995-12-31

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  17. Drug Information in Space Medicine

    Science.gov (United States)

    Bayuse, Tina M.

    2009-01-01

    Published drug information is widely available for terrestrial conditions. However, information on dosing, administration, drug interactions, stability, and side effects is scant as it relates to use in Space Medicine. Multinational crews on board the International Space Station present additional challenges for drug information because medication nomenclature, information available for the drug as well as the intended use for the drug is not standard across countries. This presentation will look at unique needs for drug information and how the information is managed in Space Medicine. A review was conducted of the drug information requests submitted to the Johnson Space Center Pharmacy by Space Medicine practitioners, astronaut crewmembers and researchers. The information requested was defined and cataloged. A list of references used was maintained. The wide range of information was identified. Due to the information needs for the medications in the on-board medical kits, the Drug Monograph Project was created. A standard method for answering specific drug information questions was generated and maintained by the Johnson Space Center Pharmacy. The Drug Monograph Project will be presented. Topic-centered requests, including multinational drug information, drug-induced adverse reactions, and medication events due to the environment will be highlighted. Information management of the drug information will be explained. Future considerations for drug information needs will be outlined.

  18. Mechanical characterization of superalloys for space reactors

    International Nuclear Information System (INIS)

    Duchesne, J.

    1989-01-01

    The aim of this work is the selection of structural materials that can be used in the temperature range 600-900 0 C for a gas cooled space reactor producing electricity. Superalloys fit best the temperature range required. Five nickel base alloys are chosen for their good mechanical behaviour: HAYNES 230, HASTELLOY S, HASTELLOY X, HASTELLOY XR and PYRAD 38D. Metallography, tensile and hardness tests are realized. Sample contraction is evidenced for some creep tests, under low stress: 20MPa at 800 0 C, on HAYNES 230 and HASTELLOY X, probably related to the structural evolution of these materials corresponding to a decrease of the crystal parameter [fr

  19. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  20. Reactor power peaking information display

    International Nuclear Information System (INIS)

    Book, T.L.; Kochendarfer, R.A.

    1986-01-01

    This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area

  1. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  2. Study of space reactors for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  3. Study of space reactors for exploration missions

    International Nuclear Information System (INIS)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  4. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  5. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  6. The role of nuclear reactors in space exploration and development

    International Nuclear Information System (INIS)

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  7. The museum as information space

    DEFF Research Database (Denmark)

    Navarrete, T.; Mackenzie Owen, J.

    2016-01-01

    space to being outside the museum in the online information space of the Internet. This has fundamental implications for the institutional role of museums, our understanding of metadata and the methods of documentation. The onsite museum institution will, eventually, not be able to function...... as an institutional entity on the Internet, for in this new information space, objects, collections and museums, all function as independent components in a vast universe of data, side by side at everyone’s disposal at anytime. Potentially, users can access cultural heritage anytime, anywhere and anyhow. © The Author......Although museums vary in nature and may have been founded for all sorts of reasons, central to all museum institutions are the collected objects. These objects are information carriers organized in a catalogue system. In this chapter, the museum will be conceived as an information space, consisting...

  8. Neutronics characteristics of space power reactors

    International Nuclear Information System (INIS)

    Little, W.; Barner, J.

    1986-01-01

    The objective of the paper is to describe the neutronic characteristics of a range of possible space reactor designs, and indicate the relative advantages and disadvantages of the various designs. Fuel designs to be considered are cermets (i.e., ceramic particles embedded in a metal matrix) consisting of UO 2 or Nn ceramic particles in matrices of Nb, Mo, Ta, or W. These cermet fuels are compared to a UN pin-type design. UN was selected for the reference fuel material since it has a somewhat higher density than UO 2 (i.e., 14.32 versus 10.96 gm/cc), which allows a lower minimum critical mass for both ceramic and cermet designs

  9. Reactor calculations and nuclear information

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-12-01

    The relationship of sets of nuclear parameters and the macroscopic reactor quantities that can be calculated from them is examined. The framework of the study is similar to that of Usachev and Bobkov. The analysis is generalised and some properties required by common sense are demonstrated. The form of calculation permits revision of the parameter set. It is argued that any discrepancy between a calculation and measurement of a macroscopic quantity is more useful when applied directly to prediction of other macroscopic quantities than to revision of the parameter set. The mathematical technique outlined is seen to describe common engineering practice. (Author)

  10. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety

  11. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  12. Environmental Information Document: L-reactor reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr. (comp.)

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  13. Environmental Information Document: L-reactor reactivation

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program

  14. ZrH reactor lattice spacing (heat transfer considerations)

    International Nuclear Information System (INIS)

    Felten, L.D.

    1970-01-01

    Temperature calculations for a 295 element ZrH reactor at fuel element spacings from 0.010'' to 0.065'' showed a very small dependence of reactor temperature on element spacing. It was found that one variation in coolant channel area (2 zones) was sufficient to satisfactorily shape the radial flow profile for the core. (U.S.)

  15. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  16. Proposal of space reactor for nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Nishiyama, Takaaki; Nagata, Hidetaka; Nakashima, Hideki

    2009-01-01

    A nuclear reactor installed in spacecrafts is considered here. The nuclear reactor could stably provide an enough amount of electric power in deep space missions. Most of the nuclear reactors that have been developed up to now in the United States and the former Soviet Union have used uranium with 90% enrichment of 235 U as a fuel. On the other hand, in Japan, because the uranium that can be used is enriched to below 20%, the miniaturization of the reactor core is difficult. A Light-water nuclear reactor is an exception that could make the reactor core small. Then, the reactor core composition and characteristic are evaluated for the cases with the enrichment of the uranium fuel as 20%. We take up here Graphite reactor, Light-water reactor, and Sodium-cooled one. (author)

  17. Space Fission Reactor Structural Materials: Choices Past, Present and Future

    International Nuclear Information System (INIS)

    Busby, Jeremy T.; Leonard, Keith J.

    2007-01-01

    Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermal generator and solar technologies. The use of fission reactors for space applications has been considered for over 50 years, although, structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15-20 year reliability with no inspection or preventative maintenance. Many different materials have been proposed as structural materials. While all materials meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for space fission reactors.

  18. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  19. Trade study for kWe class space reactors

    Science.gov (United States)

    Bost, Donald S.

    Recent interest by NASA and other government agencies in space reactor power systems with power levels in the 1 to 100 kWe range has prompted a review of earlier space reactor programs, as well as the ongoing SP-100 program, to identify a system that will best fulfill their needs. The candidate reactor types that were reviewed are listed. They are categorized according to the method of heat removal. The five types are: conduction cooled, heat pipe cooled, liquid metal cooled, in-core thermionic and gas cooled. The UZrH moderated reactor coupled with an organic Rankine cycle power conversion system provides an attractive system for multikilowatt, long lived missions. The reactor requires a minimum development because a similar reactor has already flown and the ORC is being developed for use in the Dynamic Isotope Power System (DIPS) and on the Space Station.

  20. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  1. Mechanical characterization of superalloys for space reactors

    International Nuclear Information System (INIS)

    Duchesne, J.

    1989-01-01

    The purpose of this work is the choice of materials usable between 600 and 900 0 C for nuclear space reactor structures. The main criterion of selection for these materials is their good creep behaviour. Consequently, macroscopic theories of creep and several extrapolation methods were described. Superalloys seem the best materials for the studied range of temperatures. Five of them, base nickel, ones unusual in nuclear industry were selected for their good mechanical properties. Three of them are industrial alloys: the first, HAYNES 230 is a recent one, HASTELLOY S and X are more standard materials. The last two, HASTELLOY XR and PYRAD 38 D are issued from special fabrications. Creep tests metallographic investigations, hardness and tensile tests were performed. A contraction of samples was observed during some creep tests under a low stress, 20MPa at 800 0 C, for HAYNES 230 and HASTELLOY X. This could be due to a structural evolution of these materials connected to a decrease of the cristalline parameter. In addition, correlations were observed between certain characteristics determined from slow tensile tests and short duration creep tests. These correlations present a large interest because, at the present time, creep tests cannot be executed on irradiated materials in our laboratories. Consequently creep behaviour of irradiated materials seem may be deduced. Further studies are needed to explain and confirm the behaviour of the most interesting materials under low stresses: HAYNES 230 and HASTELLOY XR to anticipate their behaviour in working conditions [fr

  2. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  3. Informal Governance in Urban Spaces

    DEFF Research Database (Denmark)

    Polese, Abel; Rekhviashvili, Lela; Morris, Jeremy Bryan

    2017-01-01

    Drawing on evidence from the competition for public spaces between street vendors and the authorities in Georgia our contribution through this article is two-fold. First, we provide empirical evidence showing the diverse role of informality in a series of settings, and its capacity to influence d...

  4. 14. informal meeting on reactor noise

    International Nuclear Information System (INIS)

    1981-01-01

    The present booklet contains abstracts of papers from the 14th informal meeting on reactor noise held at St. Englmar in April 1981. The main topics dealt with are vibration and loose part monitoring, leak detection, noise theory and noise applications and in the final part data processing and pattern recognition techniques. (orig.)

  5. Some thoughts on the commercial use of reactors in space

    International Nuclear Information System (INIS)

    Buden, D.; Lee, J.

    1986-01-01

    The purpose of this paper is to illuminate the major regulatory issues associated with commercialization of space nuclear power. Currently, space reactors are government-owned and approved through the Interagency Nuclear Safety Review Panel (INSRP) and the President while commercial reactors are licensed by the Nuclear Regulatory Commission. The commercial use of reactors in space will open a new regime of regulation; that is public intervenors could enter the space licensing process for the first time. The major issue is responsibility for licensing and operations, but related considerations involve controlling special nuclear materials from aborted launches or abandoned platforms, determining final shutdown and disposal tactics, and solving new design issues such as the need for longer life of space reactor power plants

  6. Soviet space nuclear reactor incidents - Perception versus reality

    Science.gov (United States)

    Bennett, Gary L.

    1992-01-01

    Since the Soviet Union reportedly began flying nuclear power sources in 1965 it has had four publicly known accidents involving space reactors, two publicly known accidents involving radioisotope power sources and one close call with a space reactor (Cosmos 1900). The reactor accidents, particularly Cosmos 954 and Cosmos 1402, indicated that the Soviets had adopted burnup as their reentry philosophy which is consistent with the U.S. philosophy from the 1960s and 1970s. While quantitative risk analyses have shown that the Soviet accidents have not posed a serious risk to the world's population, concerns still remain about Soviet space nuclear safety practices.

  7. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  8. The Vehicular Information Space Framework

    Science.gov (United States)

    Prinz, Vivian; Schlichter, Johann; Schweiger, Benno

    Vehicular networks are distributed, self-organizing and highly mobile ad hoc networks. They allow for providing drivers with up-to-the-minute information about their environment. Therefore, they are expected to be a decisive future enabler for enhancing driving comfort and safety. This article introduces the Vehicular Information Space framework (VIS). Vehicles running the VIS form a kind of distributed database. It enables them to provide information like existing hazards, parking spaces or traffic densities in a location aware and fully distributed manner. In addition, vehicles can retrieve, modify and delete these information items. The underlying algorithm is based on features derived from existing structured Peer-to-Peer algorithms and extended to suit the specific characteristics of highly mobile ad hoc networks. We present, implement and simulate the VIS using a motorway and an urban traffic environment. Simulation studies on VIS message occurrence show that the VIS implies reasonable traffic overhead. Also, overall VIS message traffic is independent from the number of information items provided.

  9. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  10. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  11. Space reactors - What is a kilogram

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.; Ek, D.; Voss, S.

    1984-01-01

    The use of nuclear electric propulsion can triple the payloads to GEO for a single Shuttle launch. Life orbits of 300 years can be used to allow most of the fission and activation products to decay before a reactor reenters the biosphere. Enough radioactive materials remain with very long lifetimes to make it desirable to design the reactor to disperse upon reentry and little additional risk to the biosphere is introduced by initiating NEP operations from 300 km

  12. Space reactors: What is a kilogram

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J. Jr.; Ek, D.; Voss, S.

    1984-01-01

    The use of nuclear electric propulsion can triple payloads to GEO for a single Shuttle launch. Life orbits of 300 years can be used to allow most of the fission and activation products to decay before a reactor reenters the biosphere. Enough radioactive materials remain with very long lifetimes to make it desirable to design the reactor to disperse upon reentry and little additional risk to the biosphere is introduced by initiating NEP operations from 300 km

  13. FBR and RBR particle bed space reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10 0 K), high coolant-outlet temperatures (1500 to 3000 0 K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H 2 -cooled mode. The RBR will operate only in the open-cycle H 2 -cooled mode

  14. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  15. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  16. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  17. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  18. The Information Infrastructures Design Space

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Rapti, Charikleia; Jensen, Thomas

    2017-01-01

    This paper develops a framework for characterising the design space of Information Infrastructures (IIs). Existing research has generally sought to unravel the convergent characteristics and mechanisms uniting IIs across a wide range of manifestations. In this research, we explore this divergence...... within the II design space. We do so by reviewing the II literature, focusing on the two domains of design situation and design resolution. Design situation refers to the relevant dimensions of the context in which an II is employed. Design resolution covers the dimensions along which the socio......-technical constituents can be assembled to form an effective solution. The resulting framework allows for the comparing and contrasting of II initiatives, and contributes towards a cumulative knowledge process aimed at a more refined understanding of how an II can be configured to address the specific problem at hand....

  19. Space nuclear reactors: energy gateway into the next millennium

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Buden, D.

    1981-01-01

    Power - reliable, abundant and economic - is the key to man's conquest of the Solar System. Space activities of the next few decades will be highlighted by the creation of the extraterrestrial phase of human civilization. Nuclear power is needed both to propel massive quantities of materials through cislunar and eventually translunar space, and to power the sophisticated satellites, space platforms, and space stations of tomorrow. To meet these anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100-kW(e) heat pipe nuclear reactor. The objectives of this program are to develop components for a space nuclear power plant capable of unattended operation for 7 to 10 years; having a reliability of greater than 0.95; and weighing less than 1910 kg. In addition, this heat pipe reactor is also compatible for launch by the US Space Transportation System

  20. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  1. Information Architecture the Design of Digital Information Spaces

    CERN Document Server

    Ding, Wei

    2009-01-01

    Information Architecture is about organizing and simplifying information, designing and integrating information spaces/systems, and creating ways for people to find and interact with information content. Its goal is to help people understand and manage information and make right decisions accordingly. In the ever-changing social, organizational and technological contexts, Information Architects not only design individual information spaces (e.g., individual websites, software applications, and mobile devices), but also tackle strategic aggregation and integration of multiple information spaces

  2. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  3. Primary loop simulation of the SP-100 space nuclear reactor

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F.

    2011-01-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  4. Shielding considerations for advanced space nuclear reactor systems

    International Nuclear Information System (INIS)

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO 2 ) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications

  5. Status report on nuclear reactors for space electric power

    International Nuclear Information System (INIS)

    Buden, D.

    1978-01-01

    The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission. Increased questions have been raised about safety since the COSMOS 954 incident. High orbits (above 400 to 500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit where orbital lifetimes are practically indefinite, the safety considerations are negligible. The potential missions, why reactors are being considered as a prime power candidate, reactor features, and safety considerations are discussed

  6. Space nuclear reactor system diagnosis: Knowledge-based approach

    International Nuclear Information System (INIS)

    Ting, Y.T.D.

    1990-01-01

    SP-100 space nuclear reactor system development is a joint effort by the Department of Energy, the Department of Defense and the National Aeronautics and Space Administration. The system is designed to operate in isolation for many years, and is possibly subject to little or no remote maintenance. This dissertation proposes a knowledge based diagnostic system which, in principle, can diagnose the faults which can either cause reactor shutdown or lead to another serious problem. This framework in general can be applied to the fully specified system if detailed design information becomes available. The set of faults considered herein is identified based on heuristic knowledge about the system operation. The suitable approach to diagnostic problem solving is proposed after investigating the most prevalent methodologies in Artificial Intelligence as well as the causal analysis of the system. Deep causal knowledge modeling based on digraph, fault-tree or logic flowgraph methodology would present a need for some knowledge representation to handle the time dependent system behavior. A proposed qualitative temporal knowledge modeling methodology, using rules with specified time delay among the process variables, has been proposed and is used to develop the diagnostic sufficient rule set. The rule set has been modified by using a time zone approach to have a robust system design. The sufficient rule set is transformed to a sufficient and necessary one by searching the whole knowledge base. Qualitative data analysis is proposed in analyzing the measured data if in a real time situation. An expert system shell - Intelligence Compiler is used to develop the prototype system. Frames are used for the process variables. Forward chaining rules are used in monitoring and backward chaining rules are used in diagnosis

  7. White Paper – Use of LEU for a Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    Historically space reactors flown or designed for the U.S. and Russia used Highly Enriched Uranium (HEU) for fuel. HEU almost always produces a small and lighter reactor. Since mass increases launch costs or decreases science payloads, HEU was the natural choice. However in today’s environment, the proliferation of HEU has become a major concern for the U.S. government and hence a policy issue. In addition, launch costs are being reduced as the space community moves toward commercial launch vehicles. HEU also carries a heavy security cost to process, test, transport and launch. Together these issues have called for a re-investigation into space reactors the use Low Enriched Uranium (LEU) fuel.

  8. Some scoping experiments for a space reactor

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1983-01-01

    Some scoping experiments were performed to evaluate fuel performance in a lithium heat pipe reactor operating at a nominal 1500K heat pipe temperature. Fuel-coolant and fuel-coolant-clad relationships showed that once a failed heat pipe occurs temperatures can rise high enough so that large concentrations of uranium can be transported by the vapor phase. Upon condensation this uranium would be capable of penetrating heat pipes adjacent to the failed pipe. The potential for propagation of failure exists with UO 2 and a lithium heat pipe. Changing the composition of the metal of the heat pipe would have only a second order effect on the kinetics of the failure mechanism. Uranium carbide and nitride were considered as potential fuels which are nonreactive in a lithium environment. At high temperatures the nitride would be favored because of its better compatibility with potential cladding materials. Compositions of UN with small additions of YN appear to offer very attractive properties for a compact high temperature high power density reactor

  9. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  10. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    Energy Technology Data Exchange (ETDEWEB)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  11. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    Buden, D.; Williams, K.; Mast, P.; Mims, J.

    1987-01-01

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in the tens of megawatts. The electrical power requirements are envisioned to be twofold: long-duration lower power levels will be needed for station keeping, communications, and/or surveillance; short-duration higher power levels will be required for pulsed power devices. These power characteristics led to the proposal of a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multimegawatt reactor power source are standby, alert, and pulsed power modes; high-thermal output heat source (approximately 1000 MWt peak power); long lifetime station keeping power (10 to 30 years); high temperature output (1500 K to 1800 K); rapid-burst power transition; high reliability (above 95 percent); and stringent safety standards compliance. The proposed pellet bed reactor is designed to satisfy these characteristics

  12. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  13. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  14. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  15. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  16. Nuclear reactor descriptions for space power systems analysis

    Science.gov (United States)

    Mccauley, E. W.; Brown, N. J.

    1972-01-01

    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.

  17. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  18. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  19. Research of management information system of radiation protection for low temperature nuclear heating reactor

    International Nuclear Information System (INIS)

    Bai Hongtao; Wang Jiaying; Wu Manxue

    2001-01-01

    Management information system of radiation protection for low temperature reactor uses computer to manage the data of the low temperature nuclear heating reactor radiation monitoring, it saves the data from the front real-time radiation monitoring system, comparing these data with historical data to give the consequence. Also, the system provides some picture in order to show space information at need. The system, based on Microsoft Access 97, consists of nine parts, including radiation dose, environmental data, meteorological data and so on. The system will have value in safely operation of the low temperature nuclear heating reactor

  20. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Armijo, J.S.; Kruger, G.B.; Palmer, R.S.; Van Hoomisson, J.E.

    1988-01-01

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  1. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  2. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  3. Designing informal learning spaces using student perspectives

    Directory of Open Access Journals (Sweden)

    Matthew David Riddle

    2012-06-01

    Full Text Available This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning space design, and a significant curriculum renewal process at the university. It demonstrates the ways in which evidence based on student perspectives and principles developed through applied research in teaching and learning can inform real world learning space design projects in a higher education context.

  4. Autonomous Control Capabilities for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-01-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission

  5. Designing informal learning spaces using student perspectives

    OpenAIRE

    Matthew David Riddle; Kay Souter

    2012-01-01

    This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning space design, and a significant curriculum renewal process at the university. It demonstrates the ways in which evidence based on student perspectiv...

  6. Performance analysis of Brayton cycle system for space power reactor

    International Nuclear Information System (INIS)

    Li Zhi; Yang Xiaoyong; Zhao Gang; Wang Jie; Zhang Zuoyi

    2017-01-01

    The closed Brayton cycle system now is the potential choice as the power conversion system for High Temperature Gas-cooled Reactors because of its high energy conversion efficiency and compact configuration. The helium is the best working fluid for the system for its chemical stability and small neutron absorption cross section. However, the Helium has small mole mass and big specific volume, which would lead to larger pipes and heat exchanger. What's more, the big compressor enthalpy rise of helium would also lead to an unacceptably large number of compressor's stage. For space use, it's more important to satisfy the limit of the system's volume and mass, instead of the requirement of the system's thermal capacity. So Noble-Gas binary mixture of helium and xenon is presented as the working fluid for space Brayton cycle. This paper makes a mathematical model for space Brayton cycle system by Fortran language, then analyzes the binary mixture of helium and xenon's properties and effects on power conversion units of the space power reactor, which would be helpful to understand and design the space power reactor. The results show that xenon would lead to a worse system's thermodynamic property, the cycle's efficiency and specific power decrease as xenon's mole fraction increasing. On the other hand, proper amount of xenon would decrease the enthalpy changes in turbomachines, which would be good for turbomachines' design. Another optimization method – the specific power optimization is also proposed to make a comparison. (author)

  7. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-01-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses ∼80 W(electric)

  8. State-space representation of the reactor dynamics equations

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1995-01-01

    This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present

  9. Neutronics Study of the KANUTER Space Propulsion Reactor

    International Nuclear Information System (INIS)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee

    2014-01-01

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe 135 , and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity

  10. Neutronics Study of the KANUTER Space Propulsion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  11. Cermet-fueled reactors for advanced space applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper

  12. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  13. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  14. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  15. Towards Mobile Information Systems for Indoor Space

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Zhang

    2016-01-01

    Full Text Available With the rapid development of Internet of things (IOT and indoor positioning technologies such as Wi-Fi and RFID, indoor mobile information systems have become a new research hotspot. Based on the unique features of indoor space and urgent needs on indoor mobile applications, in this paper we analyze some key issues in indoor mobile information systems, including positioning technologies in indoor environments, representation models for indoor spaces, query processing techniques for indoor moving objects, and index structures for indoor mobile applications. Then, we present an indoor mobile information management system named IndoorDB. Finally, we give some future research topics about indoor mobile information systems.

  16. 18th informal meeting on reactor noise

    International Nuclear Information System (INIS)

    Dach, K.

    1986-01-01

    The proceedings contain the texts of 24 papers all of which fall under the INIS Subject Scope. The main purpose of the meeting of more than 90 scientists and specialists from 18 countries was for them to get acquainted with the current state and prospective development of noise diagnostics application in nuclear reactor operation. (Z.M.)

