WorldWideScience

Sample records for space manipulation method

  1. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  2. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  3. A Hierarchical Reliability Control Method for a Space Manipulator Based on the Strategy of Autonomous Decision-Making

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2016-01-01

    Full Text Available In order to maintain and enhance the operational reliability of a robotic manipulator deployed in space, an operational reliability system control method is presented in this paper. First, a method to divide factors affecting the operational reliability is proposed, which divides the operational reliability factors into task-related factors and cost-related factors. Then the models describing the relationships between the two kinds of factors and control variables are established. Based on this, a multivariable and multiconstraint optimization model is constructed. Second, a hierarchical system control model which incorporates the operational reliability factors is constructed. The control process of the space manipulator is divided into three layers: task planning, path planning, and motion control. Operational reliability related performance parameters are measured and used as the system’s feedback. Taking the factors affecting the operational reliability into consideration, the system can autonomously decide which control layer of the system should be optimized and how to optimize it using a control level adjustment decision module. The operational reliability factors affect these three control levels in the form of control variable constraints. Simulation results demonstrate that the proposed method can achieve a greater probability of meeting the task accuracy requirements, while extending the expected lifetime of the space manipulator.

  4. Positional control of space robot manipulator

    Science.gov (United States)

    Kurochkin, Vladislav; Shymanchuk, Dzmitry

    2018-05-01

    In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.

  5. Acoustic levitation and manipulation for space applications

    Science.gov (United States)

    Wang, T. G.

    1979-01-01

    A wide spectrum of experiments to be performed in space in a microgravity environment require levitation and manipulation of liquid or molten samples. A novel acoustic method has been developed at JPL for controlling liquid samples without physical contacts. This method utilizes the static pressure generated by three orthogonal acoustic standing waves excited within an enclosure. Furthermore, this method will allow the sample to be rotated and/or oscillated by modifying the phase angles and/or the amplitude of the acoustic field. This technique has been proven both in our laboratory and in a microgravity environment provided by KC-135 flights. Samples placed within our chamber driven at (1,0,0), (0,1,0), and (0,0,1), modes were indeed levitated, rotated, and oscillated.

  6. Ion manipulation method and device

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.; Ibrahim, Yehia M.

    2017-11-07

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  7. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  8. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  9. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  10. Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System

    OpenAIRE

    Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei

    2013-01-01

    The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...

  11. Overview of Phase Space Manipulations of Relativistic Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  12. Overview of Phase Space Manipulations of Relativistic Electron Beams

    International Nuclear Information System (INIS)

    Xiang, Dao

    2012-01-01

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R and D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  13. Trajectory Planning of 7-DOF Space Manipulator for Minimizing Base Disturbance

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-03-01

    Full Text Available In the free-floating mode, there is intense dynamic coupling existing between the space manipulator and the base, and the base attitude may change while performing a motion with its manipulator. Therefore, it is necessary to reduce the interference that resulted from the manipulator movement. For planning trajectories of the space manipulator with 7 degrees of freedom (7-DOF, simulated annealing particle swarm optimization (SAPSO algorithm is presented in the paper. Firstly, kinematics equations are setup. Secondly, the joint functions are parameterized by sinusoidal functions, and the objective function is defined according to the motion constraints of manipulator and accuracy requirements of the base attitude. Finally, SAPSO algorithm is used to search the optimal trajectory. The simulation results verify the proposed method.

  14. Design and control considerations for industrial and space manipulators

    Science.gov (United States)

    Whitney, D. E.; Book, W. J.; Lynch, P. M.

    1974-01-01

    This paper is a progress report summarizing theoretical and practical results concerning integration of design and control aspects of manipulator arms for industrial or space applications. The relationships between task specifications, gross motions, fine motions, actuator type and location, size and strength of structural members, control servos and strategies, and overall design evaluation are briefly discussed, with some technical examples.

  15. A control method for manipulators with redundancy

    International Nuclear Information System (INIS)

    Furusho, Junji; Usui, Hiroyuki

    1989-01-01

    Redundant manipulators have more ability than nonredundant ones in many aspects such as avoiding obstacles, avoiding singular states, etc. In this paper, a control algorithm for redundant manipulators working under the circumstance in the presence of obstacles is presented. First, the measure of manipulability for robot manipulators under obstacle circumstances is defined. Then, the control algorithm for the obstacle avoidance is derived by using this measure of manipulability. The obstacle avoidance and the maintenance of good posture are simultaneously achieved by this algorithm. Lastly, an experiment and simulation results using an eight degree of freedom manipulator are shown. (author)

  16. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  17. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  18. Manipulating the Gut Microbiota: Methods and Challenges.

    Science.gov (United States)

    Ericsson, Aaron C; Franklin, Craig L

    2015-01-01

    Eukaryotic organisms are colonized by rich and dynamic communities of microbes, both internally (e.g., in the gastrointestinal and respiratory tracts) and externally (e.g., on skin and external mucosal surfaces). The vast majority of bacterial microbes reside in the lower gastrointestinal (GI) tract, and it is estimated that the gut of a healthy human is home to some 100 trillion bacteria, roughly an order of magnitude greater than the number of host somatic cells. The development of culture-independent methods to characterize the gut microbiota (GM) has spurred a renewed interest in its role in host health and disease. Indeed, associations have been identified between various changes in the composition of the GM and an extensive list of diseases, both enteric and systemic. Animal models provide a means whereby causal relationships between characteristic differences in the GM and diseases or conditions can be formally tested using genetically identical animals in highly controlled environments. Clearly, the GM and its interactions with the host and myriad environmental factors are exceedingly complex, and it is rare that a single microbial taxon associates with, much less causes, a phenotype with perfect sensitivity and specificity. Moreover, while the exact numbers are the subject of debate, it is well recognized that only a minority of gut bacteria can be successfully cultured ex vivo. Thus, to perform studies investigating causal roles of the GM in animal model phenotypes, researchers need clever techniques to experimentally manipulate the GM of animals, and several ingenious methods of doing so have been developed, each providing its own type of information and with its own set of advantages and drawbacks. The current review will focus on the various means of experimentally manipulating the GM of research animals, drawing attention to the factors that would aid a researcher in selecting an experimental approach, and with an emphasis on mice and rats, the

  19. Direct adaptive control of manipulators in Cartesian space

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  20. Manipulators

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1984-01-01

    The patent concerns a manipulator, which enables operations to be carried out remotely from the operator. The device is suitable for use in handling of radioactive materials and other hazardous liquids or gases. The specifications are given, and the movements of the manipulator arm described. (U.K.)

  1. Symbolic manipulation methods in general relativity and fluid mechanics

    International Nuclear Information System (INIS)

    Cohen, I.

    1976-03-01

    Algebraic manipulation by computer, or automatic symbol manipulation (ASM) has not been used much in theoretical physics, especially if one compares it with numerical methods. Three examples of the use of ASM as a tool in theoretical physics are discussed. (Auth.)

  2. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.

    Science.gov (United States)

    Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C

    2015-05-13

    This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length.

  3. Manipulators

    International Nuclear Information System (INIS)

    Andre, Y.; Routelous, F.; Spina, G.; Perpina, J.; Suquet, J.; Rossi, M.; Zanca, M.; Billiet, A.; Madec, L.; Lemoine, T.; Gaboriaud, G.; Aubert, B.; Rosenwald, J.C.; Neuenschwander, S.; Brisse, H.; Rehel, J.L.; Rebibo, G.; Bensimon, J.L.; Kulski, A.; Serhal, M.; Nguyen, K.V.; Lescure, R.; Cymbalista, M.

    2005-01-01

    Three articles have for purpose the radiation doses optimization in medical imaging. The first one concerns the radiation protection of manipulators working at a PET scan post, the second one concerns more particularly the optimization of doses delivered in pediatric computerized tomography, the third one is devoted to a comparison between radiation dose and image quality through scanners of adult temporal bone. (N.C.)

  4. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping

    2018-03-01

    The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.

  5. Reactionless robust finite-time control for manipulation of passive objects by free-floating space robots

    International Nuclear Information System (INIS)

    Guo Sheng-Peng; Li Dong-Xu; Meng Yun-He; Fan Cai-Zhi

    2014-01-01

    On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Manipulating time and space: Collision prediction in peripersonal and extrapersonal space.

    Science.gov (United States)

    Iachini, Tina; Ruotolo, Francesco; Vinciguerra, Michela; Ruggiero, Gennaro

    2017-09-01

    Being able to predict potential collisions is a necessary survival prerequisite for all moving species. Temporal and spatial information is fundamental for this purpose. However, it is not clear yet if the peripersonal (i.e. near) and extrapersonal (i.e. far) distance between our body and the moving objects affects the way in which we can predict possible collisions. In order to assess this, we manipulated independently velocity and path of two balls moving one towards the other in such a way as to collide or not in peripersonal and extrapersonal space. In two experiments, participants had to judge if these balls were to collide or not. The results consistently showed a lower discrimination capacity and a more liberal tendency to predict collisions when the moving balls were in peripersonal space and their velocity was different rather than equal. This did not happen in extrapersonal space. Therefore, peripersonal space was particularly affected by temporal information. The possible link between the motor and anticipatory adaptive function of peripersonal space and collision prediction mechanisms is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  8. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    Science.gov (United States)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  9. A novel adaptive force control method for IPMC manipulation

    International Nuclear Information System (INIS)

    Hao, Lina; Sun, Zhiyong; Su, Yunquan; Gao, Jianchao; Li, Zhi

    2012-01-01

    IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable. (paper)

  10. Nonlinear dynamic analysis and state space representation of a manipulator under viscoelastic material conditions

    Directory of Open Access Journals (Sweden)

    Esfandiar, H.

    2013-05-01

    Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.

  11. Manipulators

    International Nuclear Information System (INIS)

    Papet, I.; Lune, P.; Pellerin, O.; Sapoval, M.; Brisse, H.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.

    2005-01-01

    These two articles bring notions relative to the safety of procedures, specially in term of irradiation, they give information on different methods in order to reduce the radiation doses delivered to the patients, especially when the examinations concern children or young patients. (N.C.)

  12. Hybrid Modeling Method for a DEP Based Particle Manipulation

    Directory of Open Access Journals (Sweden)

    Mohamad Sawan

    2013-01-01

    Full Text Available In this paper, a new modeling approach for Dielectrophoresis (DEP based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.

  13. A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory

    Science.gov (United States)

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.

  14. An improved method for calculating self-motion coordinates for redundant manipulators

    International Nuclear Information System (INIS)

    Reister, D.B.

    1997-04-01

    For a redundant manipulator, the objective of redundancy resolution is to follow a specified path in Cartesian space and simultaneously perform another task (for example, maximize an objective function or avoid obstacles) at every point along the path. The conventional methods have several drawbacks: a new function must be defined for each task, the extended Jacobian can be singular, closed cycles in Cartesian space may not yield closed cycles in joint space, and the objective is point-wise redundancy resolution (to determine a single point in joint space for each point in Cartesian space). The author divides the redundancy resolution problem into two parts: (1) calculate self-motion coordinates for all possible positions of a manipulator at each point along a Cartesian path and (2) determination of optimal self-motion coordinates that maximize an objective function along the path. This paper will discuss the first part of the problem. The path-wise approach overcomes all of the drawbacks of conventional redundancy resolution methods: no need to define a new function for each task, extended Jacobian cannot be singular, and closed cycles in extended Cartesian space will yield closed cycles in joint space

  15. Design and implementation of a novel modal space active force control concept for spatial multi-DOF parallel robotic manipulators actuated by electrical actuators.

    Science.gov (United States)

    Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K

    2018-01-01

    Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint

  16. Parallel control method for a bilateral master-slave manipulator

    International Nuclear Information System (INIS)

    Miyazaki, Tomohiro; Hagihara, Shiro

    1989-01-01

    In this paper, a new control method for a bilateral master-slave manipulator is proposed. The proposed method yields stable and fast response of the control system. These are essential to obtain a precise position control and a sensitive force reflection control. In the conventional position-force control method, each control loop of the master and the slave arms are connected in series to construct a bilateral control loop. Therefore the total phase lag through the bilateral control loop becomes twice as much as that of one arm control. Such phase lag makes the control system unstable and control performance worse. To improve the stability and the control performance, we propose 'parallel control method.' In the proposed method, the control loops of the master and the slave arms are connected in parallel so that the total phase lag is reduced to as much as that of one arm. The stability condition of the proposed method is studied and it is proved that the stability of this method can be guaranteed independent of the rigidness of a reaction surface and the position/force ratio between the master and the slave arms while the stability of the conventional method depends on them. (author)

  17. A superconducting radio-frequency cavity for manipulating the phase space of pion beams at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J.M.; Davis, J.; DeHaven, R.A.; Gray, E.; Johnson, R.; Lomax, R.E.; McCloud, B.J.; McGill, J.A.; Morris, C.L.; Novak, J.; Rusnak, B.; Tubb, G. (Los Alamos National Lab., Los Alamos, NM (United States)); Applegate, J.M.; Averett, T.D.; Beck, J.; Ritchie, B.G. (Arizona State Univ., Tempe, AZ (United States)); Haebel, E. (CERN, Geneva (Switzerland)); Kiehlmann, D.; Klein, U.; Peniger, M.; Schaefer, P.; Vogel, H. (Siemens AG, Accelerator and Magnet Technology, Bergisch Gladbach (Germany)); Ward, H.; Moore, C.F. (Univ. of Texas, Austin, TX (United States))

    1992-07-15

    The SCRUNCHER is a superconducting radio-frequency cavity for manipulating the longitudinal phase space of the secondary pion beam from the low energy pion channel at LAMPF. Test results of the cavity performance and initial results from in-beam tests are presented. (orig.).

  18. A superconducting radio-frequency cavity for manipulating the phase space of pion beams at LAMPF

    Science.gov (United States)

    O'Donnell, J. M.; Davis, J.; DeHaven, R. A.; Gray, E.; Johnson, R.; Lomax, R. E.; McCloud, B. J.; McGill, J. A.; Morris, C. L.; Novak, J.; Rusnak, B.; Tubb, G.; Applegate, J. M.; Averett, T. D.; Beck, J.; Ritchie, B. G.; Haebel, E.; Kiehlmann, D.; Klein, U.; Peiniger, M.; Schäfer, P.; Vogel, H.; Ward, H.; Fred Moore, C.

    1992-07-01

    The SCRUNCHER is a superconducting radio-frequency cavity for manipulating the longitudinal phase space of the secondary pion beam from the low energy pion channel at LAMPF. Test results of the cavity performance and initial results from in-beam tests are presented.

  19. Work space optimization of a r-r planar manipulator using particle ...

    African Journals Online (AJOL)

    A two link revolute planar robotic manipulator is optimized for maximization of work space covered by its end effector. A mathematical model for optimization is built considering singularities which control the range of design variables. Condition number which is the measure of change in output value (End effector position) ...

  20. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  1. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  2. Traction-drive seven degrees-of-freedom telerobot arm: A concept for manipulation in space

    International Nuclear Information System (INIS)

    Kuban, D.P.; Williams, D.M.

    1987-01-01

    As man seeks to expand his dominion into new environments, the demand increases for machines that perform useful functions in remote locations. This new concept for manipulation in space is based on knowledge and experience gained from manipulator systems developed to meet the needs of remote nuclear applications. It merges the best characteristics of teleoperation and robotic technologies. This paper summarizes the report of a study performed for NASA Langley Research Center. The design goals for the telerobot, a mechanical description, and technology areas that must be addressed for successful implementation will be presented and discussed. The concept incorporates mechanical traction drives, redundant kinematics, and modular arm subelements to provide a backlash-free manipulator capable of obstacle avoidance. Further development of this arm is in progress at the Oak Ridge National Laboratory

  3. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.

    Science.gov (United States)

    Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian

    2018-06-01

    This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.

  4. Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States)

    2012-12-21

    A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.

  5. Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction

    International Nuclear Information System (INIS)

    Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H.

    2012-01-01

    A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.

  6. Phase-Space Manipulation of Ultracold Ion Bunches with Time-Dependent Fields

    International Nuclear Information System (INIS)

    Reijnders, M. P.; Debernardi, N.; Geer, S. B. van der; Mutsaers, P. H. A.; Vredenbregt, E. J. D.; Luiten, O. J.

    2010-01-01

    All applications of high brightness ion beams depend on the possibility to precisely manipulate the trajectories of the ions or, more generally, to control their phase-space distribution. We show that the combination of a laser-cooled ion source and time-dependent acceleration fields gives new possibilities to perform precise phase-space control. We demonstrate reduction of the longitudinal energy spread and realization of a lens with control over its focal length and sign, as well as the sign of the spherical aberrations. This creates new possibilities to correct for the spherical and chromatic aberrations which are presently limiting the spatial resolution.

  7. A virtual work space for both hands manipulation with coherency between kinesthetic and visual sensation

    Science.gov (United States)

    Ishii, Masahiro; Sukanya, P.; Sato, Makoto

    1994-01-01

    This paper describes the construction of a virtual work space for tasks performed by two handed manipulation. We intend to provide a virtual environment that encourages users to accomplish tasks as they usually act in a real environment. Our approach uses a three dimensional spatial interface device that allows the user to handle virtual objects by hand and be able to feel some physical properties such as contact, weight, etc. We investigated suitable conditions for constructing our virtual work space by simulating some basic assembly work, a face and fit task. We then selected the conditions under which the subjects felt most comfortable in performing this task and set up our virtual work space. Finally, we verified the possibility of performing more complex tasks in this virtual work space by providing simple virtual models and then let the subjects create new models by assembling these components. The subjects can naturally perform assembly operations and accomplish the task. Our evaluation shows that this virtual work space has the potential to be used for performing tasks that require two-handed manipulation or cooperation between both hands in a natural manner.

  8. Regularization methods in Banach spaces

    CERN Document Server

    Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S

    2012-01-01

    Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B

  9. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Adrian Martinez-Rivas

    2017-11-01

    Full Text Available Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS, point-of-care (POC devices, or organs-on-chips (OOC, which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.

  10. Analysis of Load-Carrying Capacity for Redundant Free-Floating Space Manipulators in Trajectory Tracking Task

    Directory of Open Access Journals (Sweden)

    Qingxuan Jia

    2014-01-01

    Full Text Available The aim of this paper is to analyze load-carrying capacity of redundant free-floating space manipulators (FFSM in trajectory tracking task. Combined with the analysis of influential factors in load-carrying process, evaluation of maximum load-carrying capacity (MLCC is described as multiconstrained nonlinear programming problem. An efficient algorithm based on repeated line search within discontinuous feasible region is presented to determine MLCC for a given trajectory of the end-effector and corresponding joint path. Then, considering the influence of MLCC caused by different initial configurations for the starting point of given trajectory, a kind of maximum payload initial configuration planning method is proposed by using PSO algorithm. Simulations are performed for a particular trajectory tracking task of the 7-DOF space manipulator, of which MLCC is evaluated quantitatively. By in-depth research of the simulation results, significant gap between the values of MLCC when using different initial configurations is analyzed, and the discontinuity of allowable load-carrying capacity is illustrated. The proposed analytical method can be taken as theoretical foundation of feasibility analysis, trajectory optimization, and optimal control of trajectory tracking task in on-orbit load-carrying operations.

  11. Balancing of linkages and robot manipulators advanced methods with illustrative examples

    CERN Document Server

    Arakelian, Vigen

    2015-01-01

    In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.

  12. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  13. Methods to Monitor and Manipulate TFEB Activity During Autophagy.

    Science.gov (United States)

    Medina, D L; Settembre, C; Ballabio, A

    2017-01-01

    Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions. © 2017 Elsevier Inc. All rights reserved.

  14. Generic method for deriving the general shaking force balance conditions of parallel manipulators with application to a redundant planar 4-RRR parallel manipulator

    NARCIS (Netherlands)

    van der Wijk, V.; Krut, S.; Pierrot, F.; Herder, Justus Laurens

    2011-01-01

    This paper proposes a generic method for deriving the general shaking force balance conditions of parallel manipulators. Instead of considering the balancing of a parallel manipulator link-by-link or leg-by-leg, the architecture is considered altogether. The first step is to write the linear

  15. Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks

    Science.gov (United States)

    O'Hara, John M.

    1987-01-01

    Two studies were conducted evaluating methods of controlling a telerobot; bilateral force reflecting master controllers and proportional rate six degrees of freedom (DOF) hand controllers. The first study compared the controllers on performance of single manipulator arm tasks, a peg-in-the-hole task, and simulated satellite orbital replacement unit changeout. The second study, a Space Station truss assembly task, required simultaneous operation of both manipulator arms (all 12 DOFs) and complex multiaxis slave arm movements. Task times were significantly longer and fewer errors were committed with the hand controllers. The hand controllers were also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers were rated significantly higher in physical workload. There were no significant differences in ratings of manipulator control quality.

  16. A new method used in laparoscopic hysterectomy for uterine manipulation: uterine rein technique.

    Science.gov (United States)

    Boztosun, Abdullah; Atılgan, Remzi; Pala, Şehmus; Olgan, Şafak

    2018-03-22

    The aim of this study is to define a new method of manipulating the uterus during laparoscopic hysterectomy. A total laparoscopic hysterectomy (TLH) with the newly defined technique was performed in 29 patients between July 2016 and July 2017. In this new technique, the uterus was bound from uterine corpus and fundus like a bridle with polyester tape, to allow abdominal manipulation. The technique was successfully performed at the first attempt in 93.1% of cases. It was repeated in two cases (6.9%) since the polyester tape departed away from the uterus at the first attempt. The mean application time was 11.2 min. The vaginal manipulator was not required in any of the cases. There were no intraoperative complications. In conclusion, this method has the advantages of not requiring any vaginal manipulator, reducing the number of people required during operation, permitting a near maximum manipulation of the uterus in all three dimensions, and giving the control of these manipulations directly to the surgeon. On the other hand, the technique also has some inadequacies which should be discussed and improved on in the future. Impact of statement What is already known on this subject? In a laparoscopic hysterectomy, manipulation of the uterus is essential for anatomical dissection of the regions and completion of the operation without complications. An ideal uterine manipulator is defined as inexpensive, as convenient, fast and suitable for injecting solutions, removing the need for an assistant and most importantly offering the most suitable range of motion. In this study, we describe a new and different technique (rein technique) allowing the abdominal manipulation of the uterus in a laparoscopic hysterectomy and discuss the advantages and disadvantages of this method. What do the results of this study add? The procedure was easily accomplished in most patients. We did not need to use an extra uterine manipulator in any of the cases. What are the implications of these

  17. A kinematic analysis of the Space Station remote manipulator system (SSRMS)

    Science.gov (United States)

    Crane, Carl D., III; Duffy, Joseph; Carnahan, Tim

    1991-01-01

    An efficient reverse analysis of three 6-degree-of-freedom (dof) subchains of the 7-dof SSRMS is presented. The first subchain is formed by locking the seventh joint. The second subchain is formed by locking the second joint, while the third subchain is formed by locking the first joint (the grounded joint is counted as the first joint in the chain). There are a maximum of eight different arm configurations in each of the three subchains, and these were determined by employing a computer-efficient algorithm, which required the rooting of only at most quadratic polynomials. The algorithms were implemented, and the SSRMS was employed in an animated environment to perform and practice a number of useful tasks for Space Station servicing. The locking of the second joint has the advantage in that an operator can choose the orientation of the plane that contains the two longest links so as to avoid collisions with obstacles. However, it has the disadvantage that when the second joint angle equals 0 deg or 180 deg, the manipulator is in a singularity configuration. This plane can also be oriented by specifying the first joint angle, so that the plane can be oriented arbitrarily and, in this, the singularity is avoided.

  18. Input shaping methods for telerobotic operation of flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.

    1994-01-01

    Among the Environmental Restoration and Waste Management Program of the U.S. Department of Energy, the remediation of radioactive waste from the underground storage tank challenges the state-of-the-art equipment and methods. Long-reach manipulators are being considered to be one of the most advantageous approaches for the retrieval of waste from large storage tanks. Because of long-reach manipulator's high payload capacity and high length-to-cross-section ratios, such manipulator system exhibits significant structural flexibility. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A robust notch filtering method and an impulse shaping method were evaluated. In addition to that, a new approach that uses imbedded simulation was developed and compared with others. In the new approach, joint trajectories have been generated considering the flexible link dynamics

  19. Evaluation of user input methods for manipulating a tablet personal computer in sterile techniques.

    Science.gov (United States)

    Yamada, Akira; Komatsu, Daisuke; Suzuki, Takeshi; Kurozumi, Masahiro; Fujinaga, Yasunari; Ueda, Kazuhiko; Kadoya, Masumi

    2017-02-01

    To determine a quick and accurate user input method for manipulating tablet personal computers (PCs) in sterile techniques. We evaluated three different manipulation methods, (1) Computer mouse and sterile system drape, (2) Fingers and sterile system drape, and (3) Digitizer stylus and sterile ultrasound probe cover with a pinhole, in terms of the central processing unit (CPU) performance, manipulation performance, and contactlessness. A significant decrease in CPU score ([Formula: see text]) and an increase in CPU temperature ([Formula: see text]) were observed when a system drape was used. The respective mean times taken to select a target image from an image series (ST) and the mean times for measuring points on an image (MT) were [Formula: see text] and [Formula: see text] s for the computer mouse method, [Formula: see text] and [Formula: see text] s for the finger method, and [Formula: see text] and [Formula: see text] s for the digitizer stylus method, respectively. The ST for the finger method was significantly longer than for the digitizer stylus method ([Formula: see text]). The MT for the computer mouse method was significantly longer than for the digitizer stylus method ([Formula: see text]). The mean success rate for measuring points on an image was significantly lower for the finger method when the diameter of the target was equal to or smaller than 8 mm than for the other methods. No significant difference in the adenosine triphosphate amount at the surface of the tablet PC was observed before, during, or after manipulation via the digitizer stylus method while wearing starch-powdered sterile gloves ([Formula: see text]). Quick and accurate manipulation of tablet PCs in sterile techniques without CPU load is feasible using a digitizer stylus and sterile ultrasound probe cover with a pinhole.