  17. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper

  18. Recommendations for space reactor R ampersand D tasks

    International Nuclear Information System (INIS)

    Wiley, R.L.; Marshall, A.C.

    1995-01-01

    A rationale was developed to determine which technologies a space nuclear reactor technology based program pursue based on the fact that budgets would be limited. A preliminary evaluation was conducted to identify key technical issues and to recommend a prioritized set of candidate research projects that could be undertaken as part of the Defense Nuclear Agency (DNA) program in the near term. The recommendations made have not been adopted formally by the DNA's Topaz International Program process. (TIP), but serve as inputs to the program plannin process

  19. Space reactors. Progress report, October 1981-March 1982

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1983-01-01

    Progress in design studies and technology for the SP-100 Project - successor to the Space Power Advanced Reactor (SPAR) Project - is reported for the period October 1, 1981 to March 31, 1982. The basis for selecting a high-temperature, UO 2 -fueled, heat-pipe-cooled reactor with a thermoelectric conversion system as the 100-kW/sub e/ reference design has been reviewed. Although no change has been made in the general concept, design studies have been done to investigate various reactor/conversion system coupling methods and core design modifications. Thermal and mechanical finite element modeling and three-dimensional Monte Carlo analysis of a core with individual finned fuel elements are reported. Studies of unrestrained fuel irradiation data are discussed that are relevant both to the core modeling work and to the design and fabrication of the first in-pile irradiation test, which is also reported. Work on lithium-filled core heat pipe development is described, including the attainment of 15.6 kW/sub t/ operation at 1525 K for a 2-m-long heat pipe with a 15.7-mm outside diameter. The successful operation of a 5.5-m-long, lightweight potassium/titanium heat pipe at 760 K is described, and test results of a thermoelectric module with GaP-modified SiGe thermoelectric elements are presented

  20. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  1. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  2. Design and evaluation of materials for space reactors

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Vrillon, B.; Robert, G.

    1990-01-01

    The French programme envisages a 20 kWe reactor, project ERATO, with three technological options. The first option is a sodium cooled reactor, derived from the fast breeder reactor technology, (upper core outlet temperature of 700 0 C). The second option is based on the High Temperature Gas-cooled Reactor technology (outlet temperature range 700 0 C-900 0 C). The third option is the reference solution, lithium cooled and UN fuelled fast spectrum reactor, (outlet temperature as high as 1200 0 C). The choice is essentially dominated by material considerations, and more specifically by the problems related to the compatibility with the cooling medium and to the high temperature creep resistance. For the first system limited work will be needed as the technology used is well experimented and there is a wealth of information on the austenitic stainless steel Type 316L-SPH. For the second system, most of the work has been concentrated on characterization of existing commercial alloys. This has included the preselection and the testing of a number of superalloys irradiated or not. The results obtained from high temperature tensile and creep tests have allowed selection of Haynes 230 as the primary candidate material and have also permitted calculation of allowable design stresses for this alloy. For the very high temperature system the French R and D programme has focused on Mo-Re alloys. The results obtained to this date from microstructural examinations and mechanical tests performed on different alloy compositions have allowed selection of Mo-25%Re for future optimization work. They have also shown the need for evaluation of creep properties at low stresses where microstructural instabilities are likely to occur as a result of long exposure to high temperature

  3. Maps of Information Spaces: Assessments from Astronomy.

    Science.gov (United States)

    Poincot, Philippe; Lesteven, Soizick; Murtagh, Fionn

    2000-01-01

    Discusses the implementation of a cartographic user interface to bibliographic and other information sub-spaces in astronomy. Presents a range of comparative assessments, in operational frameworks, of this approach to accessing and retrieving astronomical information. Discusses the particular role that such cartographic user interfaces can play in…

  4. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  5. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    Buden, D.

    1993-01-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  6. Incomplete information and fractal phase space

    International Nuclear Information System (INIS)

    Wang, Qiuping A.

    2004-01-01

    The incomplete statistics for complex systems is characterized by a so called incompleteness parameter ω which equals unity when information is completely accessible to our treatment. This paper is devoted to the discussion of the incompleteness of accessible information and of the physical signification of ω on the basis of fractal phase space. ω is shown to be proportional to the fractal dimension of the phase space and can be linked to the phase volume expansion and information growth during the scale refining process

  7. Spacing grid intended for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1977-01-01

    This invention concerns a new improved type of spacing grid that can be used in nuclear reactor fuel assemblies. Under the invention a spacing grid is provided, preferably of the bimetallic type. This grid includes a set of flexible inconel strips positioned by structural 'zircalloy' fittings, having relatively low neutron absorption characteristics in comparison with systems where the flexible strips are welded in position, or where the spring forms an integral part of the structure. The openings for the fuel elements which are defined by the structural fittings intercrossing are fitted internally with bosses which work in conjunction with a spring directed downwards as from the flexible strip so as to position the individual fuel rods in their respective openings inside the grid structure. These flexible strips are arranged in rows extending in directions which depend on the particular design of the fuel asembly and which contain flexible components so distributed that the loads of the individual springs tend to equalize each other mutually. The reaction load exerting itself on the supporting structure is reduced to the minimum, and this results in a lesser distortion in the reactor and an equalisation of the spring loads [fr

  8. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1982-06-01

    This publication is the third in a proposed series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. Subsequent issues in this series will update the information contained herein. This publication contains basically three kinds of information: (1) routes approved by the Commission for the shipment of irradiated reactor fuel, (2) information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and (3) cumulative amounts of material shipped

  9. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  10. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  11. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1983-07-01

    This publication contains basically three kinds of information: routes approved by the Commission for the shipment of irradiated reactor fuel, information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and cumulative amounts of material shipped

  12. Preliminary closed Brayton cycle study for a space reactor application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de; Camillo, Giannino Ponchio

    2007-01-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  13. Preliminary closed Brayton cycle study for a space reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  14. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  15. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  16. The Design Space of Information Presentation

    DEFF Research Database (Denmark)

    May, Michael; Petersen, Johannes

    2007-01-01

    A semiotic approach to the design space of information presentation is presented in which Formal Concept Analysis (FCA) is used to represent and explore attributes of abstract sign types and the media (graphical, haptic, acoustic, gestic) through which they are presented as specific...

  17. Application of data mining in three-dimensional space time reactor model

    International Nuclear Information System (INIS)

    Jiang Botao; Zhao Fuyu

    2011-01-01

    A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial

  18. Intelligence system for reactor operator informational support

    International Nuclear Information System (INIS)

    Prangishvili, I.V.; Pashchenko, F.F.; Saprykin, E.M.

    1989-01-01

    Problems related to creation and introduction at NPP of highly efficient and reliable systems for monitoring and control of working processes and intelligence-endowed systems of operator informational support (ISOIS) are considered. The main units included in ISOIS are considered. The main units included in ISOIS are described. The unit of current state monitoring provides information for the operator, which is necessary under concrete conditions for the process monitoring and control, so as to avoid emergencies and affers a program of actions in a dialogue mode for the operator. The identification unit is designed for the obtaining of assessed values of process parameters (neutron fields, temperatures, pressures) and basic equipment (reactivity coefficients, fuel rod weights, time of delay). The prediction unit evaluates the behaviour of process parameters and process state in various situations. 9 refs

  19. Temperature and Doppler coefficients of various space nuclear reactors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Ludewig, H. Schmidt, E.

    1993-01-01

    Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system

  20. Temperature and Doppler Coefficients of Various Space Nuclear Reactors

    Science.gov (United States)

    Mughabghab, Said F.; Ludewig, Hans; Schmidt, Eldon

    1994-07-01

    Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system.

  1. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  2. PC version of PRIS (Power Reactor Information System)

    International Nuclear Information System (INIS)

    Fukala, J.; Stanik, Z.; White, D.

    1990-05-01

    The IAEA has been collecting operating experience data on nuclear power plants in the Member States since 1970. In 1980 a computerized database was established, the IAEA Power Reactor Information System (PRIS). To make PRIS data available to the Member States in a more convenient format, the development of a PC version of PRIS started in 1989

  3. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  4. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  5. Transactions of the Twentieth Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 20th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 21--23, 1992. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included

  6. R-102, 1 Group Space-Independent Inverse Reactor Kinetics

    International Nuclear Information System (INIS)

    Kaganove, J.J.

    1966-01-01

    1 - Description of problem or function: Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this program determines the time variation of reactivity required to produce the given input of flux-time data. 2 - Method of solution: Time derivatives of neutron density are obtained by application of (a) five-point quartic, (b) three-point parabolic, (c) five-point least-mean-square cubic, (d) five-point least-mean-square parabolic, or (e) five-point least-mean-square linear formulae to the neutron density or to the natural logarithm of the neutron density. Between each data point the neutron density is assumed to be (a) exponential*(third-order polynomial), (b) exponential, or (c) linear. Changes in reactivity between data points are obtained algebraically from the kinetics equations, neutron density derivatives, and the algebraic representation of neutron density. First and second time derivatives of the reactivity are obtained by use of any of the formulae applicable to the neutron density. 3 - Restrictions on the complexity of the problem: Maxima of - 50 delay groups; 1000 data points; 99 data blocks (A data block is a sequence of input points characterized by a fixed time-interval between points, a smoothing option, and a number of repetitions of the smoothing option)

  7. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  8. A Reference Architecture for Space Information Management

    Science.gov (United States)

    Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.

    2006-01-01

    We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.

  9. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  10. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  11. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  12. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  13. Transactions of the nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately

  14. A Sensitivity Study on the Radiation Shield of KSPR Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cerba, S.; Lee, Hyun Chul; Lim, Hong Sik; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The idea of a space reactor was realised some decades ago and since that time several research activities have been performed into this field. The US National Aeronautics and Space Administration (NASA) has been developing a small fast reactor called as fission power system (FPS) for deep space mission, where highly enriched uranium (HEU) is used as fuel. On the other hand, other researchers have also surveyed a thermal reactor concept with low enriched uranium (LEU) for space applications. One of the main concerns in terms of a space reactor is the total size and the mass of the system including the reactor itself as well as the radiation shield. Since the reactor core is a source of neutrons and gamma photons of various energies, which may cause severe damage on the electronics of the space stations, the questions related to the development of a radiation shield should be address appropriately. The proposal of a radiation shield for a small space reactor is discussed in this paper. The requirements for the radiation shield have been addressed in terms of maximal absorbed doses and neutron flounces during 10 years of operation. In this study a radiation shield design for a small space reactor was investigated. All the presented calculations were performed using the multi-purpose stochastic MCNP code with temperature dependent continuous energy ENDF/B VII.0 neutron and photon cross section libraries. The aim of this study was to design a neutron and gamma shield that can meet the requirements of 250 Gy absorbed during 10 years of reactor operation. The comparison with a fast reactor design showed that high content of {sup 238}U strongly influences the shielding mass. This phenomenon is due to the higher photon production in case of the KSPR design and therefore the use of high {sup 235}U enrichments and the operation in fast neutron spectrum may be more desirable. In case if the KSPR space reactor the best shielding performance was achieved while utilizing a multi

  15. Data Model Management for Space Information Systems

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris

    2006-01-01

    The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool

  16. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  17. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  18. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  19. Effects of space-dependent cross sections on core physics parameters for compact fast spectrum space power reactors

    International Nuclear Information System (INIS)

    Lell, R.M.; Hanan, N.A.

    1987-01-01

    Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design

  20. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  1. Risk-informed design of a pebble bed gas reactor

    International Nuclear Information System (INIS)

    Ritterbusch, Stanley; Dimitrijevic, Vesna; Simic Zdenko; Savkina Marina

    2003-01-01

    One of the major challenges to the successful deployment of new nuclear plants in the United States is the regulatory process, which is largely based on water-reactor design technology and operating experience. While ongoing and expected efforts to license new LWR designs are based primarily on current regulations, guidance, and past experience, the pre-application review of the gas-cooled Pebble Bed Modular Reactor (PBMR) has shown that efforts are being made to provide additional 'risk-informed' improvements to the licensing process. These improvements are aimed at resolving new design and regulatory issues using a plant-wide integrated evaluation method - state-of-the-art Probabilistic Risk Assessment - which addresses all significant design features and operating modes. The integrated PRA evaluation is supported by the usual deterministic design analyses, engineering judgments, and margins added to address uncertainties (i.e., defense-in-depth). The work performed for this paper was completed as part of the United States Department of Energy's Nuclear Energy Research Initiative. The purpose of this particular project was to develop the methods for a new 'highly risk-informed' design and regulatory process. In this work. PRA techniques were applied in order to provide an integrated and systematic analysis of the plant design, to quantify uncertainties and explicitly account for defense-in-depth features. This work concentrates on the application of the risk-informed principles to a new plant design such as the PBMR. The implementation example completed for this project included specification of the design configuration, use of the PRA to evaluate the design, and iterations to identify design changes that improve the overall level of safety and system reliability. This paper summarizes the new 'highly risk-informed' design process, the design of the PBMR, and the results obtained. These results, consistent with the known inherent safety features of a pebble

  2. Meeting the reactor operator's information needs using functional analysis

    International Nuclear Information System (INIS)

    Nelson, W.R.; Clark, M.T.

    1980-01-01

    Since the accident at Three Mile Island, many ideas have been proposed for assisting the reactor operator during emergency situations. However, some of the suggested remedies do not alleviate an important shortcoming of the TMI control room: the operators were not presented with the information they needed in a manner which would allow prompt diagnosis of the problem. To address this problem, functional analysis is being applied at the LOFT facility to ensure that the operator's information needs are being met in his procedures and graphic displays. This paper summarizes the current applications of functional analysis at LOFT

  3. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  4. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  5. Risk-informing special treatment requirements for reactors

    International Nuclear Information System (INIS)

    McKenna, E.M.; Reed, T.A.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to make regulatory changes to the scope of structures, systems, and components (SSCs) requiring special treatment. ''Special treatment requirements'' refers to those specific examples of regulations that are applied in order to provide a high degree of assurance that SSC will be capable of performing their intended functions when needed. The current scope of SSCs covered by the special treatment requirements governing commercial nuclear reactors is deterministically based and stems primarily from the evaluation of selected design basis events, as described in updated final safety analysis reports (UFSARs). This regulatory framework provides reasonable assurance of no undue risk to the health and safety of the public. However, recent advances in technology, coupled with operating reactor experience, have suggested that an alternative approach that would use a risk-informed process for evaluating SSC safety significance, would, in turn, result in a more focused determination of which SSCs should receive special treatment requirements. (author)

  6. Risk-informed design guidance for future reactor systems

    International Nuclear Information System (INIS)

    Delaney, Michael J.; Apostolakis, George E.; Driscoll, Michael J.

    2005-01-01

    Future reactor designs face an uncertain regulatory environment. It is anticipated that there will be some level of probabilistic insights in the regulations and supporting regulatory documents for Generation-IV nuclear reactors. Central to current regulations are design basis accidents (DBAs) and the general design criteria (GDC), which were established before probabilistic risk assessments (PRAs) were developed. These regulations implement a structuralist approach to safety through traditional defense in depth and large safety margins. In a rationalist approach to safety, accident frequencies are quantified and protective measures are introduced to make these frequencies acceptably low. Both approaches have advantages and disadvantages and future reactor design and licensing processes will have to implement a hybrid approach. This paper presents an iterative four-step risk-informed methodology to guide the design of future-reactor systems using a gas-cooled fast reactor emergency core cooling system as an example. This methodology helps designers to analyze alternative designs under potential risk-informed regulations and to anticipate design justifications the regulator may require during the licensing process. The analysis demonstrated the importance of common-cause failures and the need for guidance on how to change the quantitative impact of these potential failures on the frequency of accident sequences as the design changes. Deliberation is an important part of the four-step methodology because it supplements the quantitative results by allowing the inclusion in the design choice of elements such as best design practices and ease of online maintenance, which usually cannot be quantified. The case study showed that, in some instances, the structuralist and the rationalist approaches were inconsistent. In particular, GDC 35 treats the double-ended break of the largest pipe in the reactor coolant system with concurrent loss of offsite power and a single

  7. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Lewis, B.R.; Klein, A.C.; Pawlowski, R.A.

    1993-01-01

    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range

  8. Effects of irradiation on properties of refractory alloys with emphasis on space power reactor applications

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1984-01-01

    The probable effects of irradiation on niobium and tungsten alloys in use as components of thermionic convertors in a space reactor were reviewed by the author in 1971. While considerably more data on refractory metals have been generated since that time, the data have not been reviewed with respect to space reactor applications. This paper attempts such a review. The approach used is to work from the most recently available review of irradiation effects for each alloy system (where such a review is available) and to discuss that review and more recent data judged to be the most useful in establishing likely behavior in high-temperature reactor service. 28 figures, 6 tables

  9. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system

    International Nuclear Information System (INIS)

    Yuan, Yuan; Shan, Jianqiang; Zhang, Bin; Gou, Junli; Bo, Zhang; Lu, Tianyu; Ge, Li; Yang, Zijiang

    2016-01-01

    Highlights: • A transient analysis code TAPIRS for HPS has been developed. • Three typical accidents are analyzed using TAPIRS. • The reactor system has the self-stabilization ability under accident conditions. - Abstract: A space power with high power density, light weight, low cost and high reliability is of crucial importance to future exploration of deep space. Space reactor is an excellent candidate because of its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe (HP) as core cooling component, is considered as one of the most promising choices and is widely studied all over the world. This paper develops a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) based on point reactor kinetics model, lumped parameter core heat transfer model, combined HP model (self-diffusion model, flat-front startup model and network model), energy conversion model of Alkali Metal Thermal-to-Electric Conversion units (AMTEC), and HP radiator model. Three typical accidents, i.e., control drum failure, AMTEC failure and partial loss of the heat transfer area of radiator are then analyzed using TAPIRS. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. The results show the following. (1) After the failure of one set of control drums, the reactor power finally reaches a stable value after two local peaks under the temperature feedback. The fuel temperature rises rapidly, however it is still under safe limit. (2) The fuel temperature is below a safe limit under the AMTEC failure and partial loss of the heat transfer area of radiator. This demonstrates the rationality of the system design and the potential applicability of the TAPIRS code for the future engineering application of

  10. Integrated design support systems for conceptual design of a space power reactor

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Yoshikawa, Hidekazu; Takahashi, Makoto; Takeoka, Satoshi; Nagamatsu, Takashi; Ishizaki, Hiroaki

    1999-01-01

    In the process of conceptual design of large and complex engineering systems such as a nuclear power reactor, there must be various human works by several fields of engineers on each stage of design, analysis and evaluation. In this study, we have rearranged the design information to reduce the human workloads and have studied an efficient method to support the conceptual design works by new information technologies. For this purpose, we have developed two design support environments for conceptual design of a space power reactor as a concrete design target. When constructing an integrated design support environment, VINDS, which employs virtual reality(VR) technology, we focused on visualization of physical structure, functional organization and analysis calculation with full usage of easy perception and direct manipulation of VR. On the other hand, when constructing another asynchronous and distributed design support environment, WINDS, which employs WWW technology, we improved the support functions for cooperative design works among various fields of experts. In this paper, the basic concepts, configurations and functions of the design support environments are first described, then the future improvement is surveyed by their intercomparison. (author)

  11. Environmental safety of the global information space

    Directory of Open Access Journals (Sweden)

    В’ячеслав Степанович Волошин

    2015-03-01

    Databases of full-text publications – journals, articles, monographs- are surely a means of salvation for science. There already exist a large number of such portals. Besides, advantages and disadvantages of electronic subscriptions to periodicals should certainly be considered. The former include the following most evident ones: aggregation of large data arrays, saving money on a subscription, an opportunity to work with relevant publications, thematic collections of materials, availability of records, simultaneous access of an unlimited number of users and others. Nevertheless, there are many disadvantages that make it difficult to work with full-text publications. They are the following: selective representativeness of publication numbers, complexity of keyword search, occasional presence of obsolete text formats, printed versions, possible psychological barrier, physiological incompatibility with computer equipment, fatigue caused by prolonged work on the computer. The Internet was followed by the appearance of global control networks, their aims ranging from control of a human life support to a unified control of humanity. So, the formed global information space promises the man to get access to almost any information source. Meanwhile, environmental safety of the man, his/her objective biological psyche and abilities in harmonious development are at serious risk

  12. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; van Dam, H.; Kleiss, E.B.J.; van Uitert, G.C.; Veldhuis, D.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations.

  13. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations. (author)

  14. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  15. Analytic solutions of the multigroup space-time reactor kinetics equations

    International Nuclear Information System (INIS)

    Lee, C.E.; Rottler, S.

    1986-01-01

    The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)

  16. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  17. The ESA Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  18. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  19. Impact of the use of low or medium enriched uranium on the masses of space nuclear reactor power systems

    International Nuclear Information System (INIS)

    1994-12-01

    The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors

  20. Methodology of nuclear reactor monitoring and diagnostics using information dimension

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Hayashi, Koji; Shinohara, Yoshikuni

    1993-01-01

    Reactor noise analysis method based on information dimension is applied to the monitoring and diagnosing of power oscillation. The method focuses on the utilization of the slope of the correlation integral (SOCI) which determines the information dimension of attractors. For practical application, the information dimension is expected to be the same as the fractal dimension of attractors; it can be used to classify different asymptotic regimes of nonlinear dynamical systems. We examined a real power oscillation using SOCI and the results implied that the oscillation was just a noisy limit cycle, although it is not possible to assert that there is no chaotic character in the oscillation because large oscillatory time-series data sets are not available. In addition, the application of SOCI to the real-time monitoring of power oscillation is proposed and examined. (author)

  1. Deciphering robust reactor kinetic data using mutual information

    International Nuclear Information System (INIS)

    Kumar, P.T. Krishna

    2007-01-01

    Experimentalists use Chauvenets's criterion to check the quality of any measured data. Based on this criterion they rejected data having high degree of correlation. Multivariate techniques like principal component analysis used for analysis of these correlated data, does not provide any scope to minimize the effect of correlation. We propose a novel method using information theory and the technique of determinant inequalities developed by us to reduce the effect of correlation among these data without summarily rejecting them. We demonstrate the utility of our technique in transient measurements of kinetic parameters performed on the commercially advanced gas cooled reactor (CAGCR)

  2. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1993-03-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96--295. The report provides a brief description of NRC authority for certain aspects of transporting spent fuel. It provides descriptive statistics on spent fuel shipments regulated by the NRC from 1979 to 1992. It also lists detailed highway and railway segments used within each state from October 1, 1987 through December 31, 1992

  3. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  4. Advanced Space Nuclear Reactors from Fiction to Reality

    Science.gov (United States)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  5. DESIGN SAFETY PROBLEMS OF NUCLEAR REACTORS IN SPACE FOR ELECTRICAL POWER

    Energy Technology Data Exchange (ETDEWEB)

    Pickler, D A

    1963-06-15

    A general treatment is presented of some of the problems in the design safety of reactors which are to be operated in space. The basic requirements of these reachigh temperatures. The usual concept of a space reactor is described briefly, and the hazards of an assumed unmanned vehicle with an enriched-U-fueled reactor are examined during its launching, orbit, and reentry. Graphs are given for the dose vs distance downwind for an excursion of 100 Mw-sec, for the activity vs time after shutdown of a reactor which has been operated for 5 yr at 100 kw(t), and for the altitude vs orbital lifetime. Apparent conflicts between the basic requirements are discussed. (D.L.C.)

  6. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  7. Space reactor/organic Rankine conversion - A near-term state-of-the-art solution

    Science.gov (United States)

    Niggemann, R. E.; Lacey, D.

    The use of demonstrated reactor technology with organic Rankine cycle (ORC) power conversion can provide a low cost, minimal risk approach to reactor-powered electrical generation systems in the near term. Several reactor technologies, including zirconium hydride, EBR-II and LMFBR, have demonstrated long life and suitability for space application at the operating temperature required by an efficient ORC engine. While this approach would not replace the high temperature space reactor systems presently under development, it could be available in a nearer time frame at a low and predictable cost, allowing some missions requiring high power levels to be flown prior to the availability of advanced systems with lower specific mass. Although this system has relatively high efficiency, the heat rejection temperature is low, requiring a large radiator on the order of 3.4 sq m/kWe. Therefore, a deployable heat pipe radiator configuration will be required.

  8. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1991-01-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1989 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials. 11 figs., 3 tabs

  9. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1992-06-01

    The circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1991 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  10. Thirteenth water reactor safety research information meeting: proceedings Volume 1

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1986-02-01

    This six-volume report contains 151 papers out of the 178 that were presented at the Thirteenth Water Reactor Safety Research Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 22-25, 1985. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-one different papers presented by researchers from Japan, Canada and eight European countries. The title of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume presents information on: risk analysis PRA application; severe accident sequence analysis; risk analysis/dependent failure analysis; and industry safety research

  11. Space nuclear reactor concepts for avoidance of a single point failure

    International Nuclear Information System (INIS)

    El-Genk, M. S.

    2007-01-01

    This paper presents three space nuclear reactor concepts for future exploration missions requiring electrical power of 10's to 100's kW, for 7-10 years. These concepts avoid a single point failure in reactor cooling; and they could be used with a host of energy conversion technologies. The first is lithium or sodium heat pipes cooled reactor. The heat pipes operate at a fraction of their prevailing capillary or sonic limit. Thus, when a number of heat pipes fail, those in the adjacent modules remove their heat load, maintaining reactor core adequately cooled. The second is a reactor with a circulating liquid metal coolant. The reactor core is divided into six identical sectors, each with a separate energy conversion loop. The sectors in the reactor core are neurotically coupled, but hydraulically decoupled. Thus, when a sector experiences a loss of coolant, the fission power generated in it will be removed by the circulating coolant in the adjacent sectors. In this case, however, the reactor fission power would have to decrease to avoid exceeding the design temperature limits in the sector with a failed loop. These two reactor concepts are used with energy conversion technologies, such as advanced Thermoelectric (TE), Free Piston Stirling Engines (FPSE), and Alkali Metal Thermal-to- Electric Conversion (AMTEC). Gas cooled reactors are a better choice to use with Closed Brayton Cycle engines, such as the third reactor concept to be presented in the paper. It has a sectored core that is cooled with a binary mixture of He-Xe (40 gm/mole). Each of the three sectors in the reactor has its own CBC and neutronically, but not hydraulically, coupled to the other sectors

  12. COSTANZA, 1-D 2 Group Space-Dependent Reactor Dynamics of Spatial Reactor with 1 Group Delayed Neutrons

    International Nuclear Information System (INIS)

    Agazzi, A.; Gavazzi, C.; Vincenti, E.; Monterosso, R.

    1964-01-01

    1 - Nature of physical problem solved: The programme studies the spatial dynamics of reactor TESI, in the two group and one space dimension approximation. Only one group of delayed neutrons is considered. The programme simulates the vertical movement of the control rods according to any given movement law. The programme calculates the evolution of the fluxes and temperature and precursor concentration in space and time during the power excursion. 2 - Restrictions on the complexity of the problem: The maximum number of lattice points is 100

  13. Epistemic Information in Stratified M-Spaces

    Directory of Open Access Journals (Sweden)

    Mark Burgin

    2011-12-01

    Full Text Available Information is usually related to knowledge. However, the recent development of information theory demonstrated that information is a much broader concept, being actually present in and virtually related to everything. As a result, many unknown types and kinds of information have been discovered. Nevertheless, information that acts on knowledge, bringing new and updating existing knowledge, is of primary importance to people. It is called epistemic information, which is studied in this paper based on the general theory of information and further developing its mathematical stratum. As a synthetic approach, which reveals the essence of information, organizing and encompassing all main directions in information theory, the general theory of information provides efficient means for such a study. Different types of information dynamics representation use tools of mathematical disciplines such as the theory of categories, functional analysis, mathematical logic and algebra. Here we employ algebraic structures for exploration of information and knowledge dynamics. In Introduction (Section 1, we discuss previous studies of epistemic information. Section 2 gives a compressed description of the parametric phenomenological definition of information in the general theory of information. In Section 3, anthropic information, which is received, exchanged, processed and used by people is singled out and studied based on the Componential Triune Brain model. One of the basic forms of anthropic information called epistemic information, which is related to knowledge, is analyzed in Section 4. Mathematical models of epistemic information are studied in Section 5. In Conclusion, some open problems related to epistemic information are given.

  14. Nuclear Reactors for Space Power, Understanding the Atom Series.

    Science.gov (United States)

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  15. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  16. Problems of space-time behaviour of nuclear reactors; Problemi prostorno-vremenskog ponasanja nuklearnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics. Dat je pregled literature i matematickih metoda koje se koriste prilikom tretiranja prostorno-vremenskog ponasanja nuklearnih reaktora. Pregled literature ogranicen je na jos neresene probleme i pravce u kojima su danas usmerena istrazivanja u ovoj oblasti fizike nuklearnih reaktora (author)

  17. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  18. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    International Nuclear Information System (INIS)

    Berg, Thomas A.; Disney, Richard K.

    2004-01-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs

  19. Space-time neutronic analysis of postulated LOCA's in CANDU reactors

    International Nuclear Information System (INIS)

    Luxat, J.C.; Frescura, G.M.

    1978-01-01

    Space-time neutronic behaviour of CANDU reactors is of importance in the analysis and design of reactor safety systems. A methodology has been developed for simulating CANDU space-time neutronics with application to the analysis of postulated LOCA'S. The approach involves the efficient use of a set of computer codes which provide a capability to perform simulations ranging from detailed, accurate 3-dimensional space-time to low-cost survey calculations using point kinetics with some ''effective'' spatial content. A new, space-time kinetics code based upon a modal expansion approach is described. This code provides an inexpensive and relatively accurate scoping tool for detailed 3-dimensional space-time simulations. (author)

  20. Shield materials recommended for space power nuclear reactors

    Science.gov (United States)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  1. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  2. Core reactivity estimation in space reactors using recurrent dynamic networks

    Science.gov (United States)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  3. Twenty-First Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database

  4. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  5. Thermoelectric converter for SP-100 space reactor power system

    Science.gov (United States)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  6. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  7. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  8. TUTORIAL SUPPORT IN THE INFORMATION SPACE OF SCHOOLS

    Directory of Open Access Journals (Sweden)

    Вита Иммануиловна Глизбург

    2017-12-01

    Full Text Available The article deals with teachers and professional competence tyutorskoy, tutor support schools in the information space. The main requirements to the tutor support in the information space of schools, conditions of readiness of the teacher to tutor support schools in the information space. A theoretical analysis of the concept of information competence, tyutorskoy competence. It is noted that in thestructure of information competence must exist an element associated with the motivation, need and interest in the acquisition of knowledge and skills in the field of technical, software and information. Formulated key performance indicators definition of information competence of the tutor. The authors noted that information and work with it is in the modern educational and information space school mandatory components of pedagogical activity as a system.Analyzed and presented on the basis of the author’s experience of the possibility of using information and educational Moodle shell with tutor support positions in the information space of schools, sets out the basic elements and resources Moodle shell with a description of the implementation. In particular, the disclosed educational resources information and educational shell Moodle for remote support learning. The article describes a model developed by the author’s tutor support schools in the information space.

  9. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  10. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  11. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  12. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  13. Simulation of the preliminary General Electric SP-100 space reactor concept using the ATHENA computer code

    International Nuclear Information System (INIS)

    Fletcher, C.D.

    1986-01-01

    The capability to perform thermal-hydraulic analyses of a space reactor using the ATHENA computer code is demonstrated. The fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of the preliminary General electric SP-100 design were modeled with ATHENA. Two demonstration transient calculations were performed simulating accident conditions. Calculated results are available for display using the Nuclear Plant Analyzer color graphics analysis tool in addition to traditional plots. ATHENA-calculated results appear reasonable, both for steady state full power conditions, and for the two transients. This analysis represents the first known transient thermal-hydraulic simulation using an integral space reactor system model incorporating heat pipes. 6 refs., 17 figs., 1 tab

  14. Terrestrial Planet Space Weather Information: An Update

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C.; Mays, M. L.; Odstrcil, D.; Jian, L.; Galvin, A. B.; Mewaldt, R. A.; von Rosenvinge, T. T.; Russell, C. T.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Thompson, W. T.; Baker, D. N.; Dewey, R. M.; Zheng, Y.; Holmstrom, M.; Futaana, Y.

    2015-12-01

    Space weather research is now a solar system-wide enterprise. While with the end of the Venus Express Express mission and MESSENGER, we lost our 'inside' sentinels, new missions such as Solar Orbiter and SPP, and Bepi-Colombo will soon be launched and operating. In the meantime the combination of L1 resources (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express and MAVEN missions at ~1.5 AU, provide opportunities. Comparative conditions at the Earth orbit and Mars orbit locations are of special interest because they are separated by the region where most solar wind stream interaction regions develop. These alter the propagation of disturbances including the interplanetary CME-driven shocks that make the space radiation affecting future Human mission planning. We share some observational and modeling results thatillustrate present capabilities, as well as developing ones such as ENLIL-based SEP event models that use a range of available observations.

  15. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  16. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  17. An assessment of space reactor technology needs and recommendations for development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Wiley, R.L.

    1996-01-01

    In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. A systematic approach was used to explore needs at several levels that are increasingly specific. sm-bullet Level 0 emdash General Trends and Issues sm-bullet Level 1 emdash Generic Space Capabilities to Address Trends sm-bullet Level 2 emdash Requirements to Support Capabilities sm-bullet Level 3 emdash System Types Capable of Meeting Requirements sm-bullet Level 4 emdash Generic Reactor System Types sm-bullet Level 5 emdash Specific Baseline Systems Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper. copyright 1996 American Institute of Physics

  18. Development of a Robust Tri-Carbide Fueled Reactor for Multi-Megawatt Space Power and Propulsion Applications

    International Nuclear Information System (INIS)

    Samim Anghaie; Knight, Travis W.; Plancher, Johann; Gouw, Reza

    2004-01-01

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors

  19. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1988-04-01

    This circular has been prepared in response to numerous requests for information regarding routes for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC). The NRC staff approves such routes prior to their use, in accordance with the regulatory provisions of 10 CFR Part 73.37. The objective of the safeguards regulations contained in 10 CFR Part 73.37 is to provide protection against radioactive dispersal caused by malevolent acts by persons. The design and construction of the casks used to ship the spent fuel provide adequate radiological protection of the public health and safety against accidents. Therfore, transporting appropriately packaged spent fuel over existing rail systems and via any highway system is radiologically safe without specific NRC approval of the route. However, to assure adequate planning for protection against actual or attempted acts of radiological sabotage, the NRC requires advance route approval. This approval is given on a shipment-by-shipment or series basis, it is not general approval of the route for subsequent spent fuel shipments. Spent fuel shipment routes, primarily for road transportation, but also including three rail routes, are indicated on reproductions of road maps. Also included are the amounts of material shipped during the approximate 8-year period that safeguards regulations have been effective. This information is current as of September 30, 1987

  20. Lightweight power bus for a baseload nuclear reactor in space

    International Nuclear Information System (INIS)

    Oberly, C.E.; Massie, L.D.; Hoffman, D.J.

    1989-01-01

    Space environmental interactions with the power distribution/power processing subsystem can become a serious problem for power systems rated at 10's to 100's of kilowatts. Utilization of ceramic superconductors at 1000 A/cm/sup 2/, which has already been demonstrated at 77 K in a conductor configuration may eliminate both bus mass and distribution voltage problems in a high power satellite. The analytical results presented here demonstrate that a superconducting coaxial power transmission bus offers significant benefits in reduced distribution voltage and mass

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  3. Space Sharing Between Formal and Informal Sectors In Kemang Area

    Science.gov (United States)

    Sihombing, Antony; Dewanti, Hafizka Chandra

    2018-01-01

    Sharing is a form of human activity as a social being, over resources or spaces. Humans generally define their space according to their psychological and biological needs. However, what if space sharing takes place in an urban scope? The phenomenon of space sharing happens in Kemang area done by two distinct sectors, formal and informal which both are engaged in commercial activities independently. In the study of territory and the behavior settings, the quality of environment can affect the formation of human activities in a space, occurs a phenomenon of space sharing. The researcher will discuss and present a form of the space sharing by the formal and informal sectors in a commercial area through different environmental qualities. In some circumstance, a form of space sharing can increase the value of space and obtain to a shared space, where both sectors mutually take benefits. Otherwise, it leads to an adverse impact in some others. It is clear that differences in the physical environment and social environment have an impact on the formation of space sharing and the value of space in an urban region.

  4. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  5. Multidimensional space-time kinetics of a heavy water moderated nuclear reactor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.; Jewell, C.E.

    1980-01-01

    Diffusion theory analysis of a series of multidimensional space-time experiments is appraised in terms of the final experiment of the series. In particular, TRIMHX diffusion calculations were examined for an experiment involving free-fall insertion of a 235 U-bearing rod into a heavy water moderated reactor with a large reflector. The experimental transient flux-tilts were accurately reproduced after cross section adjustments forced agreement between static diffusion calculations and static reactor measurements. The time-dependent features were particularly well modeled, and the bulk of the small discrepancies in space-dependent features should be removable by more refined cross-section adjustments. This experiment concludes a series of space-time experiments that span a wide range of delayed neutron holdback effects. TRIMHX calculations of these experiments demonstrate the accuracy of the modeling employed in the code

  6. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    International Nuclear Information System (INIS)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations

  7. DynMo: Dynamic Simulation Model for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    El-Genk, Mohamed; Tournier, Jean-Michel

    2005-01-01

    A Dynamic simulation Model (DynMo) for space reactor power systems is developed using the SIMULINK registered platform. DynMo is modular and could be applied to power systems with different types of reactors, energy conversion, and heat pipe radiators. This paper presents a general description of DynMo-TE for a space power system powered by a Sectored Compact Reactor (SCoRe) and that employs off-the-shelf SiGe thermoelectric converters. SCoRe is liquid metal cooled and designed for avoidance of a single point failure. The reactor core is divided into six equal sectors that are neutronically, but not thermal-hydraulically, coupled. To avoid a single point failure in the power system, each reactor sector has its own primary and secondary loops, and each loop is equipped with an electromagnetic (EM) pump. A Power Conversion assembly (PCA) and a Thermoelectric Conversion Assembly (TCA) of the primary and secondary EM pumps thermally couple each pair of a primary and a secondary loop. The secondary loop transports the heat rejected by the PCA and the pumps TCA to a rubidium heat pipes radiator panel. The primary loops transport the thermal power from the reactor sector to the PCAs for supplying a total of 145-152 kWe to the load at 441-452 VDC, depending on the selections of the primary and secondary liquid metal coolants. The primary and secondary coolant combinations investigated are lithium (Li)/Li, Li/sodium (Na), Na-Na, Li/NaK-78 and Na/NaK-78, for which the reactor exit temperature is kept below 1250 K. The results of a startup transient of the system from an initial temperature of 500 K are compared and discussed

  8. Spacing grids for a fuel pencil bundle in a nuclear reactor assembly

    International Nuclear Information System (INIS)

    Feutrel, Claude.

    1977-01-01

    This invention relates to the lattices forming the spacing of a bundle of clad fuel pencils in a nuclear reactor assembly, particularly in a water cooled or fast reactor, the purpose of such lattices being to maintain these pencils parallel with respect to each other and according to a given lattice arrangement, whilst also providing these pencils with a flexible support according to different successive areas apportioned with their length in order to present them from vibrating under the effect of the circulation of a liquid coolant environment flowing in contact with these pencils [fr

  9. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  10. A preliminary feasibility study of passive in-core thermionic reactors for highly compact space nuclear power systems

    International Nuclear Information System (INIS)

    Parlos, A.G.; Khan, E.U.; Frymire, R.; Negron, S.; Thomas, J.K.; Peddicord, K.L.

    1991-01-01

    Results of a preliminary feasibility study on a new concept for a highly compact space reactor power systems are presented. Notwithstanding the preliminary nature of the present study, the results which include a new space reactor configuration and its associated technologies indicate promising avenues for the devleopment of highly compact space reactors. The calculations reported in this study include a neutronic design trade-off study using a two-dimensioinal neutron transport model, as well as a simplified one-dimensional thermal analysis of the reactor core. In arriving at the most desirable configuration, various options have been considered and analyzed, and their advantages/disadvantages have been compared. However, because of space limitation, only the most favorable reactor configuration is presented in this summary

  11. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  12. Content Sharing Based on Personal Information in Virtually Secured Space

    Science.gov (United States)

    Sohn, Hosik; Ro, Yong Man; Plataniotis, Kostantinos N.

    User generated contents (UGC) are shared in an open space like social media where users can upload and consume contents freely. Since the access of contents is not restricted, the contents could be delivered to unwanted users or misused sometimes. In this paper, we propose a method for sharing UGCs securely based on the personal information of users. With the proposed method, virtual secure space is created for contents delivery. The virtual secure space allows UGC creator to deliver contents to users who have similar personal information and they can consume the contents without any leakage of personal information. In order to verify the usefulness of the proposed method, the experiment was performed where the content was encrypted with personal information of creator, and users with similar personal information have decrypted and consumed the contents. The results showed that UGCs were securely shared among users who have similar personal information.

  13. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  14. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  15. Thermo-mechanical behaviour of FBTR reactor vessel due to natural convection in cover gas space

    International Nuclear Information System (INIS)

    Srinivasan, G.; Varadarajan, S.; Kapoor, R.P.

    1988-01-01

    Fast Breeder Test Reactor is a 40 MW(t), loop type sodium cooled reactor, similar in design to Rapsodie. The Reactor Assembly, which is the heart of FBTR, comprises the Reactor Vessel (RV) housed in a safety vessel within a concrete cell (A1 Cell). The RV which supports the core is shielded at the top by two rotatable plugs which are stacked with layers of borated graphite and steel. The smaller plug (SRP), is mounted excentric to the larger one (LRP). A nominal annular gap of 16 mm is provided between RV and LRP and between LRP and SRP to enable free rotation of the plugs. Stainless Steel insulation is fixed inside the steel vessel, to avoid overheating of the A1 Cell concrete. The core is supported by the Grid Plate (GP), bolted to the RV. During preheating, sodium charging and isothermal runs upto 350 0 C, temperature asymmetries were noticed in the reactor vessel wall in the cover gas space. This was attributable to convection currents in the annulus between RV and LRP. The asymmetries also resulted in a lateral shift of the grid plate. This paper discusses our experience in suppressing these convection currents, and minimising the grid plate shift

  16. Thermofluid-neutronic stability of the rotating, fluidized bed, space-power reactor

    International Nuclear Information System (INIS)

    Lee, C.C.; Jones, O.C.; Becker, M.

    1993-01-01

    A rotating fluidized bed nuclear reactor has the potential of being a vary attractive option for ultra-high power space systems, especially for propulsion. Research has already examined fuel bed expansion due to variations in state variables, propellant flow rate, and rotational speed, and has also considered problems related to thermal stress. This paper describes the results of a coupled thermofluid-neutronic analysis where perturbations in fuel bed height caused by maneuvering changes in operating conditions alter power levels due to varying absorption of neutrons which would otherwise leak from the system, mainly through the nozzle. This first analysis was not a detailed stability analysis. Rather, it utilized simplified neutronic methods, and was intended to provide an order-of-magnitude assessment of the stability of the reactor with the intention to determine whether or not stability might be a 'concept killer'. Stability was compared with a fixed-fuel-bed reactor of identical geometry for three different cases comprising a set of small, medium and large sizes/powers from 250 MW to 5 GW. It was found that power fluctuations in the fluidized bed reactor were larger by 100 db or more than expected in a packed bed reactor of the same geometry, but never resulted in power excursions. Margins to unit gain in some cases, however, were sufficiently small that the approximations in this quasi-2-dimensional model may not be sufficiently accurate to preclude significant excursions. (orig.)

  17. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  18. Ethical Issues Regarding Informed Consent for Minors for Space Tourism

    Science.gov (United States)

    Marsh, Melvin S.

    2010-01-01

    This paper describes the difficulty with informed consent and debates whether or not whether adults should be able to ethically, morally, and legally consent for their children during the high-risk activity of space tourism. The experimental nature of space vehicles combined with the high likelihood of medical complications and the destination places space tourism legally in the category of "adventure activities," which include adventure travel to exotic locations as well as adventure sports, such as mountain climbing, rafting, etc. which carry a high risk of danger (http://rescommunis.wordpress.com/2008/02/14/interview-tracey-l-knutson-adventure-sports-defense-attorney-on-space-tourism-risk-and-informed-consente/). However, unlike other adventure sports, adults currently cannot consent for their minor children. Other topics also receive attention, such as a "mature minors" clause, radiation exposure of potential future children, and other difficulties preventing adults from legally consenting to space travel.

  19. Space ecoliteracy- five informal education models for community empowerment

    Science.gov (United States)

    Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha

    Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in

  20. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  1. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  2. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br, E-mail: jamil@ieav.cta.br, E-mail: jalnsgf@outlook.com, E-mail: borges.em@hotmail.com, E-mail: ecorborges@hotmail.com, E-mail: ivayolini@gmail.com, E-mail: guilherme_placco@ig.com.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil); Barrios Junior, Ary Garcia, E-mail: arygarcia89@yahoo.com [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil)

    2013-07-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  3. Simplified methodology for control cell constant calculations of the reactor cores for the space kinetics

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques

    2002-01-01

    In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)

  4. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M.; Barrios Junior, Ary Garcia

    2013-01-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  5. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  6. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  7. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  8. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  9. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  10. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    International Nuclear Information System (INIS)

    Samim Anghaie

    2002-01-01

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  11. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  12. Phase space view of quantum mechanical systems and Fisher information

    International Nuclear Information System (INIS)

    Nagy, Á.

    2016-01-01

    Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  13. Phase space view of quantum mechanical systems and Fisher information

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Á., E-mail: anagy@madget.atomki.hu

    2016-06-17

    Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  14. Flow of ideal fluid through a central region of a nuclear reactor wire-spaced fuel subassembly

    International Nuclear Information System (INIS)

    Schmid, J.

    1991-04-01

    The results are given of calculations of the flow of an ideal fluid through the central region of a nuclear reactor wire-spaced fuel subassembly. The computer code used is briefly described. (author). 10 figs., 4 refs

  15. Verification of codes used for the nuclear safety assessment of the small space heterogeneous reactors with zirconium hydride moderator

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Gomin, E.A.; Kompaniets, G.V.