  20. Influence of different manipulation methods on surface roughness of auto polymerized acrylic resin

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-10-01

    Full Text Available Objective: The aim of this study was to evaluate the surface roughness of acrylic resin according to the manipulation method.Methods: Sixty specimens were randomly divided into four groups (n=15 according to the manipulation method: G1 - addition with pressure, G2 - addition without pressure, G3 - mass with pressure and G4 - mass without pressure. After resin polymerization, all specimens were submitted to finishing with abrasive paper and mechanical polishing. Topographical surface analysis surfaces was performed twice on each sample using the rugosimeter. Results: The results were statistically analyzed and means were: G1 - 0,130μm; G2 - 0,120μm, G3 - 0,218μm e G4 - 0,192μm. ANOVA for one criterion and the Tukey test showed significant difference between G1 and G3, G2 and G3, G2 and G4. Conclusion: The manipulation method seems to affect the physical characteristics of auto polymerized acrylic resin. The addition manipulation method decreased the surface roughness.

  1. State Space Methods for Timed Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Jensen, Kurt; Mailund, Thomas

    2001-01-01

    it possible to condense the usually infinite state space of a timed Petri net into a finite condensed state space without loosing analysis power. The second method supports on-the-fly verification of certain safety properties of timed systems. We discuss the application of the two methods in a number......We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...

  2. On the Dynamics and Control of Free-floating Space Manipulator Systems in the Presence of Angular Momentum

    Directory of Open Access Journals (Sweden)

    Kostas Nanos

    2017-06-01

    Full Text Available In this paper, the control of free-floating space manipulator systems with non-zero angular momentum (NZAM, for both motions in the joint and Cartesian space, is studied. Considering NZAM, dynamic models in the joint and Cartesian space are derived. It is shown that the NZAM has a similar result to the effect of gravity in terrestrial fixed base manipulators. Based on these similarities, the application of controllers similar to the ones used for the compensation of gravity in terrestrial fixed base manipulators is proposed here to compensate the effect of angular momentum. To confirm the asymptotic stability of the closed-loop systems, some structural properties of the dynamic models must be satisfied. It is shown that despite the presence of angular momentum, these structural properties still apply. Thus, the proposed controllers can drive the system in the desired position despite the presence of angular momentum. However, the NZAM imposes constraints on the system workspace, where the end-effector can be driven in the Cartesian space. Limitations are discussed and the application of the proposed controllers is illustrated by examples.

  3. Impact mitigation using kinematic constraints and the full space parameterization method

    Energy Technology Data Exchange (ETDEWEB)

    Morgansen, K.A.; Pin, F.G.

    1996-02-01

    A new method for mitigating unexpected impact of a redundant manipulator with an object in its environment is presented. Kinematic constraints are utilized with the recently developed method known as Full Space Parameterization (FSP). System performance criterion and constraints are changed at impact to return the end effector to the point of impact and halt the arm. Since large joint accelerations could occur as the manipulator is halted, joint acceleration bounds are imposed to simulate physical actuator limitations. Simulation results are presented for the case of a simple redundant planar manipulator.

  4. Dynamics of tactical behaviour in association football when manipulating players' space of interaction.

    Directory of Open Access Journals (Sweden)

    Angel Ric

    Full Text Available The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players' spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b players were allowed to move to an adjacent zone, and; c non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players' long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players' positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the

  5. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  6. Optimization of potential field method parameters through networks for swarm cooperative manipulation tasks

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2016-10-01

    Full Text Available An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments. Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning.

  7. Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Directory of Open Access Journals (Sweden)

    P. Piot

    2003-03-01

    Full Text Available Energy recovering an electron beam after it has participated in a free-electron laser (FEL interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy antidamping that occurs during deceleration. In the Jefferson Lab infrared FEL driver accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper, after presenting a single-particle dynamics approach of the method used to energy recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called “compression efficiency” and “momentum compaction” lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.

  8. Learning spinal manipulation: A best-evidence synthesis of teaching methods.

    Science.gov (United States)

    Stainsby, Brynne E; Clarke, Michelle C S; Egonia, Jade R

    2016-10-01

    The purpose of this study was to evaluate the effectiveness of different reported methods used to teach spinal manipulative therapy to chiropractic students. For this best-evidence literature synthesis, 5 electronic databases were searched from 1900 to 2015. Eligible studies were critically appraised using the criteria of the Scottish Intercollegiate Guidelines Network. Scientifically admissible studies were synthesized following best-evidence synthesis principles. Twenty articles were critically appraised, including 9 randomized clinical trials, 9 cohort studies, and 2 systematic reviews/meta-analyses. Eleven articles were accepted as scientifically admissible. The type of teaching method aids included a Thrust in Motion cervical manikin, instrumented cardiopulmonary reanimation manikin, padded contact with a load cell, instrumented treatment table with force sensor/transducer, and Dynadjust instrument. Several different methods exist in the literature for teaching spinal manipulative therapy techniques; however, future research in this developing area of chiropractic education is proposed. It is suggested that various teaching methods be included in the regular curricula of chiropractic colleges to aid in developing manipulation skills, efficiency, and knowledge of performance.

  9. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 1: Technical

    Science.gov (United States)

    1972-01-01

    Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.

  10. Selectively starving cancer cells through dietary manipulation: methods and clinical implications.

    Science.gov (United States)

    Simone, Brittany A; Champ, Colin E; Rosenberg, Anne L; Berger, Adam C; Monti, Daniel A; Dicker, Adam P; Simone, Nicole L

    2013-07-01

    As the link between obesity and metabolic syndrome and cancer becomes clearer, the need to determine the optimal way to incorporate dietary manipulation in the treatment of cancer patients becomes increasingly important. Metabolic-based therapies, such as caloric restriction, intermittent fasting and a ketogenic diet, have the ability to decrease the incidence of spontaneous tumors and slow the growth of primary tumors, and may have an effect on distant metastases in animal models. Despite the abundance of preclinical data demonstrating the benefit of dietary modification for cancer, to date there are few clinical trials targeting diet as an intervention for cancer patients. We hypothesize that this may be due, in part, to the fact that several different types of diet modification exist with no clear recommendations regarding the optimal method. This article will delineate three commonly used methods of dietary manipulation to assess the potential of each as a regimen for cancer therapy.

  11. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    Science.gov (United States)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  12. An improved method of inverse kinematics calculation for a six-link manipulator

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-07-01

    As one method of solving the inverse problem related to a six-link manipulator, an improvement was made of previously proposed calculation algorithm based on a solution of an algebraic equation of the 24-th order. In this paper, the same type of a polynomial was derived in the form of the equation of 16-th order, i.e., the order reduced by 8, as compared to previous algorithm. The accuracy of solutions was identified to be much refined. (author)

  13. Longitudinal phase-space manipulation of ellipsoidal electron bunches in realistic fields

    Directory of Open Access Journals (Sweden)

    S. B. van der Geer

    2006-04-01

    Full Text Available Since the recent publication of a practical recipe to create “pancake” electron bunches which evolve into uniformly filled ellipsoids, a number of papers have addressed both an alternative method to create such ellipsoids as well as their behavior in realistic fields. So far, the focus has been on the possibilities to preserve the initial “thermal” transverse emittance. This paper addresses the linear longitudinal phase space of ellipsoidal bunches. It is shown that ellipsoidal bunches allow ballistic compression at subrelativistic energies, without the detrimental effects of nonlinear space-charge forces. This in turn eliminates the need for the large correlated energy spread normally required for longitudinal compression of relativistic particle beams, while simultaneously avoiding all problems related to magnetic compression. Furthermore, the linear space-charge forces of ellipsoidal bunches can be used to reduce the remaining energy spread even further, by carefully choosing the beam transverse size, in a process that is essentially the time-reversed process of the creation of an ellipsoid at the cathode. The feasibility of compression of ellipsoidal bunches is illustrated with a relatively simple setup, consisting of a half-cell S-band photogun and a two-cell booster compressor. Detailed GPT simulations in realistic fields predict that 100 pC ellipsoidal bunches can be ballistically compressed to 100 fs, at a transverse emittance of 0.7   μm, with a final energy of 3.7 MeV and an energy spread of only 50 keV.

  14. Diagrammatic methods in phase-space regularization

    International Nuclear Information System (INIS)

    Bern, Z.; Halpern, M.B.; California Univ., Berkeley

    1987-11-01

    Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)

  15. A time domain inverse dynamic method for the end point tracking control of a flexible manipulator

    Science.gov (United States)

    Kwon, Dong-Soo; Book, Wayne J.

    1991-01-01

    The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.

  16. Input shaping filter methods for the control of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.; Burks, B.L.

    1993-01-01

    Within the Environmental Restoration and Waste Management Program of the US Department of Energy, the remediation of single-shell radioactive waste storage tanks is one of the areas that challenge state-of-the-art equipment and methods. Concepts that utilize long-reach manipulators are being seriously considered for this task. Due to high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operation, various types of shaping filter methods have been investigated. A robust notch filtering method and an impulse shaping method were used as simulation benchmarks. In addition to that, two very different approaches have been developed and compared. One new approach, referred to as a ''feedforward simulation filter,'' uses imbedded simulation with complete knowledge of the system dynamics. The other approach, ''fuzzy shaping method,'' employs a fuzzy logic method to modify the joint trajectory from the desired end-position trajectory without precise knowledge of the system dynamics

  17. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    Science.gov (United States)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  18. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  19. Circling motion and screen edges as an alternative input method for on-screen target manipulation.

    Science.gov (United States)

    Ka, Hyun W; Simpson, Richard C

    2017-04-01

    To investigate a new alternative interaction method, called circling interface, for manipulating on-screen objects. To specify a target, the user makes a circling motion around the target. To specify a desired pointing command with the circling interface, each edge of the screen is used. The user selects a command before circling the target. To evaluate the circling interface, we conducted an experiment with 16 participants, comparing the performance on pointing tasks with different combinations of selection method (circling interface, physical mouse and dwelling interface) and input device (normal computer mouse, head pointer and joystick mouse emulator). A circling interface is compatible with many types of pointing devices, not requiring physical activation of mouse buttons, and is more efficient than dwell-clicking. Across all common pointing operations, the circling interface had a tendency to produce faster performance with a head-mounted mouse emulator than with a joystick mouse. The performance accuracy of the circling interface outperformed the dwelling interface. It was demonstrated that the circling interface has the potential as another alternative pointing method for selecting and manipulating objects in a graphical user interface. Implications for Rehabilitation A circling interface will improve clinical practice by providing an alternative pointing method that does not require physically activating mouse buttons and is more efficient than dwell-clicking. The Circling interface can also work with AAC devices.

  20. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    Science.gov (United States)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  1. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    Science.gov (United States)

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of

  2. Statistical Software for State Space Methods

    Directory of Open Access Journals (Sweden)

    Jacques J. F. Commandeur

    2011-05-01

    Full Text Available In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.

  3. Kinematic parameter calibration method for industrial robot manipulator using the relative position

    International Nuclear Information System (INIS)

    Ha, In Chul

    2008-01-01

    A new calibration method for industrial robot system calibration on a manufacturing floor is presented in this paper. To calibrate the robot system, a laser sensor to measure the distance between robot tool and measurement surface is attached to the robot end-effector and a grid is established in the floor. Given two position command pulses for a robot manipulator and using the position difference between two command pulses, the relative position measurement calibration method will find the real robot kinematic parameters. The procedures developed have been applied to an industrial robot. Finally, the effects of the models used to calibrate the robot are discussed. This calibration method represents an effective, low cost and feasible technique for the industrial robot calibration in lab. projects and industrial environments

  4. A new method of measuring stock market manipulation through structural equation modeling (SEM)

    OpenAIRE

    Maxim, Maruf Rahman; Ashif, Abu Sadat Muhammad

    2017-01-01

    This paper proposes a new model of measuring a latent variable, stock market manipulation. The model bears close resemblance with the literature on economic well-being. It interprets the manipulation of a stock as a latent variable, in the form of a multiple indicators and multiple causes (MIMIC) model. This approach exploits systematic relations between various indicators of manipulation and between manipulation and multiple causes, which allows it to identify the determinants of manipulatio...

  5. Space Archaeology: Attribute, Object, Task and Method

    Science.gov (United States)

    Wang, Xinyuan; Guo, Huadong; Luo, Lei; Liu, Chuansheng

    2017-04-01

    Archaeology takes the material remains of human activity as the research object, and uses those fragmentary remains to reconstruct the humanistic and natural environment in different historical periods. Space Archaeology is a new branch of the Archaeology. Its study object is the humanistic-natural complex including the remains of human activities and living environments on the earth surface. The research method, space information technologies applied to this complex, is an innovative process concerning archaeological information acquisition, interpretation and reconstruction, and to achieve the 3-D dynamic reconstruction of cultural heritages by constructing the digital cultural-heritage sphere. Space archaeology's attribute is highly interdisciplinary linking several areas of natural and social and humanities. Its task is to reveal the history, characteristics, and patterns of human activities in the past, as well as to understand the evolutionary processes guiding the relationship between human and their environment. This paper summarizes six important aspects of space archaeology and five crucial recommendations for the establishment and development of this new discipline. The six important aspects are: (1) technologies and methods for non-destructive detection of archaeological sites; (2) space technologies for the protection and monitoring of cultural heritages; (3) digital environmental reconstruction of archaeological sites; (4) spatial data storage and data mining of cultural heritages; (5) virtual archaeology, digital reproduction and public information and presentation system; and (6) the construction of scientific platform of digital cultural-heritage sphere. The five key recommendations for establishing the discipline of Space Archaeology are: (1) encouraging the full integration of the strengths of both archaeology and museology with space technology to promote the development of space technologies' application for cultural heritages; (2) a new

  6. Design and Development of Two Manipulators as a Key Element of a Space Robot Testing Facility

    Directory of Open Access Journals (Sweden)

    Seweryn Karol

    2015-09-01

    Full Text Available Podczas procesu projektowania układów sterowania robotów pracujących w warunkach mikrograwitacji niezbędna jest możliwość przeprowadzenia ich walidacji w relewantnym środowisku. Kluczowym problemem jest budowa stanowisk testowych pozwalających na analizowanie ruchu manipulatora umieszczonego na swobodnej bazie, której ruch odbywa się w trzech wymiarach. Artykuł zawiera opis dwóch stanowisk testowych wykorzystywanych do analizy działania algorytmów sterowania w zrobotyzowanych systemach satelitarnych. W artykule opisano symulator warunków mikrograwitacji w postaci manipulatora płaskiego ze swobodną bazą umieszczoną na łożyskach powietrznych oraz stanowisko testowe wyposażone w manipulator o 7 stopniach swobody z utwierdzona bazą pozwalającą na pomiar 3 składowych siły i momentu siły.

  7. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.

    Science.gov (United States)

    Wei, Kun; Ren, Bingyin

    2018-02-13

    In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.

  8. Method and system for manipulating a digital representation of a three-dimensional object

    DEFF Research Database (Denmark)

    2010-01-01

    A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...

  9. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-01-01

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  10. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  11. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  12. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.

    Science.gov (United States)

    Okubo, Takuro; Harada, Kanako; Fujii, Masahiro; Tanaka, Shinichi; Ishimaru, Tetsuya; Iwanaka, Tadashi; Nakatomi, Hirohumi; Sora, Sigeo; Morita, Akio; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    Neurosurgical procedures require precise and dexterous manipulation of a surgical suture in narrow and deep spaces in the brain. This is necessary for surgical tasks such as the anastomosis of microscopic blood vessels and dura mater suturing. A hand-held multi-degree of freedom (DOF) robotic forceps was developed to aid the performance of such difficult tasks. The diameter of the developed robotic forceps is 3.5 mm, and its tip has three DOFs, namely, bending, rotation, and grip. Experimental results showed that the robotic forceps had an average needle insertion force of 1.7 N. Therefore, an increase in the needle insertion force is necessary for practical application of the developed device.

  13. Modification of Method for Solution of Direct Kinematic Problem for the Type of Platform Manipulators with Six Degrees of Freedom

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available This paper considers creation of methods for research of multi-section manipulators of parallel structure. To solve this task it is necessary, firstly, to carry out generalization, systematization, and enhancement of existing models of platform manipulators with six degrees of freedom; secondly, it is necessary to modify previously suggested methods for solving the kinematic tasks for the specified type of manipulation mechanisms. The paper presents detailed domain analysis, describes major issues appearing in the course of research, and suggests basic methods of their solution. The paper demonstrates the necessity for modification of existing models through supplementing new parameters. Modification and generalization of the previously suggested method for solution of direct kinematic problem for the specified type of manipulators were carried out. Method for solution of this problem consists in establishing the dependence of functional relationship of Cartesian coordinates and orientation of the moving platform center on the values of generalized coordinates of manipulator (in case of platform manipulators, these are the lengths of telescopic legs connecting the base and the moving platform of the manipulator. The method is created in such a way that solution of direct kinematic problem results in finding of the analytical equation of the plane where the moving platform lies. The equation of the required plane is described through three points (attachment points of the moving platform joints. To define coordinate values of the joints, the system of nine non-linear equations is generated. It should be noted that the system of equations is composed of one-type equations with the same type of nonlinearity. The physical meaning of all the nine equations of the system is Euclidean distance between the points of the manipulator. The location and orientation of the manipulator are depicted as a homogenous transformation matrix. Vectors of translation

  14. Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Huggins, Ian J; Brafman, David; Willert, Karl

    2016-01-01

    Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.

  15. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination.

    Science.gov (United States)

    Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M

    2016-01-15

    Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL(-1). Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Treatment of dislocation of shoulder with manipulation of proneposition modified hippocrates method].

    Science.gov (United States)

    Zhao, Hong-Sheng; Jing, Guang-Wu; Zhang, Jian-Jun

    2012-03-01

    To explore the method of reduction of anterior dislocation of shoulder joint, evaluate the clinical effects of proneposition modified Hippocrates methods. From February 1998 to April 2011, 1 028 patients, 689 males and 339 females, with anterior dislocation of shoulder joint were treated with manipulation of proneposition modified Hippocrates methods. The average age was 38.3 years (ranged from 11 to 86 years). Thirty-two cases by Hippocrates method failure to reset success, 86 cases combined with geater tuberosity tore of humerus. One thousand and twenty-seven example applications, it took average 50 s, 1 case was cured due to a combination of humerus surgical neck fracture. Eighty-six cases combined with greater tuberosity tore of humerus, 84 cases reached anatomical reattachment or nearly anatomical reattachment, 2 cases of large bone pieces instability were reduced by percutaneous needle. According to Neer score, there are 1 012 excellent cases, 15 good cases. Proneposition modified Hippocrates method is better than Hippocrates. It has the advantage of anesthesia, lower expense, short replacement, less pain, easier to master, and worth applying widely.

  17. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  18. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  19. An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation

    Directory of Open Access Journals (Sweden)

    Bhola Shankar Pradhan

    2016-01-01

    Full Text Available Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.

  20. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  1. Moving finite element method aided by computerized symbolic manipulation and its application to dynamic fracture simulation

    International Nuclear Information System (INIS)

    Nishioka, Toshihisa; Takemoto, Yutaka

    1988-01-01

    Recently, the authors have shown that the combined method of the path-independent J' integral (dynamic J integral) and a moving isoparametric element procedure is an effective tool for the calculation of dynamic stress intensity factors. In the moving element procedure, the nodal pattern of the elements near a crack tip moves according to the motion of the crack-tip. An iterative numerical technique was used in the previous procedure to find the natural coordinates (ξ, η) at the newly created nodes. This technique requires additional computing time because of the nature of iteration. In the present paper, algebraic expressions for the transformation of the global coordinates (x, y) to the natural coordinates (ξ, η) were obtained by using a computerized symbolic manipulation system (REDUCE 3.2). These algebraic expressions are also very useful for remeshing or zooming techniques often used in finite element analysis. The present moving finite element method demonstrates its effectiveness for the simulation of a fast fracture. (author)

  2. Fusion rule estimation using vector space methods

    International Nuclear Information System (INIS)

    Rao, N.S.V.

    1997-01-01

    In a system of N sensors, the sensor S j , j = 1, 2 .... N, outputs Y (j) element-of Re, according to an unknown probability distribution P (Y(j) /X) , corresponding to input X element-of [0, 1]. A training n-sample (X 1 , Y 1 ), (X 2 , Y 2 ), ..., (X n , Y n ) is given where Y i = (Y i (1) , Y i (2) , . . . , Y i N ) such that Y i (j) is the output of S j in response to input X i . The problem is to estimate a fusion rule f : Re N → [0, 1], based on the sample, such that the expected square error is minimized over a family of functions Y that constitute a vector space. The function f* that minimizes the expected error cannot be computed since the underlying densities are unknown, and only an approximation f to f* is feasible. We estimate the sample size sufficient to ensure that f provides a close approximation to f* with a high probability. The advantages of vector space methods are two-fold: (a) the sample size estimate is a simple function of the dimensionality of F, and (b) the estimate f can be easily computed by well-known least square methods in polynomial time. The results are applicable to the classical potential function methods and also (to a recently proposed) special class of sigmoidal feedforward neural networks

  3. Phase space methods for Majorana fermions

    Science.gov (United States)

    Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2018-06-01

    Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.

  4. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Directory of Open Access Journals (Sweden)

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  5. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system

    Science.gov (United States)

    Yang, Yefeng; Yu, Yonghua; Pan, Jinming; Ying, Yibin; Zhou, Hong

    2016-05-01

    Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds’ glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.

  6. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application.

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2017-05-01

    Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. N/A.

  7. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  8. A new approach to the inverse kinematics of a multi-joint robot manipulator using a minimization method

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-01-01

    This paper proposes a new approach to solve the inverse kinematics of a type of sixlink manipulator. Directing our attention to features of joint structures of the manipulator, the original problem is first formulated by a system of equations with four variables and solved by means of a minimization technique. The remaining two variables are determined from constrained conditions involved. This is the basic idea in the present approach. The results of computer simulation of the present algorithm showed that the accuracies of solutions and convergence speed are much higher and quite satisfactory for practical purposes, as compared with the linearization-iteration method based on the conventional inverse Jacobian matrix. (author)

  9. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  10. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  11. Modern methods in topological vector spaces

    CERN Document Server

    Wilansky, Albert

    2013-01-01

    Designed for a one-year course in topological vector spaces, this text is geared toward advanced undergraduates and beginning graduate students of mathematics. The subjects involve properties employed by researchers in classical analysis, differential and integral equations, distributions, summability, and classical Banach and Frechét spaces. Optional problems with hints and references introduce non-locally convex spaces, Köthe-Toeplitz spaces, Banach algebra, sequentially barrelled spaces, and norming subspaces.Extensive introductory chapters cover metric ideas, Banach space, topological vect

  12. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2018-02-01

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  13. Improvement in Space Food Packaging Methods

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Food Systems Laboratory's (SFSL) current Bulk Overwrap Bag (BOB) package, while simple and effective, leaves room for improvement. Currently, BOBs are...

  14. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    Science.gov (United States)

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Kindergarten Children's Interactions with Touchscreen Mathematics Virtual Manipulatives: An Innovative Mixed Methods Analysis

    Science.gov (United States)

    Tucker, Stephen I.; Lommatsch, Christina W.; Moyer-Packenham, Patricia S.; Anderson-Pence, Katie L.; Symanzik, Jürgen

    2017-01-01

    The purpose of this study was to examine patterns of mathematical practices evident during children's interactions with touchscreen mathematics virtual manipulatives. Researchers analyzed 33 Kindergarten children's interactions during activities involving apps featuring mathematical content of early number sense or quantity in base ten, recorded…

  16. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  17. Noncommutative Phase Spaces by Coadjoint Orbits Method

    Directory of Open Access Journals (Sweden)

    Ancille Ngendakumana

    2011-12-01

    Full Text Available We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing. We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.

  18. Space program management methods and tools

    CERN Document Server

    Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico

    2013-01-01

    Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.

  19. Truth Space Method for Caching Database Queries

    Directory of Open Access Journals (Sweden)

    S. V. Mosin

    2015-01-01

    Full Text Available We propose a new method of client-side data caching for relational databases with a central server and distant clients. Data are loaded into the client cache based on queries executed on the server. Every query has the corresponding DB table – the result of the query execution. These queries have a special form called "universal relational query" based on three fundamental Relational Algebra operations: selection, projection and natural join. We have to mention that such a form is the closest one to the natural language and the majority of database search queries can be expressed in this way. Besides, this form allows us to analyze query correctness by checking lossless join property. A subsequent query may be executed in a client’s local cache if we can determine that the query result is entirely contained in the cache. For this we compare truth spaces of the logical restrictions in a new user’s query and the results of the queries execution in the cache. Such a comparison can be performed analytically , without need in additional Database queries. This method may be used to define lacking data in the cache and execute the query on the server only for these data. To do this the analytical approach is also used, what distinguishes our paper from the existing technologies. We propose four theorems for testing the required conditions. The first and the third theorems conditions allow us to define the existence of required data in cache. The second and the fourth theorems state conditions to execute queries with cache only. The problem of cache data actualizations is not discussed in this paper. However, it can be solved by cataloging queries on the server and their serving by triggers in background mode. The article is published in the author’s wording.

  20. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  1. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  2. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  3. Hierarchical Robot Control System and Method for Controlling Select Degrees of Freedom of an Object Using Multiple Manipulators

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.

  4. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  5. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    Science.gov (United States)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  6. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to continue developing a compact, portable,...

  7. Vacuum-Compatible Multi-Axis Manipulator/Machining Center for Long-Duration Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has many needs for maintenance and repair technologies for long-duration human space missions. We propose to develop a compact, portable, vacuum-compatible,...

  8. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 2: Development program

    Science.gov (United States)

    1972-01-01

    A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.

  9. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method

    DEFF Research Database (Denmark)

    Zhang, Xuping; Sørensen, Rasmus; RahbekIversen, Mathias

    2018-01-01

    This paper presents a novel and computationally efficient modeling method for the dynamics of flexible-link robot manipulators. In this method, a robot manipulator is decomposed into components/elements. The component/element dynamics is established using Newton–Euler equations, and then is linea......This paper presents a novel and computationally efficient modeling method for the dynamics of flexible-link robot manipulators. In this method, a robot manipulator is decomposed into components/elements. The component/element dynamics is established using Newton–Euler equations......, and then is linearized based on the acceleration-based state vector. The transfer matrices for each type of components/elements are developed, and used to establish the system equations of a flexible robot manipulator by concatenating the state vector from the base to the end-effector. With this strategy, the size...... manipulators, and only involves calculating and transferring component/element dynamic equations that have small size. The numerical simulations and experimental testing of flexible-link manipulators are conducted to validate the proposed methodologies....

  10. Inverse kinematics for the variable geometry truss manipulator via a Lagrangian dual method

    Directory of Open Access Journals (Sweden)

    Yanchun Zhao

    2016-11-01

    Full Text Available This article studies the inverse kinematics problem of the variable geometry truss manipulator. The problem is cast as an optimization process which can be divided into two steps. Firstly, according to the information about the location of the end effector and fixed base, an optimal center curve and the corresponding distribution of the intermediate platforms along this center line are generated. This procedure is implemented by solving a non-convex optimization problem that has a quadratic objective function subject to quadratic constraints. Then, in accordance with the distribution of the intermediate platforms along the optimal center curve, all lengths of the actuators are calculated via the inverse kinematics of each variable geometry truss module. Hence, the approach that we present is an optimization procedure that attempts to generate the optimal intermediate platform distribution along the optimal central curve, while the performance index and kinematic constraints are satisfied. By using the Lagrangian duality theory, a closed-form optimal solution of the original optimization is given. The numerical simulation substantiates the effectiveness of the introduced approach.

  11. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  12. Probabilistic structural analysis methods for space transportation propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  13. Sleeve Push Technique: A Novel Method of Space Gaining.

    Science.gov (United States)

    Verma, Sanjeev; Bhupali, Nameksh Raj; Gupta, Deepak Kumar; Singh, Sombir; Singh, Satinder Pal

    2018-01-01

    Space gaining is frequently required in orthodontics. Multiple loops were initially used for space gaining and alignment. The most common used mechanics for space gaining is the use of nickel-titanium open coil springs. The disadvantage of nickel-titanium coil spring is that they cannot be used until the arches are well aligned to receive the stiffer stainless steel wires. Therefore, a new method of gaining space during initial alignment and leveling has been developed and named as sleeve push technique (SPT). The nickel-titanium wires, i.e. 0.012 inches and 0.014 inches along with archwire sleeve (protective tubing) can be used in a modified way to gain space along with alignment. This method helps in gaining space right from day 1 of treatment. The archwire sleeve and nickel-titanium wire in this new SPT act as a mutually synergistic combination and provide the orthodontist with a completely new technique for space opening.

  14. Efficient inverse position transformation for TR 4000S robot manipulator

    Directory of Open Access Journals (Sweden)

    Kesheng Wang

    1989-04-01

    Full Text Available An efficient method is developed for computing the inverse kinematic position solution with a closed form for the TR 4000S spray painting robot manipulator with five degrees of freedom and non-spherical wrist construction. The inverse kinematic problem is defined as the transformation from Cartesian space to the joint space. The solution is based on the geometrical separation of the arm and wrist of a robot manipulator and shows that it is very systematic, efficient and easily derived.

  15. Geometric control of manipulators

    International Nuclear Information System (INIS)

    Thiruarooran, C.

    1996-01-01

    Resolved motion control enables the end effector to be moved as a rigid body in space without having to work out manually the joint combinations needed. Since a rigid body in space has three independent translational and three independent rotational movements, a manipulator with at least six joints can be controlled in this way. Normally the manipulator has more than six joints providing an infinite number of ways of moving the tip in the desired direction and this redundancy can be exploited in a variety of ways. Resolved motion tests performed on a hydraulically operated heavy duty manipulator at the Dungeness nuclear power plant are described. The results have shown that manipulators with as many as ten joints can be controlled under resolved tip motion and the areas which are critical to the performance of this type of control have been identified. (UK)

  16. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  17. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  18. A Piecewise Acceleration-Optimal and Smooth-Jerk Trajectory Planning Method for Robot Manipulator along a Predefined Path

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2011-09-01

    Full Text Available This paper proposes a piecewise acceleration-optimal and smooth-jerk trajectory planning method of robot manipulator. The optimal objective function is given by the weighted sum of two terms having opposite effects: the maximal acceleration and the minimal jerk. Some computing techniques are proposed to determine the optimal solution. These techniques take both the time intervals between two interpolation points and the control points of B-spline function as optimal variables, redefine the kinematic constraints as the constraints of optimal variables, and reformulate the objective function in matrix form. The feasibility of the optimal method is illustrated by simulation and experimental results with pan mechanism for cooking robot.

  19. An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator

    Directory of Open Access Journals (Sweden)

    Tian Tixian

    2015-04-01

    Full Text Available A new simple and effective inertial parameter identification method based on sinusoidal vibrations of a six-degree-of-freedom parallel manipulator is proposed. Compared with previously known identification algorithms, the advantages of the new approach are there is no need to design the excitation trajectory to consider the condition number of the observation matrix and the inertial matrix can be accurately defined regardless of the effect of viscous friction. In addition, the use of a sinusoidal exciting trajectory allows calculation of the velocities and accelerations from the measured position response. Simulations show that the new approach has acceptable tolerance of dry friction when using a simple coupling parameter modified formula. The experimental application to the hydraulically driven Stewart platform demonstrates the capability and efficiency of the proposed identification method.

  20. Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    Science.gov (United States)

    Taylor, E. C.; Davis, J. D.

    1978-01-01

    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.

  1. A manipulator

    International Nuclear Information System (INIS)

    Cole, G.V.; Hofmann, D.A.; Ashby, R.

    1984-01-01

    A manipulator is described, for remote handling of objects within an enclosure, by an operator outside the enclosure. The manipulator consists of a telescopically extensible arm member, the action of which is controlled by a motor-driven lead screw. (U.K.)

  2. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  3. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  4. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2018-06-01

    Full Text Available Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  5. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  6. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  7. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Science.gov (United States)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  8. Manipulations of Wavefront Propagation: Useful Methods and Applications for Interferometric Measurements and Scanning

    Directory of Open Access Journals (Sweden)

    Avi Karsenty

    2017-01-01

    Full Text Available Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram’s modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article.

  9. A Compositional Sweep-Line State Space Exploration Method

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  10. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  11. Array Manipulation And Matrix-Tree Method To Identify High Concentration Regions HCRs

    Directory of Open Access Journals (Sweden)

    Rachana Arora

    2015-08-01

    Full Text Available Abstract-Sequence Alignment and Analysis is one of the most important applications of bioinformatics. It involves alignment a pair or more sequences with each other and identify a common pattern that would ultimately lead to conclusions of homology or dissimilarity. A number of algorithms that make use of dynamic programming to perform alignment between sequences are available. One of their main disadvantages is that they involve complicated computations and backtracking methods that are difficult to implement. This paper describes a much simpler method to identify common regions in 2 sequences and align them based on the density of common sequences identified.

  12. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, Carl; Subramaniam, Vinod; Kanger, Johannes S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  13. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, C.G.; Subramaniam, V.; Kanger, J.S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  14. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins

    NARCIS (Netherlands)

    van Mameren, J.; Peterman, E.J.G.; Wuite, G.J.L.

    2008-01-01

    Direct visualization of DNA and proteins allows researchers to investigate DNA-protein interactions with great detail. Much progress has been made in this area as a result of increasingly sensitive single-molecule fluorescence techniques. At the same time, methods that control the conformation of

  15. Symmetric spaces and the Kashiwara-Vergne method

    CERN Document Server

    Rouvière, François

    2014-01-01

    Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's or...

  16. METHOD OF IMAGE QUALITY ENHANCEMENT FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    D. S. Korshunov

    2014-07-01

    Full Text Available The paper deals with an approach for image quality improvement of the space objects in the visible range of electromagnetic wave spectrum. The proposed method is based on the joint taking into account of both the motion velocity of the space supervisory apparatus and a space object observed in the near-earth space when the time of photo-detector exposure is chosen. The timing of exposure is carried out by light-signal characteristics, which determines the optimal value of the charge package formed in the charge-coupled device being irradiated. Thus, the parameters of onboard observation equipment can be selected, which provides space images suitable for interpretation. The linear resolving capacity is used as quality indicator for space images, giving a complete picture for the image contrast and geometric properties of the object on the photo. Observation scenario modeling of the space object, done by sputnik-inspector, has shown the possibility of increasing the linear resolution up to10% - 20% or up to 40% - 50% depending on the non-complanarity angle at the movement along orbits. The proposed approach to the increase of photographs quality provides getting sharp and highcontrast images of space objects by the optical-electronic equipment of the space-based remote sensing. The usage of these images makes it possible to detect in time the space technology failures, which are the result of its exploitation in the nearearth space. The proposed method can be also applied at the stage of space systems design for optical-electronic surveillance in computer models used for facilities assessment of the shooting equipment information tract.

  17. A Comparative Study of Control Methods for a Robotic Manipulator with Six DOF in Simulation

    Directory of Open Access Journals (Sweden)

    Smyrnaiou Georgia P.

    2017-01-01

    Full Text Available In this paper a comparative study of the classical control methods for the testing of a mathematical model, which controls six actuators of a six degrees of freedom robotic arm with a single controller, is illustrated, aiming to the constructive simplification of the system. In more detail, a mathematical model of the system is designed which simulates all mechanical parts, including 5-way directional pneumatic valve, the pneumatic actuators/pistons and the mathematical model of the controller. The purpose of the above is the tuning of a Single Input, Multiple Output (SIMO controller which will direct the motion of the six pneumatic pistons. The thorough analysis of the implementation of the pneumatic system in Matlab/Simulink environment is followed by experimentation and results using Proportional (P, Proportional-Integral (PI, Proportional-Derivative (PD and Proportional-Integral-Derivative (PID controllers. The simulation results show the advantages of the above classical control methods on the robotic human arm which imitating human motion and made by a well-known company in the field of pneumatic automation.

  18. From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives

    Science.gov (United States)

    Finster, Felix

    This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.

  19. Magnetic resonance imaging zygapophyseal joint space changes (gapping) in low back pain patients following spinal manipulation and side-posture positioning: a randomized controlled mechanisms trial with blinding.

    Science.gov (United States)

    Cramer, Gregory D; Cambron, Jerrilyn; Cantu, Joe A; Dexheimer, Jennifer M; Pocius, Judith D; Gregerson, Douglas; Fergus, Michael; McKinnis, Ray; Grieve, Thomas J

    2013-05-01

    The purpose of this study was to quantify lumbar zygapophyseal (Z) joint space separation (gapping) in low back pain (LBP) subjects after spinal manipulative therapy (SMT) or side-posture positioning (SPP). This was a controlled mechanisms trial with randomization and blinding. Acute LBP subjects (N = 112; four n = 28 magnetic resonance imaging [MRI] protocol groups) had 2 MRI appointments (initial enrollment and after 2 weeks of chiropractic treatment, receiving 2 MRI scans of the L4/L5 and L5/S1 Z joints at each MRI appointment. After the first MRI scan of each appointment, subjects were randomized (initial enrollment appointment) or assigned (after 2 weeks of chiropractic treatment appointment) into SPP (nonmanipulation), SMT (manipulation), or control MRI protocol groups. After SPP or SMT, a second MRI was taken. The central anterior-posterior joint space was measured. Difference between most painful side anterior-posterior measurements taken postintervention and preintervention was the Z joint "gapping difference." Gapping differences were compared (analysis of variance) among protocol groups. Secondary measures of pain (visual analog scale, verbal numeric pain rating scale) and function (Bournemouth questionnaire) were assessed. Gapping differences were significant at the first (adjusted, P = .009; SPP, 0.66 ± 0.48 mm; SMT, 0.23 ± 0.86; control, 0.18 ± 0.71) and second (adjusted, P = .0005; SPP, 0.65 ± 0.92 mm; SMT, 0.89 ± 0.71; control, 0.35 ± 0.32) MRI appointments. Verbal numeric pain rating scale differences were significant at first MRI appointment (P = .04) with SMT showing the greatest improvement. Visual analog scale and Bournemouth questionnaire improved after 2 weeks of care in all groups (both P posture positioning showed greatest gapping at baseline. After 2 weeks, SMT resulted in greatest gapping. Side-posture positioning appeared to have additive therapeutic benefit to SMT. Copyright © 2013 National University of Health Sciences

  20. On the use of shape spaces to compare morphometric methods

    Directory of Open Access Journals (Sweden)

    F. James Rohlf

    2000-06-01

    Full Text Available Abstract Several methods have been proposed to use differences in configurations of landmark points to measure the amount of shape difference between two structures. Shape difference coefficients ignore differences in the configurations that could be due to the effects of translation, rotation, and scale. One way to understand the differences between these methods is to compare the multidimensional shape spaces corresponding to each coefficient. This paper compares Kendall's shape space, Kendall tangent space, the shape spaces implied by EDMA-I and EDMA-II test statistics, the shape space of log size-scaled inter-landmark distances, and the shape space implied by differences in angles of lines connecting pairs of landmarks. The case of three points in the plane (i.e., landmarks at the vertices of a triangle is given special emphasis because the various shape spaces can be illustrated in just 2 or 3 dimensions. The results of simulalions are shown both for random samples of all possible triangles as well as for normally distributed independent variation at each landmark. Generalizations to studies of more than three landmarks are suggested. It is shown that methods other than those based on Procrustes distances strongly constrain the possible results obtained by ordination analyses, can give misleading results when used in studies of growth and evolutionary trajectories.

  1. Manipulation, salience, and nudges.

    Science.gov (United States)

    Noggle, Robert

    2018-03-01

    Cass Sunstein and Richard Thaler recommend helping people make better decisions by employing 'nudges', which they define as noncoercive methods of influencing choice for the better. Not surprisingly, healthcare practitioners and public policy professionals have become interested in whether nudges might be a promising method of improving health-related behaviors without resorting to heavy-handed methods such as coercion, deception, or government regulation. Many nudges seem unobjectionable as they merely improve the quality and quantity available for the decision-maker. However, other nudges influence decision-making in ways that do not involve providing more and better information. Nudges of this sort raise concerns about manipulation. This paper will focus on noninformational nudges that operate by changing the salience of various options. It will survey two approaches to understanding manipulation, one which sees manipulation as a kind of pressure, and one that sees it as a kind of trickery. On the pressure view, salience nudges do not appear to be manipulative. However, on the trickery view (which the author favors), salience nudges will be manipulative if they increase the salience so that it is disproportionate to that fact's true relevance and importance for the decision at hand. By contrast, salience nudges will not be manipulative if they merely highlight some fact that is true and important for the decision at hand. The paper concludes by providing examples of both manipulative and nonmanipulative salience nudges. © 2017 John Wiley & Sons Ltd.

  2. An in vitro, short-term culture method for mammalian haploid round spermatids amenable for molecular manipulation.

    Science.gov (United States)

    Dehnugara, Tushna; Dhar, Surbhi; Rao, M R Satyanarayana

    2012-01-01

    Extensive chromatin remodeling is a characteristic feature of mammalian spermiogenesis. To date, methods for the molecular manipulation of haploid spermatids are not available as there is a lack of a well-established culture system. Biochemical experiments and knockout studies reveal only the final outcome; studying the incremental details of the intricate mechanisms involved is still a challenge. We have established an in vitro culture system for pure haploid round spermatids isolated from rat testes that can be maintained with good viability for up to 72 hr. Changes in cell morphology and flagellar growth were also studied in the cultured spermatids. Further, we have demonstrated that upon treatment of cells with specific histone deacetylase inhibitors, sodium butyrate and trichostatin A, there is an increase in the hyperacetylation status of histone H4, mimicking an important event characteristic of histone replacement process that occurs during later stages of spermiogenesis. We have also tried various methods for introducing DNA and protein into these round spermatids in culture, and report that while DNA transfection is still a challenging task, protein transfection could be achieved using Chariot™ peptide as a transfection reagent. Thus, the method described here sets a stage to study the molecular roles of spermatid-specific proteins and chromatin remodelers in the cellular context. Copyright © 2011 Wiley Periodicals, Inc.

  3. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  4. Aveiro method in reproducing kernel Hilbert spaces under complete dictionary

    Science.gov (United States)

    Mai, Weixiong; Qian, Tao

    2017-12-01

    Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.

  5. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    Science.gov (United States)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  6. Decision Making Methods in Space Economics and Systems Engineering

    Science.gov (United States)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  7. Sleeve push technique: A novel method of space gaining

    Directory of Open Access Journals (Sweden)

    Sanjeev Verma

    2018-01-01

    Full Text Available Space gaining is frequently required in orthodontics. Multiple loops were initially used for space gaining and alignment. The most common used mechanics for space gaining is the use of nickel–titanium open coil springs. The disadvantage of nickel–titanium coil spring is that they cannot be used until the arches are well aligned to receive the stiffer stainless steel wires. Therefore, a new method of gaining space during initial alignment and leveling has been developed and named as sleeve push technique (SPT. The nickel–titanium wires, i.e. 0.012 inches and 0.014 inches along with archwire sleeve (protective tubing can be used in a modified way to gain space along with alignment. This method helps in gaining space right from day 1 of treatment. The archwire sleeve and nickel–titanium wire in this new SPT act as a mutually synergistic combination and provide the orthodontist with a completely new technique for space opening.

  8. Space discretization in SN methods: Features, improvements and convergence patterns

    International Nuclear Information System (INIS)

    Coppa, G.G.M.; Lapenta, G.; Ravetto, P.

    1990-01-01

    A comparative analysis of the space discretization schemes currently used in S N methods is performed and special attention is devoted to direct integration techniques. Some improvements are proposed in one- and two-dimensional applications, which are based on suitable choices for the spatial variation of the collision source. A study of the convergence pattern is carried out for eigenvalue calculations within the space asymptotic approximation by means of both analytical and numerical investigations. (orig.) [de

  9. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target

    Science.gov (United States)

    Stolfi, A.; Gasbarri, P.; Sabatini, M.

    2017-10-01

    In the near future robotic systems will be playing an increasingly important role in space applications such as repairing, refueling, re-orbiting spacecraft and cleaning up the increasing amount of space debris. Space Manipulator Systems (SMSs) are robotic systems made of a platform (which has its own actuators such as thrusters and reaction wheels) equipped with one or more deployable arms. The present paper focuses on the issue of maintaining a stable first contact between the arms terminal parts (i.e. the end-effectors) and a target satellite, before the actual grasp is performed. The selected approach is a modified version of the Impedance Control algorithm, in which the end-effector is controlled in order to make it behave like a mass-spring-damper system regardless of the reaction motion of the base, so to absorb the impact energy. The usual approach consists in considering a point mass target and one-dimensional contact dynamics; however, the contact between the chaser and the target could generate a perturbation on the attitude of the target. On account of this, in the present work a more realistic scenario, consisting in a 2D rigid target and a relevant 2D contact dynamics, is considered. A two-arm configuration of the SMS is modelled and its effectiveness analyzed. The performance of the proposed control architecture is evaluated by means of a co-simulation involving the MSC Adams multibody code (for describing the dynamics of the space robot and target) together with Simulink (for the determination of the control actions). The co-simulation is a particularly useful tool to implement robust control applied to detailed dynamic systems. Several numerical results complete the work.

  10. Fabrication of Aligned Nanofibers by Manipulated Rotating Drum Method and Studying the Effective Parameters on Fibers Alignment by Image Processing

    Directory of Open Access Journals (Sweden)

    Zohreh Hadi

    2013-01-01

    Full Text Available Electrospinning is a known process to produce nanofibers through electrostatic forces. In a typical process, an electrical potential is applied between droplets of polymer solution or melt, held through a syringe needle and a grounded target. In general electrospinning fibers are collected on the grounded target as a random oriented web of nanofiber. Various research projects are attempted to obtain aligned electrospun fibers. This modified electrospinning method can be developed and used in a variety of nanofiber-based applications such as making of nanofibrous scaffolds for tissue engineering. In this study, an effective method has been developed to fabricate aligned nanofibers by manipulation of electrospinning system using two nozzles with opposite charges. Moreover, the effect of some parameters including take-up velocity, applied voltage and polymer solution concentration on alignment of produced nanofibers is investigated. The comparison of fibers alignment was carried out by programming and image processing in MATLAB. It is shown that take-up velocity and polymer solution concentration have significant effect on increasing the fibers alignment. Also, the alignment is increased with applied voltage at first and then, it is decreased. The analytical results and optical microscopic images are clear evidence of showing the maximum alignment of nanofibers obtained at 15% polymer solution concentration with take-up velocity of 600 rpm and 11 kV voltage.

  11. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  12. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  13. Development of a maintenance manipulator for TFTR

    International Nuclear Information System (INIS)

    Holloway, C.

    1986-01-01

    The maintenance manipulator is a device permanently connected to the Tokamak Fusion Test Reactor (TFTR) vacuum vessel and is located in close proximity to the tokamak. It is used for the inspection and maintenance of in-vessel components whilst the machine remains under vacuum. The total system comprises a vacuum vessel ante-chamber that houses the manipulator, an articulated boom and carriage that transports and positions a dexterous end-effector, and end-effector that supports maintenance tooling, and an inspection system. Because of the maintenance manipulator's operating environment, there are many challenging engineering features, i.e., temperatures up to 150 0 C, changing magnetic fields in space and time that act on the manipulator whilst it is at rest, neutron neutron fluxes of up to 10/sup 11/cm/sup -2/s/sup -1/, and, last but not least, UHV conditions. This paper describes the development of the vacuum system, the maintenance manipulator, and inspective devices. It includes the methods employed to overcome the engineering difficulties and the application of information gained from other advanced technology programs, such as space and nuclear fission

  14. Manipulatives Work!

    Science.gov (United States)

    Moch, Peggy L.

    2001-01-01

    Fifth graders (n=16) engaged in manipulative activities to improve their grasp of math concepts; one-third were identified as exceptional children. Posttest results after 12 lessons showed the overall class average increased from 49% to 59% and all areas improved compared to pretest scores. Attitude changes were also apparent. (Contains 24…

  15. Methods for microbiological and immunological studies of space flight crews

    Science.gov (United States)

    Taylor, G. R. (Editor); Zaloguev, S. N. (Editor)

    1978-01-01

    Systematic laboratory procedures compiled as an outgrowth of a joint U.S./U.S.S.R. microbiological-immunological experiment performed during the Apollo-Soyuz Test Project space flight are presented. Included are mutually compatible methods for the identification of aerobic and microaerophilic bacteria, yeast and yeastlike microorganisms, and filamentous fungi; methods for the bacteriophage typing of Staphylococcus aureus; and methods for determining the sensitivity of S. aureus to antibiotics. Immunological methods using blood and immunological and biochemical methods using salivary parotid fluid are also described. Formulas for media and laboratory reagents used are listed.

  16. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  17. Community Based Distribution of Child Spacing Methods at ...

    African Journals Online (AJOL)

    uses volunteer CBD agents. Mrs. E.F. Pelekamoyo. Service Delivery Officer. National Family Welfare Council of Malawi. Private Bag 308. Lilongwe 3. Malawi. Community Based Distribution of. Child Spacing Methods ... than us at the Hospital; male motivators by talking to their male counterparts help them to accept that their ...

  18. 16 CFR 1509.6 - Component-spacing test method.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6 Section 1509.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... applied to the wedge perpendicular to the plane of the crib side. ...

  19. ASSESSMENT OF WORK-SPACE AND WORK-METHOD DESIGNS ...

    African Journals Online (AJOL)

    related injuries among its workforce. This research assessed work-space (WsD) and work-method designs (WmD), level of compliance with recommended standards (RSs) and effects on workers' wellbeing. Clearances for services in 55 supine ...

  20. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  1. High-resolution methods for fluorescence retrieval from space

    NARCIS (Netherlands)

    Mazzoni, M.; Falorni, P.; Verhoef, W.

    2010-01-01

    The retrieval from space of a very weak fluorescence signal was studied in the O2A and O2B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of

  2. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  3. Compliant Aerial Manipulators

    DEFF Research Database (Denmark)

    Bartelds, T.; Capra, A.; Hamaza, S.

    2016-01-01

    joints. The approach aims at limiting the influence of impacts on the controlled attitude dynamics in order to allow the aerial manipulator to remain stable during and after impact. The developed concept is intended to convert kinetic energy into potential energy, which is permanently stored into elastic...... elements by means of directional locking mechanisms. The proposed approach has been tested on a 2 d.o.f. manipulator mounted on a quadrotor UAV. The manipulation system has one active rotational d.o.f. compensating for pitch movements of the UAV and one passive linear joint which is in charge of absorbing...... the impact energy. The device has been used to validate the method through experiments, in comparison with a rigid manipulator. The results show that the proposed approach and the developed mechanical system achieve stable impact absorption without bouncing away from the interacting environment. Our work has...