    1994-01-01

    Computer codes used for assessment of nuclear safety for space NPP are compared taking as an example small-sized heterogeneous reactor with zirconium hydride moderator of the Topaz-2 facility. The code verifications are made for five different variants

  16. Preliminary neutronic design of spock reactor: A nuclear system for space power generation

    International Nuclear Information System (INIS)

    Burgio, N.; Santagata, A.; Cumo, M.; Fasano, A.; Frullini, M.

    2007-01-01

    Aim of this paper is to preliminary investigates the neutronic features of an upgrade of the MAUS [1] nuclear reactor whose core will be able to supply a thermoelectric converter in order to generate 30 kW of electricity for space applications. The neutronic layout of SPOCK (Space Power Core Ka) is a compact, MOX fuelled, liquid metal cooled and totally reflected fast reactor with a control system based on neutron absorption. Spock, that during the heart and launch operation must be maintained in sub-critical state, has to start up in the outer space at 40 K temperatures with the coolant in a solid state and it will reach the operating steady condition at the maximum temperature of 1300 K with the coolant in the liquid state. The main design goal is to maintains, in the operating conditions of a typical space mission, the control of the appropriate criticality margin versus temperature and coolant physical state. For this purpose, a neutronic/thermal-hydraulic calculation chain able to assists the entire design process must be set up. As preliminary recognition, MCNPX 2.5.0 and FLUENT calculations were carried out. The emerging key features of SPOCK are: an equilateral triangular mesh of 91 cylindrical UO 2 fuel rods with a Molybdenum clad ensured by two grids of the same material, cooled by liquid Sodium and contained in an AISI 316 L vessel. The core is totally wrapped by a Beryllium reflector that hosts six absorber (B 4 C) rotating control rods. The reactor shape is cylindrical (radius = 30 cm and height = 60 cm) with a total mass of 275 kg. The excess reactivity was of 5000 PCM at 1300 K. A preliminary evaluation of the control rods worth and a power spatial distribution were also discussed. Through the definition of an ideal reference K e ff value at 300 K for the actual SPOCK configuration, a sensitivity analysis on various cross sections data and material physical properties was performed for the given mission temperature range, allowing consideration on

  17. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  18. Advanced micro-reactor for space and deep sea exploration: a scientific Brazilian vision

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca; Lobo, Paulo D.C.

    2011-01-01

    Humankind is at the point to initiate a new adventure in its evolutionary journey, the colonization of other planets of our solar system and space travels. Also, there is still another frontier where the human presence is scarce, the oceans and the Earth seabed. To have success in the exploration of these new frontiers a fundamental requirement must be satisfied: secure availability of energy for life support and others processes. This work deals with the establishment of a basis for a Brazilian nuclear research and development (R and D) program to develop micro-reactor (MR) technologies that may be used in the seabed, the space or another hostile environment on Earth. The work presents a set of basic requirements that is used to define the best reactor type to be used in these environments. Also, the limits and dimensions that define the class of micro-reactors are discussed. The fast neutron spectrum was chosen as the best for the MR and the limits for the active core volume and thermal power are 30 liters and 5 MW. (author)

  19. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  20. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  1. Analysis and evaluation of ZPPR critical experiments for a 100 kilowatt-electric space reactor

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W.; Doncals, R.A.; Andre, S.V.; Porter, C.A.; Cowan, C.L.; Stewart, S.L.; Protsik, R.

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously needed for fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further reductions in the mass of the SP-100. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design

  2. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  3. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  4. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  5. Nuclear power in space. Use of reactors and radioactive substances as power sources in satellites and space probes

    International Nuclear Information System (INIS)

    Hoestbaeck, Lars

    2008-11-01

    Today solar panels are the most common technique to supply power to satellites. Solar panels will work as long as the power demand of the satellite is limited and the satellite can be equipped with enough panels, and kept in an orbit that allows enough sunlight to hit the panels. There are various types of space missions that do not fulfil these criteria. With nuclear power these types of missions can be powered regardless of the sunlight and as early as 1961 the first satellite with a nuclear power source was placed in orbit. Out of seventy known space missions that has made use of nuclear power, ten have had some kind of failure. In no case has the failure been associated with the nuclear technology used. This report discusses to what degree satellites with nuclear power are a source for potential radioactive contamination of Swedish territory. It is not a discussion for or against nuclear power in space. Neither is it an assessment of consequences if radioactive material from a satellite would reach the earth's surface. Historically two different kinds of Nuclear Power Sources (NPS) have been used to generate electric power in space. The first is the reactor where the energy is derived from nuclear fission of 235 U and the second is the Radioisotope Thermoelectric Generator (RTG) where electricity is generated from the heat of naturally decaying radionuclides. NPS has historically only been used in space by United States and the Soviet Union (and in one failing operation Russia). Nuclear Power Sources have been used in three types of space objects: satellites, space probes and moon/Mars vehicles. USA has launched one experimental reactor into orbit, all other use of NPS by the USA has been RTG:s. The Soviet Union, in contrast, only launched a few RTG:s but nearly forty reactors. The Soviet use of NPS is less transparent than the use in USA and some data published on Soviet systems are more or less well substantiated assessments. It is likely that also future

  6. Space Geodesy Project Information and Configuration Management Procedure

    Science.gov (United States)

    Merkowitz, Stephen M.

    2016-01-01

    This plan defines the Space Geodesy Project (SGP) policies, procedures, and requirements for Information and Configuration Management (CM). This procedure describes a process that is intended to ensure that all proposed and approved technical and programmatic baselines and changes to the SGP hardware, software, support systems, and equipment are documented.

  7. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    Science.gov (United States)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  8. Startup thaw concept for the SP-100 space reactor power system

    Science.gov (United States)

    Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.

    1990-01-01

    A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.

  9. Constructing Common Information Space across Distributed Emergency Medical Teams

    DEFF Research Database (Denmark)

    Zhang, Zhan; Sarcevic, Aleksandra; Bossen, Claus

    2017-01-01

    This paper examines coordination and real-time information sharing across four emergency medical teams in a high-risk and distributed setting as they provide care to critically injured patients within the first hour after injury. Through multiple field studies we explored how common understanding...... of critical patient data is established across these heterogeneous teams and what coordination mechanisms are being used to support information sharing and interpretation. To analyze the data, we drew on the concept of Common Information Spaces (CIS). Our results showed that teams faced many challenges...... in achieving efficient information sharing and coordination, including difficulties in locating and assembling team members, communicating and interpreting information from the field, and accommodating differences in team goals and information needs, all while having minimal technology support. We reflect...

  10. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  11. Status of CEA reactor studies for a 200 kWe turbo electric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    The present European ARIANE space program will expand after 1995 in the development of the large ARIANE 5 launch vehicle. Considering, that the range of power needs (50 to 400 kWe) and operation times required for the space missions planned after the year 2000, are relevant to a nuclear power system, the French Centre National d'Etudes Spatiales (CNES) invited in 1983 the Commissariat a l'Energie Atomique (CEA) to undertake preliminary studies on space power systems. The purpose of the present two year phase (mid 1984-mid 1986) is to identify key technologies for a space generator within the power range of interest and to estimate the development cost of such a project to be examined for commitment in 1986. This work mainly consists in the feasibility and cost assessment of a reference 200 kWe turboelectric space generator, selected for the maturity and availability of the conversion system and for its attractive specific mass compared to thermionics and thermoelectricity, considering the available radiator area afforded by the specific ARIANE 5 geometrical features. The system is basically composed of a fast neutron spectrum lithium cooled reactor, of a Brayton conversion loop and of a heat pipe radiator

  12. Determining space-energy distribution of thermal neutrons in heterogeneous cylindrically symmetric reactor cell, Master Thesis

    International Nuclear Information System (INIS)

    Matausek, M. V.

    1966-06-01

    A combination of multigroup method and P 3 approximation of spherical harmonics method was chosen for calculating space-energy distribution of thermal neutron flux in elementary reactor cell. Application of these methods reduced solution of complicated transport equation to the problem of solving an inhomogeneous system of six ordinary firs-order differential equations. A procedure is proposed which avoids numerical solution and enables analytical solution when applying certain approximations. Based on this approach, computer codes were written for ZUSE-Z-23 computer: SIGMA code for calculating group constants for a given material; MULTI code which uses results of SIGMA code as input and calculates spatial ana energy distribution of thermal neutron flux in a reactor cell. Calculations of thermal neutron spectra for a number of reactor cells were compared to results available from literature. Agreement was satisfactory in all the cases, which proved the correctness of the applied method. Some possibilities for improving the precision and acceleration of the calculation process were found during calculation. (author)

  13. Loss of coolant accident mitigation for liquid metal cooled space reactors

    International Nuclear Information System (INIS)

    Georgevich, Vladimir; Best, Frederick; Erdman, Carl

    1989-01-01

    A loss of coolant accident (LOCA) in a liquid metal-cooled space reactor system has been considered as a possible accident scenario. Development of new concepts that will prevent core damage by LOCA caused elevated temperatures is the primary motivation of this work. Decay heat generated by the fission products in the reactor core following shutdown is sufficiently high to melt the fuel unless energy can be removed from the pins at a sufficiently rapid rate. There are two major reasons that prevent utilization of traditional emergency cooling methods. One is the absence of gravity and the other is the vacuum condition outside the reactor vessel. A concept that overcomes both problems is the Saturated Wick Evaporation Method (SWEM). This method involves placing wicking structures at specific locations in the core to act as energy sinks. One of its properties is the isothermal behaviour of the liquid in the wick. The absorption of energy by the surface at the isothermal temperature will direct the energy into an evaporation process and not in sensible heat addition. The use of this concept enables establishment of isothermal positions within the core. A computer code that evaluates the temperature distribution of the core has been developed and the results show that this design will prevent fuel meltdown. (author)

  14. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  15. Graphic-object information system {open_quotes}research base for reactor materials science{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Markina, N.V.; Lebedeva, E.E.; Arkhangel`skii, N.V.; Semenov, S.B.; Moiseev, A.L.

    1994-11-01

    An information system developed for reactor materials research is described. The information system incorporates an expert system, MATREKS, and a heirarchial data base. The data base contains information from 20 Russian research reactors. The information system structure, data base structure, search methods, system output modes, and technical facilities and software required are briefly discussed. 6 refs., 2 figs.

  16. Public information circular for shipments of irradiated reactor fuel. Revision 4

    International Nuclear Information System (INIS)

    1984-06-01

    This publication is the fifth in a series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. This publication contains basically three kinds of information: (1) routes recently approved (18 months) by the Commission for the shipment of irradiated reactor fuel; (2) information regarding any safeguards-significant incidents that may be (to date none have) reported during shipments along such routes; and (3) cumulative amounts of material shipped

  17. Space and time optimization of nuclear reactors by means of the Pontryagin principle

    International Nuclear Information System (INIS)

    Anton, V.

    1979-01-01

    A numerical method is being presented for solving space dependent optimization problems concerning a functional for one dimensional geometries in the few group diffusion approximation. General dimensional analysis was applied to derive relations for the maximum of a functional and the limiting values of the constraints. Two procedures were given for calculating the anisotropic diffusion coefficients in order to improve the results of the diffusion approximation. In this work two procedures were presented for collapsing the microscopic multigroup cross sections, one general and another specific to the space dependent optimization problems solved by means of the Pontryagin maximum principle. Neutron spectrum optimization is performed to ensure the burnup of Pu 239 isotope produced in a thermal nuclear reactor. A procedure is also given for the minimization of finite functional set by means of the Pontryagin maximum principle. A method for determining the characteristics of fission Pseudo products is formulated in one group and multigroup cases. This method is applied in the optimization of the burnup in nuclear reactors with fuel electric cells. A procedure to mjnimze the number of the fuel burnup equations is described. The optimization problems presented and solved in this work point to the efficiency of the maximum principle. Each problem on method presented in the various chapters is accompanied by considerations concerning dual problems and possibilities of further research development. (author)

  18. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    Science.gov (United States)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  19. A feasibility assessment of nuclear reactor power system concepts for the NASA growth Space Station

    International Nuclear Information System (INIS)

    Bloomfield, H.S.; Heller, J.A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of space station related concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination

  20. Status of CEA reactor studies for a 200 kWe turboelectric Space Power System

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    A reference design for a 200 kWe Space Nuclear Power System has been developed by the CNES and CEA Agencies of the French Government in order to assess within a first study phase running from mid 1984 to mid 1986, the key feasibility issues and the development cost of a Space Power System compatible with the version of the European launcher (ARIANE V), that will be available after 1995, and with adequate power range and lifetime performances for the missions considered at that time. The heat from a fast spectrum lithium cooled reactor is converted by a turboelectric system, selected for its technological readiness and for its advantage over thermionics and thermoelectricity, of minimizing the total mass of 100 to 300 kWe power systems, considering the available radiator area afforded by the specific ARIANE V geometrical features. A heat pipe radiator is preferred to an equivalent gas cooled system, for the increased reliability brought by the large number of independent cooling elements. The successive topics addressed in the paper, include a description of the system main components and steady state operating conditions, and the present views about the start up procedure and the reactor control

  1. Design of a management information system for the Shielding Experimental Reactor ageing management

    International Nuclear Information System (INIS)

    He Jie; Xu Xianhong

    2010-01-01

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  2. Design of a management information system for the Shielding Experimental Reactor ageing management

    Energy Technology Data Exchange (ETDEWEB)

    He Jie, E-mail: hejiejoe@163.co [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu Xianhong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  3. Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

    Directory of Open Access Journals (Sweden)

    Moath Kassim

    2018-05-01

    Full Text Available To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA. PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C, PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC, to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor (Wa with a weighting factor based on the Euclidean distance (Wd, and the third approach proposes applying Wd,TC,andC, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1 identify and isolate a drifted sensor that should undergo calibration, (2 identify a faulty sensor/s due to long and continuous missing data range, and (3 identify a healthy sensor. Keywords: Nuclear Reactors

  4. Yahoo! Answers as a Space for Informal Language Learning

    Directory of Open Access Journals (Sweden)

    Giuliana Dettori

    2014-10-01

    Full Text Available Online social spaces, where users can exchange information, opinions and resources, have achieved wide popularity and are gaining attention in many research fields, including education. Their actual potential support to learning, however, still requires investigation, especially because portals can widely differ as concerns purpose and internal structure. This paper aims to contribute in this respect, by concentrating on question answering, a kind of social space not yet widely discussed in education. We analyzed a small corpus of posts from the Languages section of Yahoo! Answers Italy, checking if the questions reveal some inclination to learning or just the desire to obtain a service and if the answers provided by the community members can be considered as reliable sources of knowledge. Our analysis highlights the presence of a variety of question/answer types, from mere information exchange or help for task completion, up to language-related questions prompting valuable short lessons. The quality of answers may widely vary as concerns pertinence, correctness and richness of supporting elements. We found a high number of purely task-oriented questions and answers, but also a higher number of learning-oriented questions and correct, informative answers. This suggests that this kind of social space actually has valuable potential for informal learning.

  5. Return and profitability of space programs. Information - the main product of flights in space

    Science.gov (United States)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  6. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    Science.gov (United States)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  7. Dependent Space and Attribute Reduction on Fuzzy Information System

    Directory of Open Access Journals (Sweden)

    Shu Chang

    2017-01-01

    Full Text Available From equivalence relation RBδ on discourse domain U, we can derive equivalence relation Rδ on the attribute set A. From equivalence relation Rδ on discourse domain A, we can derive a congruence relation on the attribute power set P(A and establish an object dependent space. And then,we discuss the reduction method of fuzzy information system on object dependent space. At last ,the example in this paper demonstrates the feasibility and effectiveness of the reduction method based on the congruence relation Tδ providing an insight into the link between equivalence relation and congruence relation of dependent spaces in the rough set. In this way, the paper can provide powerful theoritical support to the combined using of reduction method, so it is of certain practical value.

  8. SPACE 365: Upgraded App for Aviation and Space-Related Information and Program Planning

    Science.gov (United States)

    Williams, S.; Maples, J. E.; Castle, C. E.

    2014-12-01

    Foreknowledge of upcoming events and anniversary dates can be extraordinarily valuable in the planning and preparation of a variety of aviation and Space-related educational programming. Alignment of programming with items "newsworthy" enough to attract media attention on their own can result in effective program promotion at low/no cost. Similarly, awareness and avoidance of dates upon which media and public attention will likely be elsewhere can keep programs from being lost in the noise.NASA has created a useful and entertaining app called "SPACE 365" to help supply that foreknowledge. The app contains an extensive database of historical aviation and Space exploration-related events, along with other events and birthdays to provide socio-historical context, as well as an extensive file of present and future space missions, complete with images and videos. The user can search by entry topic category, date, and key words. Upcoming Events allows the user to plan, participate, and engage in significant "don't miss" happenings.The historical database was originally developed for use at the National Air and Space Museum, then expanded significantly to include more NASA-related information. The CIMA team at NASA MSFC, sponsored by the Planetary Science Division, added NASA current events and NASA educational programming information, and are continually adding new information and improving the functionality and features of the app. Features of SPACE 365 now include: NASA Image of the Day, Upcoming NASA Events, Event Save, Do Not Miss, and Ask Dr. Steve functions, and the CIMA team recently added a new start page and added improved search and navigation capabilities. App users can now socialize the Images of the Day via Twitter, Pinterest, Facebook, and other social media outlets.SPACE 365 is available at no cost from both the Apple appstore and GooglePlay, and has helped NASA, NASM, and other educators plan and schedule programming events. It could help you, too!

  9. Beyond information and utility: Transforming public spaces with media facades.

    Science.gov (United States)

    Fischer, Patrick Tobias; Zöllner, Christian; Hoffmann, Thilo; Piatza, Sebastian; Hornecker, Eva

    2013-01-01

    Media facades (often characterized as a building's digital skin) are public displays that substitute dynamic details and information for usually static structures. SMSlingshot is a media facade system at the confluence of art, architecture, and technology design in the context of urban human-computer interaction. It represents a participative approach to public displays that enlivens public spaces and fosters civic and social dialogue as an alternative to advertising and service-oriented information displays. Observations from SMSlingshot's implementation at festival exhibitions provide insight into the roles of scale, distance, and the spatial situation of media facade contexts. The lessons learned apply to most public-display situations and will be useful for designers and developers of this new medium in urban spaces.

  10. Determination of space-energy distribution of resonance neutrons in reactor lattice cell and calculation of resonance integrals

    International Nuclear Information System (INIS)

    Zmijarevic, I.

    1980-01-01

    Space-energy distribution of resonance neutrons in reactor lattice cell was determined by solving the Boltzmann equation by spherical harmonics method applying P-3 approximation. Computer code SPLET used for these calculations is described. Resonance absorption and calculation of resonance integrals are described as well. Effective resonance integral values for U-238 resonance at 6.7 Ev are calculated for heavy water reactor cell with metal, oxide and carbide fuel elements

  11. Performance issues in management of the Space Station Information System

    Science.gov (United States)

    Johnson, Marjory J.

    1988-01-01

    The onboard segment of the Space Station Information System (SSIS), called the Data Management System (DMS), will consist of a Fiber Distributed Data Interface (FDDI) token-ring network. The performance of the DMS in scenarios involving two kinds of network management is analyzed. In the first scenario, how the transmission of routine management messages impacts performance of the DMS is examined. In the second scenario, techniques for ensuring low latency of real-time control messages in an emergency are examined.

  12. Value-informed space systems design and acquisition

    Science.gov (United States)

    Brathwaite, Joy

    Investments in space systems are substantial, indivisible, and irreversible, characteristics that make them high-risk, especially when coupled with an uncertain demand environment. Traditional approaches to system design and acquisition, derived from a performance- or cost-centric mindset, incorporate little information about the spacecraft in relation to its environment and its value to its stakeholders. These traditional approaches, while appropriate in stable environments, are ill-suited for the current, distinctly uncertain, and rapidly changing technical and economic conditions; as such, they have to be revisited and adapted to the present context. This thesis proposes that in uncertain environments, decision-making with respect to space system design and acquisition should be value-based, or at a minimum value-informed. This research advances the value-centric paradigm by providing the theoretical basis, foundational frameworks, and supporting analytical tools for value assessment of priced and unpriced space systems. For priced systems, stochastic models of the market environment and financial models of stakeholder preferences are developed and integrated with a spacecraft-sizing tool to assess the system's net present value. The analytical framework is applied to a case study of a communications satellite, with market, financial, and technical data obtained from the satellite operator, Intelsat. The case study investigates the implications of the value-centric versus the cost-centric design and acquisition choices. Results identify the ways in which value-optimal spacecraft design choices are contingent on both technical and market conditions, and that larger spacecraft for example, which reap economies of scale benefits, as reflected by their decreasing cost-per-transponder, are not always the best (most valuable) choices. Market conditions and technical constraints for which convergence occurs between design choices under a cost-centric and a value

  13. Demonstration-informative center based on research reactor IR-50 in heat regime

    International Nuclear Information System (INIS)

    Krupenina, Ph.

    2000-01-01

    Many problems exist in the nuclear field, but the most significant one is the public's mistrust of Nuclear Energy. Strong downfalls of the radiological culture affect public perception, the main paradox being the situation after Chernobyl. The task of creating a Demonstration-Informative Center (Minatom RF) on reactor IR-50 research is conducted by Research and Development Institute of Power Engineering (ENTEK). The IR-50 is situated on the grounds of the institute. It will be a unique event when the functional reactor is situated in the center of the city. The purposes of the Demonstration-Informative Center are discussed. (authors)

  14. PRIS-STATISTICS: Power Reactor Information System Statistical Reports. User's Manual

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA developed the Power Reactor Information System (PRIS)-Statistics application to assist PRIS end users with generating statistical reports from PRIS data. Statistical reports provide an overview of the status, specification and performance results of every nuclear power reactor in the world. This user's manual was prepared to facilitate the use of the PRIS-Statistics application and to provide guidelines and detailed information for each report in the application. Statistical reports support analyses of nuclear power development and strategies, and the evaluation of nuclear power plant performance. The PRIS database can be used for comprehensive trend analyses and benchmarking against best performers and industrial standards.

  15. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  16. The TERRA project, a space nuclear micro-reactor case study

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Nascimento, Jamil A.; Borges, Eduardo M.; Lobo, Paulo D. Castro, E-mail: guimarae@ieav.cta.br, E-mail: jamil@ieav.cta.br, E-mail: eduardo@ieav.cta.br [Divisao de Energia Nuclear. Instituto de Estudos Avancados, Sao Jose dos Campos, SP (Brazil); Placco, Guilherme M.; Barrios Junior, Ary G. [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil)

    2011-07-01

    The TEcnologia de Reatores Rapidos Avancados project, also known as TERRA Project is been conducted by the Institute for Advanced Studies IEAv. The TERRA project has a general objective of understanding and developing the key technologies that will allow (Brazil) the use of nuclear technology to generate electricity in space. This electricity may power several space systems and/or a type of plasma based engine. Also, the type of reactor intended for space may be used for power generation in very inhospitable environment such as the ocean floor. Some of the mentioned technologies may include: Brayton cycles, Stirling engines, heat pipes and its coupled systems, nuclear fuel technology, new materials and several others. Once there is no mission into which apply this technology, at this moment, this research may be conducted in many forms and ways. The fact remains that when this technology becomes needed there will be no way that we (Brazilians) will be able to buy it from. This technology, in this sense, is highly strategic and will be the key to commercially explore deep space. Therefore, there is the need to face the development problems and solve them, to gain experience with our own rights and wrongs. This paper will give a brief overview of what has been done so far, on experimental facilities and hardware that could support space system development, including a Brayton cycle test facility, Tesla turbine testing, and Stirling engine development and modeling. Our great problem today is lack of human resources. To attend that problem we are starting a new graduate program that will allow overcoming that, given the proper time frame. (author)

  17. The TERRA project, a space nuclear micro-reactor case study

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Nascimento, Jamil A.; Borges, Eduardo M.; Lobo, Paulo D. Castro; Placco, Guilherme M.; Barrios Junior, Ary G.