  4. Currency Manipulation

    OpenAIRE

    Weithing Zhang; Thomas Mertens; Tarek Hassan

    2014-01-01

    Many central banks manage the stochastic behavior of their currencies' exchange rates by imposing pegs relative to a target currency. We study the effects of such currency manipulation in a multi-country model of exchange rate determination with endogenous capital accumulation. We find that the imposition of an exchange rate peg relative to a given target currency increases the volatility of consumption in the target country and decreases the volatility of the target currency's exchange rate ...

  5. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  6. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    Science.gov (United States)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  7. Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space

    Science.gov (United States)

    VanDersarl, Jules J.; Xu, Alexander M.; Melosh, Nicholas A.; Tayebi, Noureddine

    2016-02-23

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.

  8. A New Method of Space Travel Optimized for Space Tourism and Colonization

    Science.gov (United States)

    Turek, Philip A.

    2006-01-01

    High costs associated with expendable rockets are stifling the development of permanent space colonies. A new method of space travel is presented that enjoys significantly increased performance and reduced cost relative to competing concepts. Based on recycling the kinetic energy of an arriving spacecraft, up to 200 MW of average electrical power is generated and sustained for 2 minutes, and is immediately applied in launching a departing partner spacecraft. The resulting required delta vee for a round trip between low Earth orbit (LEO) and geosynchronous orbit (GEO) drops from 7.6 km/s to 0.54 km/s when 3 recycling stations with an 80 % energy coupling efficiency are used to exchange kinetic energy between 8 partner spacecraft transiting the same route. This method is well suited for round trip high volume space travel such as space tourism traffic to LEO, lunar orbit, and beyond. As the kinetic energy of an arriving spacecraft is the power source for launching departing spacecraft, nascent lunar colonies can electrically launch 26,000 kg payloads long before sustained 100 MW level power supplies become locally available. A pair of recycling stations at an orbiting space colony construction site provides a resource of net impulse, net torque, and electrical power to the colony irrespective of the contents of the arriving payloads. Kinetic energy recycling technology, configuration, operations, and near Earth applications are described.

  9. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  10. Grassmann phase space methods for fermions. II. Field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-02-15

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  11. Grassmann phase space methods for fermions. II. Field theory

    International Nuclear Information System (INIS)

    Dalton, B.J.; Jeffers, J.; Barnett, S.M.

    2017-01-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  12. Two-level method with coarse space size independent convergence

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Brezina, M. [Univ. of Colorado, Denver, CO (United States); Tezaur, R.; Krizkova, J. [UWB, Plzen (Czech Republic)

    1996-12-31

    The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.

  13. A new method to culture sweetpotato in space farming

    Science.gov (United States)

    Tsuyuki, I.; Ishii, Y.; Oda, M.; Kitaya, Y.; Mori, G.

    Sweetpotato production in space has many advantages over that of other crops; the plant has a higher growth rate and a higher yield with less fertilizer and less water, and functions as an efficient CO_2/O_2 converter. In a limited space in space farming, however, it is not favorable that sweetpotato shoots develop vigorously while the roots have not enlarged yet, because the sweetpotato organ of interest is not the shoot but the tuberous root. Cuttings of sweetpotato (Ipomoea batatas Lam. "Beniazuma") were used in this study. Each cutting was cut off from the 2nd - 10th nodes from the apices of mother branches and consisted of one expanded leaf, one node and five cm long stem. The cuttings were cultured suboptimally on a mixed soil (peat-moss:vermiculite=1:1 in volume) in a greenhouse under sunlight. Growth characteristics of the cuttings removed axillary buds were compared with cuttings with axillary buds in the first experiment. The cuttings without axillary buds started tuberous root bulking about 30 days after the onset of the experiment. The harvest index (tuberous root dry mass/total dry mass) was 0.5 after 70 days. Whereas, the control plant with an axillary bud developed a lateral shoot and formed no tuberous root during 70 days in the experiment. It was necessary to remove the axillary buds in order to form the tuberous roots in this method. To evaluate the effect of light intensity on tuberous root formation, cuttings without axillary buds were shaded with cheesecloth having 43% of light transmittance in the second experiment. The tuberous root formation was retarded 50 days in shaded cuttings compared with control cuttings. The tuberous roots were quickly formed and the large harvest index was ensured in this method with cuttings without axillary buds. Therefore the method is expected to be advantageous to culture sweetpotato at a high density with rapid turn over in a limited culture space in space farming.

  14. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Science.gov (United States)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  15. Using Novel 2D Image Manipulation Methods to Aid Initial Concept Generation with Postgraduate Industrial Design Students

    Science.gov (United States)

    Hurn, Karl; Storer, Ian

    2015-01-01

    The aim of this paper is to provide educators and industrial design professionals with an insight into the development of innovative design ideation images manipulation techniques and, highlight how these techniques could be used to not only improve student ideation skills, but also as design enablers for a broader range of professionals working…

  16. The class as space and fundamental method for educational guidance

    Directory of Open Access Journals (Sweden)

    Irela Margarita Paz-Domínguez

    2016-11-01

    Full Text Available Educational guidance is a function of professional education that is still blurred in the pedagogical theory and practice, as has been subsumed by the methodological and research teaching function, as well as being valued by many as specific task of psycho pedagogues, counselors and psychologists. This article is the result of a theoretical study aims to argue the role of educational guidance as a function of teaching, highlighting the class as space and fundamental method in it. Were used for this purpose, theoretical methods of analysis-synthesis, induction-deduction and dialectic hermeneutical, which it was the precision of ideas around the class as space sociological, psychological and pedagogical partner especially for the orientation and way peculiar that favors such a process, if personal and group learners resources for the development of his personality are promoted from class.

  17. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  18. A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    OpenAIRE

    Manton, Jonathan H.

    2012-01-01

    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...

  19. Method of a covering space in quantum field theory

    International Nuclear Information System (INIS)

    Serebryanyj, E.M.

    1982-01-01

    To construct the Green function of the Laplace operator in the domain M bounded by conducting surfaces the generalized method of images is used. It is based on replacement of the domain M by its discrete bundle and that is why the term ''method of covering space'' is used. Continuing one of the coordinates to imaginary values the euclidean Green function is transformed into the causal one. This allows one to compute vacuum stress-energy tensor of the scalar massless field if the vacuum is stable [ru

  20. A Method to Overcome Space Charge at Injection

    International Nuclear Information System (INIS)

    Ya. Derbenev

    2005-01-01

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically. After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed

  1. Forecasting space weather: Can new econometric methods improve accuracy?

    Science.gov (United States)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  2. Remote inspection manipulators for AGR II: Babcock Power's interstitial manipulator

    International Nuclear Information System (INIS)

    Whyley, S.R.

    1985-01-01

    The interstitial manipulator has been designed and built by Babcock Power for the remote visual inspection of AGR II reactors at Heysham and Torness. Its five drives are operated from a console local to the manipulator on the pile cap, or from a similar console located remotely. The need to operate from an interstitial ISI standpipe has restricted the size of the components entering the reactor, and this has consequently provided the major design constraint. A detailed structural assessment of the manipulator was carried out to demonstrate the ability to operate with payloads in excess of the largest camera weight of 13.6 kg. The manipulator finite element model was also used to determine static deflections, and, as a consequence, has provided data from which the control system is able to predict accurately the camera's position. Other computer aided design techniques have enabled the step by step sequences of manipulator deployment, in the restricted space available, to be successfully demonstrated. (author)

  3. Exploration of Stellarator Configuration Space with Global Search Methods

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Ethier, S.

    2001-01-01

    An exploration of stellarator configuration space z for quasi-axisymmetric stellarator (QAS) designs is discussed, using methods which provide a more global view of that space. To this end, we have implemented a ''differential evolution'' (DE) search algorithm in an existing stellarator optimizer, which is much less prone to become trapped in local, suboptimal minima of the cost function chi than the local search methods used previously. This search algorithm is complemented by mapping studies of chi over z aimed at gaining insight into the results of the automated searches. We find that a wide range of the attractive QAS configurations previously found fall into a small number of classes, with each class corresponding to a basin of chi(z). We develop maps on which these earlier stellarators can be placed, the relations among them seen, and understanding gained into the physics differences between them. It is also found that, while still large, the region of z space containing practically realizable QAS configurations is much smaller than earlier supposed

  4. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  5. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  6. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  7. A new method for mapping perceptual biases across visual space.

    Science.gov (United States)

    Finlayson, Nonie J; Papageorgiou, Andriani; Schwarzkopf, D Samuel

    2017-08-01

    How we perceive the environment is not stable and seamless. Recent studies found that how a person qualitatively experiences even simple visual stimuli varies dramatically across different locations in the visual field. Here we use a method we developed recently that we call multiple alternatives perceptual search (MAPS) for efficiently mapping such perceptual biases across several locations. This procedure reliably quantifies the spatial pattern of perceptual biases and also of uncertainty and choice. We show that these measurements are strongly correlated with those from traditional psychophysical methods and that exogenous attention can skew biases without affecting overall task performance. Taken together, MAPS is an efficient method to measure how an individual's perceptual experience varies across space.

  8. The method of covariant symbols in curved space-time

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2007-01-01

    Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)

  9. Covariance Manipulation for Conjunction Assessment

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  10. Methods utilized in evaluating the profitability of commercial space processing

    Science.gov (United States)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  11. Analysis of a closed-kinematic chain robot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  12. Review and comparison of recent methods in space geodesy

    International Nuclear Information System (INIS)

    Varga, M.

    1983-01-01

    The study of geodynamic processes requires the application of new space-born geodesic measuring methods. A terrestrial reference system (TRS) is required for describing geodynamic processes. For this purpose satisfactory knowledge of polar motions, Earth rotation and tidal forces determined by laser, global positioning system (GPS) and VLBI measurements are needed. In addition, gravity and magnetic field of the Earth have to be known, modelled by using satellite to satellite traching (SST), altimetry, gradiometry and magnetometry results. Motions of the Earth-Moon system, as well as the relation between the terrestrial reference system and the inertial system can be determined by means of VLBI measurements. (author)

  13. Image manipulation as research misconduct.

    Science.gov (United States)

    Parrish, Debra; Noonan, Bridget

    2009-06-01

    A growing number of research misconduct cases handled by the Office of Research Integrity involve image manipulations. Manipulations may include simple image enhancements, misrepresenting an image as something different from what it is, and altering specific features of an image. Through a study of specific cases, the misconduct findings associated with image manipulation, detection methods and those likely to identify such manipulations, are discussed. This article explores sanctions imposed against guilty researchers and the factors that resulted in no misconduct finding although relevant images clearly were flawed. Although new detection tools are available for universities and journals to detect questionable images, this article explores why these tools have not been embraced.

  14. A Study on Evaluation for Street Space using AHP Method

    OpenAIRE

    小塚, みすず; 許, 彦; 川本, 義海; 本多, 義明

    2004-01-01

    Street space is an important public area which forms the framework of city space. In addition, from the view of the traffic functions, street space also plays a role to support people's activities performed in city. This paper examines the evaluations of street space among the cities of Fukui (Japan), Toyota (Japan) and Suzhou (China). Therefore, a questionnaire has been carried out and actual conditions of street space are grasped. In addition street functions were evaluated with the AHP met...

  15. Sistem kontrol gerak kinematika robot gripper manipulator

    Directory of Open Access Journals (Sweden)

    Wayan Widhiada

    2018-01-01

    Full Text Available Abstrak Sistem robot manipulator ini merupakan mekanisme lengan yang terdiri dari serangkaian segmen yang digunakan untuk menangkap dan memindahkan benda dengan beberapa derajat kebebasan. Dalam perkembangannya, robot manipulator telah digunakan dalam melaksanakan misi tertentu dan membantu operasi di ruang angkasa. Robot biasanya berinteraksi dengan sistem tangan, dan dalam kegiatan industri tangan biasanya disebut sebagai gripper. Penulis menggunakan metode simulasi teknik yang dapat menentukan sistem gerak kinematika robot. Simulasi teknik adalah metode yang digunakan untuk mendesain dan menganalisa gerakan robot dimana hasil dari respon gerakan robot yang didapat mendekati hasil dalam keadaan sebenarnya. Simulasi juga dapat menghemat waktu dan biaya yang digunakan dalam mendesain robot gripper manipulator lima jari dengan elemen prismatik. Dengan menggunakan kontrol PID diharapkan respon gerak kinematik dari setiap joint robot manipulator mencapai perfomance yang terbaik seperti overshoot yang kecil, dan kondisi tenang (steady state dalam waktu yang singkat disertai dengan keselahan penggerak yang kecil. Melalui proses Advance tuning pada PID kontrol selesai didapatkan parameter penguat pada PID kontrol yaitu Kp = 0.7194, Ki = 8.306 dan Kd = 0.0061sehingga tercapai performance gerakan kinematika robot gripper manipulator yang terbaik sesuai yang dikehendaki oleh user dengan rise time yang singkat 0.52 detik, waktu puncak yang singkat 0.52 detik, maksimum overshoot yang kecil 1,8%, kesetebailan response dicapai pada 0.76 detik dan kesalahan penggerak yang sangat kecil 0.32%. Kata kunci: Robot gripper manipulator, PID control, gerakan kinematika Abstract A robot gripper manipulator system mechanism comprising a series of segments that are used to capture and move objects with multiple degrees of freedom. In the process, the robot manipulator has been used in carrying out the specific mission and assist operations in space. Robot manipulator

  16. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  17. Chalcogen passivation: an in-situ method to manipulate the morphology and electrical property of GaAs nanowires.

    Science.gov (United States)

    Yang, Zai-Xing; Yin, Yanxue; Sun, Jiamin; Bian, Luozhen; Han, Ning; Zhou, Ziyao; Shu, Lei; Wang, Fengyun; Chen, Yunfa; Song, Aimin; Ho, Johnny C

    2018-05-02

    Recently, owing to the large surface-area-to-volume ratio of nanowires (NWs), manipulation of their surface states becomes technologically important and being investigated for various applications. Here, an in-situ surfactant-assisted chemical vapor deposition is developed with various chalcogens (e.g. S, Se and Te) as the passivators to enhance the NW growth and to manipulate the controllable p-n conductivity switching of fabricated NW devices. Due to the optimal size effect and electronegativity matching, Se is observed to provide the best NW surface passivation in diminishing the space charge depletion effect induced by the oxide shell and yielding the less p-type (i.e. inversion) or even insulating conductivity, as compared with S delivering the intense p-type conductivity for thin NWs with the diameter of ~30 nm. Te does not only provide the surface passivation, but also dopes the NW surface into n-type conductivity by donating electrons. All of the results can be extended to other kinds of NWs with similar surface effects, resulting in careful device design considerations with appropriate surface passivation for achieving the optimal NW device performances.

  18. Configuration space methods in the three-nucleon problem

    International Nuclear Information System (INIS)

    Friar, J.L.

    1985-01-01

    The assumptions underlying the formulation and solution of the Schroedinger equation for three nucleons in configuration space are reviewed. Those qualitative aspects of the two-nucleon problem which play an important role in the trinucleon are discussed. The geometrical aspects of the problem are developed, and the importance of the angular momentum barrier is demonstrated. The Faddeev-Noyes formulation of the Schroedinger equation is motivated, and the boundary conditions for various three-body problems is reviewed. The method of splines is shown to provide a particularly useful numerical modelling technique for solving the Faddeev-Noyes equation. The properties of explicit trinucleon solutions for various two-body force models are discussed, and the evidence for three-body forces is reviewed. The status of calculations of trinucleon observables is discussed, and conclusions are presented. 40 refs., 14 figs

  19. Graphics and control of the guide tube assembly reinforcement manipulators at Sizewell 'A'

    International Nuclear Information System (INIS)

    Burden, C.

    1996-01-01

    A method was devised to reinforce the lower lug welds of the Guide Tube Assemblies (GTA's) at Sizewell 'A'. A six degree of freedom manipulator was designed to place a clamp around the lugs and tighten it. The manipulator was fitted with the three fixed cameras but required another surveillance manipulator positioned in an adjacent standpipe to provide additional views. The need to prepare two standpipes limited the rate at which reinforcements could be made. Therefore an articulated two arm camera manipulator, which could be used on the existing manipulator mast was designed and built. The two manipulators were driven from separate desks and were controlled by the same supervisory computer linked to online graphics. The camera arm joints were driven on preplanned routes using a single joystick because of the complex moves and tight spaces involved. A large number of GTA sites have now been reinforced including a dropped GTA which had to be raised to carry out clamping. (Author)

  20. Momentum-space cluster dual-fermion method

    Science.gov (United States)

    Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel

    2018-03-01

    Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.

  1. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  2. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  3. Recursion method in the k-space representation

    International Nuclear Information System (INIS)

    Anlage, S.M.; Smith, D.L.

    1986-01-01

    We show that by using a unitary transformation to k space and the special-k-point method for evaluating Brillouin-zone sums, the recursion method can be very effectively applied to translationally invariant systems. We use this approach to perform recursion calculations for realistic tight-binding Hamiltonians which describe diamond- and zinc-blende-structure semiconductors. Projected densities of states for these Hamiltonians have band gaps and internal van Hove singularities. We calculate coefficients for 63 recursion levels exactly and for about 200 recursion levels to a good approximation. Comparisons are made for materials with different magnitude band gaps (diamond, Si, α-Sn). Comparison is also made between materials with one (e.g., diamond) and two (e.g., GaAs) band gaps. The asymptotic behavior of the recursion coefficients is studied by Fourier analysis. Band gaps in the projected density of states dominate the asymptotic behavior. Perturbation analysis describes the asymptotic behavior rather well. Projected densities of states are calculated using a very simple termination scheme. These densities of states compare favorably with the results of Gilat-Raubenheimer integration

  4. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  5. Deficiency of the Space Syntax method as an urban design tool in designing traditional urban space and the need for some supplementary methods

    Directory of Open Access Journals (Sweden)

    Hossein Bahrainy

    2015-12-01

    Full Text Available Urban design problems have become so complex that no single designer is able to consider all aspects of a design area simultaneously. Lately the application of computerized and scientific methods have helped designers analyze complex problems. One of these new methods is Space Syntax. The purpose of this study is to first investigate the strengths and weaknesses of this method and then suggest some supplementary methods to cover its pitfalls. On the next phase Space Syntax and supplementary methods will be used to design a pedestrian pathway in the Imamzade Ghasem neighborhood as a traditional context. Space Syntax will identify the existing spatial structure and direct future changes toward its strengthening. The case study reveals that Space Syntax can be successfully used in analysis of traditional spaces, but in order to successfully design a neighborhood in such a complex context, it involves logistical shortcomings which could be eliminated through supplementary methods.

  6. Manipulators; Manipulateurs

    Energy Technology Data Exchange (ETDEWEB)

    Papet, I.; Lune, P.; Pellerin, O.; Sapoval, M.; Brisse, H. [75 - Paris (France); Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C. [51 - Reims (France); Rehel, J.L. [92 - Fontenay-Aux-Roses (France)

    2005-10-15

    These two articles bring notions relative to the safety of procedures, specially in term of irradiation, they give information on different methods in order to reduce the radiation doses delivered to the patients, especially when the examinations concern children or young patients. (N.C.)

  7. Learning in robotic manipulation: The role of dimensionality reduction in policy search methods. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Ficuciello, Fanny; Siciliano, Bruno

    2016-07-01

    learning into control naturally leads to relaxing the above requirements through the adoption of coordinated motion patterns and sensory-motor synergies as useful tools leading to a problem of reduced dimension. To this purpose, model-based control strategies relying on synergistic models of manipulation activities learned from human experience can be integrated with real-time learning from actions strategies [5]. In [6] a classification of learning strategies for robotics is provided, while the difference between imitation learning and reinforcement learning (RL) is highlighted in [7]. From recent research in the field [8,9], it seems that RL represents the future toward autonomous and intelligent robots since it provides learning capabilities as those of humans, i.e. based on exploration and trial-and-error policies. In this context, suitable policy search methods to be implemented in a synergy-based framework are to be sought in order to reduce the search space dimension while guaranteeing the convergence and efficiency of the learning algorithm.

  8. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  9. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  10. Two methods of space--time energy densification

    International Nuclear Information System (INIS)

    Sahlin, R.L.

    1976-01-01

    With a view to the goal of net energy production from a DT microexplosion, we study two ideas (methods) through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. We first discuss the advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy and identify the amplification of laser pulses as a key factor in energy compression. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea we discuss is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target

  11. Two methods of space-time energy densification

    International Nuclear Information System (INIS)

    Sahlin, H.L.

    1975-01-01

    With a view to the goal of net energy production from a DT microexplosion, two ideas (methods) are studied through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. The advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy are studied and the amplification of laser pulses as a key factor in energy compression is discussed. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea discussed is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target. (auth)

  12. Systematic analysis of geo-location and spectrum sensing as access methods to TV white space

    CSIR Research Space (South Africa)

    Mauwa, H

    2016-11-01

    Full Text Available Access to the television white space by white space devices comes with a major technical challenge: white space devices can potentially interfere with existing television signals. Two methods have been suggested in the literature to help white space...

  13. On High Dimensional Searching Spaces and Learning Methods

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Choros, Kazimierz

    2017-01-01

    , and similarity functions and discuss the pros and cons of using each of them. Conventional similarity functions evaluate objects in the vector space. Contrarily, Weighted Feature Distance (WFD) functions compare data objects in both feature and vector spaces, preventing the system from being affected by some...

  14. A comparison of radiosity with current methods of sound level prediction in commercial spaces

    Science.gov (United States)

    Beamer, C. Walter, IV; Muehleisen, Ralph T.

    2002-11-01

    The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.

  15. Comparative study between different simple methods manipulating ratio spectra for the analysis of alogliptin and metformin co-formulated with highly different concentrations.

    Science.gov (United States)

    Zaghary, Wafaa A; Mowaka, Shereen; Hassan, Mostafa A; Ayoub, Bassam M

    2017-11-05

    Different simple spectrophotometric methods were developed for simultaneous determination of alogliptin and metformin manipulating their ratio spectra with successful application on recently approved combination, Kazano® tablets. Spiking was implemented to detect alogliptin in spite of its low contribution in the pharmaceutical formulation as low quantity in comparison to metformin. Linearity was acceptable over the concentration range of 2.5-25.0μg/mL and 2.5-15.0μg/mL for alogliptin and metformin, respectively using derivative ratio, ratio subtraction coupled with extended ratio subtraction and spectrum subtraction coupled with constant multiplication. The optimized methods were compared using one-way analysis of variance (ANOVA) and proved to be accurate for assay of the investigated drugs in their pharmaceutical dosage form. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A user friendly method for image based acquisition of constraint information during constrained motion of servo manipulator in hot-cells

    International Nuclear Information System (INIS)

    Saini, Surendra Singh; Sarkar, Ushnish; Swaroop, Tumapala Teja; Panjikkal, Sreejith; Ray, Debasish Datta

    2016-01-01

    In master slave manipulator, slave arm is controlled by an operator to manipulate the objects in remote environment using an iso-kinematic master arm which is located in the control room. In such a scenario, where the actual work environment is separated from the operator, formulation of techniques for assisting the operator to execute constrained motion (preferential inclusion or preferential exclusion of workspace zones) in the slave environment are not only helpful, but also essential. We had earlier demonstrated the efficacy of constraint motion with predefined geometrical constraints of various types. However, in a hot-cell scenario the generation of the constraint equations is difficult since we shall not have access to the cell for taking measurements. In this paper, a user friendly method is proposed for image based acquisition of the various constraint geometries thus eliminating the need to take in-cell measurements. For this purpose various hot cell tasks and required geometrical primitives pertaining to these tasks have been surveyed and an algorithm has been developed for generating the constraint geometry for each primitive. This methodology shall increase the efficiency and ease of use of the hot cell Telemanipulator by providing real time constraint acquisition and subsequent assistive force based constrained motion. (author)

  17. Critical element study on autonomous position control of articulated-arm type manipulator

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Nakahira, Masataka

    1994-10-01

    An articulated-arm type manipulator can be operated effectively in a restricted space due to its flexibility and it can be attractive for a wide range of in-vessel maintenance such as viewing, inspection and limiter handling in fusion experimental reactors. In case of the in-vessel maintenance using a flexible manipulator, it is quite essential to develop an autonomous control method for compensating a deflection of manipulator so as to minimize the maintenance time with high precision. For this purpose, a new position control method using a combination of neural network predictor with a rigid inverse kinematics is being developed. The key features of this method are to simplify a kinematics modeling of flexible manipulator, to enable quick position compensation in stead of ordinary large matrix compensation, and to be applicable to a wide variety of manipulator characteristics. A sub-scaled model of flexible manipulator with 4 joints has been fabricated for a benchmark experiments of the autonomous position control. Comparing analytical simulation with experiments using the flexible manipulator, it has been demonstrated that the new position control method gives significant improvement in control performance with high precision in order of a figure. In addition, further optimization can be possible by adding other non-linear predictors such as radial basis function and fuzzy modeling. This paper describes the details of a sub-scaled flexible manipulator and a neural network position control system as well as results of analytical simulation and benchmark experiments. (author)

  18. Soft and hard classification by reproducing kernel Hilbert space methods.

    Science.gov (United States)

    Wahba, Grace

    2002-12-24

    Reproducing kernel Hilbert space (RKHS) methods provide a unified context for solving a wide variety of statistical modelling and function estimation problems. We consider two such problems: We are given a training set [yi, ti, i = 1, em leader, n], where yi is the response for the ith subject, and ti is a vector of attributes for this subject. The value of y(i) is a label that indicates which category it came from. For the first problem, we wish to build a model from the training set that assigns to each t in an attribute domain of interest an estimate of the probability pj(t) that a (future) subject with attribute vector t is in category j. The second problem is in some sense less ambitious; it is to build a model that assigns to each t a label, which classifies a future subject with that t into one of the categories or possibly "none of the above." The approach to the first of these two problems discussed here is a special case of what is known as penalized likelihood estimation. The approach to the second problem is known as the support vector machine. We also note some alternate but closely related approaches to the second problem. These approaches are all obtained as solutions to optimization problems in RKHS. Many other problems, in particular the solution of ill-posed inverse problems, can be obtained as solutions to optimization problems in RKHS and are mentioned in passing. We caution the reader that although a large literature exists in all of these topics, in this inaugural article we are selectively highlighting work of the author, former students, and other collaborators.