    2011-01-01

    The TEcnologia de Reatores Rapidos Avancados project, also known as TERRA Project is been conducted by the Institute for Advanced Studies IEAv. The TERRA project has a general objective of understanding and developing the key technologies that will allow (Brazil) the use of nuclear technology to generate electricity in space. This electricity may power several space systems and/or a type of plasma based engine. Also, the type of reactor intended for space may be used for power generation in very inhospitable environment such as the ocean floor. Some of the mentioned technologies may include: Brayton cycles, Stirling engines, heat pipes and its coupled systems, nuclear fuel technology, new materials and several others. Once there is no mission into which apply this technology, at this moment, this research may be conducted in many forms and ways. The fact remains that when this technology becomes needed there will be no way that we (Brazilians) will be able to buy it from. This technology, in this sense, is highly strategic and will be the key to commercially explore deep space. Therefore, there is the need to face the development problems and solve them, to gain experience with our own rights and wrongs. This paper will give a brief overview of what has been done so far, on experimental facilities and hardware that could support space system development, including a Brayton cycle test facility, Tesla turbine testing, and Stirling engine development and modeling. Our great problem today is lack of human resources. To attend that problem we are starting a new graduate program that will allow overcoming that, given the proper time frame. (author)

  18. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  19. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  20. InfoGallery: Informative Arts Services for Physical Library Spaces

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Rohde, Anne; Sundararajah, Balasuthas

    2006-01-01

    Much focus in digital libraries research has been devoted to new online services rather than services for the visitors in the physical library. This paper describes InfoGallery, which is a web-based infrastructure for enriching the physical library space with informative art "exhibitions......" of digital library material and other relevant information, such as RSS news streams, event announcements etc. InfoGallery presents information in an aesthetically attractive manner on a variety of surfaces in the library, including cylindrical displays and floors. The infrastructure consists of a server...... structure, an editor application and a variety of display clients. The paper discusses the design of the infrastructure and its utilization of RSS, podcasts and manually edited news. Applications in the library domain are described and the experiences are discussed....

  1. Space-Based Information Infrastructure Architecture for Broadband Services

    Science.gov (United States)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  2. Nuclear reactor power for a space-based radar. SP-100 project

    Science.gov (United States)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  3. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  4. Application of a Systems Engineering Approach to Support Space Reactor Development

    International Nuclear Information System (INIS)

    Wold, Scott

    2005-01-01

    In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects

  5. Parametric study of sodium aerosols in the cover-gas space of sodium-cooled reactors

    International Nuclear Information System (INIS)

    Sheth, A.

    1975-03-01

    A mathematical model has been developed to describe the behavior of sodium aerosols in the cover-gas space of a sodium-cooled reactor. A review of the literature was first made to examine methods of aerosol generation, mathematical expressions representing aerosol behavior, and pertinent experimental investigations of sodium aerosols. In the development of the model, some terms were derived from basic principles and other terms were estimated from available correlations. The model was simulated on a computer, and important parameters were studied to determine their effects on the overall behavior of sodium aerosols. The parameters studied were sodium pool temperature, source and initial size of particles, film thickness at the sodium pool/cover gas interface, wall plating parameters, cover-gas flow rate, and type of cover gas (argon and helium). The model satisfactorily describes the behavior of sodium aerosol in argon, but not in helium. Possible reasons are given for the failure of the model with helium, and further experimental work is recommended. The mathematical model, with appropriate modifications to describe the behavior of sodium aerosols in helium, would be very useful in designing traps to remove aerosols from the cover gas of sodium-cooled reactors. (U.S.)

  6. Two-phase reduced gravity experiments for a space reactor design

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-08-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments

  7. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    Science.gov (United States)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  8. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  9. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    International Nuclear Information System (INIS)

    CJ Larkin; JD Edington; BJ Close

    2006-01-01

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection

  10. Pressurized water reactor nuclear power plant. Environmental characterization information report

    International Nuclear Information System (INIS)

    1981-01-01

    The typical plant chosen for characterization is a 10000-MWe nameplate rating with wet-natural-draft cooling towers and modern radwaste control and processing equipment. The process, plant operating parameters, resources needed, and the environmental residuals and products associated with the power plant are presented. Annual resource usage and pollutant discharges are shown in English and metric units, assuming an annual plant capacity factor of 70%. In addition to annual quantities, the summary table gives quantities in terms of 10 12 Btu (about 293 million kWh) of electrical energy produced for comparison among energy processes. Supporting information and calculation procedures for the data are given. Thirteen environmental points of interest are discussed individually. Cost information, typical radioactive releases, and use of cooling ponds as an alternative cooling method are discussed in appendixes. A glossary and list of acronyms and abbreviations are provided

  11. Direct and Indirect Information in Urban Space Planning

    Directory of Open Access Journals (Sweden)

    Alessandro Bove

    2013-06-01

    Full Text Available The relationship between new technologies and urban space has become, especially with the introduction of the concept of smart city, the key in the definition of management options in the city itself.The opportunities provided by the use of new technologies to manage the complexity of multiple aspects on the relationship between city and people can address strategies and innovation in order to improve the quality of life of the inhabitants. In smart cities different groups of people with different instances can be directly involved in the transformation process and the planners’ choices can be supported by information that once would have required costly research. This possibility is granted by the availability of great quantities of data that can be collected and analyzed. Direct information can be gathered by multiple sensors (accelerometer, a geomagnetic sensor, and proximity sensor, etc. that offer an immediate evaluation of a specific phenomenon. At the same time other aspects can be evaluated by information obtained in social networks: these can contribute to the definition of urban design as the result of a multi criteria analyses. The way to achieve these strategies is a process of interaction between spatial reality and perceived reality made available by passive forms of participation that can help planners in understanding territorial actors’ / territorial users’ needs and requirements.Through this approach, the design and decisions about urban space are not to be indifferent to the needs expressed by various categories of population.

  12. Unique strategies for technical information management at Johnson Space Center

    Science.gov (United States)

    Krishen, Vijay

    1994-01-01

    In addition to the current NASA manned programs, the maturation of Space Station and the introduction of the Space Exploration programs are anticipated to add substantially to the number and variety of data and documentation at NASA Johnson Space Center (JSC). This growth in the next decade has been estimated at five to ten fold compared to the current numbers. There will be an increased requirement for the tracking and currency of space program data and documents with National pressures to realize economic benefits from the research and technological developments of space programs. From a global perspective the demand for NASA's technical data and documentation is anticipated to increase at local, national, and international levels. The primary users will be government, industry, and academia. In our present national strategy, NASA's research and technology will assume a great role in the revitalization of the economy and gaining international competitiveness. Thus, greater demand will be placed on NASA's data and documentation resources. In this paper the strategies and procedures developed by DDMS, Inc., to accommodate the present and future information utilization needs are presented. The DDMS, Inc., strategies and procedures rely on understanding user requirements, library management issues, and technological applications for acquiring, searching, storing, and retrieving specific information accurately and quickly. The proposed approach responds to changing customer requirements and product deliveries. The unique features of the proposed strategy include: (1) To establish customer driven data and documentation management through an innovative and unique methods to identify needs and requirements. (2) To implement a structured process which responds to user needs, aimed at minimizing costs and maximizing services, resulting in increased productivity. (3) To provide a process of standardization of services and procedures. This standardization is the central

  13. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  14. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    Science.gov (United States)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  15. The Deep Space Network information system in the year 2000

    Science.gov (United States)

    Markley, R. W.; Beswick, C. A.

    1992-01-01

    The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.

  16. A Concept of Constructing a Common Information Space for High Tech Programs Using Information Analytical Systems

    Science.gov (United States)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.

    2016-04-01

    The paper deals with the issues in program management used for engineering innovative products. The existing project management tools were analyzed. The aim is to develop a decision support system that takes into account the features of program management used for high-tech products: research intensity, a high level of technical risks, unpredictable results due to the impact of various external factors, availability of several implementing agencies. The need for involving experts and using intelligent techniques for information processing is demonstrated. A conceptual model of common information space to support communication between members of the collaboration on high-tech programs has been developed. The structure and objectives of the information analysis system “Geokhod” were formulated with the purpose to implement the conceptual model of common information space in the program “Development and production of new class mining equipment - “Geokhod”.

  17. SPLET - A program for calculating the space-lethargy distribution of epithermal neutrons in a reactor lattice cell

    International Nuclear Information System (INIS)

    Matausek, M.V.; Zmijatevic, I.

    1981-01-01

    A procedure to solve the space-single-lethargy dependent transport equation for epithermal neutrons in a cylindricised multi-region reactor lattice cell has been developed and proposed in the earlier papers. Here, the computational algorithm is comprised and the computing program SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, as well as the related integral quantities as reaction rates and resonance integrals, is described. (author)

  18. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  19. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsiboulia, Anatoli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rozhikhin, Yevgeniy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin

  20. The Paucity Problem: Where Have All the Space Reactor Experiments Gone?

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D.; Marshall, Margaret A.

    2016-10-01

    The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that the international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.

  1. Demonstration and information center on the basis of the research reactor IR-50

    International Nuclear Information System (INIS)

    Krupenina, F.

    2001-01-01

    Many problems exist in the nuclear field, but the most significant one is the public's mistrust of Nuclear Energy. Strong downfalls of the radiological culture affect public perception, the main paradox being the situation after Chernobyl. The task of creating a Demonstration and-Information Center (Minatom RF) on the basis of the research reactor IR-50 is conducted by Research and Development Institute of Power Engineering (ENTEK). The IR-50 is situated on the grounds of the institute. It will be a unique event when the functional reactor is situated in the center of the city (about 5 km from Kremlin). (author)

  2. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  3. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  4. Intelligent information database of the thermal-hydraulic characteristics for a future marine water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki

    2000-01-01

    At the Ship Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated type marine water reactor has been conducted. This current study aims at developing an intelligent information database program with the thermal-hydraulic characteristics of a future marine water reactor on the basis of the valuably experimental knowledge, which was obtained from the above-mentioned studies. In this paper, the experimental knowledge with the flow boiling of a once-through steam generator and the natural circulation of primary water under a ship rolling motion was converted into an intelligent information database program. The program was created as a Windows application using the Visual Basic. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability for any helical-coil type once-through steam generator design, (2) reference and graphic display of the experimental data, (3) reference of the information such as analysis method and experimental apparatus. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized reactor with helical-coil type steam generator. (author)

  5. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  6. Proceedings of the US Nuclear Regulatory Commission nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-04-01

    This three-volume report contains 83 papers out of the 108 that were presented at the Nineteenth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 28--30, 1991. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 14 different papers presented by researchers from Canada, Germany, France, Japan, Sweden, Taiwan, and USSR. This document, Volume 3, presents papers on: Structural engineering; Advanced reactor research; Advanced passive reactors; Human factors research; Human factors issues related to advanced passive light water researchers; Thermal Hydraulics; and Earth sciences. The individual papers have been cataloged separately

  7. TERRA: a nuclear reactor to help explore space, deep ocean and difficult access locations

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Lamartine N.F.; Ribeiro, Guilherme Borges; Araújo, Élvis Falcão de; Braz Filho, Francisco Antônio; Leite, Valeria S.F.O.; Dias, Artur Flávio, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear; Nascimento, Jamil Alves do; Placco, Guilherme M. [Instituto Tecnológico de Aeronáutica (PGCTE/ITA), São José dos Campos, SP (Brazil). Pós-Graduação em Ciência e Tecnologia Espacial

    2017-07-01

    The TERRA (Tecnologia de Reatores Rápidos Avançados) project, is a Brazilian effort to develop the enabling technologies to generate electric power in space. Those technologies are: an independent reactor core concept, a Stirling convertor to handle power in the range of 0.1 to 200 kW and a Brayton convertor to handle power in the range 200 to 1000 kW. Besides those technologies, it is also looked into heat pipes design and passive multi fluid turbines. The first reactor core concept was finish in 2016. A complete paper is being prepared and it is in the review process at this moment. A developed Stirling machine works quite reasonably. A second copy of this Stirling machine was built and is now undergoing testing. The Brayton cycle initial design project was intended to use a gas furnace to simulate the nuclear heat. A design retrofit was necessary and decision was made to change the furnace from gas to electric. A detail electric design project was requested to the market. This detail design was delivered august 2016. It is hoped that the 300 kW electric furnace will be procured in 2018. A couple of new APUs was received in November 2016. One of these APUs will be used in the actual Brayton cycle under construction. 18 kg of Mo13Re was acquired for materials testing. A copper/water thermosyphon was developed and it is the first step to produce heat pipes. A new workbench is under development to test the passive multi fluid turbine. A passive multi fluid turbine is an evolution of the Tesla turbine. All these developments will be presented at the conference with a little more of detail. (author)

  8. TERRA: a nuclear reactor to help explore space, deep ocean and difficult access locations

    International Nuclear Information System (INIS)

    Guimarães, Lamartine N.F.; Ribeiro, Guilherme Borges; Araújo, Élvis Falcão de; Braz Filho, Francisco Antônio; Leite, Valeria S.F.O.; Dias, Artur Flávio; Nascimento, Jamil Alves do; Placco, Guilherme M.

    2017-01-01

    The TERRA (Tecnologia de Reatores Rápidos Avançados) project, is a Brazilian effort to develop the enabling technologies to generate electric power in space. Those technologies are: an independent reactor core concept, a Stirling convertor to handle power in the range of 0.1 to 200 kW and a Brayton convertor to handle power in the range 200 to 1000 kW. Besides those technologies, it is also looked into heat pipes design and passive multi fluid turbines. The first reactor core concept was finish in 2016. A complete paper is being prepared and it is in the review process at this moment. A developed Stirling machine works quite reasonably. A second copy of this Stirling machine was built and is now undergoing testing. The Brayton cycle initial design project was intended to use a gas furnace to simulate the nuclear heat. A design retrofit was necessary and decision was made to change the furnace from gas to electric. A detail electric design project was requested to the market. This detail design was delivered august 2016. It is hoped that the 300 kW electric furnace will be procured in 2018. A couple of new APUs was received in November 2016. One of these APUs will be used in the actual Brayton cycle under construction. 18 kg of Mo13Re was acquired for materials testing. A copper/water thermosyphon was developed and it is the first step to produce heat pipes. A new workbench is under development to test the passive multi fluid turbine. A passive multi fluid turbine is an evolution of the Tesla turbine. All these developments will be presented at the conference with a little more of detail. (author)

  9. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Duane J. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Arcieri, William C. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Ward, Leonard W. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States))

    1994-07-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  10. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    International Nuclear Information System (INIS)

    Hanson, Duane J.; Arcieri, William C.; Ward, Leonard W.

    1994-01-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  11. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  12. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  13. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  14. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  15. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  16. Exercise in completing design information questionnaire for model research reactor: model description, notes, questionnaire

    International Nuclear Information System (INIS)

    Bellinger, J.; Ho, T.

    1989-01-01

    The document which defines the inspection measures which the IAEA can deploy at any given nuclear facility is known as the Facility Attachment. For the Agency to negotiate an effective Facility Attachment it must have available certain design information, including the facility's identity, capacity and location; the form, location and flow of nuclear material and the layout of important items of equipment; and a description of the features and procedures relating to nuclear material accountancy, containment and surveillance. In practice such information is solicited in a format, standardized for each facility type, known as the Design Information Questionnaire or the D.I.Q. The nuclear activities used as a model in this course are those of a fictitious country called Pacifica. These nuclear activities bear some resemblance to those at the Australian Atomic Energy Commission's Research Establishment at Lucas Heights. Specifically, Pacifica has a 10 MW heavy water cooled and moderated research reactor using enriched uranium fuel which is very similar to the HIFAR reactor. The reactor and the associated laboratories are described and the Design Information Questionnaire for them is completed. figs., tabs

  17. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  18. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    International Nuclear Information System (INIS)

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses

  19. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  20. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session

  1. Opinions of the well-informed persons about the nuclear reactor facility periodical inspection

    International Nuclear Information System (INIS)

    Aeba, Yoichi; Ishikawa, Michio; Enomoto, Toshiaki; Oomori, Katsuyoshi

    2005-01-01

    Falsifications of self-inspection records in the shrouds and of leakage rates for containment vessels at TEPCO nuclear power plants destroyed public trust in nuclear safety. The Nuclear Reactor Regulation Law and Electric Utility Law were amended to enhance the nuclear safety regulation system. The major improvements are that operators are legally required to conduct inspection (periodical operator inspection) and recording and keeping inspection results. The operator performs 'periodical operator inspection' regularly, and Nuclear and Industrial Safety Agency (NISA) performs periodical inspection' about particularly important facilities/function in safety. Sixteen opinions of well-informed persons about the nuclear reactor facility periodical inspection were presented in this special number. Interval of periodical inspection less than thirteen months was disputed. Maintenance activities should be more rationalized based on risk information. (T. Tanaka)

  2. Transactions of the twenty-fifth water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

  3. Transactions of the twenty-fifth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session

  4. Transactions of the twenty-second water reactor safety information meeting

    International Nuclear Information System (INIS)

    1994-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 22nd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 24--26, 1994. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session. Individual papers have been cataloged separately

  5. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  6. A management information system to study space diets.

    Science.gov (United States)

    Kang, Sukwon; Both, A J

    2002-01-01

    A management information system (MIS), including a database management system (DBMS) and a decision support system (DSS), was developed to dynamically analyze the variable nutritional content of foods grown and prepared in an Advanced Life Support System (ALSS) such as required for long-duration space missions. The DBMS was designed around the known nutritional content of a list of candidate crops and their prepared foods. The DSS was designed to determine the composition of the daily crew diet based on crop and nutritional information stored in the DBMS. Each of the selected food items was assumed to be harvested from a yet-to-be designed ALSS biomass production subsystem and further prepared in accompanying food preparation subsystems. The developed DBMS allows for the analysis of the nutrient composition of a sample 20-day diet for future Advanced Life Support missions and is able to determine the required quantities of food needed to satisfy the crew's daily consumption. In addition, based on published crop growth rates, the DBMS was able to calculate the required size of the biomass production area needed to satisfy the daily food requirements for the crew. Results from this study can be used to help design future ALSS for which the integration of various subsystems (e.g., biomass production, food preparation and consumption, and waste processing) is paramount for the success of the mission.

  7. A management information system to study space diets

    Science.gov (United States)

    Kang, Sukwon; Both, A. J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A management information system (MIS), including a database management system (DBMS) and a decision support system (DSS), was developed to dynamically analyze the variable nutritional content of foods grown and prepared in an Advanced Life Support System (ALSS) such as required for long-duration space missions. The DBMS was designed around the known nutritional content of a list of candidate crops and their prepared foods. The DSS was designed to determine the composition of the daily crew diet based on crop and nutritional information stored in the DBMS. Each of the selected food items was assumed to be harvested from a yet-to-be designed ALSS biomass production subsystem and further prepared in accompanying food preparation subsystems. The developed DBMS allows for the analysis of the nutrient composition of a sample 20-day diet for future Advanced Life Support missions and is able to determine the required quantities of food needed to satisfy the crew's daily consumption. In addition, based on published crop growth rates, the DBMS was able to calculate the required size of the biomass production area needed to satisfy the daily food requirements for the crew. Results from this study can be used to help design future ALSS for which the integration of various subsystems (e.g., biomass production, food preparation and consumption, and waste processing) is paramount for the success of the mission.

  8. Light-water reactors: preliminary safety and environmental information document. Volume I

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle

  9. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan

  10. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  11. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  12. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  13. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  14. Meeting the reactor operator's information needs using functional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Clark, M.T.

    1980-01-01

    Since the accident at Three Mile Island, many ideas have been proposed for assisting the reactor operator during emergency situations. However, some of the suggested remedies do not alleviate an important shortcoming of the TMI control room: the operators were not presented with the information they needed in a manner which would allow prompt diagnosis of the problem. To address this problem, functional analysis is being applied at the LOFT facility to ensure that the operator's information needs are being met in his procedures and graphic displays. This paper summarizes the current applications of functional analysis at LOFT.

  15. New experimental space for irradiating samples by RA reactor fast neutron flux at temperatures up to 100 deg C

    International Nuclear Information System (INIS)

    Pavicevic, M.; Novakovic, M.; Zecevic, V.

    1961-01-01

    The objective of this paper is to present adaptation of the RA reactor which would enable samples irradiation by fast neutrons and describe new experimental possibilities. New experimental space was achieved using hollow fuel elements which have been reconstructed to enable placement of irradiation capsules inside the tube. This paper includes thermal analysis and describes problems related to operation, safety and radiation protection issues which arise from using reconstructed fuel elements

  16. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    Science.gov (United States)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  17. The International Science and Technology Center (ISTC) and ISTC projects related to research reactors. Information review

    International Nuclear Information System (INIS)

    Tocheniy, L.; Rudneva, V.Ya.

    1998-01-01

    1. ISTC - history, activities, outlook: The ISTC is an intergovernmental organization established by agreement between the Russian Federation, the European Union, Japan, and the United States. Since 1994, Finland, Sweden, Norway, Georgia, Armenia, Belarus, Kazakhstan and the Kyrgyz Republic have acceded to the Agreement and Statute. At present, the Republic of Korea is finishing the process of accession to the ISTC. All work of the ISTC is aimed at the goals defined in the ISTC Agreement: - To give CIS weapons scientists, particularly those who possess knowledge and skills related to weapons of mass destruction and their delivery systems, the opportunities to redirect their talents to peaceful activities; - To contribute to solving national and international technical problems; - To support the transition to market-based economies; - To support basic and applied research; - To help integrate CIS weapons scientists into the international scientific community. The projects may be funded both through governmental funds of the Funding Parties specified for the ISTC, and by organizations, nominated as Funding Partners of the ISTC. According to the ISTC Statute, approved by the appropriate national organizations, funds used within ISTC projects are exempt from CIS taxes. As of March 1998, more than 1500 proposals had been submitted to the Center, of which 541 were approved for funding, for a total value of approximately US dollars 165 million. The number of scientists and engineers participating in the projects is more than 17,000. 2. Projects Related to Research Reactors: There are about 20 funded and as yet non-funded projects related to various problems of research reactors. Many of them address safety issues. Information review of the results and plans of both ongoing projects and as yet non-funded proposals related to research reactors will be presented with the aim assisting international researchers to establish partnerships or collaboration with ISTC projects

  18. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  19. RESI-1 and RESI-2: pPrototypes of an information system on reactor safety

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Eglin, W.; Katz, F.W.; Krings, T.; Pee, A.; Schlechtendahl, E.G.