  19. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  20. Independence and totalness of subspaces in phase space methods

    Science.gov (United States)

    Vourdas, A.

    2018-04-01

    The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.

  1. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  2. WORKSPACE DRAWING FROM A MANIPULATOR ARM WITH 6 DOF

    Directory of Open Access Journals (Sweden)

    NAIDIN Gigi

    2011-06-01

    Full Text Available Modelling and simulation is an important aspect in robotic field. Knowing of the workspace is very important to the operation of manipulators arm. This paper investigates operational performance of space manipulator arm destined for industrial manufacturing, by defining and analyzing their workspace and manipulability measure. The authors show that manipulator arm developing requires the consideration of more efficient dynamic models and use of dedicated processing techniques such as Autodesk-Inventor 9, MATLAB, WorkSpace software.

  3. Autonomous Task Primitives for Complex Manipulation Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this research effort is to enable robots to autonomously perform the complex manipulation tasks that are necessary to maintain a spacecraft. Robots, like...

  4. A novel discrete adaptive sliding-mode-like control method for ionic polymer–metal composite manipulators

    International Nuclear Information System (INIS)

    Sun, Zhiyong; Hao, Lina; Liu, Liqun; Chen, Wenlin; Li, Zhi

    2013-01-01

    Ionic polymer–metal composite (IPMC), also called artificial muscle, is an EAP material which can generate a relatively large deformation with a low driving voltage (generally less than 5 V). Like other EAP materials, IPMC possesses strong nonlinear properties, which can be described as a hybrid of back-relaxation (BR) and hysteresis characteristics, which also vary with water content, environmental temperature and even the usage consumption. Nowadays, many control approaches have been developed to tune the IPMC actuators, among which adaptive methods show a particular striking performance. To deal with IPMCs’ nonlinear problem, this paper represents a robust discrete adaptive inverse (AI) control approach, which employs an on-line identification technique based on the BR operator and Prandtl–Ishlinskii (PI) hysteresis operator hybrid model estimation method. Here the newly formed control approach is called discrete adaptive sliding-mode-like control (DASMLC) due to the similarity of its design method to that of a sliding mode controller. The weighted least mean squares (WLMS) identification method was employed to estimate the hybrid IPMC model because of its advantage of insensitivity to environmental noise. Experiments with the DASMLC approach and a conventional PID controller were carried out to compare and demonstrate the proposed controller’s better performance. (paper)

  5. The method of moments and nested Hilbert spaces in quantum mechanics

    International Nuclear Information System (INIS)

    Adeniyi Bangudu, E.

    1980-08-01

    It is shown how the structures of a nested Hilbert space Hsub(I), associated with a given Hilbert space Hsub(O), may be used to simplify our understanding of the effects of parameters, whose values have to be chosen rather than determined variationally, in the method of moments. The result, as applied to non-relativistic quartic oscillator and helium atom, is to associate the parameters with sequences of Hilbert spaces, while the error of the method of moments relative to the variational method corresponds to a nesting operator of the nested Hilbert space. Difficulties hindering similar interpretations in terms of rigged Hilbert space structures are highlighted. (author)

  6. A new kind of droplet space distribution measuring method

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    A new kind of droplet space distribution measuring technique was introduced mainly, and the experimental device which was designed for the measuring the space distribution and traces of the flying film droplet produced by the bubble breaking up near the free surface of the water. This experiment was designed with a kind of water-sensitivity test paper (rice paper) which could record the position and size of the colored scattering droplets precisely. The rice papers were rolled into cylinders with different diameters by using tools. The bubbles broke up exactly in the center of the cylinder, and the space distribution and the traces of the droplets would be received by analysing all the positions of the droplets produced by the same size bubble on the rice papers. (authors)

  7. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  8. Innovative spectrophotometric methods for simultaneous estimation of the novel two-drug combination: Sacubitril/Valsartan through two manipulation approaches and a comparative statistical study

    Science.gov (United States)

    Eissa, Maya S.; Abou Al Alamein, Amal M.

    2018-03-01

    Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226 nm and 275 nm for valsartan, induced dual wavelength method (IDW) at 226 nm and 254 nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246 nm (λiso) and 261 nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225 nm and 264 nm for both of them in their ratio spectra, first derivative of ratio spectra (DR1) at 232 nm for valsartan and 239 nm for sacubitril and mean centering of ratio spectra (MCR) at 260 nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0 μg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy.

  9. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...

  10. High precision redundant robotic manipulator

    International Nuclear Information System (INIS)

    Young, K.K.D.

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs

  11. Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity.

    Science.gov (United States)

    Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson

    2018-04-05

    Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.

  12. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan.

    Science.gov (United States)

    Lim, Wai Li; Collins, Helen M; Singh, Rohan R; Kibble, Natalie A J; Yap, Kuok; Taylor, Jillian; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-01

    Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition. © 2017 Institute of Botany, Chinese Academy of Sciences.

  13. Implementation of small group discussion as a teaching method in earth and space science subject

    Science.gov (United States)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  14. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  15. Introduction to partial differential equations and Hilbert space methods

    CERN Document Server

    Gustafson, Karl E

    1997-01-01

    Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

  16. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  17. Currency Manipulation versus Current Account Manipulation

    OpenAIRE

    Junning Cai

    2005-01-01

    It is said that a country’s currency peg can become currency manipulation representing protracted government intervention in the foreign exchange market that gives it unfair competitive advantage in international trade yet prevents effective balance of payments in its trade partners. Regarding this widespread fallacy, this paper explains why currency peg is not currency manipulation even when it keeps a country’s currency undervalued. We clarify that 1) government is inherently a major player...

  18. An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay

    International Nuclear Information System (INIS)

    Horoi, Mihai; Neacsu, Andrei

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  19. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  20. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  1. On stiffening cables of a long reach manipulator

    International Nuclear Information System (INIS)

    Wang, S.L.; Santiago, P.

    1996-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  2. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  3. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project

    NARCIS (Netherlands)

    Sharp, John T.; Angwin, Jane; Boers, Maarten; Duryea, Jeff; von Ingersleben, Gabriele; Hall, James R.; Kauffman, Joost A.; Landewé, Robert; Langs, Georg; Lukas, Cédric; Maillefert, Jean-Francis; Bernelot Moens, Hein J.; Peloschek, Philipp; Strand, Vibeke; van der Heijde, Désirée

    2007-01-01

    Computer-based methods of measuring joint space width (JSW) could potentially have advantages over scoring joint space narrowing, with regard to increased standardization, sensitivity, and reproducibility. In an early exercise, 4 different methods showed good agreement on measured change in JSW over

  4. The sweep-line state space exploration method

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars M.; Mailund, Thomas

    2012-01-01

    . The contribution of this paper is twofold. First, we provide a coherent presentation of the sweep-line theory and the many variants of the method that have been developed over the past 10 years since the basic idea of the method was conceived. Second, we survey a selection of case studies where the sweep...

  5. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  6. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Directory of Open Access Journals (Sweden)

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  7. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method

    DEFF Research Database (Denmark)

    Zhang, Xuping; Sørensen, Rasmus; RahbekIversen, Mathias

    2018-01-01

    , and then is linearized based on the acceleration-based state vector. The transfer matrices for each type of components/elements are developed, and used to establish the system equations of a flexible robot manipulator by concatenating the state vector from the base to the end-effector. With this strategy, the size...... manipulators, and only involves calculating and transferring component/element dynamic equations that have small size. The numerical simulations and experimental testing of flexible-link manipulators are conducted to validate the proposed methodologies....

  8. Adaptive Coarse Spaces for FETI-DP and BDDC Methods

    OpenAIRE

    Radtke, Patrick

    2015-01-01

    Iterative substructuring methods are well suited for the parallel iterative solution of elliptic partial differential equations. These methods are based on subdividing the computational domain into smaller nonoverlapping subdomains and solving smaller problems on these subdomains. The solutions are then joined to a global solution in an iterative process. In case of a scalar diffusion equation or the equations of linear elasticity with a diffusion coefficient or Young modulus, respectively, ...

  9. Super-nodal methods for space-time kinetics

    Science.gov (United States)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  10. Mechatronic Development and Vision Feedback Control of a Nanorobotics Manipulation System inside SEM for Nanodevice Assembly

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2016-09-01

    Full Text Available Carbon nanotubes (CNT have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM. Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis. Manipulators are actuated by picomotors with better than 30 nm linear resolution and <1 micro-rad rotary resolution. Four vertically installed AFM cantilevers (the axis of the cantilever tip is vertical to the axis of electronic beam of SEM served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system.

  11. Mechatronic Development and Vision Feedback Control of a Nanorobotics Manipulation System inside SEM for Nanodevice Assembly

    Science.gov (United States)

    Yang, Zhan; Wang, Yaqiong; Yang, Bin; Li, Guanghui; Chen, Tao; Nakajima, Masahiro; Sun, Lining; Fukuda, Toshio

    2016-01-01

    Carbon nanotubes (CNT) have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs) and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM). Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ) individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis). Manipulators are actuated by picomotors with better than 30 nm linear resolution and SEM) served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H) notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system. PMID:27649180

  12. Mechatronic Development and Vision Feedback Control of a Nanorobotics Manipulation System inside SEM for Nanodevice Assembly.

    Science.gov (United States)

    Yang, Zhan; Wang, Yaqiong; Yang, Bin; Li, Guanghui; Chen, Tao; Nakajima, Masahiro; Sun, Lining; Fukuda, Toshio

    2016-09-14

    Carbon nanotubes (CNT) have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs) and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM). Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ) individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis). Manipulators are actuated by picomotors with better than 30 nm linear resolution and <1 micro-rad rotary resolution. Four vertically installed AFM cantilevers (the axis of the cantilever tip is vertical to the axis of electronic beam of SEM) served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H) notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system.

  13. Adaptive control of a Stewart platform-based manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  14. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  15. Comparing Value of Urban Green Space Using Contingent Valuation and Travel Cost Methods

    Science.gov (United States)

    Chintantya, Dea; Maryono

    2018-02-01

    Green urban open space are an important element of the city. They gives multiple benefits for social life, human health, biodiversity, air quality, carbon sequestration, and water management. Travel Cost Method (TCM) and Contingent Valuation Method (CVM) are the most frequently used method in various studies that assess environmental good and services in monetary term for valuing urban green space. Both of those method are determined the value of urban green space through willingness to pay (WTP) for ecosystem benefit and collected data through direct interview and questionnaire. Findings of this study showed the weaknesses and strengths of both methods for valuing urban green space and provided factors influencing the probability of user's willingness to pay in each method.

  16. Comparing Value of Urban Green Space Using Contingent Valuation and Travel Cost Methods

    Directory of Open Access Journals (Sweden)

    Chintantya Dea

    2018-01-01

    Full Text Available Green urban open space are an important element of the city. They gives multiple benefits for social life, human health, biodiversity, air quality, carbon sequestration, and water management. Travel Cost Method (TCM and Contingent Valuation Method (CVM are the most frequently used method in various studies that assess environmental good and services in monetary term for valuing urban green space. Both of those method are determined the value of urban green space through willingness to pay (WTP for ecosystem benefit and collected data through direct interview and questionnaire. Findings of this study showed the weaknesses and strengths of both methods for valuing urban green space and provided factors influencing the probability of user’s willingness to pay in each method.

  17. Comparison of enclosed space detection system with conventional methods

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.; Baylor, V.M.; Labaj, L.E.

    1997-09-01

    Enclosed Space Detection System (ESDS) is a fast, inexpensive, and reliable device for detecting human occupants hidden in vehicles. Operation requires less than two minutes. ESDS is used to foil attempts at smuggling illegal aliens, terrorists, and escaping prisoners. It is being tested at nuclear weapons facilities and has been operated at several prisons and international border crossings. ESDS is the first practical electronic alternative to physical searches of vehicles for hidden passengers. At critical checkpoints, a thorough physical search of a single fully loaded truck requires a team of from two to six people, and may take as long as eight hours. Despite this level of security, experience has shown that the search can occasionally be foiled. Due to the enormous time and expense of thorough physical searches of vehicles, they are seldom conducted at any but the most critical of locations, simply leaving many sites vulnerable to crime and terrorism. Prior to the development of the ESDS, the only other effective alternative to physical search was the use of specially-trained canines, which can be vastly superior to the physical search in both time and accuracy. However, as discussed in this paper, canine inspection is not really a competitive substitute for ESDS because canine reliability (80% at most) is not as high as that of the ESDS (99%+), while the costs, training requirements, and operator skill needed are significantly higher with canines than with the ESDS. In addition, the ESDS has straightforward self-diagnostic tests to ensure the system is operating correctly; such tests are not currently available with either canine or human inspectors. ESDS offers an attractive supplement or alternative to meet current security requirements for vehicle searches at portals at government, nuclear, industrial, and other facilities where concealed persons may pose a threat either by entering or leaving.

  18. Comparison of enclosed space detection system with conventional methods

    International Nuclear Information System (INIS)

    Kercel, S.W.; Baylor, V.M.; Labaj, L.E.

    1997-01-01

    Enclosed Space Detection System (ESDS) is a fast, inexpensive, and reliable device for detecting human occupants hidden in vehicles. Operation requires less than two minutes. ESDS is used to foil attempts at smuggling illegal aliens, terrorists, and escaping prisoners. It is being tested at nuclear weapons facilities and has been operated at several prisons and international border crossings. ESDS is the first practical electronic alternative to physical searches of vehicles for hidden passengers. At critical checkpoints, a thorough physical search of a single fully loaded truck requires a team of from two to six people, and may take as long as eight hours. Despite this level of security, experience has shown that the search can occasionally be foiled. Due to the enormous time and expense of thorough physical searches of vehicles, they are seldom conducted at any but the most critical of locations, simply leaving many sites vulnerable to crime and terrorism. Prior to the development of the ESDS, the only other effective alternative to physical search was the use of specially-trained canines, which can be vastly superior to the physical search in both time and accuracy. However, as discussed in this paper, canine inspection is not really a competitive substitute for ESDS because canine reliability (80% at most) is not as high as that of the ESDS (99%+), while the costs, training requirements, and operator skill needed are significantly higher with canines than with the ESDS. In addition, the ESDS has straightforward self-diagnostic tests to ensure the system is operating correctly; such tests are not currently available with either canine or human inspectors. ESDS offers an attractive supplement or alternative to meet current security requirements for vehicle searches at portals at government, nuclear, industrial, and other facilities where concealed persons may pose a threat either by entering or leaving

  19. An SEU rate prediction method for microprocessors of space applications

    International Nuclear Information System (INIS)

    Gao Jie; Li Qiang

    2012-01-01

    In this article,the relationship between static SEU (Single Event Upset) rate and dynamic SEU rate in microprocessors for satellites is studied by using process duty cycle concept and fault injection technique. The results are compared to in-orbit flight monitoring data. The results show that dynamic SEU rate by using process duty cycle can estimate in-orbit SEU rate of microprocessor reasonable; and the fault injection technique is a workable method to estimate SEU rate. (authors)

  20. Stereoscopically Observing Manipulative Actions.

    Science.gov (United States)

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  1. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  2. Manipulators in teleoperation

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1985-01-01

    Teleoperated manipulators represent a mature technology which has evolved over nearly 40 years of applications experience. The wide range of manipulator concepts developed thus far reflect differing applications, priorities, and philosophies. The technology of teleoperated manipulators is in a rapid state of change (just as are industrial robotics) fueled by microelectronics and materials advances. Large strides in performance and dexterity are now practical and advantageous. Even though improved controls and sensory feedback will increase functionality, overall costs should be reduced as manipulator fabrication and assembly labor costs are reduced through improved manufacturing technology. As these advances begin to materialize, broader applications in nonnuclear areas should occur

  3. A links manipulator simulation program interim report

    International Nuclear Information System (INIS)

    Noble, R.A.

    1987-04-01

    A computer program to simulate the performance of the Heysham II rail-following manipulator has been developed. The program is being used to develop and test the rail-following control algorithms which will be used to control movements of the manipulator when it is operating below the gas baffle dome. The simulation includes the dynamic responses of the manipulator joint drives, excluding friction, backlash and compliance. It also includes full details of the manipulator's geometry. A method is given whereby the actual manipulator dynamics can be written into the program once these have been established by measurement. The program is written in FORTRAN and runs on a Perkin-Elmer 3220 mini-computer. The simulation program responds to velocity demands on the individual joints. These will normally come from the control program, in which they will be manually controlled by a joystick. A sigma 5664 colour graphics generator is programmed to display the current position of the manipulator. (UK)

  4. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  5. Probabilistic structural analysis methods for select space propulsion system components

    Science.gov (United States)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  6. Application of the moving frame method to deformed Willmore surfaces in space forms

    Science.gov (United States)

    Paragoda, Thanuja

    2018-06-01

    The main goal of this paper is to use the theory of exterior differential forms in deriving variations of the deformed Willmore energy in space forms and study the minimizers of the deformed Willmore energy in space forms. We derive both first and second order variations of deformed Willmore energy in space forms explicitly using moving frame method. We prove that the second order variation of deformed Willmore energy depends on the intrinsic Laplace Beltrami operator, the sectional curvature and some special operators along with mean and Gauss curvatures of the surface embedded in space forms, while the first order variation depends on the extrinsic Laplace Beltrami operator.

  7. Master-slave manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1981-01-01

    A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)

  8. In Praise of Manipulation

    NARCIS (Netherlands)

    Dowding, Keith; Van Hees, Martin

    Many theorists believe that the manipulation of voting procedures is a serious problem. Accordingly, much of social choice theory examines the conditions under which strategy-proofness can be ensured, and what kind of procedures do a better job of preventing manipulation. This article argues that

  9. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-01-01

    to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly

  10. Fourier spectral methods for fractional-in-space reaction-diffusion equations

    KAUST Repository

    Bueno-Orovio, Alfonso; Kay, David; Burrage, Kevin

    2014-01-01

    approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction

  11. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  12. Manipulator comparative testing program

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance

  13. Low-Inertia STEM Arm (LISA) Manipulators for Assistive Free-Flyers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Altius Space Machines proposes the development of lightweight robotic manipulators, that utilize rollable composite STEM booms to provide a prismatic...

  14. Studying Economic Space: Synthesis of Balance and Game-Theoretic Methods of Modelling

    Directory of Open Access Journals (Sweden)

    Natalia Gennadyevna Zakharchenko

    2015-12-01

    Full Text Available The article introduces questions about development of models used to study economic space. The author proposes the model that combines balance and game-theoretic methods for estimating system effects of economic agents’ interactions in multi-level economic space. The model is applied to research interactions between economic agents that are spatially heterogeneous within the Russian Far East. In the model the economic space of region is considered in a territorial dimension (the first level of decomposing space and also in territorial and product dimensions (the second level of decomposing space. The paper shows the mechanism of system effects formation that exists in the economic space of region. The author estimates system effects, analyses the real allocation of these effects between economic agents and identifies three types of local industrial markets: with zero, positive and negative system effects

  15. Autogenic feedback training experiment: A preventative method for space motion sickness

    Science.gov (United States)

    Cowings, Patricia S.

    1993-01-01

    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member.

  16. On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces

    International Nuclear Information System (INIS)

    Leitão, A; Alves, M Marques

    2012-01-01

    In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)

  17. A new method for calculation of traces of Dirac γ-matrices in Minkowski space

    International Nuclear Information System (INIS)

    Bondarev, Alexander L.

    2006-01-01

    This paper presents some relations for orthonormal bases in the Minkowski space and isotropic tetrads constructed from the vectors of these bases. As an example of an application of the obtained formulae, in particular recursion relations, a new method is proposed to calculate traces of Dirac γ-matrices in the Minkowski space. Compared to the classical algorithms, the new method results in more compact expressions for the traces. Specifically, it may be easily implemented as a simple yet efficient computer algorithm

  18. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  19. Numerical method for estimating the size of chaotic regions of phase space

    International Nuclear Information System (INIS)

    Henyey, F.S.; Pomphrey, N.

    1987-10-01

    A numerical method for estimating irregular volumes of phase space is derived. The estimate weights the irregular area on a surface of section with the average return time to the section. We illustrate the method by application to the stadium and oval billiard systems and also apply the method to the continuous Henon-Heiles system. 15 refs., 10 figs

  20. PHOTOGRAMMETRIC MODEL BASED METHOD OF AUTOMATIC ORIENTATION OF SPACE CARGO SHIP RELATIVE TO THE INTERNATIONAL SPACE STATION

    Directory of Open Access Journals (Sweden)

    Y. B. Blokhinov

    2012-07-01

    Full Text Available The technical problem of creating the new Russian version of an automatic Space Cargo Ship (SCS for the International Space Station (ISS is inseparably connected to the development of a digital video system for automatically measuring the SCS position relative to ISS in the process of spacecraft docking. This paper presents a method for estimating the orientation elements based on the use of a highly detailed digital model of the ISS. The input data are digital frames from a calibrated video system and the initial values of orientation elements, these can be estimated from navigation devices or by fast-and-rough viewpoint-dependent algorithm. Then orientation elements should be defined precisely by means of algorithmic processing. The main idea is to solve the exterior orientation problem mainly on the basis of contour information of the frame image of ISS instead of ground control points. A detailed digital model is used for generating raster templates of ISS nodes; the templates are used to detect and locate the nodes on the target image with the required accuracy. The process is performed for every frame, the resulting parameters are considered to be the orientation elements. The Kalman filter is used for statistical support of the estimation process and real time pose tracking. Finally, the modeling results presented show that the proposed method can be regarded as one means to ensure the algorithmic support of automatic space ships docking.

  1. A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method

    Science.gov (United States)

    Wang, Xiao-Yen J.

    2015-01-01

    The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.

  2. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Calo, Victor M.

    2013-01-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  3. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti

    2013-05-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  4. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  5. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  6. TRANSFORMATION OF CONSUMER PRACTICES: NEW SCRIPTS OF CONSUMER BEHAVIOR AND METHODS FOR ORGANIZING TRADE SPACES

    Directory of Open Access Journals (Sweden)

    A. V. Markeeva

    2017-01-01

    Full Text Available T his article deals with transformation of consumer practices, which become (and maybe have already turned into the dominated form of social behavior and cannot be described within the model of purposeful-rational action. Utilizing the analytical distinction between “doing shopping” as routine practice, related to satisfaction of basic needs, and “going shopping” as pleasure and leasuretime social activity, this article demonstrates series of changes, resulting in generation of new consumer culture. These changes are compared with a range of transfigurations of the consumers’ spaces (trade spaces, which are at once places (scenes, where consumer practices deploy, and the structural condition of their possibility. According to the logic of the modern man, his focus on fast and diverse consumption and his desire of consuming everything in one place, “in one bottle” on the run, the shopping spaces are becoming the center of new industries-cultural, educational, recreational. The modern retail spaces become not only a place of shopping, but also closely incorporate into the social life of the community and turn into the centers of social life. Effectively combining and managing the various scenarios of consumption, the modern retail helps to feel and join the happiness of live communication in the overbounded with the online social contacts, but atomized world, to get rid of the feeling of emotional emptiness. Special design of retail space and the integration of various social technologies, which are created for manipulating the emotional sphere of the customers (non-standard architectural solutions, catchy window dressing, interior design, background music, aromamarketing, psychologically adjusted range of color, taste and tactile solutions create a special entertainment and attraction of space, control the consumer and are ready not only to stimulate the purchase, but to form an unforgettable impressions. P roducers and retailers

  7. SSSFD manipulator engineering using statistical experiment design techniques

    Science.gov (United States)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  8. The application of manipulator robot for nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Fujita, Jun; Onishi, Ken

    2009-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. In light of manufacture period, cost and reliability, various maintenance works are requested to be done by one robot. As one of the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. The manipulator technologies in this study are able to apply to robotization needed under radiation environment. (author)

  9. The application of manipulator robot for nuclear plant maintenance

    International Nuclear Information System (INIS)

    Kohata, Yukifumi; Fujita, Jun; Onishi, Ken; Tsuhari, Hiroyuki; Hosoe, Fumihiro

    2010-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. Various robots are needed because there is various maintenance works. This is inefficiency. As the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. We achieved efficiency improvement and the reliability improvement by developing a high generality manipulator. (author)

  10. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  11. Manipulators for production and research

    International Nuclear Information System (INIS)

    Munro, Ian

    1987-01-01

    The development of caves or cells and master-slave manipulators to handle radioactive materials is discussed. Some of the most recent advances are described. A manipulator arm, a master-slave manipulator and a servomanipulator mounted on a manipulator are illustrated. Future developments are discussed - these include resolved tip control for the manipulator. (UK)

  12. Powered manipulator control arm

    International Nuclear Information System (INIS)

    Le Mouee, Theodore; Vertut, Jean; Marchal, Paul; Germon, J.C.; Petit, Michel

    1975-01-01

    A remote operated control arm for powered manipulators is described. It includes an assembly allowing several movements with position sensors for each movement. The number of possible arm movements equals the number of possible manipulator movements. The control systems may be interrupted as required. One part of the arm is fitted with a system to lock it with respect to another part of the arm without affecting the other movements, so long as the positions of the manipulator and the arm have not been brought into complete coincidence. With this system the locking can be ended when complete concordance is achieved [fr

  13. Simulation of robot manipulators

    International Nuclear Information System (INIS)

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-01-01

    This paper describes Oak Ridge National Laboratory's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories' Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment

  14. Through the Students’ Lens: Photographic Methods for Research in Library Spaces

    Directory of Open Access Journals (Sweden)

    Shailoo Bedi

    2017-06-01

    Full Text Available Abstract Objective – As librarians and researchers, we are deeply curious about how our library users navigate and experience our library spaces. Although we have some data about users’ experiences and wayfinding strategies at our libraries, including anecdotal evidence, statistics, surveys, and focus group discussions, we lacked more in-depth information that reflected students’ real-time experiences as they move through our library spaces. Our objective is to address that gap by using photographic methods for studying library spaces. Methods – We present two studies conducted in two academic libraries that used participant-driven photo-elicitation (PDPE methods. Described simply, photo-elicitation methods involve the use of photographs as discussion prompts in interviews. In both studies presented here, we asked participants to take photographs that reflected their experiences using and navigating our library spaces. We then met with participants for an interview using their photos as prompts to discuss their experiences. Results – Our analysis of students’ photos and interviews provided rich descriptions of student experiences in library spaces. This analysis resulted in new insights into the ways that students navigate the library as well as the ways that signage, furniture, technology, and artwork in the library can shape student experiences in library spaces. The results have proven productive in generating answers to our research questions and supporting practical improvements to our libraries. Additionally, when comparing the results from our two studies we identified the importance of detailed spatial references for understanding student experiences in library spaces, which has implications beyond our institutions. Conclusion – We found that photographic methods were very productive in helping us to understand library users’ experiences and supporting decision-making related to library spaces. In addition, engaging with

  15. [A reliability growth assessment method and its application in the development of equipment in space cabin].