    1975-04-01

    To demonstrate by practical experience the feasibility of the information system elaborated in the 'Study of an Information System on Reactor Safety RESI' (KFK 1900), the prototype systems RESI-1 and RESI-2 were developed and tested in operation. The two systems have been considerably reduced both in extent and contents as compared to the information system described in the study. The RESI-1 prototype system is a paper version established for verification of all the individual functions before passing over to the computer-aided interactive version RESI-2. RESI-2 is based on the GOLEM system of Siemens. Both protoype systems have proved that the essential features: 1) documentation, 2) formulation of and answering to safety questions, which are relevant with respect to particular licensing cases, 3) formulation of safety questions related to individual reactor types can be managed satisfactorily. All the functions of information retrieval have been tested carefully over several months. Particularities of project development and of the methods elaborated are described in detail and presented in this report. (orig.) [de

  20. Teaching solar physics in an informal educational space

    Science.gov (United States)

    Aroca, S. C.

    2009-02-01

    Observatories and planetariums offer the possibility of developing contextualized astronomy teaching by fostering educational activities that provide access to a more authentic school science. Thus, this research consisted in developing, applying and evaluating courses about the Sun for middle, junior high school students and solar physics for high school students in an informal educational space, the CDCC/USP Astronomical Observatory. Topics of chemical composition, temperature and stellar evolution were taught in a room totally dedicated to the study of the Sun, a Solar Room, designed with simple and inexpensive equipment. The course strongly emphasized practical, observational and inquirybased activities, such as estimation of the solar surface temperature, observation of the visible solar spectrum, identication of solar absorption lines, understanding how they are produced, and what kind of information can be extracted from the observed spectral lines. Some of the course goals were to foster the comprehension of the key role played by spectroscopy in astrophysics, to contextualize contents with practical activities, and to allow interdisciplinary approaches including modern physics and chemistry in physics teaching. The research methodology consisted of a qualitative approach by fillming the whole course and performing written questionnaires and semi-structured interviews. Before the courses were applied most students conceived the Sun as a hot sphere composed of fire, sunspots as holes in the Sun and solar prominences as magma expelled by volcanoes. After the courses students presented ideas about the Sun and solar physics more closely related to the ones accepted by contemporary science. This research was not restricted to students' cognitive gains after concluding the courses, since it considered the interaction of different contexts responsible for learning in science museums. This was possible due to the theoretical framework adopted: The Contextual Model

  1. Professional Discussion Groups: Informal Learning in a Third Space

    Science.gov (United States)

    Jordan, Robert A.

    2013-01-01

    In this ethnographic study, I explored two discussion groups and discovered Third Space elements such as cultural hybridity, counterscript, and sharing of experiences and resources contributed to a safe learning environment existing at the boundaries between participant personal and professional spaces. The groups operated under the auspices of a…

  2. Information space a framework for learning in organizations, institutions and culture

    CERN Document Server

    Boisot, Max H

    2016-01-01

    In this book the author lays the foundations for a new political economy of information. The information space, or I-Space is the conceptual framework in which organizations, institutions and cultures are being transformed by new information and communication technologies. In the penultimate chapter, the I-Space's usefulness as an explanatory framework is illustrated with an application: a case study of China's modernization. Information Space proposes a radical shift in the way that we approach the emerging information age and the implications it holds for societies, organizations and individuals.

  3. The International Science and Technology Center (ISTC) and ISTC projects related to research reactors: information review

    Energy Technology Data Exchange (ETDEWEB)

    Tocheniy, L. V.; Rudneva, V. Ya. [ISTC, Moscow (Russian Federation)

    1998-07-01

    The ISTC is an intergovernmental organization established by agreement between the Russian Federation, the European Union, Japan, and the United States. Since 1994, Finland, Sweden, Norway, Georgia, Belarus, Kazakhstan and the Kyrgyz Republic have acceded to the Agreement and Statute. At present, the Republic of Korea is finishing the process of accession to the ISTC. All work of the ISTC is aimed at the goals defined in the ISTC Agreement: To give CIS weapons scientists, particularly those who possess knowledge and skills related to weapons of mass destruction and their delivery systems, the opportunities to redirect their talents to peaceful activities; To contribute to solving national and international technical problems; To support the transition to market-based economics; To support basic and applied research; To help integrate CIS weapons scientists into the international scientific community. The projects may be funded both through governmental funds of the Funding partners of the ISTC. According to the ISTC Statute, approved by the appropriate national organizations, funds used within ISTC projects are exempt from CIS taxes. As of March 1998, more than 1500 proposals had been submitted to the Center, of which 551 were approved for funding, for a total value of approximately US$166 million. The number of scientists and engineers participating in the projects is more than 18000. There are about 20 funded and as yet nonfunded projects related to various problems of research reactors. Many of them address safety issues. Information review of the results and plans of both ongoing projects and as yet nonfunded proposals related to research reactors will be presented with the aim assisting international researchers to establish partnerships or collaboration with ISTC projects. The following groups of ISTC projects will be represented: 1. complex computer simulator s for research reactors; 2. reactor facility decommissioning; 3. neutron sources for medicine; 4

  4. Reference ZrH reactor power system for NASA space station post-operational reentry analysis

    International Nuclear Information System (INIS)

    Elliott, R.D.

    1970-01-01

    The flight dynamic and heating of a spent ZrH reactor power system returning from orbit at the end of its useful life are analyzed. The results of this analysis indicate that the reactor with a large portion of the lithium shield still surrounding it will impact the earth at a velocity of from 660 to 820 ft/sec, depending upon whether it tumbles or becomes stabilized during the latter part of its trajectory. (U.S.)

  5. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    M Postlehwait; P DiLorenzo; S Belanger; J Ashcroft

    2005-01-01

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  6. Digital Information Platform Design of Fuel Element Engineering For High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Du Yuwei

    2014-01-01

    This product line provide fuel element for high temperature gas-cooled reactor nuclear power plant which is being constructed in Shidao bay in Shandong province. Its annual productive capacity is thirty ten thousands fuel elements whose shape is spherical . Compared with pressurized water fuel , this line has the feature of high radiation .In order to reduce harm to operators, the comprehensive information platform is designed , which can realize integration of automation and management for plant. This platform include two nets, automation net using field bus technique and information net using Ethernet technique ,which realize collection ,control, storage and publish of information.By means of construction, automatization and informatization of product line can reach high level. (author)

  7. Criteria for selecting measures of plant information with application to nuclear reactors

    International Nuclear Information System (INIS)

    Kiguchi, T.; Sheridan, T.B.

    1979-01-01

    Criteria for selecting from alternative measures of plant information have been derived by information theory and the expected-value model of decision theory. Two criteria derived by information theory are minimum ''uncertainty'' of judgement of plant states, and maximum ''surprise'' of human operators. Two criteria derived by decision theory are maximum expected reward to operators, and maximum ratio of the maximum and next-to-maximum expected rewards. These four criteria have been evaluated experimentally in application to human monitoring problems of three ''plants'': an abstract laboratory exercise, a small research reactor, and a conventional nuclear power plant (high-fidelity training simulator). The results show that the criteria derived by decision theory are superior to the others from the viewpoint of correct rate of human subjects' judgement

  8. Background information document to support NESHAPS rulemaking on nuclear power reactors. Draft report

    International Nuclear Information System (INIS)

    Colli, A.; Conklin, C.; Hoffmeyer, D.

    1991-08-01

    The purpose of this Background Information Document (BID) is to present information relevant to the Administrator of the Environmental Protection Agency's (EPA) reconsideration of the need for a NESHAP to control radionuclides emitted to the air from commercial nuclear power reactors. The BID presents information on the relevant portions of the regulatory framework that NRC has implemented for nuclear power plant licensees, under the authority of the Atomic Energy Act, as amended, to protect the public's health and safety. To provide context, it summarizes the rulemaking history for Subpart I. It then describes NRC's regulatory program for routine atmospheric emissions of radionuclides and evaluates the doses caused by actual airborne emissions from nuclear power plants, including releases resulting from anticipated operational occurrences

  9. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  10. Elaborating the Conceptual Space of Information-Seeking Phenomena

    Science.gov (United States)

    Savolainen, Reijo

    2016-01-01

    Introduction: The article contributes to conceptual studies of information behaviour research by examining the conceptualisations of information seeking and related terms such as information search and browsing. Method: The study builds on Bates' integrated model of information seeking and searching, originally presented in 2002. The model was…

  11. Developments in modelling the effect of aerosol on the thermal performance of the Fast Reactor cover gas space

    International Nuclear Information System (INIS)

    Ford, I.J.; Clement, C.F.

    1990-03-01

    The sodium aerosol which forms in the cover gas space of a Fast Reactor couples the processes of heat and mass transfer to and from the bounding surfaces and affects the thermal performance of the cavity. This report describes extensions to previously separate models of heat transfer and aerosol formation and removal in the cover gas space, and the linking of the two calculations in a consistent manner. The extensions made to the theories include thermophoretic aerosol removal, radiative-driven redistribution in aerosol sizes, and the side-wall influence on the bulk cavity temperature. The link between aerosol properties and boundary layer saturations is also examined, especially in the far-from-saturated limit. The models can be used in the interpretation of cover gas space experiments and some example calculations are given. (author)

  12. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  13. Associative conceptual space-based information retrieval systems

    NARCIS (Netherlands)

    M.J. Schuemie (Martijn); J.H. van den Berg (Jan)

    1998-01-01

    textabstractIn this `Information Era' with the availability of large collections of books, articles, journals, CD-ROMs, video films and so on, there exists an increasing need for intelligent information retrieval systems that enable users to find the information desired easily. Many attempts have

  14. QIPS: quantum information and quantum physics in space

    Science.gov (United States)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  15. Mathematical foundation of the application of modal analysis to the investigation of space-time reactor behaviour

    International Nuclear Information System (INIS)

    Obradovic, D.M.

    1970-01-01

    In recent years investigations in the field of kinetics and dynamics of nuclear reactors have been directed towards overcoming an insufficiently accurate point reactor model. For that purpose different mathematical approaches have been used. This thesis is devoted to modal analysis because, from the practical point of view, it is a very promising and, from the mathematical and physical point of view, a very interesting method. Some fundamental mathematical problems connected with the application of modal analysis to the investigations of the reactor space-time behaviour are still unsolved and accordingly our purpose is to solve some of these problems. The spectral properties of the diffusion and P 1 operators are studied in some detail applying the Krein-Rutman theory of the K-positive operators, the Krasnosel'skii theory of u 0 operators, and the Keldis theory of the operator families. The formal solution to the initial value problem (as an abstract Cauchy problem), associated with the diffusion and P 1 operators is also studied. Modal analysis is identified as a set of methods in the mathematical literature known as the Galerkin methods (or projection methods). Following this idea (using the results of the mathematical investigations of the Galerkin methods) and using our results of the investigations of the properties of the diffusion and P 1 operators, the applicability of modal analysis to the approximate solution of the diffusion and P 1 equations and of the eigenvalue problems associated with the diffusion and P 1 operators is established. As an example of the application of modal analysis the Bubnov and Galerkin method is applied to a multiregion thermal nuclear reactor for the determination of: (i) frequency response, (ii) eigenvalues and eigenvectors of the stationary diffusion operator, (iii) eigenvalues and eigenvectors of the non-stationary diffusion operators. On the basis of the expressions obtained the corresponding computer programmes for radial

  16. Center of Excellence in Space Data and Information Sciences

    Science.gov (United States)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  17. Public information circular for shipments of irradiated reactor fuel. Revision 12

    International Nuclear Information System (INIS)

    1997-10-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1996 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  18. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce P.; Kenneth, Thomas [Idaho National Laboratory, Idaho (United States)

    2014-08-15

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  19. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Kenneth, Thomas

    2014-01-01

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security

  20. Public information circular for shipments of irradiated reactor fuel. Revision 10

    International Nuclear Information System (INIS)

    1995-04-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1994 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  1. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  2. Development of a nuclear information system for the MONJU Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Metz, Peter

    2000-01-01

    At the MONJU Fast Breeder Reactor information is collected on a continuous basis. This information consists of measured data, design data, simulations data, maintenance data etc. which may be in any kind of electronic form, i.e. text documents, code input files, reports or even scanned documents. The amount and nature of these data has introduced the need for a software system, which will provide an efficient infrastructure for the maintenance of and operations on the data. Thus a Nuclear Information System for the MONJU Fast Breeder Reactor is under development. The system consists of remote databases hosting the information along with clients for handling them, remote clients providing the users with an interface and a local server for handling the client requests and the communication between the database and user clients. The system is composed of independent server, database and user modules, which communicates using the RMI-IIOP (Remote Method Invocation - Internet InterORB Protocol) technology. The RMI-IIOP is a CORBA (Common Object Request Broker Architecture) compliant subset of the RMI thereby facilitating the possibility of implementing the database and user modules in any kind of programming language and on any kind of operating system by providing a standard, platform independent communications interface. The user interface consists of dynamic HTML web pages which instantiates servlets in the user module when the user submits queries. The database module consists of controllers for handling the communication with the user module and database drivers for handling the connections with the databases. In this paper the overall system design and schemes for data flow and remote method invocations are presented and the requirements imposed on the system are discussed. (author)

  3. Liquid metal versus gas cooled reactor concepts for a turbo electric powered space vehicle

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Schwartz, J.P.

    1985-01-01

    Recent CNES/CEA prospective studies of an orbit transfer vehicule to be launched by ARIANE V, emphasize the advantage of the Brayton cycle over the thermionics and thermoelectricity, in minimizing the total mass of 100 to 300 kWsub(e) power systems under the constraint specific to ARIANE of a radiator area limited to 95 m 2 . The review of candidate reactor concepts for this application, finally recommends both liquid metal and gas cooled reactors, for their satisfactory adaptation to a reference Brayton cycle and for the available experience from the terrestrial operation of comparable systems

  4. Development of a thermionic-reactor space-power system. Final summary report

    International Nuclear Information System (INIS)

    1973-01-01

    Initial experimental work led to the award of the first AEC thermionic contract on May 1, 1962, for the development of fission heated thermionic cells with an operating life of 10,000 hours or more. Two types of converters were fabricated: (1) electrically heated, and (2) fission heated where the fuel was either uranium carbide or uranium oxide. Competition between GGA and GE was climaxed on July 1, 1970 by the award to GGA of a contract to develop an in-core thermionic reactor. This report is divided into the following: thermionic research, materials technology, thermionic fuel element development, reactor technology, and systems technology

  5. SAFSIM: A computer program for engineering simulations of space reactor system performance

    International Nuclear Information System (INIS)

    Dobranich, D.

    1992-01-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. The current capabilities of SAFSIM are summarized, and some illustrative example results are presented

  6. Management and share of regulatory information through web; development of regulatory information management system for Korea next generation reactors

    International Nuclear Information System (INIS)

    Lee, J. S.; Lee, J. H.; Jeong, Y. H.; Lee, S. H.; Yun, Y. C.; Park, M. I.

    2001-01-01

    The Regulatory Information Management System developed by the Korea Institute of Nuclear Safety supports researchers who are in charge of developing SRRG for the Korea Next Generation Reactors, manage the developed SRRG and development process, and make it possible to share the SRRG information and background knowledge through the internet with the nuclear-related personnel and the public. From the experience of the system operation, the search engine is repalced to manage the native SRRG files directly. This change eliminates the inconsistency between native files and database files and improve the search exactness by automatic indexing function. The user interface of the internet homepage (http://kngr.kins.re.kr) is completely rebuilded and allows SRRG developers to manage the search system and the atomic energy regulations database on the Web without the help of the client programs. General users are also able to utilize more convenient search function and additional information by the improved interface. The system is running under the backup system and firewall system for the data protection and security

  7. Management and share of regulatory information through web; development of regulatory information management system for Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Lee, J. H.; Jeong, Y. H.; Lee, S. H. [KINS, Taejon (Korea, Republic of); Yun, Y. C.; Park, M. I. [LG-EDS Systems, Seoul (Korea, Republic of)

    2001-05-01

    The Regulatory Information Management System developed by the Korea Institute of Nuclear Safety supports researchers who are in charge of developing SRRG for the Korea Next Generation Reactors, manage the developed SRRG and development process, and make it possible to share the SRRG information and background knowledge through the internet with the nuclear-related personnel and the public. From the experience of the system operation, the search engine is repalced to manage the native SRRG files directly. This change eliminates the inconsistency between native files and database files and improve the search exactness by automatic indexing function. The user interface of the internet homepage (http://kngr.kins.re.kr) is completely rebuilded and allows SRRG developers to manage the search system and the atomic energy regulations database on the Web without the help of the client programs. General users are also able to utilize more convenient search function and additional information by the improved interface. The system is running under the backup system and firewall system for the data protection and security.

  8. Space nuclear reactor electric power. January 1972-May 1990 (A Bibliography from the International Aerospace Abstracts data base). Report for January 1972-May 1990

    International Nuclear Information System (INIS)

    1990-05-01

    This bibliography contains citations concerning studies and conceptual designs of nuclear space power reactors to generate electric power for space missions. The citations cover the technology, safety aspects, and policy considerations. (This updated bibliography contains 280 citations, 172 of which are new entries to the previous edition.)

  9. Development of an information systems to manage the fuel elements of a nuclear reactor

    International Nuclear Information System (INIS)

    Neira Orellana, Alicia Cristina

    1999-01-01

    The development of a computerized information system is presented that administers the fuel elements of a nuclear reactor. This system automates the mathematical calculations of the nuclear reactor's configuration, which have been manually controlled for many years, and it also manages the inventory of these elements for each one of the different deposits of nuclear materials. This system was designed and built based on an Object Oriented Focus (OOF), which fully meets the requirements requested and aims to facilitate the interaction between the user and the machine. The OOF methodology is based on that proposed by Peter Coad and Edward Yourdon and the development tool used is DELPHI version 3.0 (object oriented programming graphics tool that uses Pascal Object language and a Windows '98 platform). To implement the prepared tool the different stages as indicated by the authors of the above-mentioned methodology were carried out step by step, concluding with the practical benefits associated with the use of the proposed focus. A Graphic Interactive Tool is obtained that will be used in part by the people who directly operate the nuclear reactor and who do the mathematical calculations for the configuration of its nucleus. The system will allow them to considerably reduce the time needed for administering the fuel elements with the automated configuration of the operating cycle. The importance of the combination of these elements varies depending on experimental needs. All those processes linked to the configuration of the nucleus are very important, particularly the calculation of fuel element wear (burned) and the coefficient calculation that validates this configuration. These processes were used during the development of this thesis work. The system also manages an inventory of all the elements with their respective histories, facilitating follow-ups and analyses (C.W)

  10. Analytical treatment of space-energy neutron distribution in reactor cell

    International Nuclear Information System (INIS)

    Stefanovic, D.

    1971-01-01

    Application of the analytical procedure described in this paper for study of fission spectrum evolution in the reactor cell gave results which enable complete understanding of neutron slowing down and transport p recesses and can be used for testing practical approximative methods. Heterogeneous system made of natural uranium and heavy water was used as an example

  11. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  12. Public information circular for shipments of irradiated reactor fuel. Revision 5

    International Nuclear Information System (INIS)

    1985-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use in accordance with the regulatory provisions of Section 73.37 of 10 CFR Part 73. The information included reflects NRC staff knowledge as of June 1, 1985. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission has chosen to provide information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipment as well as safeguards incidents regarding spent fuel shipments (of which none have been reported to date). This additional information is furnished by the Commission in order to convey to the public a more complete picture of NRC regulatory practices concerning the shipment of spent fuel than could be obtained by the publication of the shipment routes and quantities alone

  13. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  14. The system for diagnostics and monitoring of the IBR-2 reactor state. Data acquisition, accumulation and storage of information

    International Nuclear Information System (INIS)

    Ermilov, V.G.; Ivanov, V.V.; Korolev, V.S.; Pepelyshev, Yu.N.; Semashko, S.V.; Tulaev, A.B.

    2000-01-01

    The architectural decisions for a developed distributed system of the IBR-2 pulsed reactor conditions monitoring are described. The system is intended for measurement of the basic reactor parameters, acquisition, storage and processing of information, the current reactor state monitoring, analysis of reactor parameters for a long time operation period both in on-line, and in off-line modes. The system is constructed in the architecture client-server using DBMS MS SQL Server 7.0 The basic hardware components of the system are measuring workstations and devices, processing and user workstations and the central server. The software of the system consists of the measuring programs, data flows dispatching services, client applications for data processing and visualization, and means for preparing data for subsequent presentation in WWW. The basic results of the first system operation phase and prospect of its development are discussed. (author)

  15. Proceedings of the US Nuclear Regulatory Commission nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-04-01

    This three-volume report contains 83 papers out of the 108 that were presented at the Nineteenth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 28--30, 1991. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 14 different papers presented by researchers from Canada, Germany, France, Japan, Sweden, Taiwan, and USSR. This document, Volume 2, presents papers on: Severe accident research; Severe accident and policy implementation; and Accident management. The individual papers have been cataloged separately

  16. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  17. Enhancing the functionality of reactor protection systems to provide diagnostic and monitoring information: The ISATTM approach

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Rowe, B.J.; Jones, C.D.

    1996-01-01

    The ISAT TM architecture has been successfully implemented as the Single Channel Trip System (SCTS), part of the primary protection system of Nuclear Electric's Dungeness 'B' Advanced Gas-Cooled Reactors. The system is the first computer-based protection system licensed on a UK civil nuclear reactor. The system provides protection against single channel faults resulting in high coolant gas outlet temperature. The SCTS was designed to output data at several points in the system to an Ethernet to allow checks to be made on the operation of parts of the protection system and the system as a whole. In order to monitor the performance of this shutdown system a PC based monitoring system was developed to take input as data from the Ethernet, check its integrity and then analyze the data to provide information of the state of the system and subsystems. The SCTS monitor was basically intended to alert the operator to any fault on the safety system and indicate its source, provide a diagnosis of the cause of any trip initiated by the safety system, and log the occurrences of these incidents for later inspection. The intention was also to provide accurate real-time information on the thermocouple readings and to decrease the effort required to maintain the safety system. This paper will describe briefly the development of the ISAT TM monitoring system: how its requirements were arrived at, and how the design, code and testing were carried out to ensure approval for this application. It will then go on to report how the ISAT TM monitor has performed during its time in service: how more functionality has been added over and above its original requirements. Features of additional monitors for the SCTS and other ISAT TM systems will also be described. (author). 2 refs, 5 figs

  18. Intelligence from Space: Using Geographical Information Systems for Competitive Intelligence

    NARCIS (Netherlands)

    Hendriks, P.H.J.; Vriens, D.J.

    2003-01-01

    The spatial element, which is omnipresent in data and information relevant to organizations, is much underused in the decision-making processes within organizations. This applies also to decision-making within the domain of Competitive Intelligence. The chapter explores how the CI function may

  19. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    Science.gov (United States)

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  20. The European reliability data system. An organized information exchange on the operation of European nuclear reactors

    International Nuclear Information System (INIS)

    Mancini, G.; Amesz, J.; Bastianini, P.; Capobianchi, S.