    Science.gov (United States)

    Chen, J D; Sun, H L

    1999-04-01

    Objective. To assess and predict reliability of an equipment dynamically by making full use of various test informations in the development of products. Method. A new reliability growth assessment method based on army material system analysis activity (AMSAA) model was developed. The method is composed of the AMSAA model and test data conversion technology. Result. The assessment and prediction results of a space-borne equipment conform to its expectations. Conclusion. It is suggested that this method should be further researched and popularized.

  16. Valuing urban open space using the travel-cost method and the implications of measurement error.

    Science.gov (United States)

    Hanauer, Merlin M; Reid, John

    2017-08-01

    Urbanization has placed pressure on open space within and adjacent to cities. In recent decades, a greater awareness has developed to the fact that individuals derive multiple benefits from urban open space. Given the location, there is often a high opportunity cost to preserving urban open space, thus it is important for both public and private stakeholders to justify such investments. The goals of this study are twofold. First, we use detailed surveys and precise, accessible, mapping methods to demonstrate how travel-cost methods can be applied to the valuation of urban open space. Second, we assess the degree to which typical methods of estimating travel times, and thus travel costs, introduce bias to the estimates of welfare. The site we study is Taylor Mountain Regional Park, a 1100-acre space located immediately adjacent to Santa Rosa, California, which is the largest city (∼170,000 population) in Sonoma County and lies 50 miles north of San Francisco. We estimate that the average per trip access value (consumer surplus) is $13.70. We also demonstrate that typical methods of measuring travel costs significantly understate these welfare measures. Our study provides policy-relevant results and highlights the sensitivity of urban open space travel-cost studies to bias stemming from travel-cost measurement error. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tension Stiffened and Tendon Actuated Manipulator

    Science.gov (United States)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  18. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.

    Science.gov (United States)

    García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K

    2018-02-15

    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.

  19. THE PRINCIPLES AND METHODS OF INFORMATION AND EDUCATIONAL SPACE SEMANTIC STRUCTURING BASED ON ONTOLOGIC APPROACH REALIZATION

    Directory of Open Access Journals (Sweden)

    Yurij F. Telnov

    2014-01-01

    Full Text Available This article reveals principles of semantic structuring of information and educational space of objects of knowledge and scientific and educational services with use of methods of ontologic engineering. Novelty of offered approach is interface of ontology of a content and ontology of scientific and educational services that allows to carry out effective composition of services and objects of knowledge according to models of professional competences and requirements being trained. As a result of application of methods of information and educational space semantic structuring integration of use of the diverse distributed scientific and educational content by educational institutions for carrying out scientific researches, methodical development and training is provided.

  20. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  1. A New General Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Singthong Urailuk

    2010-01-01

    Full Text Available We introduce a new general iterative method by using the -mapping for finding a common fixed point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong convergence theorem of the purposed iterative method is established under some certain control conditions. Our results improve and extend the results announced by many others.

  2. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  3. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  4. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  5. Control of a flexible bracing manipulator: Integration of current research work to realize the bracing manipulator

    Science.gov (United States)

    Kwon, Dong-Soo

    1991-01-01

    All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.

  6. New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma

    Science.gov (United States)

    Das, G. C.; Sarma, Ridip

    2018-04-01

    Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.

  7. A randomized clinical trial to compare three methods of orthodontic space closure.

    Science.gov (United States)

    Dixon, V; Read, M J F; O'Brien, K D; Worthington, H V; Mandall, N A

    2002-03-01

    To compare the rates of orthodontic space closure for: Active ligatures, polyurethane powerchain (Rocky Mountain Orthodontics, RMO Europe, Parc d'Innovation, Rue Geiler de Kaysersberg, 67400 Illkirch-Graffenstaden, Strasbourg, France) and nickel titanium springs. Patients entering the space closure phase of fixed orthodontic treatment attending six orthodontic providers. Twelve patients received active ligatures (48 quadrants), 10 patients received powerchain (40 quadrants) and 11 patients, nickel-titanium springs (44 quadrants). Patients were randomly allocated for treatment with active ligatures, powerchain or nickel titanium springs. Upper and lower study models were collected at the start of space closure (T(o)) and 4 months later (T(1)). We recorded whether the patient wore Class II or Class III elastics. Space present in all four quadrants was measured, by a calibrated examiner, using Vernier callipers at T(o) and T(1.) The rate of space closure, in millimetres per month (4 weeks) and a 4-monthly rate, was then calculated. Examiner reliability was assessed at least 2 weeks later. Mean rates of space closure were 0.35 mm/month for active ligatures, 0.58 mm/month for powerchain, and 0.81 mm/month for NiTi springs. No statistically significant differences were found between any methods with the exception of NiTi springs showing more rapid space closure than active ligatures (P space closure. NiTi springs gave the most rapid rate of space closure and may be considered the treatment of choice. However, powerchain provides a cheaper treatment option that is as effective. The use of inter-arch elastics does not appear to influence rate of space closure.

  8. Subpicosecond Coherent Manipulation of X-Rays

    International Nuclear Information System (INIS)

    Adams, Bernhard W.

    2004-01-01

    The Takagi-Taupin theory is synthesized with the eikonal theory in a unified space-time approach, based upon microscopic electromagnetism. It is designed specifically to address x-ray diffraction in crystal structures being modified within down to a few femtosconds. Possible applications in the subpicosecond coherent manipulation of x-rays are given

  9. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  10. Genetic manipulation of Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Xhavit eZogaj

    2011-01-01

    Full Text Available Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a select A agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.

  11. A domain decomposition method for analyzing a coupling between multiple acoustical spaces (L).

    Science.gov (United States)

    Chen, Yuehua; Jin, Guoyong; Liu, Zhigang

    2017-05-01

    This letter presents a domain decomposition method to predict the acoustic characteristics of an arbitrary enclosure made up of any number of sub-spaces. While the Lagrange multiplier technique usually has good performance for conditional extremum problems, the present method avoids involving extra coupling parameters and theoretically ensures the continuity conditions of both sound pressure and particle velocity at the coupling interface. Comparisons with the finite element results illustrate the accuracy and efficiency of the present predictions and the effect of coupling parameters between sub-spaces on the natural frequencies and mode shapes of the overall enclosure is revealed.

  12. A Study on the Creation of Architectural Spaces for Children Using Rumi’s Storytelling Method

    Directory of Open Access Journals (Sweden)

    Fatemeh Moradi

    2017-06-01

    Full Text Available Public areas of behavioral science knowledge on issues related to children's environmental architecture interested in building their studies, based on the theories of learning and development of children. Children have a particular position in spaces, where grownups live, therefore the quality of spaces, proportions, architectural details, materials and so on, should act in a way that create curiosity, understanding of space and communication, selection and finally, the desire to learn and develop creativity in children. The aim of this project is to create conditions and facilities regarding growing, nurturing, creativity, promotion of knowledge and ability of children. The research methodology in this paper consists of two parts: the field and library studies. Research goals include the creation of conditions and possibilities that are the development of creativity and promotion of children's knowledge and ability. Logical and comparative reasoning method has been used for the conclusion based on case studies. Using dynamic architecture can help to develop creativity in children and the dynamics of architectural space can add deepen the joy of playing and storytelling. As a result, the research tries to link psychology and its appearance in the architectural space. The study suggest that storytelling can be facilitated through architectural space and with the help of it, we can increase the architectural designing of educational and artistic spaces.

  13. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  14. Frames and other bases in abstract and function spaces novel methods in harmonic analysis

    CERN Document Server

    Gia, Quoc; Mayeli, Azita; Mhaskar, Hrushikesh; Zhou, Ding-Xuan

    2017-01-01

    The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including ...

  15. Description of symmetry of magnetic structures by representations of space groups. [Tables, projecton operator methods

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1974-10-15

    A description of magnetic structures based on the use of representations of space groups is given. Representations of the space groups were established for each compound on the basis of experimental data by the method of projection operators. The compounds contained in the list are collected according to crystal systems, alphabetically within each system. The description of each compound consists of the four parts. The first part contain the chemical symbol of the compound, the second its space group. The next part contains the chemical symbol of the magnetic atom and its positions in Wychoff notation with the number of equivalent positions in the crystal unit cell. The main description of a compound magnetic structure is given in the fourth part. It contains: K vector defined in the reciprocal space, the representation according to which a magnetic structure is transformed and the axial vector function S which describes the magnetic structure.

  16. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation

    International Nuclear Information System (INIS)

    Wang, Wenyan; Han, Bo; Yamamoto, Masahiro

    2013-01-01

    We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)

  17. Method of locating related items in a geometric space for data mining

    Science.gov (United States)

    Hendrickson, Bruce A.

    1999-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  18. Using Google Earth to Assess Shade for Sun Protection in Urban Recreation Spaces: Methods and Results.

    Science.gov (United States)

    Gage, R; Wilson, N; Signal, L; Barr, M; Mackay, C; Reeder, A; Thomson, G

    2018-05-16

    Shade in public spaces can lower the risk of and sun burning and skin cancer. However, existing methods of auditing shade require travel between sites, and sunny weather conditions. This study aimed to evaluate the feasibility of free computer software-Google Earth-for assessing shade in urban open spaces. A shade projection method was developed that uses Google Earth street view and aerial images to estimate shade at solar noon on the summer solstice, irrespective of the date of image capture. Three researchers used the method to separately estimate shade cover over pre-defined activity areas in a sample of 45 New Zealand urban open spaces, including 24 playgrounds, 12 beaches and 9 outdoor pools. Outcome measures included method accuracy (assessed by comparison with a subsample of field observations of 10 of the settings) and inter-rater reliability. Of the 164 activity areas identified in the 45 settings, most (83%) had no shade cover. The method identified most activity areas in playgrounds (85%) and beaches (93%) and was accurate for assessing shade over these areas (predictive values of 100%). Only 8% of activity areas at outdoor pools were identified, due to a lack of street view images. Reliability for shade cover estimates was excellent (intraclass correlation coefficient of 0.97, 95% CI 0.97-0.98). Google Earth appears to be a reasonably accurate and reliable and shade audit tool for playgrounds and beaches. The findings are relevant for programmes focused on supporting the development of healthy urban open spaces.

  19. An overview of the laser ranging method of space laser altimeter

    Science.gov (United States)

    Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song

    2017-11-01

    Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.

  20. Protein space: a natural method for realizing the nature of protein universe.

    Science.gov (United States)

    Yu, Chenglong; Deng, Mo; Cheng, Shiu-Yuen; Yau, Shek-Chung; He, Rong L; Yau, Stephen S-T

    2013-02-07

    Current methods cannot tell us what the nature of the protein universe is concretely. They are based on different models of amino acid substitution and multiple sequence alignment which is an NP-hard problem and requires manual intervention. Protein structural analysis also gives a direction for mapping the protein universe. Unfortunately, now only a minuscule fraction of proteins' 3-dimensional structures are known. Furthermore, the phylogenetic tree representations are not unique for any existing tree construction methods. Here we develop a novel method to realize the nature of protein universe. We show the protein universe can be realized as a protein space in 60-dimensional Euclidean space using a distance based on a normalized distribution of amino acids. Every protein is in one-to-one correspondence with a point in protein space, where proteins with similar properties stay close together. Thus the distance between two points in protein space represents the biological distance of the corresponding two proteins. We also propose a natural graphical representation for inferring phylogenies. The representation is natural and unique based on the biological distances of proteins in protein space. This will solve the fundamental question of how proteins are distributed in the protein universe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Suitability of the RGB Channels for a Pixel Manipulation in a Spatial Domain Data Hiding Techniques

    Directory of Open Access Journals (Sweden)

    Ante Poljicak

    2010-06-01

    Full Text Available The aim of this research was to determine which channel in rgb color space is the most suitable (regarding perceptibility for a pixel manipulation in a spatial domain data  hiding techniques. For this purpose three custom test targets were generated. The research also shows the behavior of two closely related colors in the ps (Print-Scan process. The results are interpreted using both a quantitative method (statistical comparison and a qualitative method (visual comparison.

  2. Balanced articulated manipulator

    International Nuclear Information System (INIS)

    Francois, Daniel; Germond, J.-C.; Marchal, Paul; Vertut, Jean.

    1976-01-01

    The description is given of a manipulator of the type comprising a master arm and a slave arm, capable of working in a containment restricted by a wall fitted with an aperture to introduce the slave arm into the containment. According to the invention this manipulator is permanently balanced irrespective of its distortions when it is secured to the wall of the containment in which it is desired to work. The entire manipulator is also balanced when being set up and when moved outside the containment, in relation to a supporting axle. This result is achieved in a simplified manner by giving homothetic shapes to the various component parts of the slave and master arms, the master arm having at least one balancing weight [fr

  3. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  4. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-12-15

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  5. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    International Nuclear Information System (INIS)

    Wang, Hesheng; Lai, Yinping; Chen, Weidong

    2016-01-01

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  6. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    Science.gov (United States)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  7. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  8. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2014-01-01

    This book is a step-by step, example-oriented tutorial that will show both intermediate and advanced users how data manipulation is facilitated smoothly using R.This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.

  9. Finding Optimal Independent Grasp Regions of Parallel Manipulators with Additional Applications for Limbed Robot Mobility

    Data.gov (United States)

    National Aeronautics and Space Administration — For the problem of robotic manipulation, wherein a robotic manipulator interacts with objects or its environment using an end-effector (gripper), there have been...

  10. Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation

    International Nuclear Information System (INIS)

    Terze, Zdravko; Lefeber, Dirk; Muftic, Osman

    2001-01-01

    A method for integrating equations of motion of constrained multibody systems with no constraint violation is presented. A mathematical model, shaped as a differential-algebraic system of index 1, is transformed into a system of ordinary differential equations using the null-space projection method. Equations of motion are set in a non-minimal form. During integration, violations of constraints are corrected by solving constraint equations at the position and velocity level, utilizing the metric of the system's configuration space, and projective criterion to the coordinate partitioning method. The method is applied to dynamic simulation of 3D constrained biomechanical system. The simulation results are evaluated by comparing them to the values of characteristic parameters obtained by kinematics analysis of analyzed motion based unmeasured kinematics data

  11. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones.

  12. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  13. Two New Iterative Methods for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Hu Changsong

    2010-01-01

    Full Text Available We consider two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed point of a countable family of nonexpansive mappings which solves the corresponding variational inequality. Our results improve and extend the corresponding ones announced by many others.

  14. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.

  15. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  16. A General Iterative Method for a Nonexpansive Semigroup in Banach Spaces with Gauge Functions

    Directory of Open Access Journals (Sweden)

    Kamonrat Nammanee

    2012-01-01

    Full Text Available We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping Jφ, where φ is a gauge function on [0,∞. Our results improve and extend those announced by G. Marino and H.-K. Xu (2006 and many authors.

  17. The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rabian Wangkeeree

    2012-01-01

    Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.

  18. A method simulating random magnetic field in interplanetary space by an autoregressive method

    International Nuclear Information System (INIS)

    Kato, Masahito; Sakai, Takasuke

    1985-01-01

    With an autoregressive method, we tried to generate the random noise fitting in with the power spectrum which can be analytically Fouriertransformed into an autocorrelation function. Although we can not directly compare our method with FFT by Owens (1978), we can only point out the following; FFT method should determine at first the number of data points N, or the total length to be generated and we cannot generate random data more than N. Because, beyond the NΔy, the generated data repeats the same pattern as below NΔy, where Δy = minimum interval for random noise. So if you want to change or increase N after generating the random noise, you should start the generation from the first step. The characteristic of the generated random number may depend upon the number of N, judging from the generating method. Once the prediction error filters are determined, our method can produce successively the random numbers, that is, we can possibly extend N to infinite without any effort. (author)

  19. Manipulator system man-machine interface evaluation program. [technology assessment

    Science.gov (United States)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  20. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    Science.gov (United States)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts-range of motion (ROM) and torque- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits. This is reflected in the fact that torque definitions have been applied to very few types of space suits and with limited success in defining all the joints accurately. This paper discussed the advantages and disadvantages to historical joint torque evaluation methods, describes more recent efforts directed at benchmarking joint torques of prototype space suits, and provides an outline for how NASA intends to address joint torque in design requirements for the Constellation Space Suit System (CSSS).

  1. Accuracy of the improved quasistatic space-time method checked with experiment

    International Nuclear Information System (INIS)

    Kugler, G.; Dastur, A.R.

    1976-10-01

    Recent experiments performed at the Savannah River Laboratory have made it possible to check the accuracy of numerical methods developed to simulate space-dependent neutron transients. The experiments were specifically designed to emphasize delayed neutron holdback. The CERBERUS code using the IQS (Improved Quasistatic) method has been developed to provide a practical yet accurate tool for spatial kinetics calculations of CANDU reactors. The code was tested on the Savannah River experiments and excellent agreement was obtained. (author)

  2. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    Science.gov (United States)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  3. Billing and coding for osteopathic manipulative treatment.

    Science.gov (United States)

    Snider, Karen T; Jorgensen, Douglas J

    2009-08-01

    Some osteopathic physicians are not properly reimbursed by insurance companies after providing osteopathic manipulative treatment (OMT) to their patients. Common problems associated with lack of reimbursements include insurers bundling OMT with the standard evaluation and management service and confusing OMT with chiropractic manipulative treatment or physical therapy services. The authors suggest methods of appeal for denied reimbursement claims that will also prevent future payment denials.

  4. Description of European Space Agency (ESA) Remote Manipulator (RM) System Breadboard Currently Under Development for Demonstration of Critical Technology Foreseen to be Used in the Mars Sample Receiving Facility (MSRF)

    Science.gov (United States)

    Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.

    2018-04-01

    In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.

  5. Task based synthesis of serial manipulators

    Directory of Open Access Journals (Sweden)

    Sarosh Patel

    2015-05-01

    Full Text Available Computing the optimal geometric structure of manipulators is one of the most intricate problems in contemporary robot kinematics. Robotic manipulators are designed and built to perform certain predetermined tasks. There is a very close relationship between the structure of the manipulator and its kinematic performance. It is therefore important to incorporate such task requirements during the design and synthesis of the robotic manipulators. Such task requirements and performance constraints can be specified in terms of the required end-effector positions, orientations and velocities along the task trajectory. In this work, we present a comprehensive method to develop the optimal geometric structure (DH parameters of a non-redundant six degree of freedom serial manipulator from task descriptions. In this work we define, develop and test a methodology to design optimal manipulator configurations based on task descriptions. This methodology is devised to investigate all possible manipulator configurations that can satisfy the task performance requirements under imposed joint constraints. Out of all the possible structures, the structures that can reach all the task points with the required orientations are selected. Next, these candidate structures are tested to see whether they can attain end-effector velocities in arbitrary directions within the user defined joint constraints, so that they can deliver the best kinematic performance. Additionally least power consuming configurations are also identified.

  6. Kinematically Optimal Robust Control of Redundant Manipulators

    Science.gov (United States)

    Galicki, M.

    2017-12-01

    This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  7. MANIPULATING CONSUMERS THROUGH ADVERTISING

    Directory of Open Access Journals (Sweden)

    Nicoleta -Andreea Neacşu

    2012-12-01

    Full Text Available Marketing communication has evolved steadily in the direction of increasing complexity and increasing volume of funds needed to run their own actions. More than ever, consumers are exposed to an overwhelming variety of sources and communication tehniques, the information received being numerous, diverse and polyvalent. The desire to make more efficient the marketing communication activity urges the broadcasters to encode messages, to use effective means of propagation in order to obtain a high degree of control on receptors and to influence the consumption attitudes. Between the means used for this purpose, manipulation tehniques are well known. This paper highlights the main conclusions drawn as a result of a quantitative marketing research on the adult population from Braşov in order to identify the attitudes and opinions of consumers from Braşov regarding the manipulation techniques used by commercial practices and advertising.The results of the research have shown that 82% of the respondents buy products in promotional offers, and 18% choose not to buy these products and 61% of the respondents consider that they have not been manipulated not even once, while only 39% believe that they have been manipulated at least once through advertising or commercial practices. Advertisements on TV have a strong influence on consumers, 81% of the respondents considering that at least once they have bought a product because of a TV commercial.

  8. Manipulating the Gradient

    Science.gov (United States)

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  9. Microrobots to Manipulate Cells

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    At DTU Fotonik we developed and harnessed the new and emerging research area of so-called Light Robotics including the 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time laser-manipulated in a 3D-volume with six-degrees-of-freedom. To be exploring the full potentia...

  10. Automated visual attention manipulation

    NARCIS (Netherlands)

    Bosse, T.; Lambalgen, R. van; Maanen, P.P. van; Treur, J.

    2009-01-01

    In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in hich the system is used

  11. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2015-01-01

    This book is for all those who wish to learn about data manipulation from scratch and excel at aggregating data effectively. It is expected that you have basic knowledge of R and have previously done some basic administration work with R.

  12. The TFTR maintenance manipulator

    International Nuclear Information System (INIS)

    Kungl, D.; Loesser, D.; Heitzenroeder, P.; Cerdan, G.

    1989-01-01

    TFTR plans to begin D-T experiments in mid 1990. The D-T experimental program will produce approximately one hundred shots, with a neutron generation rate of 10 19 neutrons per shot. This will result in high levels of activation in TFTR, especially in the vacuum vessel. The primary purpose of the Maintenance Manipulator is to provide a means of remotely performing certain defined maintenance and inspection tasks inside the vacuum torus so as to minimize personnel exposure to radiation. The manipulator consists of a six-link folding boom connected to a fixed boom on a movable carriage. The entire manipulator is housed in a vacuum antechamber connected to the vacuum torus, through a port formerly used for a vacuum pumping duct. The configuration extends 180 0 in either direction to provide complete coverage of the torus. The four 3500 l/s turbopumps which were formerly used in the pumping duct will be mounted on the antechamber. The manipulator will utilize two end effectors. The first, called a General Inspection Arm (GIA) provides a movable platform to an inspection camera and an in-vacuum leak detector. The second is a bilateral, force-reflecting pair of slave arms which utilize specially developed tools to perform several maintenance functions. All components except the slave arms are capable of operating in TFTR's vacuum environment and during 150 0 C bakeout of the torus. (orig.)

  13. Manipulating Combinatorial Structures.

    Science.gov (United States)

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  14. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  15. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  16. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

    International Nuclear Information System (INIS)

    Besse, Nicolas

    2003-01-01

    This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

  17. Study of a multivariable nonlinear process by the phase space method

    International Nuclear Information System (INIS)

    Tomei, Alain

    1969-02-01

    This paper concerns the study of the properties of a multivariate nonlinear process using the phase space method. Based on the example of the Rapsodie reactor, a fast sodium reactor, the authors have established the simplified differential equations with the analogical study of partial differential equations (in order to replace them with ordinary differential equations), a mathematical study of dynamic properties and stability of the simplified model by the phase space method, and the verification of the model properties using an analog calculator. The reactor, with all its thermal circuits, has been considered as a nonlinear system with two inputs and one output (reactor power). The great stability of a fast reactor such as Rapsodie, in the normal operating conditions, has been verified. The same method could be applied to any other type of reactor

  18. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  19. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  20. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  1. AN ENCODING METHOD FOR COMPRESSING GEOGRAPHICAL COORDINATES IN 3D SPACE

    Directory of Open Access Journals (Sweden)

    C. Qian

    2017-09-01

    Full Text Available This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1 subdividing the whole 3D geographic space based on octree structure, (2 resampling all the vertices in 3D models, (3 encoding the coordinates of vertices with a combination of Cube Index Code (CIC and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  2. Research of the Space Clustering Method for the Airport Noise Data Minings

    Directory of Open Access Journals (Sweden)

    Jiwen Xie

    2014-03-01

    Full Text Available Mining the distribution pattern and evolution of the airport noise from the airport noise data and the geographic information of the monitoring points is of great significance for the scientific and rational governance of airport noise pollution problem. However, most of the traditional clustering methods are based on the closeness of space location or the similarity of non-spatial features, which split the duality of space elements, resulting in that the clustering result has difficult in satisfying both the closeness of space location and the similarity of non-spatial features. This paper, therefore, proposes a spatial clustering algorithm based on dual-distance. This algorithm uses a distance function as the similarity measure function in which spatial features and non-spatial features are combined. The experimental results show that the proposed algorithm can discover the noise distribution pattern around the airport effectively.

  3. Scale Space Methods for Analysis of Type 2 Diabetes Patients' Blood Glucose Values

    Directory of Open Access Journals (Sweden)

    Stein Olav Skrøvseth

    2011-01-01

    Full Text Available We describe how scale space methods can be used for quantitative analysis of blood glucose concentrations from type 2 diabetes patients. Blood glucose values were recorded voluntarily by the patients over one full year as part of a self-management process, where the time and frequency of the recordings are decided by the patients. This makes a unique dataset in its extent, though with a large variation in reliability of the recordings. Scale space and frequency space techniques are suited to reveal important features of unevenly sampled data, and useful for identifying medically relevant features for use both by patients as part of their self-management process, and provide useful information for physicians.

  4. A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching

    KAUST Repository

    Liang, Ru-Ze; Xie, Wei; Li, Weizhi; Wang, Hongqi; Wang, Jim Jing-Yan; Taylor, Lisa

    2017-01-01

    In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.

  5. A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching

    KAUST Repository

    Liang, Ru-Ze

    2017-01-17

    In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.

  6. Guidance methods in psychological «spaces» of self-determination

    Directory of Open Access Journals (Sweden)

    Nikolai S. Prjazhnikov

    2017-09-01

    Full Text Available Self-determination is deemed as search and continuous refinement of the meaning of the future life. The paper discusses various options for self-determination, i.e. professional, personal, social, and other ones. Self-determination means making a certain choice. This may be career choice («career self-determination», choice of a moral position («personal self-determination», choice of one’s position in society associated with image and style of life, status in various social groups («social self-determination», choice of options («Leisure selfdetermination», or even choice of relationship type («family self-determination», etc. The generalized options and methods of orientation in various «space» of self-determination are highlighted. The psychological «spaces» are regarded as a metaphor that reflects and arranges a certain field of search for the meanings of self-determination. Each «space» is constructed according to a certain principle based on certain criteria. Psychological «space» may be determined as diverse, and in this set of self-determining personality one must be able to navigate. There are main groups of psychological «space» including the typology of options for planning life and career, the typology of work activity, the typology of professions. It is important for self-determination to define the future professional activity. Various methods are presented that allow a person to get a career orientation in complex «space» of career and life choices. Particular attention is paid to self-determination of children in adolescence. Various modern approaches in career guidance and P.Ya. Galperin’s career «orientation» principles are drawn to a concordance.

  7. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  8. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  9. A Novel Method Describing the Space Charge Limited Region in a Planar Diode

    Directory of Open Access Journals (Sweden)

    Mitra Ghergherehchi

    2017-11-01

    Full Text Available A novel and rather simple method is presented to describe the physics of space-charge region in a planar diode. The method deals with the issue in the time domain and as a consequence transient time behavior can be achieved. Potential distributions and currents obtained using this technique, supposing zero initial velocity for electrons, reveal absolute agreement with Child's results. Moreover, applying the method for non-zero uniform initial velocity for electrons, gives results which are in good agreement with previous works

  10. Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method

    International Nuclear Information System (INIS)

    Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.

    2010-01-01

    The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.

  11. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  12. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Heiser, Aron T.; Sonnenwald, Diane H.

    2003-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a system supporting remote collaboration between users of the nanoManipulator interface to atomic force microscopes. To be accepted by users, the shared nanoManipulator application had to have the same high...... level of interactivity as the single user system and the application had to support a user's ability to interleave working privately and working collaboratively. This paper briefly describes the entire collaboration system, but focuses on the shared nanoManipulator application. Based on our experience...... developing the CnM, we present: a method of analyzing applications to characterize the requirements for sharing data between collaborating sites, examples of data structures that support collaboration, and guidelines for selecting appropriate synchronization and concurrency control schemes....

  13. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    Science.gov (United States)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  14. The finite element method scheme for a solution of an evolution variational inequality with a nonlocal space operator

    Science.gov (United States)

    Glazyrina, O. V.; Pavlova, M. F.

    2016-11-01

    We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.

  15. Application of hierarchical clustering method to classify of space-time rainfall patterns

    Science.gov (United States)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  16. Design space development for the extraction process of Danhong injection using a Monte Carlo simulation method.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available A design space approach was applied to optimize the extraction process of Danhong injection. Dry matter yield and the yields of five active ingredients were selected as process critical quality attributes (CQAs. Extraction number, extraction time, and the mass ratio of water and material (W/M ratio were selected as critical process parameters (CPPs. Quadratic models between CPPs and CQAs were developed with determination coefficients higher than 0.94. Active ingredient yields and dry matter yield increased as the extraction number increased. Monte-Carlo simulation with models established using a stepwise regression method was applied to calculate the probability-based design space. Step length showed little effect on the calculation results. Higher simulation number led to results with lower dispersion. Data generated in a Monte Carlo simulation following a normal distribution led to a design space with a smaller size. An optimized calculation condition was obtained with 10,000 simulation times, 0.01 calculation step length, a significance level value of 0.35 for adding or removing terms in a stepwise regression, and a normal distribution for data generation. The design space with a probability higher than 0.95 to attain the CQA criteria was calculated and verified successfully. Normal operating ranges of 8.2-10 g/g of W/M ratio, 1.25-1.63 h of extraction time, and two extractions were recommended. The optimized calculation conditions can conveniently be used in design space development for other pharmaceutical processes.

  17. Mixed gradient-Tikhonov methods for solving nonlinear ill-posed problems in Banach spaces

    International Nuclear Information System (INIS)

    Margotti, Fábio

    2016-01-01

    Tikhonov regularization is a very useful and widely used method for finding stable solutions of ill-posed problems. A good choice of the penalization functional as well as a careful selection of the topologies of the involved spaces is fundamental to the quality of the reconstructions. These choices can be combined with some a priori information about the solution in order to preserve desired characteristics like sparsity constraints for example. To prove convergence and stability properties of this method, one usually has to assume that a minimizer of the Tikhonov functional is known. In practical situations however, the exact computation of a minimizer is very difficult and even finding an approximation can be a very challenging and expensive task if the involved spaces have poor convexity or smoothness properties. In this paper we propose a method to attenuate this gap between theory and practice, applying a gradient-like method to a Tikhonov functional in order to approximate a minimizer. Using only available information, we explicitly calculate a maximal step-size which ensures a monotonically decreasing error. The resulting algorithm performs only finitely many steps and terminates using the discrepancy principle. In particular the knowledge of a minimizer or even its existence does not need to be assumed. Under standard assumptions, we prove convergence and stability results in relatively general Banach spaces, and subsequently, test its performance numerically, reconstructing conductivities with sparsely located inclusions and different kinds of noise in the 2D electrical impedance tomography. (paper)

  18. A brain MRI bias field correction method created in the Gaussian multi-scale space

    Science.gov (United States)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  19. Control Framework for Dexterous Manipulation Using Dynamic Visual Servoing and Tactile Sensors’ Feedback

    Directory of Open Access Journals (Sweden)

    Carlos A. Jara

    2014-01-01

    Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

  20. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  1. A universal microscope manipulator

    Directory of Open Access Journals (Sweden)

    Peter S. Boyadzhiev

    2012-03-01

    Full Text Available A modified and improved model of a mechanical manipulator for observation of pinned and mounted insects is described. This device allows movement of the observed object around three perpendicular axes in the field of vision at all magnifications of stereomicroscopes. The main improvement of this new model is positioning of the guiding knobs for rotating around two of the axes next to each other, allowing faster and easier manipulation of the studied object. Thus, one of the main advantages of this device is the possibility to rotate the specimen without the need to refocus. The device enables easily reaching a precession deviation in the intersection point of axes up to 0.5 mm in the process of assembling.

  2. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  3. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  4. Dynamic whole-body robotic manipulation

    Science.gov (United States)

    Abe, Yeuhi; Stephens, Benjamin; Murphy, Michael P.; Rizzi, Alfred A.

    2013-05-01

    The creation of dynamic manipulation behaviors for high degree of freedom, mobile robots will allow them to accomplish increasingly difficult tasks in the field. We are investigating how the coordinated use of the body, legs, and integrated manipulator, on a mobile robot, can improve the strength, velocity, and workspace when handling heavy objects. We envision that such a capability would aid in a search and rescue scenario when clearing obstacles from a path or searching a rubble pile quickly. Manipulating heavy objects is especially challenging because the dynamic forces are high and a legged system must coordinate all its degrees of freedom to accomplish tasks while maintaining balance. To accomplish these types of manipulation tasks, we use trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning trajectories in a 13 dimensional space. We apply the Covariance Matrix Adaptation (CMA) algorithm to solve for trajectories that optimize task performance while also obeying important constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate desired feed-forward body forces and foot step locations, which enable tracking on the robot. Some hardware results for cinderblock throwing are demonstrated on the BigDog quadruped platform augmented with a human-arm-like manipulator. The results are analogous to how a human athlete maximizes distance in the discus event by performing a precise sequence of choreographed steps.

  5. Protozoa manipulation by ultrasound

    Directory of Open Access Journals (Sweden)

    Yancy Milena Porras Rodríguez

    2004-01-01

    Full Text Available Microorganism manipulation, considered as controlled motion and positioning, is one of the most important activities in microbiology and medicine. To achieve this goal there are some techniques such as those which and optical forces, among others. These techniques are usually sophisticated, and some of them can induce irreversible alterations on the microorganisms which prevents their use in another tests. Thus, there is justified the study of technological alternatives to manipulate microorganisms in an easy and cost-effective way. This work shows the interaction between protozoa and air microbubbles when they are under the influence of an ultrasonic field of 5.8 mW. At the microbubbles resonant frequencies, microorganisms were attracted toward the bubbles' frontier remaining there while the ultrasonic field was applied. Once the ultrasound disappears, protozoa recover their freedom of movement. The observed effects could be used as the actuation principle of devices capable to trap, hold and release microorganisms of high mobility without any apparent damage. Microbubbles are generated by electrolysis which take place on the surface of an electrode array, while the ultrasound is originated by means of a piezoelectric transducer. As microorganisms there were employed those present in stagnated water, and were observed through an stereomicroscope. Key words: manipulator; protozoa; ultrasonic; transducer; piezoelectric.

  6. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  7. Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.

    Science.gov (United States)

    Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi

    2018-05-10

    Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.

  8. Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces

    Czech Academy of Sciences Publication Activity Database

    Wróblewska, Aneta

    2010-01-01

    Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * general ized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568

  9. Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method

    DEFF Research Database (Denmark)

    Lorentsen, Louise; Kristensen, Lars Michael

    2001-01-01

    The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space....

  10. Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces

    Czech Academy of Sciences Publication Activity Database

    Wróblewska, Aneta

    2010-01-01

    Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * generalized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568

  11. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  12. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  13. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  14. An adaptive phase space method with application to reflection traveltime tomography

    International Nuclear Information System (INIS)

    Chung, Eric; Qian, Jianliang; Uhlmann, Gunther; Zhao, Hongkai

    2011-01-01

    In this work, an adaptive strategy for the phase space method for traveltime tomography (Chung et al 2007 Inverse Problems 23 309–29) is developed. The method first uses those geodesics/rays that produce smaller mismatch with the measurements and continues on in the spirit of layer stripping without defining the layers explicitly. The adaptive approach improves stability, efficiency and accuracy. We then extend our method to reflection traveltime tomography by incorporating broken geodesics/rays for which a jump condition has to be imposed at the broken point for the geodesic flow. In particular, we show that our method can distinguish non-broken and broken geodesics in the measurement and utilize them accordingly in reflection traveltime tomography. We demonstrate that our method can recover the convex hull (with respect to the underlying metric) of unknown obstacles as well as the metric outside the convex hull. (paper)

  15. Agent Control for Reconfigurable Open Kinematic Chain Manipulators

    Directory of Open Access Journals (Sweden)

    Janez Sluga

    2013-10-01

    Full Text Available This paper presents a method for the autonomous control of differently structured open kinematic chains based on multi-agent system technology. The appropriate level of distributing local autonomy (agents to a manipulative structure is defined, which makes it possible to dynamically change the number, type and structure of manipulative components without modifying their behavioural logic. To achieve fast reconfigurable and scalable manipulative systems, a new multi-agent method is developed for controlling the manipulator kinematics. The new method enables independent manipulator structure from the control system because of its structural and system modularity. The proposed method consists of kinematic equations for use in an agent environment, agent motion-planning algorithms, evaluation functions, agent control logic and kinematic algorithms. The results of simulations and real-world experiments demonstrate the usefulness of the approach for different non-redundant and redundant manipulation structures.

  16. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.

    Science.gov (United States)

    Stępień, Grzegorz

    2018-03-17

    The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  17. METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of

  18. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space

    Directory of Open Access Journals (Sweden)

    Grzegorz Stępień

    2018-03-01

    Full Text Available The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems—interior and exterior orientation of sensors—to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data. The accuracy of the results in the laboratory test is on the level of 10−6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author’s 2017 Total Free Station (TFS transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation—MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  19. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  20. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  1. Probing the parameter space of HD 49933: A comparison between global and local methods

    Energy Technology Data Exchange (ETDEWEB)

    Creevey, O L [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Bazot, M, E-mail: orlagh@iac.es, E-mail: bazot@astro.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2011-01-01

    We present two independent methods for studying the global stellar parameter space (mass M, age, chemical composition X{sub 0}, Z{sub 0}) of HD 49933 with seismic data. Using a local minimization and an MCMC algorithm, we obtain consistent results for the determination of the stellar properties: M 1.1-1.2 M{sub sun} Age {approx} 3.0 Gyr, Z{sub 0} {approx} 0.008. A description of the error ellipses can be defined using Singular Value Decomposition techniques, and this is validated by comparing the errors with those from the MCMC method.

  2. A study of potential energy curves from the model space quantum Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Yuhki; Ten-no, Seiichiro, E-mail: tenno@cs.kobe-u.ac.jp [Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

    2015-12-07

    We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.

  3. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  4. A General 2D Meshless Interpolating Boundary Node Method Based on the Parameter Space

    Directory of Open Access Journals (Sweden)

    Hongyin Yang

    2017-01-01

    Full Text Available The presented study proposed an improved interpolating boundary node method (IIBNM for 2D potential problems. The improved interpolating moving least-square (IIMLS method was applied to construct the shape functions, of which the delta function properties and boundary conditions were directly implemented. In addition, any weight function used in the moving least-square (MLS method was also applicable in the IIMLS method. Boundary cells were required in the computation of the boundary integrals, and additional discretization error was not avoided if traditional cells were used to approximate the geometry. The present study applied the parametric cells created in the parameter space to preserve the exact geometry, and the geometry was maintained due to the number of cells. Only the number of nodes on the boundary was required as additional information for boundary node construction. Most importantly, the IIMLS method can be applied in the parameter space to construct shape functions without the requirement of additional computations for the curve length.

  5. Using Manipulatives in Math Instruction.

    Science.gov (United States)

    Marzola, Eileen S.

    1987-01-01

    Guidelines for teachers to better use manipulatives in the teaching of mathematics to learning disabled learners are offered including a rationale for manipulatives, selection crteria, principles underlying productive use of manipulatives, and making the transition from the concrete to the symbolic. Suggested materials and distributors are listed.…

  6. Path planning of master-slave manipulator using graphic simulator

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. K.; Park, B. S.; Yoon, J. S.

    2002-01-01

    To handle the high level radioactive materials such as spent fuels remotely, the master-slave manipulator is generally used as a remote handling equipment in the hot cell. To analyze the motion and to implement the training system by virtual reality technology, the simulator for M-S manipulator using the computer graphics is developed. The parts are modelled in 3-D graphics, assembled, and kinematics are assigned. The inverse kinematics of the manipulator is defined, and the slave of manipulator is coupled with master by the manipulator's specification. Also, the virtual work cell is implemented in the graphical environment which is the same as the real environment and the path planning method using the function of the collision detection for a manipulator are proposed. This graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management

  7. INTERDISCIPLINARITY IN PUBLIC SPACE PARTICIPATIVE PROJECTS: METHODS AND RESULTS IN PRACTICE AND TEACHING

    Directory of Open Access Journals (Sweden)

    Pedro Brandão

    2015-06-01

    • In the development of design practice and studio teaching methods We shall see in this paper how interdisciplinary approaches correspond to new and complex urban transformations, focusing on the importance of actors’ interaction processes, combining professional and non-professional knowledge and theory-practice relations. Therefore, we aim at a deepening in public space area of knowledge under the growing complexity of urban life. We see it as a base for further development of collaborative projects and their implications on community empowerment and urban governance at local level. Motivations of this line of work are persistent in several ongoing research projects, aiming to: - Understand public space as a cohesion factor both in urban life and urban form - Manage processes and strategies as elements of urban transformation, - Stimulate the understanding of actors’ roles in urban design practices. - Favoring the questioning of emerging aspects of urban space production… The paper presents and analyses processes, methods and results from civic participation projects developed in the neighbourhood of Barò de Viver (Barcelona and in the District of Marvila (Lisbon. In the first case, a long process initiated in 2004 and partially completed in 2011, neighbours developed the projects "Memory Wall" and Ciutat d'Asuncion Promenade as part of identity construction in public space, in collaboration  with a team of facilitators from CrPolis group. In the second case, different participatory processes dated from 2001 and 2003 have resulted in the implementation of a specific identity urban brand and communication system with an ongoing project of "maps" construction according to the neighbours perception and representation systems. We may conclude that processes of urban governance require more active participation of citizens in projects regarding the improvement of quality of life. At the same time, the implementation of these processes requires a clear

  8. The McKenzie method compared with manipulation when used adjunctive to information and advice in low back pain patients presenting with centralization or peripheralization. A randomized controlled trial

    DEFF Research Database (Denmark)

    Petersen, Tom; Larsen, Kristian; Nordsteen, Jan

    2011-01-01

    .Methods. A total of 350 patients suffering from low back pain with a duration of more than 6 weeks who presented with centralization or peripheralization of symptoms with or without signs of nerve root involvement, were enrolled in the trial. Main outcome was number of patients with treatment success defined...... a structured exercise programme tailored to the individual patient as well as manual therapy for the treatment of persistent low back pain. There is presently insufficient evidence to recommend the use of specific decision methods tailoring specific therapies to clinical subgroups of patients in primary care...... for more than six weeks presenting with centralization or peripheralization of symptoms, we found the McKenzie method to be slightly more effective than manipulation when used adjunctive to information and advice....

  9. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  10. A simple method for one-loop renormalization in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@uis.no [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2013-08-01

    We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.

  11. Corticospinal MRI tractography in space-occupying brain lesions by diffusion tensor and kurtosis imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Leote, Joao [epartment of Neurosurgery, Hospital Garcia de Orta, Almada (Portugal); Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal); Nunes, Rita; Cerqueira, Luis; Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal)

    2015-05-18

    Recently, DKI-based tractography has been developed, showing improved crossing-fiber resolution in comparison to deterministic DTI-based tractography in healthy subjects. In this work, DTI and DKI-based tractography methods were compared regarding the assessment of the corticospinal tract in patients presenting space-occupying brain lesions near cortical motor areas. Nine patients (4 males) aged 23 to 62 years old, with space-occupying brain lesions (e.g. tumors) were studied for pre-surgical planning using a 1.5T MRI scanner and a 12-channel head coil. In 5 patients diffusion data was acquired along 64 directions and in 4 patients along 32 directions both with b-values 0, 1000 and 2000 s/mm2. Corticospinal tracts were estimated using deterministic DTI and DKI methods and also using probabilistic DTI. The superior cerebellar peduncles and the motor cortical areas, ipsilateral and contralateral to the lesions, were used as seed regions-of-interest for fiber tracking. Tracts courses and volumes were documented and compared between methods. Results showed that it was possible to estimate fiber tracts using deterministic DTI and DKI methods in 8/9 patients, and using the probabilistic DTI method in all patients. Overall, it was observed that DKI-based tractography showed more voluminous fiber tracts than when using deterministic DTI. The DKI method also showed curvilinear fibers mainly above lesions margins, which were not visible with deterministic DTI in 5 patients. Similar tracts were observed when using probabilistic DTI in 3 of those patients. Results suggest that the DKI method contribute with additional information about the corticospinal tract course in comparison with the DTI method, especially with subcortical lesions and near lesions’ margins. Therefore, this study suggests that DKI-based tractography could be useful in MRI and hybrid PET-MRI pre-surgical planning protocols for improved corticospinal tract evaluation.

  12. Research into topology optimization and the FDM method for a space cracked membrane

    Science.gov (United States)

    Hu, Qingxi; Li, Wanyuan; Zhang, Haiguang; Liu, Dali; Peng, Fujun; Duan, Yongchao

    2017-07-01

    The problem that the space membranes are easily torn open is the main focus in this paper, and a bionic strengthening-ribs structure is proposed for a space membrane based on interdisciplinary strengths, such as topology optimization, composite materials, and rapid prototyping. The optimization method and modeling method of membranes with bionic strengthening-ribs was studied. The PEEK and SCF/PEEK composite material which are applied to the space environment are chosen, and FDM technology is used. Through topology optimization, bionic strengthening-ribs with good tensile and tear capacities were obtained. Cracked membranes, cracked membranes with PEEK strengthening-ribs and SCF/PEEK strengthening-ribs were tested and test data were obtained. An extension situation and tension fracture were compared for three cases. The experimental results showed that membranes with the bionic strengthening-ribs structure have better mechanical properties, and the strength of the membranes with PEEK and SCF/PEEK strengthening-ribs were raised, respectively, up to 266.9% and 185.9%. The strengthening-ribs structure greatly improves the capacity to halt membrane crack-growth, which has an important significance to avoid membrane tear, and to ensure the spacecraft orbital lifetime.

  13. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    Science.gov (United States)

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  14. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    Directory of Open Access Journals (Sweden)

    Alfonse N. Pham

    2015-12-01

    Full Text Available This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  16. Twenty-first century quantum mechanics Hilbert space to quantum computers mathematical methods and conceptual foundations

    CERN Document Server

    Fano, Guido

    2017-01-01

    This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...

  17. Novel strategy to implement active-space coupled-cluster methods

    Science.gov (United States)

    Rolik, Zoltán; Kállay, Mihály

    2018-03-01

    A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

  18. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Veronese, S.V.; Othmer, H.G. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  19. Space cutter compensation method for five-axis nonuniform rational basis spline machining

    Directory of Open Access Journals (Sweden)

    Yanyu Ding

    2015-07-01

    Full Text Available In view of the good machining performance of traditional three-axis nonuniform rational basis spline interpolation and the space cutter compensation issue in multi-axis machining, this article presents a triple nonuniform rational basis spline five-axis interpolation method, which uses three nonuniform rational basis spline curves to describe cutter center location, cutter axis vector, and cutter contact point trajectory, respectively. The relative position of the cutter and workpiece is calculated under the workpiece coordinate system, and the cutter machining trajectory can be described precisely and smoothly using this method. The three nonuniform rational basis spline curves are transformed into a 12-dimentional Bézier curve to carry out discretization during the discrete process. With the cutter contact point trajectory as the precision control condition, the discretization is fast. As for different cutters and corners, the complete description method of space cutter compensation vector is presented in this article. Finally, the five-axis nonuniform rational basis spline machining method is further verified in a two-turntable five-axis machine.

  20. Determining the orientation of the observed object in threedimensional space using stereo vision methods

    International Nuclear Information System (INIS)

    Ponomarev, S

    2014-01-01

    The task of matching image of an object with its template is central for many optoelectronic systems. Solution of the matching problem in three-dimensional space in contrast to the structural alignment in the image plane allows using a larger amount of information about the object for determining its orientation, which may increase the probability of correct matching. In the case of stereo vision methods for constructing a three-dimensional image of the object, it becomes possible to achieve invariance w.r.t. background and distance to the observed object. Only three of the orientation angle of the object relative to the camera are uncertain and require measurements. This paper proposes a method for determining the orientation angles of the observed object in three-dimensional space, which is based on the processing of stereo image sequences. Disparity map segmentation method that allows one to ensure the invariance of the background is presented. Quantitative estimates of the effectiveness of the proposed method are presented and discussed.