    1983-01-01

    The paper revises the aims and objectives of the European Reliability Data System (ERDS), a centralized system collecting and organizing, at European level, information related to the operation of LWRs. The ERDS project was started in 1977 and after a preliminary feasibility study that ended in 1979 is now proceeding towards the final design and implementation stages. ERDS exploits information collected in national data systems and information deriving from single reactor sources. The paper describes first the development of the four data banks constituting the system: Component Event Data Bank, CEDB; Abnormal Occurrences Reporting System, AORS; Operating Unit Status Report, OUSR; and Generic Reliability Parameter Data Bank, GRPDB. Several typical aspects concerning the project are then outlined from the need of homogeneization of data and therefore the need for setting up reference classifications, to the problem of data transcoding and input into the system. Furthermore, the need is stressed of involving much more deeply nuclear power plant operators into the process of data acquisition by providing them with a useful feedback from the data analysis. (author)

  1. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW th power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H 2 corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the preliminary design

  2. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  3. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  4. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  5. Exploring Information Security and Shared Encrypted Spaces in Libraries

    Directory of Open Access Journals (Sweden)

    Keith Engwall

    2015-07-01

    Full Text Available Libraries are sensitive to the need to protect patron data, but may not take measures to protect the data of the library. However, in an increasingly collaborative online environment, the protection of data is a concern that merits attention. As a follow-up to a new patron privacy policy, the Oakland University William Beaumont Medical Library evaluated information security tools for use in day-to-day operations in an attempt to identify ways to protect private information in communication and shared storage, as well as a means to manage passwords in a collaborative team environment. This article provides an overview of encryption measures, outlines the Medical Library’s evaluation of encryption tools, and reflects on the benefits and challenges in their adoption and use.

  6. Using TV Receiver Information to Increase Cognitive White Space Spectrum

    OpenAIRE

    Ellingsæter, Brage; Bezabih, Hemdan; Noll, Josef; Maseng, Torleiv

    2012-01-01

    In this paper we investigate the usage of cognitive radio devices within the service area of TV broadcast stations. Until now the main approach for a cognitive radio to operate in the TV bands has been to register TV broadcast stations locations and thus protecting the broadcast stations service area. Through information about TV receivers location, we show that a cognitive radio should be able to operate within this service area without causing harmful interference to the TV receivers as def...

  7. A model for information retrieval driven by conceptual spaces

    OpenAIRE

    Tanase, D.

    2015-01-01

    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ repre...

  8. Architectural Building A Public Key Infrastructure Integrated Information Space

    Directory of Open Access Journals (Sweden)

    Vadim Ivanovich Korolev

    2015-10-01

    Full Text Available The article keeps under consideration the mattersto apply the cryptographic system having a public key to provide information security and to implya digital signature. It performs the analysis of trust models at the formation of certificates and their use. The article describes the relationships between the trust model and the architecture public key infrastructure. It contains conclusions in respect of the options for building the public key infrastructure for integrated informationspace.

  9. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. Information Theoretical Limits of Free-Space Optical Links

    KAUST Repository

    Ansari, Imran Shafique

    2016-08-25

    Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified ergodic capacity analysis of a free-space optical (FSO) link under both types of detection techniques (i.e., intensity modulation/direct detection (IM/DD) as well as heterodyne detection) over generalized atmospheric turbulence channels that account for generalized pointing errors is presented. Specifically, unified exact closed-form expressions for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented. Subsequently, capitalizing on these unified statistics, unified exact closed-form expressions for ergodic capacity performance metric of FSO link transmission systems is offered. Additionally, for scenarios wherein the exact closed-form solution is not possible to obtain, some asymptotic results are derived in the high SNR regime. All the presented results are verified via computer-based Monte-Carlo simulations.

  12. Space transportation. [user needs met by information derived from satellites and the interface with space transportation systems

    Science.gov (United States)

    1975-01-01

    User-oriented panels were formed to examine practical applications of information or services derived from earth orbiting satellites. Topics discussed include: weather and climate; uses of communication; land use planning; agriculture, forest, and range; inland water resources; retractable resources; environmental quality; marine and maritime uses; and materials processing in space. Emphasis was placed on the interface of the space transportation system (STS) with the applications envisioned by the user panels. User requirements were compared with expected STS capabilities in terms of availability, carrying payload to orbit, and estimated costs per launch. Conclusions and recommendations were reported.

  13. ANCON, Space-Independent Reactor Kinetics with Linear or Nonlinear Thermal Feedback

    International Nuclear Information System (INIS)

    Vigil, John C.; Dugan, E.T.

    1988-01-01

    1 - Description of problem or function: ANCON solves the point-reactor kinetic equations including thermal feedback. Lump-type heat balance equations are used to represent the thermodynamics, and the heat capacity of each lump can vary with temperature. Thermal feedback can be either a linear or a non-linear function of lump temperature, and the impressed reactivity can be either a polynomial or sinusoidal function. 2 - Method of solution: In ANCON the system of coupled first-order differential equations is solved by a method based on continuous analytic continuation (references 2 and 3). The basic procedure consists of expanding all the dependent variables except reactivity in Taylor series, with a truncation error criterion, over successive intervals on the time axis. Variations of the basic procedure are used to increase the efficiency of the method in special situations. Automatic switching from the basic procedure to one of its variations (and vice-versa) may occur during the course of a transient. The method yields an analytic criterion for the magnitude of the time-step at any point in the transient. 3 - Restrictions on the complexity of the problem: The program is currently restricted to a maximum of six delayed neutron groups and a maximum of 56 lumps. Larger problems can be accommodated on a 65 K computer by increasing the dimensions of a few subscripted variables. Also, the code is currently restricted to a constant external transport delays, only the open-loop response of a reactor can be computed with ANCON

  14. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  15. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y. C. [LG-EDS Systems, Seoul (Korea, Republic of); Lee, J. H.; Lee, H. C.; Lee, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2000-05-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage.

  16. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    International Nuclear Information System (INIS)

    Yun, Y. C.; Lee, J. H.; Lee, H. C.; Lee, J. S.

    2000-01-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage

  17. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  18. Experimental study of space dependent nuclear reactor kinetics - Progress report; Eksperimentalno proucavanje prostorno zavisne kinetike nuklearnih reaktora - Izvestaj o napredovanju

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Petrovic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This paper describes experimental study of space-time behaviour of nuclear reactors by local complex-periodic perturbation of the absorption cross section and by measuring the local reactor response to this perturbation. Perturbation was done by BOR-1 fast oscillator. Cross correlation between the response and the perturbation was done numerically after completing the measurement by using digital computer. Obtained experimental results are preliminary and are measured with significant errors which were analysed in this paper. Results show qualitative agreement with those obtained by theoretical model. This paper is the first progress report in this field in our country. U radu je opisan eksperimentalni prilaz proucavanju prostorno-vremenskog ponasanja nuklearnih reaktora, vrseci lokalnu slozeno-periodicnu perturbaciju apsorpcionog preseka i mereci lokalni odziv reaktora na tu perturbaciju. Perturbacija je vrsena brzim oscilatorom BOR-1. Kroskorelacija izmedju odziva i perturbacije vrsena je numericki posle obavljenog merenja upotrebom digitalne racunske masine. Dobijeni eksperimentalni rezultati imaju preliminarni karakter i odredjeni su sa znatnim eksperimentalnim greskama koje su, u radu analizirane. Izlozeni rezultati pokazuju kvalitativna slaganja sa teorijski dobijenim modelom. Ovaj rad predstavlja prvi izvestaj o napredovanju na ovoj problematici kod nas (author)

  19. Solution of the two-dimensional space-time reactor kinetics equation by a locally one-dimensional method

    International Nuclear Information System (INIS)

    Chen, G.S.; Christenson, J.M.

    1985-01-01

    In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program

  20. An Investigation of Power Stabilization and Space-Dependent Dynamics of a Nuclear Fluidized-Bed Reactor

    International Nuclear Information System (INIS)

    Pain, Christopher C.; Eaton, Matthew D.; Gomes, Jefferson L.M.A.; Oliveira, Cassiano R.E. de; Umpleby, Adrian P.; Ziver, Kemal; Ackroyd, Ron T.; Miles, Bryan; Goddard, Antony J.H.; Dam, H. van; Hagen, T.H.J.J. van der; Lathouwers, D.

    2003-01-01

    Previous work into the space-dependent kinetics of the conceptual nuclear fluidized bed has highlighted the sensitivity of fission power to particle movements within the bed. The work presented in this paper investigates a method of stabilizing the fission power by making it less sensitive to fuel particle movement. Steady-state neutronic calculations are performed to obtain a suitable design that is stable to radial and axial fuel particle movements in the bed. Detailed spatial/temporal simulations performed using the finite element transient criticality (FETCH) code investigate the dynamics of the new reactor design. A dual requirement of the design is that it has a moderate power output of ∼300 MW(thermal)

  1. Availability of niobium and tantalum-base alloy products for space nuclear reactors

    International Nuclear Information System (INIS)

    Kumar, P.K.; Huber, L.H.

    1986-01-01

    In order to provide orbiting electrical power generators for use in Space, current US efforts are focusing on fast neutron flux nuclear power systems; these systems would generate in excess of 100 kW, yet be compact enough to be economically carried into Space by NASA's Space Shuttle. Considerable data on physical, mechanical and corrosion properties are available for the Nb and Ta-base alloys that are prime candidates for such structural components. However, most of these data pertain to the metallurgical state of the art of the 1965-1975 time period; therefore, they have to be reviewed and updated as appropriate to reflect present processing and manufacturing technology. This article summarizes this state of the art, making reasonable projections as well for ongoing improvements and their probable impact on alloy properties achievable in the 1990's

  2. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  3. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  4. Load-carrying capabilities of refractory alloys for space reactor power applications

    International Nuclear Information System (INIS)

    Horak, J.A.

    1985-01-01

    To achieve sufficient thermodynamic efficiency, space nuclear power systems must operate above 1000 0 C. A quantitative evaluation of the existing mechanical properties data for the refractory alloys relevant to space nuclear power systems design lifetimes up to seven years at temperatures up to 1400 0 C is being conducted. The most important properties for space nuclear power systems are long-term high-temperature (>1000 0 C) creep strength and ductility, low-temperature ( 0 C) fracture toughness [including ductile-to-brittle transition temperature, (DBTT)], and ductility at high strain rates; of special concern are the above properties for weldments of refractory alloys, composition, applied stress, test temperature, test environment (e.g., vacuum, lithium), and thermomechanical treatment (TMT) history. Currently being evaluated are, in order of ascending mp, selected alloys of niobium (e.g., Nb-1% Zr, Nb-1% Zr-0.1% C), molybdenum (e.g., Mo-13% Re), tantalum (e.g., ASTAR-811C), and tungsten (e.g., CVD W and W-25% Re). Creep properties of these alloys have been correlated via Larson-Miller, Manson-Hafered, and other empirical parameters; creep equations have been developed from these correlations. 12 figs., 8 tabs

  5. The Visual Uncertainty Paradigm for Controlling Screen-Space Information in Visualization

    Science.gov (United States)

    Dasgupta, Aritra

    2012-01-01

    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual…

  6. HELP (INFORMATION ELECTRONIC RESOURCE "CHRONICLE OF ONU: DATES, FACTS, EVENTS": HISTORY OF UNIVERSITY IN INFORMATION SPACE

    Directory of Open Access Journals (Sweden)

    А. М. Гавриленко

    2016-03-01

    Object of research is the help information resource "The chronicle of the Odessa national university of I. I. Mechnikov: dates, facts, events". The main objective of our article – to state the main methodological bases of creation of information resource. One of advantages of information resource is possibility of continuous updating and replenishment by new information. Main objective of creation of this information resource is systematization of material on stories of the Odessa national university of I. I. Mechnikov from the date of his basis to the present, ensuring interactive access to information on the main dates, the most significant events in life of university. The base of research are sources on the history of university, chronology of historical development, formation of infrastructure, cadres and scientific researches. In information resource the main stages of development, functioning and transformation of the Odessa University are analyzed, information on its divisions is collected. For creation of this information resource in Scientific library the method of work was developed, the main selection criteria of data are allocated. This information resource have practical value for all who is interested in history of university, historians, scientists-researchers of history of science and the city of Odessa.

  7. Professional development of future teacher of physical culture in informatively-educational space: information technologies in educational process

    Directory of Open Access Journals (Sweden)

    Dragnev Y. V.

    2012-07-01

    Full Text Available A role and value of informative educational space in the professional becoming of future teacher of physical culture is considered. It is well-proven that such environment is characterized: by the volume of educational services, power, intensity, set of terms. It is shown that higher professional education requires perfection of the use of information technologies, programmatic and informative providing of educational process. It is set that modern information technologies are the mean of increase of efficiency of management all of spheres of public activity. It is marked that the process of forming of informative culture needs the personally oriented and differentiated going near the choice of the teaching programs. Directions of the use of information technologies in the controlled from distance teaching are selected. The ways of intensification of educational process are recommended through the increase of interest of students to the study of concrete discipline, increase of volume of independent work, increase of closeness of educational material.

  8. Compatibility of refractory alloys with space reactor system coolants and working fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.; DiStefano, J.R.; Hoffman, E.E.

    1984-01-01

    The bulk of this report deals with compatibility studies in liquid lithium and boiling potassium. Substantial information is also presented concerning the reactivity of niobium and tantalum alloys with residual gases in high and ultrahigh vacuum atmospheres. The remaining information, which is much less extensive, covers the compatibility behavior of molybdenum and tungsten alloys in alkali metals and a qualitative assessment of the use of refractory metals for containing helium in a closed Brayton cycle. 22 references, 29 figures, 14 tables

  9. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  10. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II

    International Nuclear Information System (INIS)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site

  11. Designed Natural Spaces: Informal Gardens Are Perceived to Be More Restorative than Formal Gardens.

    Science.gov (United States)

    Twedt, Elyssa; Rainey, Reuben M; Proffitt, Dennis R

    2016-01-01

    Experimental research shows that there are perceived and actual benefits to spending time in natural spaces compared to urban spaces, such as reduced cognitive fatigue, improved mood, and reduced stress. Whereas past research has focused primarily on distinguishing between distinct categories of spaces (i.e., nature vs. urban), less is known about variability in perceived restorative potential of environments within a particular category of outdoor spaces, such as gardens. Conceptually, gardens are often considered to be restorative spaces and to contain an abundance of natural elements, though there is great variability in how gardens are designed that might impact their restorative potential. One common practice for classifying gardens is along a spectrum ranging from "formal or geometric" to "informal or naturalistic," which often corresponds to the degree to which built or natural elements are present, respectively. In the current study, we tested whether participants use design informality as a cue to predict perceived restorative potential of different gardens. Participants viewed a set of gardens and rated each on design informality, perceived restorative potential, naturalness, and visual appeal. Participants perceived informal gardens to have greater restorative potential than formal gardens. In addition, gardens that were more visually appealing and more natural-looking were perceived to have greater restorative potential than less visually appealing and less natural gardens. These perceptions and precedents are highly relevant for the design of gardens and other similar green spaces intended to provide relief from stress and to foster cognitive restoration.

  12. Designed natural spaces: Informal gardens are perceived to be more restorative than formal gardens

    Directory of Open Access Journals (Sweden)

    Elyssa eTwedt

    2016-02-01

    Full Text Available Experimental research shows that there are perceived and actual benefits to spending time in natural spaces compared to urban spaces such as reduced cognitive fatigue, improved mood, and reduced stress. Whereas past research has focused primarily on distinguishing between distinct categories of spaces (i.e., nature versus urban, less is known about variability in perceived restorative potential of environments within a particular category of outdoor spaces, such as gardens. Conceptually, gardens are often considered to be restorative spaces and to contain an abundance of natural elements, though there is great variability in how gardens are designed that might impact their restorative potential. One common practice for classifying gardens is along a spectrum ranging from formal or geometric to informal or naturalistic, which often corresponds to the degree to which built or natural elements are present, respectively. In the current study, we tested whether participants use design informality as a cue to predict perceived restorative potential of different gardens. Participants viewed a set of gardens and rated each on design informality, perceived restorative potential, naturalness, and visual appeal. Participants perceived informal gardens to have greater restorative potential than formal gardens. In addition, gardens that were more visually appealing and more natural-looking were perceived to have greater restorative potential than less visually appealing and less natural gardens. These perceptions and precedents are highly relevant for the design of gardens and other similar green spaces intended to provide relief from stress and to foster cognitive restoration.

  13. Contraction of information and its inverse problem in reactor system identification and stochastic diagnosis

    International Nuclear Information System (INIS)

    Kishida, K.

    1996-01-01

    Research concerning power reactor noise analysis makes rapid progress in the areas of the system identification, prediction and diagnosis. Keywords in these studies are artificial intelligence, neural network, fuzzy, and chaos. Nonlinear, nonstationary, or non-Gaussian processes as well as linear and steady processes are also studied in fluctuation analysis. However, we have not enough time to study a fundamental theory, since we are urged to obtain results or applications in power reactor fluctuations. Furthermore, we have no systematic approach to handle observed time series data in the linear process, since power reactor noise phenomena are complicated. Hence, it is important to study it from the fundamental viewpoint. It is a main aim of the present review paper to describe a unified formalism for reactor system identification and stochastic diagnosis

  14. Dynamic Model of an Ammonia Synthesis Reactor Based on Open Information

    OpenAIRE

    Jinasena, Asanthi; Lie, Bernt; Glemmestad, Bjørn

    2016-01-01

    Ammonia is a widely used chemical, hence the ammonia manufacturing process has become a standard case study in the scientific community. In the field of mathematical modeling of the dynamics of ammonia synthesis reactors, there is a lack of complete and well documented models. Therefore, the main aim of this work is to develop a complete and well documented mathematical model for observing the dynamic behavior of an industrial ammonia synthesis reactor system. The model is complete enough to ...

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  16. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  17. Air Traffic Management and Space Transportation - System Wide Information Management and the Integration in European Airspace

    OpenAIRE

    Kaltenhäuser, Sven; Morlang, Frank; Hampe, Jens; Jakobi, Jörn; Schmitt, Dirk-Roger

    2015-01-01

    Space Travel becomes an international business and requires landing opportunities all over the world. The integration of space vehicles in airspace therefore is an increasingly important topic to be considered on an international scale. With the Single European Sky ATM Research Programme (SESAR) preparing the implementation of a new ATM system in Europe, requirements have been defined for Shared and Reference Business Trajectories as well as System Wide Information Management (SWIM). The s...

  18. Gene expression from polynomial dynamics in the 2-adic information space

    International Nuclear Information System (INIS)

    Khrennikov, Andrei Yu.

    2009-01-01

    We perform geometrization of genetics by representing genetic information by points of the 4-adic information space. By well known theorem of number theory this space can also be represented as the 2-adic space. The process of DNA-reproduction is described by the action of a 4-adic (or equivalently 2-adic) dynamical system. As we know, the genes contain information for production of proteins. The genetic code is a degenerate map of codons to proteins. We model this map as functioning of a polynomial dynamical system. The purely mathematical problem under consideration is to find a dynamical system reproducing the degenerate structure of the genetic code. We present one of possible solutions of this problem.

  19. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  20. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce Perry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  1. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  2. Exploration and guidance in media-rich information spaces : the implementation and realization of guided tours in digital dossiers

    NARCIS (Netherlands)

    Riel, van C.; Wang, Y.; Eliëns, A.; Guerrero-Bote, V.P.

    2006-01-01

    Confronted with media-rich information spaces involves interfaces that are usually designed to facilitate personal exploration to locate information of interest. Navigating such media-rich information spaces, where information structures can be complex, may result in disorientation and demotivation.

  3. Development and test of a space-reactor-core heat pipe

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

    1983-01-01

    A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500 0 K with an evaporator radial flux density of 100 w/cm 2 . The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500 0 K for 100 hours. No performance degradation was observed during the test

  4. THE PRINCIPLES AND METHODS OF INFORMATION AND EDUCATIONAL SPACE SEMANTIC STRUCTURING BASED ON ONTOLOGIC APPROACH REALIZATION

    Directory of Open Access Journals (Sweden)

    Yurij F. Telnov

    2014-01-01

    Full Text Available This article reveals principles of semantic structuring of information and educational space of objects of knowledge and scientific and educational services with use of methods of ontologic engineering. Novelty of offered approach is interface of ontology of a content and ontology of scientific and educational services that allows to carry out effective composition of services and objects of knowledge according to models of professional competences and requirements being trained. As a result of application of methods of information and educational space semantic structuring integration of use of the diverse distributed scientific and educational content by educational institutions for carrying out scientific researches, methodical development and training is provided.

  5. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  6. Nb-base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging

    International Nuclear Information System (INIS)

    Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.

    2009-01-01

    The proposed use of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, the lead candidate has been Nb-1Zr due to its good fabrication and welding characteristics. However, the less than optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, a relatively small database exists for the properties of FS-85. These gaps include potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in microstructure and mechanical properties of FS-85 were investigated following 1100 h of thermal aging at 1098, 1248 and 1398 K. The changes in electrical resistivity, hardness and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical, scanning and transmission electron microscopy. The development of intragranular and grain boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the 1248 K aged material, while ductile behavior occurred in material aged above and below this temperature. The effect of temperature on the under and overaging of the grain boundary particles are believed to have contributed to the mechanical property behavior of the aged material

  7. Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging

    Science.gov (United States)

    Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.

    2009-04-01

    The proposed uses of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, a leading candidate has been Nb-1Zr, due to its good fabrication and welding characteristics. However, the less-than-optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, only a relatively small database exists for the properties of FS-85. Database gaps include the potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in the microstructure and mechanical properties of FS-85 were investigated following 1100 hours of thermal aging at 1098, 1248, and 1398 K. The changes in electrical resistivity, hardness, and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The development of intragranular and grain-boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the material aged at 1248 K, while ductile behavior occurred in samples aged above and below this temperature. The effect of temperature on the under- and overaging of the grain-boundary particles is believed to have contributed to the mechanical property behavior of the aged materials.

  8. Comparison of neutron diffusion theory codes in two and three space dimensions using a sodium cooled fast reactor benchmark

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Putney, J.; Sweet, D.W.

    1980-04-01

    This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)

  9. Database structure and file layout of Nuclear Power Plant Database. Database for design information on Light Water Reactors in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Nobuo; Izumi, Fumio.

    1995-12-01

    The Nuclear Power Plant Database (PPD) has been developed at the Japan Atomic Energy Research Institute (JAERI) to provide plant design information on domestic Light Water Reactors (LWRs) to be used for nuclear safety research and so forth. This database can run on the main frame computer in the JAERI Tokai Establishment. The PPD contains the information on the plant design concepts, the numbers, capacities, materials, structures and types of equipment and components, etc, based on the safety analysis reports of the domestic LWRs. This report describes the details of the PPD focusing on the database structure and layout of data files so that the users can utilize it efficiently. (author)

  10. 10- to 30-kWe space power system using the uranium-zirconium hydride reactor and organic Rankine power conversion system

    International Nuclear Information System (INIS)

    Determan, W.R.; Bost, D.S.

    1987-01-01

    The UZrH reactor-ORC power system has been reviewed to determine its feasibility issues and characterize the system size, mass, and efficiency in the 10- to 30-kWe power range. The major component technologies required for this concept were reviewed to determine their technology status rating for early deployment of the system on near-term missions. Dynamic Isotope Power System (DIPS) technology is directly applicable to the UZrH reactor-ORC concept in the areas of power system reliability and survivability. The UZrH reactor-ORC concept provides a truly state-of-the-art system for use in future military and civilian space power programs. 9 references

  11. The Network Information Management System (NIMS) in the Deep Space Network

    Science.gov (United States)

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  12. INFORMATIVE ENERGY METRIC FOR SIMILARITY MEASURE IN REPRODUCING KERNEL HILBERT SPACES

    Directory of Open Access Journals (Sweden)

    Songhua Liu

    2012-02-01

    Full Text Available In this paper, information energy metric (IEM is obtained by similarity computing for high-dimensional samples in a reproducing kernel Hilbert space (RKHS. Firstly, similar/dissimilar subsets and their corresponding informative energy functions are defined. Secondly, IEM is proposed for similarity measure of those subsets, which converts the non-metric distances into metric ones. Finally, applications of this metric is introduced, such as classification problems. Experimental results validate the effectiveness of the proposed method.

  13. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  14. Principles elaboration and creation of information-analytical system ''RI Operation Safety with SSC RIAR Research Reactors''

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Grachev, A.F.; Kinsky, O.M.; Makin, P.S.; Okhrimenko, A.I.; Demidov, L.I.; Karpyuk, V.I.; Afonin, V.K.; Iskanderov, R.G.

    1995-01-01

    In this paper an approach is described, which is accepted at elaboration and creation of computer-aided control system of technological process (CCS TP) at the installations with research reactors. The tasks and the main technological requirements to elaborated information-analytical system, are formulated, based on the accepted approach, experience of computer-aided systems and analysis of technological processes at reactor installations (RI) of SSC RIAR. The system includes the following installations: the SM-3, the VK-50, the RBT-10, the BOR-60 and the MIR. Based on the given example there is a classification and the purposes of the modern system of information personnel support of research reactors are formulated as well as approaches to its creation, including creation of determined models of the processes, which are realized in simulators and statistic methods of time series. According to the accepted approaches the results of systematic-technical synthesis and modern states with system simulation are described. (author). 17 refs, 3 figs, 4 tabs

  15. The role of Spaces and Occasions in the Transformation of Information Technologies

    DEFF Research Database (Denmark)

    Clausen, Christian; Koch, Christian

    1999-01-01

    The article adopts the view that technological change is a social process involving negotiations of a network of players. It aims at informing management of technology by identifying occasions and spaces where IT can be adressed and changed. the focus is on Enterprise Resource Planning systems....

  16. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  17. Providing nuclear reactor control information in the presence of instrument failures

    International Nuclear Information System (INIS)

    Tylee, J.L.; Purviance, J.E.

    1986-01-01

    A technique for using unfailed instrument outputs to generate optimal estimates of failed sensor outputs is presented and evaluated. The technique uses a bank of discrete, linear Kalman filters, each dedicated to one instrument, and a combinatory logic to perform the output estimation. The technique is tested using measurement data from a university research reactor

  18. A review of vapor explosion information pertinent to the SRS reactors

    International Nuclear Information System (INIS)

    Hyder, M.L.; Allison, D.K.

    1992-04-01

    Vapor explosions are explosive events resulting from the mixing of two liquids, one of which is heated to a temperature well above the boiling point of the second. Under some circumstances mixing of the liquids can boil part of the lower boiling liquid so quickly that the expanding vapor generates a strong pressure wave and explosion. If the lower boiling liquid is water, as is frequently the case, the event is called a ''steam explosion''. Analyses in support of the K-Reactor Probabilistic Risk Assessment have shown that steam explosions generated by the interaction of molten reactor fuel with water contribute significantly to the risk of reactor operation at the SRS. This calculated risk incorporates a conservative treatment of the uncertainties associated with such explosions. Study of steam explosions involving molten reactor materials has been included in the Severe Accident Analysis Program (SAAP) in order to obtain a better evaluation of their importance, and, if possible, to find ways to avoid them. This paper presents a brief review and summary of steam explosion experience from literature accounts, along with the results of experimental studies from the SAAP. It concludes with an evaluation of current knowledge, and suggestions for future development. 71 refs

  19. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  20. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  1. ZOCO VI - a computer code to calculate the time- and space-dependent pressure distribution in full pressure containments of water-cooled reactors

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1974-12-01

    ZOCO VI is a computer code to investigate the time and space dependent pressure distribution in full pressure containment of water cooled nuclear power reactors following a loss-of-coolant accident, which is caused by the rupture of a main coolant or steam line. ZOCO VI is an improved version of the computer code ZOCO V with enlarged description of condensing events. (orig.) [de

  2. Dynamics and cultural specifics of information needs under conditions of long-term space flight

    Science.gov (United States)

    Feichtinger, Elena; Shved, Dmitry; Gushin, Vadim

    Life in conditions of space flight or chamber study with prolonged isolation is associated with lack of familiar stimuli (sensory deprivation), monotony, significant limitation of communication, and deficit of information and media content (Myasnikov V.I., Stepanova S.I. et al., 2000). Fulfillment of a simulation experiment or flight schedule implies necessity of performance of sophisticated tasks and decision making with limited means of external support. On the other hand, the “stream” of information from the Mission Control (MC) and PI’s (reminders about different procedures to be performed, requests of reports, etc.) is often inadequate to communication needs of crewmembers. According to the theory of “information stress” (Khananashvili M.M., 1984), a distress condition could be formed if: a) it’s necessary to process large amounts of information and make decisions under time pressure; b) there is a prolonged deficit of necessary (e.g. for decision making) information. Thus, we suppose that one of the important goals of psychological support of space or space simulation crews should be forming of favorable conditions of information environment. For that purpose, means of crew-MC information exchange (quantitative characteristics and, if possible, content of radiograms, text and video messages, etc.) should be studied, as well as peculiarities of the crewmembers’ needs in different information and media content, and their reactions to incoming information. In the space simulation experiment with 520-day isolation, communication of international crew with external parties had been studied. Dynamics of quantitative and content characteristics of the crew’s messages was related to the experiment’s stage, presence of “key” events in the schedule (periods of high autonomy, simulated “planetary landing”, etc.), as well as to events not related to the experiment (holidays, news, etc.). It was shown that characteristics of information exchange

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  4. Organization of the ITER [International Thermonuclear Experimental Reactor] Project - Sharing of information and procurements

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1990-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is expected to fully confirm the scientific feasibility and to address the technological feasibility of fusion power. Consequently, the machine must be designed for controlled ignition and extended burn of deuterium-tritium plasma. It must also demonstrate and perform integrated testing of components required to utilize fusion power for practical purposes. Cooperation among four countries/organizations (United States, Soviet Union, Japan, and EURATOM) to build a single experimental reactor will reduce the cost for each country and provide an international pool of scientific and engineering resources. This paper describes ITER organization for conceptual design activity, schedule for conceptual design activities, ITER operating parameters, conceptual project schedule and cost, future plans, basic principles and problems related to task sharing, and basic principles in handling of intellectual property

  5. Public's right to information: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Stokely, E.

    1981-02-01

    The events at TMI prompted the Under Secretary of the Department of Energy (DOE) to establish the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. This Committee was assigned the task of assessing the adequacy of nuclear facility personnel qualification and training at DOE-owned reactors in light of the Three Mile Island accident. The Committee was also asked to review recommendations and identify possible implications for DOE's nuclear facilities

  6. Annual report on JEN-1 and JEN-2 Reactors; Informe periodico de Reactores JEN-1 y JEN-2 correpondiente al ano 1972

    Energy Technology Data Exchange (ETDEWEB)

    Montes Ponce de Leon, J.

    1974-07-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  7. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    Science.gov (United States)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  8. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation

    Science.gov (United States)

    Wirth, Sylvia; Baraduc, Pierre; Planté, Aurélie; Pinède, Serge; Duhamel, Jean-René

    2017-01-01

    To elucidate how gaze informs the construction of mental space during wayfinding in visual species like primates, we jointly examined navigation behavior, visual exploration, and hippocampal activity as macaque monkeys searched a virtual reality maze for a reward. Cells sensitive to place also responded to one or more variables like head direction, point of gaze, or task context. Many cells fired at the sight (and in anticipation) of a single landmark in a viewpoint- or task-dependent manner, simultaneously encoding the animal’s logical situation within a set of actions leading to the goal. Overall, hippocampal activity was best fit by a fine-grained state space comprising current position, view, and action contexts. Our findings indicate that counterparts of rodent place cells in primates embody multidimensional, task-situated knowledge pertaining to the target of gaze, therein supporting self-awareness in the construction of space. PMID:28241007

  9. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  10. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  11. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. The Johnson Space Center management information systems: User's guide to JSCMIS

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  13. Real-time validation of receiver state information in optical space-time block code systems.

    Science.gov (United States)

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  14. Space Power Program, Instrumentation and Control System Architecture, Preconceptual Design, for Information

    International Nuclear Information System (INIS)

    JM Ross

    2005-01-01

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I and C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1 and C system architecture was considered a key planning document for development of the I and C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I and C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured

  15. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    Energy Technology Data Exchange (ETDEWEB)

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  16. Production Cells in Construction: Considering Time, Space and Information Linkages to Seek Broader Implementations

    Directory of Open Access Journals (Sweden)

    Renato Nunes Mariz

    2013-01-01

    Full Text Available The use of production cells in manufacturing has achieved many benefits, motivating researchers to apply them in the construction environment. The aim of this research is to identify time, space, and information linkages in construction’s production cells applications, seeking opportunities for broader implementations. We adopted a literature review approach focusing on cases in the Brazilian construction sector that addressed cell applications. Subsequently, comparative tables of these publications were prepared, analyzing the consideration of time, space, and information linkages, as well as identified results. The article pointed out that there is a gap in publications that address the application of a production cell in almost all construction flows, except the job site flow, reflecting the tendency of most companies of applying lean concepts firstly in physical flows. By analyzing these aspects (group of features that enhance the use of the cell, it was found that “material flow and pull systems” and “operators interaction” were the aspects most often considered, but mostly partially. Few cases reported the use of “flexibility” and “equipment maintenance”. No case reported comprehensive considerations of the three important linkages of time, space, and information. Space was the linkage better considered compared to time and information linkages. Lead time reduction, cost savings and increased productivity were among the greatest benefits reported from the applications of production cells. There is also a positive correlation between the linkages coverage and the number of benefits obtained. Further research is suggested in order to investigate the results of a more comprehensive application considering all linkages.

  17. Quantum limits to information about states for finite dimensional Hilbert space

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1990-01-01

    A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs

  18. Information Environment is an Integral Element of Informational Space in the Process of Professional Development of Future Teacher of Physical Culture

    Directory of Open Access Journals (Sweden)

    Yuri V. Dragnev

    2012-04-01

    Full Text Available The article examines information environment as an integral element of information space in the process of professional development of future teacher of physical culture, notes that the strategic objective of the system of higher education is training of competent future teacher of physical culture in the field of information technologies, when information competence and information culture are major components of professionalism in modern information-oriented society

  19. The Common information space of the Training and Consulting Center design

    Directory of Open Access Journals (Sweden)

    Dorofeeva N.S.

    2017-04-01

    Full Text Available the article describes the relevance of the research, such as the assessment of the educational and consulting services market and also the competitive environment based on the analysis of the regional innovative infrastructure. The results of the center activity design are presented, and the basis of the concept of this center functioning is TRIZ (the Theory of Invention Tasks Solving. The basic functional capabilities of the common information space (CIS are formulated and justified in this research, the CIS-structure is formed, the interfaces of the information resources in the CIS for the interaction with potential users have been developed, and data modeling has been carried out.

  20. Technical and management information system: The tool for professional productivity on the space station program

    Science.gov (United States)

    Montoya, G.; Boldon, P.

    1985-01-01

    The Space Station Program is highly complex not only in its technological goals and requirements but also in its organizational structure. Eight Contractor teams supporting four NASA centers plus Headquarters must depend on effective exchange of information--the lifeblood of the program. The Technical and Management Information System (TMIS) is the means by which this exchange can take place. Value of the TMIS in increasing productivity comes primarily from its ability to make the right information available to whomever needs it when it is needed. Productivity of the aerospace professional and how it can be enhanced by the use of specifically recommended techniques and procedures for information management using the TMIS are discussed.

  1. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  2. Clinch River Breeder Reactor Plant. License application, statement of general information

    International Nuclear Information System (INIS)

    1975-01-01

    Application is made for a reactor facility consisting of a liquid metal cooled reactor and steam generator system, a steam turbine driven electric generating system, electrical switchyard, and related auxiliaries and supporting structures. The primary system is located in an inert atmosphere in shielded vaults within a containment structure. Sodium coolant is used to remove heat from the core and radial blanket. Heat from the primary sodium is transferred in heat exchangers to non radioactive sodium which is used to convert feed-water into steam which is superheated to drive a tandem-compound generator. A single shaft multi-stage turbine generator produces 380 MW(e) with steam conditions of 1450 psig at 900 0 F. Fuel is sintered ceramic pellets of mixed uranium-plutonium oxides encapsulated in stainless steel. There are 198 fuel assemblies with each assembly consisting of 217 fuel rods placed in a hexagonal channel. Plutonium enrichment ranges from 1817 to 32.0 percent by weight. Axial blanket sections contain depleted UO 2 with 99.8 percent 238 U and 0.2 percent 235 U by weight. The proposed location of the plant is within the corporate limits of the city of Oak Ridge in Roane County, Tennessee. (U.S.)

  3. Licensing assessment of the CANDU pressurized heavy water reactor. Volume I. Preliminary safety information document

    International Nuclear Information System (INIS)

    1977-06-01

    The PHWR design contains certain features that will require significant modifications to comply with USNRC siting and safety requirements. The most significant of these features are the reactor vessel; control systems; quality assurance program requirements; seismic design of structures, systems and components; and providing an inservice inspection program capability. None of these areas appear insolvable with current state-of-the-art engineering or with upgrading of the quality assurance program for components constructed outside of the USA. In order to be licensed in the U. S., the entire reactor assembly would have to be redesigned to comply with ASME Boiler and Pressure Vessel Code, Section III, Division 1 and Division 2. A summary matrix at the end of this volume identifies compliance of the systems and structures of the PHWR plant with the USNRC General Design Criteria. The matrix further identifies the estimated incremental cost to a 600 MWe PHWR that would be required to license the plant in the U. S. Further, the matrix identifies whether or not the incremental licensing cost is size dependent and the relative percentage of the base direct cost of a Canadian sited plant

  4. Study on safety of a nuclear ship having an integral marine water reactor. Intelligent information database program concerned with thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Kobayashi, Michiyuki; Murata, Hiroyuki; Aya, Izuo

    2001-01-01

    As a high economical marine reactor with sufficient safety functions, an integrated type marine water reactor has been considered most promising. At the National Maritime Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated/passive-safety type marine water reactor such as the flow boiling of a helical-coil type steam generator, natural circulation of primary water under a ship rolling motion and flashing-condensation oscillation phenomena in pool water has been conducted. This current study aims at making use of the safety analysis or evaluation of a future marine water reactor by developing an intelligent information database program concerned with the thermal-hydraulic characteristics of an integral/passive-safety reactor on the basis of the above-mentioned valuable experimental knowledge. Since the program was created as a Windows application using the Visual Basic, it is available to the public and can be easily installed in the operating system. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability limit for any helical-coil type once-through steam generator design. (2) analysis and comparison with the flow boiling data, (3) reference and graphic display of the experimental data, (4) indication of the knowledge information such as analysis method and results of the study. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor. (author)

  5. Public information circular for shipments of irradiated reactor fuel. Report for 16 Jul 79-1 May 82

    International Nuclear Information System (INIS)

    1982-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission provided information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipments as well as safeguards incidents regarding same

  6. Towards smart mobility in urban spaces: Bus tracking and information application

    Science.gov (United States)

    Yue, Wong Seng; Chye, Koh Keng; Hoy, Cheong Wan

    2017-10-01

    Smart city can be defined as an urban space with complete and advanced infrastructure, intelligent networks and platforms, with millions of sensors among which people themselves and their mobile devices. Urban mobility is one of the global smart city project which offers traffic management in real-time, management of passenger transport means, tracking applications and logistics, car sharing services, car park management and more smart mobility services. Due to the frustrated waiting time for the arrival of buses and the difficulty of accessing shuttle bus-related information in a one-stop centre, bus tracking and information application (BTA) is one the proposed solutions to solve the traffic problems in urban spaces. This paper is aimed to design and develop a bus tracking and information application in a selected city in Selangor state, Malaysia. Next, this application also provides an alternative to design public transport tracking and information application for the urban places in Malaysia. Furthermore, the application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future.

  7. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  8. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  9. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Science.gov (United States)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  10. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.

    2012-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  11. INTEGRATION OF UKRAINIAN INDUSTRY SCIENTIFIC PERIODACLS INTO WORLD SCIENTIFIC INFORMATION SPACE: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    T. O. Kolesnykova

    2013-11-01

    Full Text Available Purpose. Problem of representation lack of scientists’ publications, including transport scientists, in the international scientometric databases is the urgent one for Ukrainian science. To solve the problem one should study the structure and quality of the information flow of scientific periodicals of railway universities in Ukraine and to determine the integration algorithm of scientific publications of Ukrainian scientists into the world scientific information space. Methodology. Applying the methods of scientific analysis, synthesis, analogy, comparison and prediction the author has investigated the problem of scientific knowledge distribution using formal communications. The readiness of Ukrainian railway periodicals to registration procedure in the international scientometric systems was analyzed. The level of representation of articles and authors of Ukrainian railway universities in scientometric database Scopus was studied. Findings. Monitoring of the portals of railway industry universities of Ukraine and the sites of their scientific periodicals and analysis of obtained data prove insufficient readiness of most scientific publications for submission to scientometric database. The ways providing sufficient "visibility" of industry periodicals of Ukrainian universities in the global scientific information space were proposed. Originality. The structure and quality of documentary flow of scientific periodicals in railway transport universities of Ukraine and its reflection in scientometric DB Scopus were first investigated. The basic directions of university activities to integrate the results of transport scientists research into the global scientific digital environment were outlined. It was determined the leading role of university libraries in the integration processes of scientific documentary resources of universities into the global scientific and information communicative space. Practical value. Implementation of the proposed

  12. Optimization of professional preparation of future teacher of physical culture in informatively-educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y. V.

    2012-06-01

    Full Text Available It is marked that reformation of higher education is an objective necessity. It is marked that the educational system of Ukraine answers the new requirements of informative society not fully. It is certain that optimization of professional education of future teacher of physical culture must be characterized the choice of the most favourable variant of terms and teaching facilities. It is set that transitions within the limits of one informative space have an influence on professional development of future teacher during his studies. The followings terms of optimization of professional education of teacher are selected: system use of active and interactive methods; bringing in to the advanced study; the increase of role is informative of communication technologies in an educational process. The concordance of maintenance of curriculum of education of teachers of physical culture with the programs of education of the European countries and standardization is recommended them within the limits of Ukraine.

  13. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  14. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    International Nuclear Information System (INIS)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard; Szilard, Ronaldo

    2016-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly ''over-design'' portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as ''safety margin.'' Historically, specific safety margin provisions have been formulated, primarily based on ''engineering judgment.''

  15. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  16. Three-dimensionality of space and the quantum bit: an information-theoretic approach

    International Nuclear Information System (INIS)

    Müller, Markus P; Masanes, Lluís

    2013-01-01

    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry ‘minimal amounts of direction information’, interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d = 3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements. (paper)

  17. About influencing specificity of space flights on the information, perceived by astronauts

    Science.gov (United States)

    Prisniakova, L.; Prisniakov, V.

    Research of influence of gravitational fields on character of decision-making by the cosmonaut in reply to the information acting to him is the purpose of the report. The magnitude of perceived consciously of flow of the information for all sensory systems (visual, acoustical, somatosensory, chemical, kinaesthetical, balance of a head and time) is analysed. The coefficient of transformation of the incoming information from an environment to the person and the information realized by him has been received equal κ =105. As the susceptibility of the cosmonaut to the incoming of information to him depends on his temperament, the hypothesis about modification of his temperament and accordingly about modification of character of activity of the cosmonaut during duration of flight is voiced. B.Tsukanov's hypothesis is used, that as a measure of mobility of nervous system (temperament) of the person it is possible to use of the magnitude of subjectively experienced time τz. The formula for definition τz is offered using the period of an of alpha waves. The known data of authors, on the one hand, about communication of a time constant of information processing in memory of person T with frequency of alpha waves f and on the other hand, on its relationship with overloads j were used. This dependence of the period of fluctuations of alpha waves Tα from overloads (or microgravitation) enable to find magnitude of change of individually experienced time τ z at action of distinct from normal gravitational fields. The increase of this value of magnitude in case of presence of overloads can lead to to uncontrollable change of behaviour of cosmonauts in connection by erroneous perception of time and space. Acknowledgement to this is display by pilots - verifiers of "loss of orientation''.This result essentially supplements an explanation of this effect which was considered by authors in Houston on the basis of the analysis of the basic psychophysical law. Dependence of change

  18. Small power reactor projects in the United States of America and Canada. Information gathered as a result of invitations from Member States

    International Nuclear Information System (INIS)

    1962-01-01

    As part of its activities in connection with the development of nuclear power, and in response to the resolutions adopted by the General Conference, the Agency has been undertaking a continuing study of the technology and economics of small and medium sized power reactors, particularly with reference to the needs of the less-developed countries. This report summarizes the information gathered on the small power reactor projects in the United States of America and Canada, as a result of the opportunity afforded by these Member States to the Agency. It may be recalled that, at the third regular session of the General Conference, the United States Government offered to provide the Agency with relevant technical and economic data on several small power reactor projects of its Atomic Energy Commission. The Agency accepted the offer and since June 1960 it has sent one or two staff members at approximately six-monthly intervals to follow the development of nine power reactor projects in the United States which represent six different reactor systems. Last year, the Agency issued a report summarizing the information obtained through their visits and study of available published literature. The present document, which should be read in conjunction with that document, brings the information up to date and provides additional information on certain phases of the projects already discussed in the last report. Three more power reactor projects are also dealt with, namely the experimental gas-cooled reactor (EGCR), the high temperature gas-cooled reactor (HTGR) and the Hallam nuclear power facility (HNPF). Early in 1962, the Canadian Government expressed its willingness to make available to the Agency relevant information on the NPD and CANDU projects. The coverage of the NPD reactor is based upon the published information supplied by AECL of Canada and the visit by one of the staff members to the NPD site. The Agency wishes to acknowledge with thanks the co-operation extended

  19. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    OpenAIRE

    Vasyl P. Oleksyuk

    2013-01-01

    The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and education...

  20. Media education as a system of health personalities software in media-information space

    Directory of Open Access Journals (Sweden)

    Ye. M. Velykodna

    2014-04-01

    Full Text Available The main purpose of the article is to outline the problems of health and human security in the media­information education space. Media education as a system of values formation under conditions of medial ­ information educational environment focused on developing and providing protective functions in their close interdependence. Training is aimed at creating conditions for the development of spiritual subjects of education, promotion of positive changes in their personal development. Protective aimed at improving the social protection of business education in the destructive tendencies in society , to neutralize the impact of negative factors media. The most important part of media education in the context of ensuring the health of the individual is the formation of values education activity as the basis of spiritual health. It is shown that meaningful use sens formative influence of media­information space determines the priority position of media education as a factor in providing mental health of the individual. Formation of mental health is associated with the conscious assimilation of certain belief systems of the world. According media education focuses not on broadcast ready «moral absolutes «, and the simulation of specific situations in which the individual is necessary to self­determination regarding fundamental values and principles of implementing these values in life.