  1. Improvement of the M/S manipulator maintenance at OSL

    International Nuclear Information System (INIS)

    Kuwana, Koichi; Ouchi, Hiroshi; Ito, Yutaka; Sato, Yoshihiro; Midorikawa, Mituhiro; Hayakawa, Tuyoshi

    2010-01-01

    The safeguards inspection samples from the JNFL Rokkasho Reprocessing Plant (RRP) are received and analyzed at the On Site Laboratory (OSL). Since the samples from the input accountancy tank of the RRP contain a lot of fission products, they are treated in a hot-cell line with a M/S (Master /Slave) manipulator. Special equipment and tools were used for the maintenance of the M/S manipulator, especially for the exchange of the M/S manipulator. However, the manipulator exchange work was not easy due to the limitation of the space in the OSL. For solution to this problem, a monorail and monorail hoist equipment was installed onto wall surface of analytical room close to each M/S manipulator, and then it made the exchange of M/S manipulator easy without special equipment and tools. Additionally, operator was freed from the burden of working space arranging for the exchange of M/S manipulator such as removing of analytical equipments. This report represents the improvement of operation for the exchange of M/S manipulator with installation of monorail and hoist equipment. (author)

  2. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  3. Using futures methods to create transformative spaces: visions of a good Anthropocene in southern Africa

    Directory of Open Access Journals (Sweden)

    Laura M. Pereira

    2018-03-01

    Full Text Available The unique challenges posed by the Anthropocene require creative ways of engaging with the future and bringing about transformative change. Envisioning positive futures is a first step in creating a shared understanding and commitment that enables radical transformations toward sustainability in a world defined by complexity, diversity, and uncertainty. However, to create a transformative space in which truly unknowable futures can be explored, new experimental approaches are needed that go beyond merely extrapolating from the present into archetypal scenarios of the future. Here, we present a process of creative visioning where participatory methods and tools from the field of futures studies were combined in a novel way to create and facilitate a transformative space, with the aim of generating positive narrative visions for southern Africa. We convened a diverse group of participants in a workshop designed to develop radically different scenarios of good Anthropocenes, based on existing "seeds" of the future in the present. These seeds are innovative initiatives, practices, and ideas that are present in the world today, but are not currently widespread or dominant. As a result of a carefully facilitated process that encouraged a multiplicity of perspectives, creative immersion, and grappling with deeply held assumptions, four radical visions for southern Africa were produced. Although these futures are highly innovative and exploratory, they still link back to current real-world initiatives and contexts. The key learning that arose from this experience was the importance of the imagination for transformative thinking, the need to capitalize on diversity to push boundaries, and finally, the importance of creating a space that enables participants to engage with emotions, beliefs, and complexity. This method of engagement with the future has the potential to create transformative spaces that inspire and empower people to act toward positive

  4. A New Ensemble Method with Feature Space Partitioning for High-Dimensional Data Classification

    Directory of Open Access Journals (Sweden)

    Yongjun Piao

    2015-01-01

    Full Text Available Ensemble data mining methods, also known as classifier combination, are often used to improve the performance of classification. Various classifier combination methods such as bagging, boosting, and random forest have been devised and have received considerable attention in the past. However, data dimensionality increases rapidly day by day. Such a trend poses various challenges as these methods are not suitable to directly apply to high-dimensional datasets. In this paper, we propose an ensemble method for classification of high-dimensional data, with each classifier constructed from a different set of features determined by partitioning of redundant features. In our method, the redundancy of features is considered to divide the original feature space. Then, each generated feature subset is trained by a support vector machine, and the results of each classifier are combined by majority voting. The efficiency and effectiveness of our method are demonstrated through comparisons with other ensemble techniques, and the results show that our method outperforms other methods.

  5. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    International Nuclear Information System (INIS)

    Wang, S.L.

    1994-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  6. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  7. Dynamical electron diffraction simulation for non-orthogonal crystal system by a revised real space method.

    Science.gov (United States)

    Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G

    2015-01-01

    In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Remote control manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, T

    1970-02-28

    A prior-art remote control manipulator comprises a horizontal suspension section, a master arm and a slave arm which are coupled to ends of the suspension section in a manner to pivotally move relative to the suspension section, and a connecting device which includes a tape and which joins both the arms. When the connecting device malfunctions, the slave arm can neither be extended nor contracted. Means to keep the tension of the tape is required which restricts the extension length of the slave arm. Further, the slave arm can be moved only in the axial direction. The invention described provides an improved remote control manipulator of the specified type. A moving device which moves the slave arm relative to the master arm without the intervention of the connecting device is mounted on a movable part of the slave arm, while pulleys which maintain the joining relationship of the connecting device are mounted on the movable part and fixed part of the slave arm. Owing to this construction, movement of the slave arm is assured despite troubles which may arise in the connecting device. In addition, no slack arises in the tape. By applying a similar construction to the horizontal suspension section, the suspension section can be stretched, and hence, the slave arm can be moved in a direction orthogonal to its axis.

  9. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF Method

    Directory of Open Access Journals (Sweden)

    Chen Xiaolong

    2018-04-01

    Full Text Available To meet the urgent demand of low-observable moving target detection in complex environments, a novel method of Frequency Diverse Array (FDA radar signal processing method based on Space-Rang-Doppler Focusing (SRDF is proposed in this paper. The current development status of the FDA radar, the design of the array structure, beamforming, and joint estimation of distance and angle are systematically reviewed. The extra degrees of freedom provided by FDA radar are fully utilizsed, which include the Degrees Of Freedom (DOFs of the transmitted waveform, the location of array elements, correlation of beam azimuth and distance, and the long dwell time, which are also the DOFs in joint spatial (angle, distance, and frequency (Doppler dimensions. Simulation results show that the proposed method has the potential of improving target detection and parameter estimation for weak moving targets in complex environments and has broad application prospects in clutter and interference suppression, moving target refinement, etc..

  10. Simulation of transients with space-dependent feedback by coarse mesh flux expansion method

    International Nuclear Information System (INIS)

    Langenbuch, S.; Maurer, W.; Werner, W.

    1975-01-01

    For the simulation of the time-dependent behaviour of large LWR-cores, even the most efficient Finite-Difference (FD) methods require a prohibitive amount of computing time in order to achieve results of acceptable accuracy. Static CM-solutions computed with a mesh-size corresponding to the fuel element structure (about 20 cm) are at least as accurate as FD-solutions computed with about 5 cm mesh-size. For 3d-calculations this results in a reduction of storage requirements by a factor 60 and of computing costs by a factor 40, relative to FD-methods. These results have been obtained for pure neutronic calculations, where feedback is not taken into account. In this paper it is demonstrated that the method retains its accuracy also in kinetic calculations, even in the presence of strong space dependent feedback. (orig./RW) [de

  11. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Stagner, L.; Salewski, Mirko

    2016-01-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth and first-order Tikhonov...... regularization. The inversion methods are applied to fast-ion Dα measurements taken just before and just after a sawtooth crash in the ASDEX Upgrade tokamak as well as to synthetic measurements from different test distributions. We find that the methods regularizing by penalizing steep gradients or maximizing...... entropy perform best. We assess the uncertainty of the calculated inversions taking into account photon noise, uncertainties in the forward model as well as uncertainties introduced by the regularization which allows us to distinguish regions of high and low confidence in the tomographies. In high...

  12. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    Science.gov (United States)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  13. A Parallel Strategy for High-speed Interpolation of CNC Using Data Space Constraint Method

    Directory of Open Access Journals (Sweden)

    Shuan-qiang Yang

    2013-12-01

    Full Text Available A high-speed interpolation scheme using parallel computing is proposed in this paper. The interpolation method is divided into two tasks, namely, the rough task executing in PC and the fine task in the I/O card. During the interpolation procedure, the double buffers are constructed to exchange the interpolation data between the two tasks. Then, the data space constraint method is adapted to ensure the reliable and continuous data communication between the two buffers. Therefore, the proposed scheme can be realized in the common distribution of the operation systems without real-time performance. The high-speed and high-precision motion control can be achieved as well. Finally, an experiment is conducted on the self-developed CNC platform, the test results are shown to verify the proposed method.

  14. Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.

  15. A method for the dynamic and thermal stress analysis of space shuttle surface insulation

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1975-01-01

    The thermal protection system of the space shuttle consists of thousands of separate insulation tiles bonded to the orbiter's surface through a soft strain-isolation layer. The individual tiles are relatively thick and possess nonuniform properties. Therefore, each is idealized by finite-element assemblages containing up to 2500 degrees of freedom. Since the tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct-stiffness method would require equation systems involving excessive numbers of unknowns. This paper presents a method which overcomes this problem through an efficient iterative procedure which requires treatment of only a single tile at any given time. Results of associated static, dynamic, and thermal stress analyses and sufficient conditions for convergence of the iterative solution method are given.

  16. METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Denys Vasyliev

    2017-03-01

    Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.

  17. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.

    Science.gov (United States)

    Wang, Geng; Xing, Fei; Wei, Minsong; Sun, Ting; You, Zheng

    2017-05-20

    Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

  18. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.

    2017-06-03

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  19. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le

    2017-01-01

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  20. Fernand Braudel and Formation of Geohistorical Method in the Study of Economic Space

    Directory of Open Access Journals (Sweden)

    Alexander Nikolaevich Demyanenko

    2013-09-01

    Full Text Available The essay analyzes the part of the scientific extensive heritage of F. Braudel which is devoted to formation of geohistorical method as a methodological platform that allows realization of the idea of interdisciplinary synthesis in the study of economic space. The very name of the method contains a direct reference to the synthesis of geographical and historical approaches to the study of society and economy. For its part, the introduction of geographical approaches in the framework of interdisciplinary synthesis involves not only the introduction of space in the analysis of economic phenomena, but also the inclusion of geographical environment. That in turn requires consideration of extension in time during the analysis of spatial economic systems because temporal rhythms are usually ignored by economists in view of their duration. At the same time, neglect or time constraints hindered and keep hindering the development of economic thought. The authors paid special attention to analysis of the matter of the monograph «The Mediterranean and the Mediterranean World in the Age of Philip II» which is a landmark work both for historical and economic sciences as it pioneered the substantiation of the geohistorical method

  1. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  2. Methods of Weyl representation of the phase space and canonical transformations

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1986-01-01

    The author studies nonlinear canonical transformations realized in the space of Weyl symbols of quantum operators. The kernels of the transformations, the symbol of the intertwining operator of the group of inhomogeneous point transformations, an the group characters are constructed. The group of PL transformations, which is the free produce of the group of point, p, and linear, L, transformations is considered. The simplest PL complexes relating problems with different potentials, in particular, containing a general Darboux transformation of the factorization method, are constructed. The kernel of an arbitrary element of the group PL is found

  3. 3D shape detection of the indoor space based on 3D-Hough method

    OpenAIRE

    安齋, 達也; ANZAI, Tatsuya

    2013-01-01

    This paper describes methods for detecting the 3D shapes of the indoor space that is represented as a combination of planes such as a wall, desk, or whatnot. Detecting the planes makes it possible to perform calibration of multiple sensors and 3D mapping, and then produces various services such as the acquisition of life logs, AR interaction, and invader detection. This paper proposes and verifies three algorithms. First, it mentions a way to use2D-Hough.The proposed technique converts 3D dat...

  4. The study of importance of the storage method of the space foods

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Space Agriculture Task Force, J.

    Providing foods to space crew is the important requirements to support long term manned space exploration. Foods fill not only physiological requirements to sustain life, but psychological needs for refreshment and joy during the long and hard mission to extraterrestrial planets. In the space stay of the long term, the storage technology of the food is important. Surplus food and the establishment of a safe save method of the food are essential. However, in Moon and Mars base or spaceship, there are limited spaces. We need to think about how to use the storage food when we have the time of emergency. The fundamental composition of our recipe is unpolished rice, barley, soybean, sweat potato and green-yellow vegetables. Supplement food materials to fulfill the nutritional requirements we chose are loach, silkworm pupa, termite, snail, mud snail, bee, cassava and quinoa. The pupa of the silkworm becomes the important nourishment source as protein and lipid. The silk thread uses it as clothing and cosmetics and medical supplies. However, we can use the silk thread as food as protein. The silk thread is mad of sericin and fibroin. The sericin is used for cosmetics mainly, but can make sheet food by mixing it with rice flour. We can make Japanese rolled sushi with this product. In addition, we can make spring roll and gyoza and shao-mai. As for the fibroin which is the subject of the silk thread, is to extract it high pressure heat; of the protein can powder it, and can use it as food. Even if there is the silk thread in this way after having made it clothes once, we can do it to food again. We can reuse the cotton thread as carbohydrates equally, too. We can use the wood as carbohydrates, also. Based upon the foregoing, we use the pupa of the silkworm as protein and lipid, and the silk thread as protein, and the cotton thread and wood as carbohydrates. It is recommended as healthy meal balance; Protein: Lipid: Carbohydrate ratio equal 15We succeeded to develop joyful

  5. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  6. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  7. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  8. Simultaneous determination of the brand new two-drug combination for the treatment of hepatitis C: Sofosbuvir/ledipasvir using smart spectrophotometric methods manipulating ratio spectra

    Science.gov (United States)

    Eissa, Maya S.

    2017-08-01

    In this work, various sensitive and selective spectrophotometric methods were first introduced for the simultaneous determination of sofosbuvir and ledipasvir in their binary mixture without preliminary separation. Ledipasvir was determined simply by zero-order spectrophotometric method at its λmax = 333.0 nm in a linear range of 2.5-30.0 μg/ml without any interference of sofosbuvir even in low or high concentrations and with mean percentage recovery of 100.05 ± 0.632. Sofosbuvir can be quantitatively estimated by one of the following smart spectrophotometric methods based on ratio spectra developed for the resolution of the overlapped spectra of their binary mixture; ratio difference spectrophotometric method (RD) by computing the difference between the amplitudes of sofosbuvir ratio spectra at 228 nm and 270 nm, first derivative (DD1) of ratio spectra by measuring the sum of amplitude of trough and peak at 265 nm and 277 nm, respectively, ratio subtraction (RS) spectrophotometric method in which sofosbuvir can be successfully determined at its λmax = 261.0 nm and mean centering (MC) of ratio spectra by measuring the mean centering values at 270 nm. All of the above mentioned spectrophotometric methods can estimate sofosbuvir in a linear range of 7.5-90.0 μg/ml with mean percentage recoveries of 100.57 ± 0.810, 99.92 ± 0.759, 99.51 ± 0.475 and 100.75 ± 0.672, respectively. These methods were successfully applied to the analysis of their combined dosage form and bulk powder. The adopted methods were also validated as per ICH guidelines and statistically compared to an in-house HPLC method.

  9. Dual arm master controller for a bilateral servo-manipulator

    Science.gov (United States)

    Kuban, Daniel P.; Perkins, Gerald S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  10. High degree-of-freedom dynamic manipulation

    Science.gov (United States)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  11. Portraits made to measure: manipulating social judgments about individuals with a statistical face model.

    Science.gov (United States)

    Walker, Mirella; Vetter, Thomas

    2009-10-13

    The social judgments people make on the basis of the facial appearance of strangers strongly affect their behavior in different contexts. However, almost nothing is known about the physical information underlying these judgments. In this article, we present a new technology (a) to quantify the information in faces that is used for social judgments and (b) to manipulate the image of a human face in a way which is almost imperceptible but changes the personality traits ascribed to the depicted person. This method was developed in a high-dimensional face space by identifying vectors that capture maximum variability in judgments of personality traits. Our method of manipulating the salience of these vectors in faces was successfully transferred to novel photographs from an independent database. We evaluated this method by showing pairs of face photographs which differed only in the salience of one of six personality traits. Subjects were asked to decide which face was more extreme with respect to the trait in question. Results show that the image manipulation produced the intended attribution effect. All response accuracies were significantly above chance level. This approach to understanding and manipulating how a person is socially perceived could be useful in psychological research and could also be applied in advertising or the film industries.

  12. [Language Manipulation, Surrogacy, Altruism].

    Science.gov (United States)

    Serrano Ruiz-Calderón, José Miguel

    2017-01-01

    The Newspeak propitiates a change of the sense of the words and next to the double thinking forms the picture of totalitarianism described by Orwell in 1984. The purpose of the Newspeak is to make all other forms of thought impossible. In bioethics the Newspeak is applied, not because Bioethics is a new science but by the manipulative intention. The twentieth-century political language has, according to Orwell, the intention to remove the ″mental image ″ of what really happens. This is clear in the terms ″surrogacy ″. On the one hand, the mother is deprived of her child. On the other, there is no legal subrogation. As has been said the technique reduces a woman to the condition of a vessel. The excuse of gratuity does not change the exploitative relationship, since gratuitousness in the provision of women is not the altruism of all those involved in surrogacy.

  13. Media and manipulation

    Directory of Open Access Journals (Sweden)

    Kovačević Braco

    2013-01-01

    Full Text Available The role and importance of the media are huge, both in everyday life and in cultural, spiritual and political life of modern man. Their power in the sense of political shaping of people and shaping of public opinion is very distinctive. In the process of propaganda to influence public opinion, they use various manipulative procedures in order to accomplish certain interests and objectives. Through the media, politics realizes its economic, ideological, political and even military activities. The war in the former Yugoslavia and former Bosnia and Herzegovina was also waged through the media. This media war still is spreading the hate speech, thus still causing conflicts and disintegration processes in the Balkans.

  14. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study

    Science.gov (United States)

    Hemdan, A.

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  15. Characteristics of manipulative in mathematics laboratory

    Science.gov (United States)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  16. Wave Manipulation by Topology Optimization

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders

    topology optimization can be used to design structures for manipulation of the electromagnetic and acoustic waves. The wave problems considered here fall within three classes. The first class concerns the design of cloaks, which when wrapped around an object will render the object undetectable...... for the cloak is to delay the waves in regions of higher permittivity than the background and subsequently phase match them to the waves outside. Directional acoustic cloaks can also be designed using the topology optimization method. Aluminum cylinders constitutes the design and their placement and size...... concerns the design of planar Fresnel zone plate lenses for focusing electromagnetic waves. The topology optimized zone plates improve the focusing performance compared to results known from the literature....

  17. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  18. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  19. The Synthesis Method of Automated System of Operational Planning in Low-Space Communication System Messaging

    Directory of Open Access Journals (Sweden)

    Serhii Kovbasiuk

    2017-04-01

    Full Text Available One of the reasons for the decrease of efficiency in low-speed communication systems, satellite communication, which are based on nanoplatform is a high degree of operational planning centralisation. To overcome this problem the method which carries out the distribution of tasks of communications operational planning minimizing the exchange of information between spatially remote sites, and takes into account the computing performance of software and hardware was developed. The technique is based on the use of methods of structural and parametric synthesis, simulation and statistical analysis of the results. Its use allows to obtain the optimal structure of the automated system of operational planning in low-space communication system messaging evaluation of efficiency in terms of fixed communication of information load.

  20. Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method

    DEFF Research Database (Denmark)

    Lorentsen, Louise; Kristensen, Lars Michael

    2001-01-01

    The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space.......The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate...

  1. A hybrid method of estimating pulsating flow parameters in the space-time domain

    Science.gov (United States)

    Pałczyński, Tomasz

    2017-05-01

    This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.

  2. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  3. A METHOD FOR SELF-CALIBRATION IN SATELLITE WITH HIGH PRECISION OF SPACE LINEAR ARRAY CAMERA

    Directory of Open Access Journals (Sweden)

    W. Liu

    2016-06-01

    Full Text Available At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera’s change regulation can be mastered accurately and the camera’s attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  4. MAXILLARY INCISORS CHANGES DURING SPACE CLOSURE WITH CONVENTIONAL AND SKELETAL ANCHORAGE METHODS: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Yasas Shri Nalaka JAYARATNE

    2017-12-01

    Full Text Available Purpose: The objective of this systematic review was to compare the antero-posterior, vertical and angular changes of maxillary incisors with conventional anchorage control techniques and mini-implant based space closure methods. Materials and Methods: The electronic databases Pubmed, Scopus, ISI Web of knowledge, Cochrane Library and Open Grey were searched for potentially eligible studies using a set of predetermined keywords. Full texts meeting the inclusion criteria as well as their references were manually searched. The primary outcome data (linear, angular, and vertical maxillary incisor changes and secondary outcome data (overbite changes, soft tissue changes, biomechanical factors, root resorption and treatment duration were extracted from the selected articles and entered into spreadsheets based on the type of anchorage used. The methodological quality of each study was assessed. Results: Six studies met the inclusion criteria. The amount of incisor retraction was greater with buccally placed mini-implants than conventional anchorage techniques. The incisor retraction with indirect anchorage from palatal mini-implants was less when compared with buccally placed mini-implants. Incisor intrusion occurred with buccal mini-implants, whereas extrusion was seen with conventional anchorage. Limited data on the biomechanical variables or adverse effects such as root resorption were reported in these studies. Conclusion: More RCT’s that take in to account relevant biomechanical variables and employ three-dimensional quantification of tooth movements are required to provide information on incisor changes during space closure.

  5. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-08-09

    We address the task of adjusting a surface to a vector field of desired surface normals in space. The described method is entirely geometric in the sense, that it does not depend on a particular parametrization of the surface in question. It amounts to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly more robust and efficient, have not been attempted as they require second-order Hadamard differentials. These are difficult to compute for the problem of interest and in general fail to be positive-definite symmetric. We propose a novel approximation of the shape Hessian, which is not only rigorously justified but also leads to excellent numerical performance of the actual optimization. Moreover, a remarkable connection to Sobolev flows is exposed. Three other established algorithms from image and geometry processing turn out to be special cases of ours. Our numerical implementation founds on a fast finite-elements formulation on the minimizing sequence of triangulated shapes. A series of examples from a wide range of different applications is discussed to underline flexibility and efficiency of the approach. © 2011 Springer Science+Business Media, LLC.

  6. Nonequilibrium dynamics of spin-boson models from phase-space methods

    Science.gov (United States)

    Piñeiro Orioli, Asier; Safavi-Naini, Arghavan; Wall, Michael L.; Rey, Ana Maria

    2017-09-01

    An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase-space methods such as the truncated Wigner approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 011022 (2015), 10.1103/PhysRevX.5.011022]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations to our coupled spin-boson model. This allows us, in principle, to study how systematically adding higher-order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model, which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for an arbitrary number of bosonic modes.

  7. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  8. The risk associated with spinal manipulation

    DEFF Research Database (Denmark)

    Nielsen, Sabrina Mai; Tarp, Simon; Christensen, Robin

    2017-01-01

    BACKGROUND: Spinal manipulative therapy (SMT) is a widely used manual treatment, but many reviews exist with conflicting conclusions about the safety of SMT. We performed an overview of reviews to elucidate and quantify the risk of serious adverse events (SAEs) associated with SMT. METHODS: We...

  9. Parallelogram mechanisms for mine manipulator arms

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, N

    1983-01-01

    Kinematic equations are written for the mechanism of a manipulator arm which is used as the operational element of a basic machine and is shaped like a parallelogram. The drive is accomplished using a hydraulic cylinder. A transfer functions method is used to acquire kinematic equations of the final shifts and equations for determining accelerations.

  10. Conjugate Gradient Algorithms For Manipulator Simulation

    Science.gov (United States)

    Fijany, Amir; Scheid, Robert E.

    1991-01-01

    Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.

  11. Evaluation of the Airborne CASI/TASI Ts-VI Space Method for Estimating Near-Surface Soil Moisture

    Directory of Open Access Journals (Sweden)

    Lei Fan

    2015-03-01

    Full Text Available High spatial resolution airborne data with little sub-pixel heterogeneity were used to evaluate the suitability of the temperature/vegetation (Ts/VI space method developed from satellite observations, and were explored to improve the performance of the Ts/VI space method for estimating soil moisture (SM. An evaluation of the airborne ΔTs/Fr space (incorporated with air temperature revealed that normalized difference vegetation index (NDVI saturation and disturbed pixels were hindering the appropriate construction of the space. The non-disturbed ΔTs/Fr space, which was modified by adjusting the NDVI saturation and eliminating the disturbed pixels, was clearly correlated with the measured SM. The SM estimations of the non-disturbed ΔTs/Fr  space using the evaporative fraction (EF and temperature vegetation dryness index (TVDI were validated by using the SM measured at a depth of 4 cm, which was determined according to the land surface types. The validation results show that the EF approach provides superior estimates with a lower RMSE (0.023 m3·m−3 value and a higher correlation coefficient (0.68 than the TVDI. The application of the airborne ΔTs/Fr  space shows that the two modifications proposed in this study strengthen the link between the ΔTs/Fr space and SM, which is important for improving the precision of the remote sensing Ts/VI space method for monitoring SM.

  12. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    Science.gov (United States)

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  13. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  14. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]). - Highlights: • Absolute determination of radiation burst. • Proportional counters space charge effect. • Radiation measurements on pulsed devices.

  15. The Manipulative Discourse of Gandalf

    Directory of Open Access Journals (Sweden)

    Farid Mohammadi

    2014-07-01

    Full Text Available The aim of this essay is to investigate discursive, cognitive and social aspects of manipulation in regard to the dialogues of the literary fictional character of Gandalf in the trilogy of The Lord of the Rings. Accordingly, the researcher has taken a multidisciplinary approach to an account of discursive manipulation, and focuses on the cognitive dimensions of manipulation. As a result, the researcher demonstrates meticulously how manipulation involves intensifying the power, moral superiority and the credibility of the speaker(s, while abusing the others (recipients, along with an emotional and attractive way of expression, and supplemented by reasonable facts and documents in regard to a specific issue.

  16. On the dynamics of chain systems. [applications in manipulator and human body models

    Science.gov (United States)

    Huston, R. L.; Passerello, C. E.

    1974-01-01

    A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.

  17. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    Science.gov (United States)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control

  18. Engineering Gecko-Inspired Adhesives for Robotic Mobility and Manipulation in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed research is to customize gecko-inspired adhesive technologies for space applications in manipulation and mobility, primarily addressing...

  19. A blind deconvolution method based on L1/L2 regularization prior in the gradient space

    Science.gov (United States)

    Cai, Ying; Shi, Yu; Hua, Xia

    2018-02-01

    In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.

  20. Tree manipulation experiment

    Science.gov (United States)

    Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.

    2012-12-01

    Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled